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We present a one-dimensional, radial, coupled degradation-electrochemical-thermal (DET) model of a large format cylindrical lithium
ion cell. The model consists of reduced order equations that describe the electrochemical phenomena, including that associated
with degradation, coupled with an approximate model of thermal behavior. The reduced order electrochemical model, which is
approximated from the pseudo-two-dimensional (P2D) electrochemical model using a Padé approximation method, computes the
variation of electrochemical variables and heat generation terms. Simultaneously, a coupled thermal model computes the temperature
distribution in the radial direction of the cell. The results from DET model compare favorably to those obtained from solving the
1D radial coupled degradation-electrochemical-thermal partial differential equations in COMSOL Multiphysics, however the DET
model returns these results in significantly reduced computational times. Importantly, the model capability in providing insightful
information of cell degradation and temperature in a computationally efficient manner paves the way for the health-conscious,
real-time optimal control of large format cylindrical cells.
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Lithium ion batteries are now commonly used for the storage of en-
ergy in large, renewable energy generation systems, such as wind and
photovoltaic systems, to eliminate their inherent intermittency. This is
due to the fact that the battery storage systems are capable of providing
a rapid response to counteract the fluctuations and filter out the vari-
abilities associated with renewable generation and therefore enhance
stabilize grid performance and maximize system security benefits.1

Large format cylindrical lithium ion cells with high energy have been
developed and implemented in those energy storage systems. For ex-
ample, “CH75” cylindrical cells developed by Hitachi have capacity of
75Ah/cell.2 These cells can compose a large energy battery pack using
relatively small number of cells, which can reduce the total number of
components and therefore, increase the reliability of the pack.2

In order to operate batteries optimally, with the intention of main-
taining safety and extending battery life, a battery management system
(BMS) is essential.3 Two critical functions of a BMS are the thermal
management and degradation monitoring. These functions become
more essential for large format cylindrical batteries in which non-
uniformities in temperature and degradation occur during operation.4

Furthermore, such non-uniformities exacerbate further degradation
and temperature gradients within the battery. Information on heat gen-
eration is fundamentally important for managing thermal issues such
as thermal runaway, electrical cell imbalance within the battery pack
and poor performance at low temperatures.5 However, heat generation
inside a cell is a complex process that requires the knowledge of the
physical characteristics of the cell during its operation. Total heat gen-
eration is due to irreversible and reversible processes, Joule heating in
the solid and electrolyte and heating from the electrode/current col-
lector contact resistance.6 It is accompanied by changes in the elec-
trochemical properties of the cell, such as entropy, solid and elec-
trolyte concentrations due to chemical and electrochemical reactions
and changes in the solid and electrolyte potentials. Battery degradation
is mainly caused by the formation and growth of the solid electrolyte
interphase layer (SEI) layer, which scavenges active lithium ions and
electrolyte materials and increases battery resistance, leading to ca-
pacity and power fade, respectively.7 SEI growth is also coupled with
the thermal behavior of the cell as higher temperatures increase the SEI
growth rate which in turn causes higher SEI resistance and ohmic heat
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generation, which elevates further the temperature.8 Current BMSs
rely significantly on equivalent circuit models due to their simplic-
ity and low computational requirement.9 However, equivalent circuit
models have limited insight on the electrochemical characteristics of
a battery and therefore, given the intimate coupling between the two,
they are not able to model battery thermal behavior precisely.6

Alternatively, the pseudo-two-dimensional electrochemical model
(P2D), first developed by Doyle, Fuller, and Newman,10,11 does pro-
vide insight into battery electrochemical behavior coupled with ther-
mal properties.6 The P2D model, however, consists of five partial dif-
ferential equations (PDEs) and one algebraic equation, which can-
not be practically implemented in embedded BMS applications, with-
out simplification or order reduction, due to their high computational
requirement.9 A simplified electrochemical model that has low com-
putational overheads, whilst maintaining precision in a specific range
of operation would therefore be ideal to facilitate accurate, real-time
resolution and control of battery operation. There are several reduced
electrochemical models in the literature.12–16 The single particle model
(SPM) embodies one of the approaches that is used to reduce the com-
plexity of P2D model into a single PDE and an algebraic equation.17–19

However, the SPM model assumes that the electrolyte concentration is
constant and that the current in the electrolyte does not vary spatially,
which results in poor voltage prediction capability.12 Cai and White20

developed a reduced order model using proper orthogonal decomposi-
tion to compute the electrochemical variables at discretized locations
along the model domains. Subramanian et al.13 developed approxi-
mations of the microscale diffusion of lithium ion in the solid phase,
which have been well-adapted in macroscale models in the literature.
In another paper, Subramanian et al.,21 used finite difference approxi-
mations and polynomial representations to reduce a system of 12 cou-
pled PDEs into a system of Differential Algebraic Equations (DAEs),
which are amenable to be used in battery control. Smith et al.22 de-
rived analytic transfer functions, in the Laplace domain, for a number
of electrochemical variables in a linearized P2D model. Lee et al.9 pro-
posed an improvement of this approach by developing a complete set of
transcendental transfer functions for the linearized P2D model. These
authors then used the discrete-time realization algorithm (DRA)23 to
convert these transfer functions into an optimal discrete-time state-
space model which can be used in real-time applications. However,
extended computational time is required to rerun the DRA to pro-
duce a new state-space model when the electrochemical parameters of
the P2D change.9 Alternatively, Padé approximations provide a way
of greatly simplifying complicated transcendental transfer functions
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in order to produce simpler rational polynomial transfer functions,
which can be used in embedded applications.24 Padé approximants
were first used by Fathy et al.25 to simplify a single transcendental
transfer function of Jacobsen and West’s model,26 namely the lithium
ion concentration in the solid phase. Our previous work extends this
outcome by presenting a reduced order model for a lithium ion battery
in which Padé approximants are used to simplify all of the transcen-
dental transfer functions associated with the variables of the linearized
P2D model developed by Lee et al.9 Our results showed that the re-
duced model delivers high accuracy for low computational overhead
when compared to the P2D model. Importantly, the reduced model
requires relatively simple rational functions to be computed, which
can evaluate internal electrochemical variables at any spatial location
within the cross section of the cell. Therefore, this model is ideal for
coupling with thermal and degradation models of the system.

Coupled thermal and electrochemical models have been pre-
sented previously in the literature on battery thermal management.27,28

Capron et al.29 investigated the thermal behavior of large lithium
ion phosphate battery using coupled thermal-electrochemical model
and implemented it in COMSOL Multiphysics.30 Pals and Newman31

presented a one-dimensional, coupled thermal-electrochemical model
that calculates the heat generation rate and temperature of a single
cell and then in a second paper32 they use their model to determine
the temperature distribution within a cell stack. Wang et al.33 mod-
elled the thermal performance of a battery pack with various cell con-
figurations in the pack and with different cooling strategies. How-
ever, due to their complexity and computational cost these afore-
mentioned models are implemented using powerful commercial soft-
ware, embodying integrated finite element and computational fluid
dynamical packages34–36 such as COMSOL Multiphysics30 or AN-
SYS Fluent.37 Guo and White12 reported that a 2-dimensional, cou-
pled, electrochemical- thermal model of a cylindrical required ap-
proximately 20 hours to simulate a constant discharge profile. In
the same work, a proposed 1-dimensional, radial model of a spirally
wound cell required 20 minutes to simulate the same discharge profile.
Thus, these methods are not suitable for embedded BMSs, which re-
quire much lower computational workload. An approximate thermal-
electrochemical model is therefore required for real-time applications.

Lower computational burden coupled thermal-electrochemical
models have been reported in literature.28,38 For example, the lumped
thermal model, which is based on the assumption that the whole in-
terior temperature of the cell is uniform,38 has been used in battery
thermal management.6 This model is simple and requires low compu-
tational overhead and is useful in the thermal management of battery
packs where individual cells within the pack are considered as simple
heat sources. However, this approach is not able to compute non-
uniform temperature distributions such as those that occur in large
format cylindrical cells, especially in the radial direction.39 Kim et al.
proposed a second order polynomial approximation to the governing
radial temperature of the cell40 in which the temperature at the center
of the cell is a maximum. However, due to the hollow core in spirally
wound cells the maximum will not occur at the center of the cell and
in large format cylindrical cells this approximation is likely to be un-
reasonable. In addition, previous models40 use only a single value of
material density, specific heat and thermal conductivity for the whole
cell and incorporate a fitting approach to estimate these parameters
and incorporate a Kalman filter to estimate the cell’s temperature. The
computational requirements of such an approach are likely to be rel-
atively high.

There are a number of SEI layer growth models available in the
literature. Ramadass et al.41 proposed a model of SEI layer growth
representing a continuous film formation over the surface of the solid
particles, which increases the surface resistance of the particles and in-
creases irreversible capacity loss. Safari et al.42 developed an isother-
mal, multimodal, aging model for SEI growth at the carbonaceous
anode material considering the solvent decomposition kinetics and
solvent diffusion through SEI layer. Henrik and Göran43 proposed a
degradation model based on linear combination of two phenomena,
namely, continuous SEI layer growth at the microscopic scale and SEI

layer cracking due to the expansion of solid particles at the macro-
scopic scale.

Up to this time, SEI layer growth is still considered as “the most
important but least understood solid electrolyte in rechargeable Li
batteries” due to the complexity of chemical and electrochemical re-
actions involved and its physical properties.7,44 For the purpose of
control design, in this work, we adapt the SEI growth model proposed
by Ramadass et al.41 as it is simple whilst still being able to represent
the underlying physics of degradation, and it has been well-accepted
in the literature. We note, however, that other degradation models can
also be used in our proposed model framework.

Coupled thermal, degradation and electrochemical models are un-
common, however, Tanim et al.8 do present a SPM coupled with ther-
mal and SEI models. The result is a 1D spatial model that ignores non-
uniform distributions of temperature and degradation along the radius
of the cell, which, given their dimensions, does not seem reasonable for
large-format cylindrical cells. Smith et al.,4 present an empirical degra-
dation model coupled with a multi-dimensional, multi-scale (MD-MS)
cell model for large format cylindrical batteries. However, PDE-based
models are computationally expensive and are used in battery design
rather than real-time, optimal control situations. These models are too
complex to be implemented in real time for most control algorithms.45

In this paper, we propose an efficient 1-dimensional, radial, cou-
pled degradation-electrochemical-thermal model of a spirally wound,
cylindrical lithium ion battery, noted hereafter as the DET model.
The DET model couples our previous reduced order, electrochemical
model46 with an approximate thermal profile for the cell, based on the
steady state solution of the one-dimensional, radial, heat equation, and
an SEI growth model.41 The model accounts for the central, electrolyte
filled, hollow core and the spirally wound material. The proposed DET
model is computationally efficient whilst maintaining a high degree of
accuracy (compared with that obtained when using the P2D model) in
simulating the radial temperature and degradation distributions within
the cell over time. It is a predictive modelling tool that can be applied
to a wide variety of battery applications. The model is novel in that it
applies to large-format, spirally wound, cylindrical batteries and ac-
counts for non-uniform degradation and thermal behavior coupled to
electrochemical phenomena. Our proposed model is able to provide
insight into the variation and evolution of the local temperature and
degradation rate of each individual wind along the cell radius. For the
first time, this insight information is computed using the underlying
physics of degradation, rather than the fitting of empirical models.

This paper is organized in the following way. In Model domains
and reduced order electrochemical model in each wind section, we
introduce the model structure and briefly describe the P2D model and
our previous reduced order, electrochemical model. In Degradation
model for each wind section, we develop the approximation for the
radial temperature distribution in the cell. We then, in Thermal approx-
imation model section, show how to couple this approximation to our
reduced order model of each wind in the cell. Results are presented in
Coupled degradation-electrochemical-thermal model section where
we compare the proposed DET model to the full, one-dimensional,
radial implementation of the P2D model implemented in COMSOL
Multiphysics.

Model Domains and Reduced Order Electrochemical Model in
Each Wind

A schematic of a cylindrical lithium ion cell and its cross-section
is given in Fig. 1a. The cell has an outer radius Ra and inner radius R0.
The cell structure includes a centrally located hollow core, which is
filled with electrolyte. The wound (or “jelly roll”) structure of the cell
consists of repeated electrode, separator and current collector layers39

as shown in Fig. 1b. A single “wind” is also defined in Fig. 1b and
consists of a sandwich of 8 layers beginning with the negative current
collector and ending with the negative electrode.

The proposed model framework is multi-scale and includes a
macroscopic domain, characterized by the radial variable, r (0 ≤ r ≤
Ra), in which the temperature distribution is solved and a microscopic
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Figure 1. (a) Illustration of a cylindrical lithium ion battery with spirally
wound design and its cross-sectional view, (b) the component layers in each
wind and (c) the domains that constitute half of each wind and the correspond-
ing Padé model transfer functions.46

domain, characterized by z (0 ≤ z ≤ 1), in which the coupled electro-
chemical and degradation models are solved. In the negative electrode
domain, z = 0 at the electrode-current collector boundary and z = 1
at the electrode-separator boundary. In the separator domain, z = 0 at
the negative electrode-separator boundary and z = 1 at the separator-
positive electrode boundary. In the positive electrode domain, z = 1
at the separator-electrode boundary and z = 0 at the electrode-current
collector boundary.

Temperature, T (r, t ), is assumed to vary along the radial coordi-
nate, r, of the cell in such a way that the temperature within each
wind (at the microscale) is uniform in space, however, the tempera-
ture across winds (at the macroscale) can vary. As the temperature in
a wind is assumed to be uniform in space, and given that the applied
current density is identically symmetric over each half domain of the
wind, the electrochemical process occurring inside the three main do-
mains in the first half of the wind (namely, the negative electrode,
the separator and the positive electrode as shown in Fig. 1c) will be
identical to the corresponding ones in three “mirrored” domains in the
other half of the wind (namely, the positive electrode, the separator
and the negative electrode). Therefore, we only need to solve for the
electrochemical variables in one half of the wind as these values are
then “mirrored” in the remaining half of the wind.

For each wind, we solve an electrochemical model and degrada-
tion model in sub-domain z (the microscopic domain) associated with
the corresponding T (r, t ). Specifically, the input of each wind is the

temperature T (r, t ), which affects the electrochemical processes in-
cluding the transport of ions, reaction kinetics and SEI growth. The
output of the electrochemical model are a series of heat generation
rates, which in turn form the input of the thermal model in the domain
r (macroscopic domain).

The electrochemical characteristics within each wind is solved us-
ing a Padé approximation based, reduced order, P2D model46 for five
state variables; including the electric potential ϕs(z, t ) in the solid elec-
trode, the electric potential ϕe(z, t ) in the electrolyte, the lithium con-
centration of the active material cs(z, rs, t ) of the positive and negative
electrodes, the lithium concentration ce(z, t ) in the electrolyte, and the
molar fluxes j(z, t ) of the charge that flows between the active material
in each electrode and electrolyte. In this model Padé approximations
are used to simplify the complicated transcendental transfer functions
that result from the Laplace transform solution of the linearized P2D
model.9,22 We note that the Padé approximations are used to simplify
all the equations of the linearized P2D model in Ref. 46 including
ϕs(z, t ), ϕe(z, t ), ce(z, t ), and j(z, t ). For the lithium concentration in
the solid phase cs(z, rs, t ), we only consider the transfer function of the
lithium ion in the surface of the spherical particle cs(z, Rs, t ). These
transfer functions will compute the variation of the electrochemical
variables in the domain z and the time t shown in Fig. 1c. Further de-
tails of the Padé model equations are given in Appendix E and in our
previous work in Ref. 46. Corrections for nonlinear behavior, as given
by Lee, Chemistruck and Plett,9 are incorporated in the model. This
approach reduces the complex nature of the above transfer functions
to ones that contain only rational functions of simple polynomials in
the Laplace domain.24 In this way we can develop a system of trans-
fer functions that represent the variables of the P2D model for each
wind. These transfer functions have the advantage in that they can be
easily implemented and are computationally efficient. Here, they are
used to calculate the voltage of each wind and the volume average
heat generation rate in each of the domains shown in Fig. 1c. We dis-
cuss the coupling of these transfer functions with the temperature and
degradation models in Coupled degradation-electrochemical-thermal
model section, but first we introduce these models in the following
sections.

Degradation Model for Each Wind

A SEI layer on the surface of the particles that form the negative
electrode is one of the major causes of capacity loss and impedance rise
for lithium ion battery.7 In this work we account for this by including
model equations, based on those developed previously by Ramadass
et al.,41 which describe the growth of the SEI layer during charging.

The irreversible side reaction, which forms a film at the solid-
electrolyte interface of the negative electrode, is given by,

S + 2Li+ + 2e− → P, [1]

where, S is the solvent of the electrolyte and P is the “product” that
forms the SEI layer.

The ohmic resistance in the SEI film is related to the thickness of
the film, δfilm(z, t ), namely,

Rfilm (z, t ) = Rfilm (z, 0) + δfilm (z, t )

κp
. [2]

where,

∂δfilm (z, t )

∂t
= −Mp

ρp
Jfilm (z, t ) , [3]

and Mp is the molecular weight of the SEI film, ρp is the density of
the film, κp is the conductivity of the film.

Here, Jfilm(z, t ) denotes the molar flux of the irreversible side Re-
action 1 and is expressed as,

Jfilm (z, t ) = − i0,film

F
exp

(
−αfilmF

RT
ηfilm (z, t )

)
. [4]

where i0,film is the exchange current density for the side Reaction
1, R is the universal gas constant and F is the Faraday’s constant.
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The overpotential, ηfilm(z, t ), of the irreversible side Reaction 1 is
calculated by,

ηfilm (z, t ) = ϕs (z, t ) − ϕe (z, t ) + OCPneg (z, t ) − OCPSEI

−FRfilm (z, t ) (J (z, t ) + Jfilm (z, t )) . [5]

In this work, we solve this degradation model at the microscopic scale
and couple it with the Padé model and the thermal model. Details of this
coupling will be discussed in Coupled degradation-electrochemical-
thermal model section.

Thermal Approximation Model

In this section we derive an approximation for the radial tem-
perature distribution within the cell depicted in Fig. 1. We begin in
Governing equation of the thermal model and heat generation terms
sub-section, by recalling the governing equation of heat conduction,
suitable for a 1-dimenasional radial domain, r, and we also briefly
describe the heat generation terms in each microscopic domain, z.
These generation terms are calculated using the electrochemical vari-
ables mentioned in Model domains and reduced order electrochemi-
cal model in each wind section. In Governing equation of the thermal
model and heat generation terms sub-section we introduce an aver-
age thermal conductivity for the wound material within the cell. This
conductivity is used to approximate the governing thermal equation
as shown in Approximation of the thermal model sub-section.

Governing equation of the thermal model and heat generation
terms.—It is known that temperature variations occurring along the
radius of cylindrical cells are caused by heat conduction in the radial
and azimuthal directions.38 Chen et al.47 reported that the heat flow in
the azimuthal direction of cylindrical lithium ion cells that have a high
number (20 or more) of winds can be negligible.47 They showed that
when the number of winds is high, heat flow is predominantly radial
and therefore a 1-dimensional, radial model can be used in preference
to a 2-dimensional model to accurately represent the temperature dis-
tribution of such cells.47 In this work, we adopt that finding and use
a 1-dimensional, radial, thermal model to calculate the temperature
distribution within the cell.

The governing equation for the radial temperature distribution
within the cell is given by,48

ρcp
∂T (r, t )

∂t
= 1

r

∂

∂r

(
λr

∂T (r, t )

∂r

)
+ q̇(r, t ), [6]

where, ρ [kg/m3] is the material density, cp[J/kgK] is the specific heat,
λ[W/mK] is the thermal conductivity. Boundary conditions for (6) are
shown in Fig. 2 as BC1, BC2 and BC3.

The average heat generation rate per unit volume q̇(r, t ) [W/m3]
in each domain of each wind consists of reversible and irreversible
heating, Joule heating in the solid and solution and resistive heating
at the electrode/current collector interface. These heating terms are
calculated using the electrochemical variables that have been solved
using Padé model at the microscopic scale as described in the Model
domains and reduced order electrochemical model in each wind sec-
tion.

Irreversible heating, qi , is due to electrochemical chemical reac-
tions and is given by,6

qi = asF j(z, t ) η(z, t ). [7]

where, as is the specific interfacial area.
Reversible heating, qr , results from a change in entropy, namely,6

qr = asF j(z, t )T
∂OCP

∂T
. [8]

where OCP is the Open Circuit Potential of the of the electrode.
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Figure 2. Illustration of cross section of the cylindrical lithium ion battery
with boundary conditions.

Joule heating in the solid, qs
J , is a result of ohmic resistances and

is given by,6

qs
J = σeff(

Li
)2

(
∂φs(z, t )

∂z

)2

. [9]

where, σeff = σεs is the effective solid conductivity, σ is the solid
conductivity, εs is the volume fraction of the solid phase, Li is the
thickness of the electrode, and i ∈ {neg, pos}.

Joule heating in the electrolyte, qe
J , is ohmically related to the vari-

ation of electrolyte concentration and potential, namely,6

qe
J = κeff(

Li
)2

(
∂φe(z, t )

∂z

)2

+ κD
eff

1

ce(z, t )

1(
Li

)2

∂ce(z, t )

∂z

∂φe(z, t )

∂z
.

[10]
where, κeff = κεBrug

e is the effective electrolyte conductivity, κ is
the electrolyte ionic conductivity, εe is the electrolyte volume frac-
tion, Brug is the Bruggeman coefficient, κD

eff is defined as κD
eff =

−RT
F κeff (1 − t0

+)(1 + d ln f±
d ln ce

), t0
+ is the transference number, f± is the

mean molar activity coefficient, and i ∈ {neg, sep, pos}.
The heat generation rate per unit volume, q̇collector , from current

collector is,6

q̇collector (ri, t ) = I2(t )Rcollector

AcVc
. [11]

where, Rcollector is current collector resistance, Ac is the cell surface
area, and Vc is the cell volume.
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Given the above equations the average heat generation term in each
electrode is calculated as,

q̇neg(ri, t ) =
1∫

0

(
qneg

i + qneg
r + qs,neg

J + qe,neg
J

)
dz, [12]

q̇pos(ri, t ) =
1∫

0

(
qpos

i + qpos
r + qs,pos

J + qe,pos
J

)
dz. [13]

whilst the average heat generation term in the separator is calculated
only from the Joule heating in the electrolyte, namely,

q̇sep(ri, t ) =
1∫

0

qe,sep
J dz. [14]

The average heat generation rate per unit volume of a wind, q̇, in (6)
is calculated by summing the products of the average (volumetric)
heat generation in each domain (q̇collector for current collector, q̇pos for
positive electrode, q̇neg for negative electrode or q̇sep for separator)
with the volume of that particular domain and dividing this sum by
the total volume of each wind.

Average thermal conductivity for the wound material.—In or-
der to simplify (6) in the next sub-section, we first introduce an av-
erage thermal conductivity λwound [W/mK] for the wound material
(R0 ≤ r ≤ Ra) as shown in Fig. 2. The average conductivity, λwound,
is expressed in (15) and is based on the concept of discrete thermal
resistances (in each domain of Fig. 1c) in series.49

Given the temperature difference between the points at ri +�rlayer
j

and ri as shown in Fig. 2, the heat transfer rate can be expressed as:49

qtransfer
i =

T (ri ) − T
(

ri + �rlayer
j

)
2πHcellλ

layer
j

ln
ri+�r

layer
j

ri

, [15]

where, Hcell is the cell height, λlayer
j is the thermal conductivity of each

of the domains, ri is the radius of each wind and �rlayer
j is the thickness

of each of the domains as shown in Fig. 2.
Expression (15) has a similar form to Ohm’s law in which the

potential difference (T (ri ) − T (ri + �rlayer
j )) across a conductor

(2πHcellλ
layer
j /ln

ri+�rlayer
j

ri
) between two points (ri + �rlayer

j and ri) is

directly proportional to the current (qtransfer
i ) through it.

Therefore, the heat transfer problem in a composite cylinder,
which consists of multiple domains, each with a different thermal
conductivityλ

layer
j , can be represented as a system of thermal resis-

tances connected in series as shown in Fig. 2. The thermal resistance
of a single domain in the composite cylinder is given as:49

Rwound
i =

ln
ri+�rlayer

j

ri

2πHcellλ
layer
j

. [16]

The total resistance of the wound material, Rwound∑ , can then be ex-
pressed as:49

Rwound∑ =
n∑

i=1

ln
ri+�rlayer

j

ri

2πHcellλ
layer
j

. [17]

Treating the whole wound material region as a single layer as shown
in Fig. 2 allows us to define the average thermal conductivity λwound

as:

λwound =
ln Ra

R0

2πHcellRwound∑ . [18]

We can therefore obtain:

λwound =
ln Ra

R0
n∑

i=1

1

λ
layer
j

ln
ri+�rlayer

j

ri

. [19]

Approximation of the thermal model.—In order to solve the gov-
erning PDE in (6), some methods such as finite Fourier transforms30

and spatial discretization methods30,37 can be used; however, they re-
quire high computational workloads.12 For the feasibility of using DET
model in control design, we seek for an approximation profile for (6),
which is based on its steady state solution.

At steady state (∂T (r, t )/∂t ≈ 0) and assuming a uniform constant
source term q̇, (6) becomes,

1

r

∂

∂r

(
λr

∂T (r)

∂r

)
= −q̇, [20]

which has the general solution,49

T (r, t ) = − q̇

4λ
r2 + C1(t ) ln r + C2(t ), R0 ≤ r ≤ Ra. [21]

Noting (21) we propose that an approximation of the temperature
within the cell is given by,

T (r, t ) =
⎧⎨
⎩

T0(r, t ) = Tamb + D(t ), 0 ≤ r ≤ R0

T wound(r, t ) = Tamb + A(t ) + B(t )
(
r2 − Ra

2
)

+C(t ) (ln r − ln Ra ) , R0 ≤ r ≤ Ra.

[22]
where the initial temperature along the cell radius is equal to the am-
bient temperature, Tamb, namely,

T (r, 0) = Tamb. [23]

We note that the approximation given in (23) satisfies a symmetry
boundary condition at r = 0 (BC1), namely,

− λ0
∂T0(r, t )

∂r

∣∣∣∣
r=0

= 0. [24]

The boundary condition at r = Ra (BC2) describes the convective
transfer of heat at the outer surface of the cylindrical battery, namely,

− λwound ∂T wound(r, t )

∂r

∣∣∣∣
r=Ra

= h
(
T wound(Ra, t ) − Tamb

)
, [25]

where h [W/(m2K)] is the convection coefficient.
Thermal continuity is assumed at the boundary r = R0 (BC3 in

Fig. 2), thus,

− λ0
∂T0(R0, t )

∂r
= −λwound ∂T wound(R0, t )

∂r
, [26]

and

T0(R0, t ) = T wound(R0, t ). [27]

Substitution of the approximate form of T (r, t ) given in (22) into the
boundary conditions (25) to (27) gives,⎧⎪⎨

⎪⎩
0 = B(t )2R0 + C(t ) 1

R0

D(t ) = A(t ) + B(t )
(
R0

2 − Ra
2
) + C(t ) (ln R0 − ln Ra )

−λ1

(
B(t )2Ra + C(t ) 1

Ra

)
= hA(t )

[28]

Solving for B(t ), C(t ) and D(t ) in terms of A(t ), yields,⎧⎪⎪⎨
⎪⎪⎩

B(t ) = −β

2R0
2 A(t ) = αA(t )

D(t ) = (
1 + α

(
R0

2 − Ra
2
) + β (ln R0 − ln Ra )

)
A(t ) = γA(t )

C(t ) = h

λwound
(

Ra
R0

2 − 1
Ra

) A(t ) = βA(t )

[29]
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Now, integrating both sides of (6) we have,

R0∫
0

ρcp
∂T0(r, t )

∂t
rdr +

Ra∫
R0

ρcp
∂T wound (r, t )

∂t
rdr =

R0∫
0

1

r

∂

∂r

(
λ0 r

∂T0(r, t )

∂r

)
rdr

+
Ra∫

R0

1

r

∂

∂r

(
λwoundr

∂T wound (r, t )

∂r

)
rdr +

Ra∫
R0

q̇domainrdr. [30]

Substituting (22) and (29) into (30) and integrating we obtain,

ξ
dA(t )

dt
= μA(t ) + δ, [31]

Equation 31 is the first order ordinary differential equation (ODE) for
A(t ). A more detailed derivation of (31) and the form of the nota-
tions ξ , μ , and δ are given in Appendix A. Solving (31) for A(t )
then allows for B(t ), C(t ) and D(t ) to be determined from (29), which
in turn determines the radial temperature distribution within the bat-
tery according to (22). Our approach considers the thermal properties
such as material density, the specific heat and the thermal conductivity
of different layer in the wounded material; however, it requires low
computational workload since there is only one ODE function of A(t )
needed to be solved.

The parameters within the Padé model are temperature dependent.
These parameters include the solid phase diffusion coefficient Ds, the
reaction rate κ, the electrolyte diffusion coefficient De and the con-
ductivity σ. These temperature dependencies can be calculated using
an Arrhenius law,6 namely,

ψ = ψre f exp

[
Eψ

a

R

(
1

T re f
− 1

T

)]
, [32]

where, ψ represents one of the parameters Ds, κ, De, and σ, at tem-
perature, T, and ψref is the reference value of that parameter at the
reference temperature T ref .37

The temperature dependence in the open circuit potential OCP of
the electrode is approximated by a first-order Taylor series expansion,
namely,48

OCP = OCPref
(
T − T ref

) ∂OCP

∂T
, [33]

where, OCPref is the OCP of the electrode at the reference temperature
T ref .

Coupled Degradation-Electrochemical-Thermal Model

In this section, we will show how to couple the thermal approxi-
mation to our Padé model and degradation model of each wind in the
cell. To illustrate how the DET model is developed, we use the cell di-
mension of the large-format cell reported by Lee et al. in Ref. 39. The
cylindrical cell has the inner radius R0 = 4mm and the outer radius
Ra = 22.5mm. The parameters are obtained from Ref. 9 and are given
in Appendix C. The radial geometry of the cylindrical battery con-
sisting of 20 winds with 8 layers in each wind as illustrated in Fig. 1.
As mentioned in Model domains and reduced order electrochemical
model in each wind section, due to the assumption that temperature
within one wind is uniform in space, electrochemical process in each

wind is represented by one Padé model. Since the negative electrodes
and positive electrodes of the 20 winds connect to the same negative
current collector and positive current collector, respectively, we model
this by connecting 20 Padé models in parallel as shown in Fig. 3. The
output voltage and the input current of each Padé model must satisfy
(34) according to Kirchhoff’ circuit laws, namely,⎧⎨

⎩
N∑

n=1
Iapp, n(t ) = Iapp, all (t )

Vcell ,1(t ) = Vcell, 2(t ) = ... = Vcell ,N(t )
. [34]

The coupling of the degradation, Padé and thermal models is shown
schematically in Fig. 4. We see that the degradation model at each point
z of each wind is coupled with the Padé model. The heat generation
rates q̇collector , q̇pos, q̇neg and q̇sep calculated from the electrochemical
variables of the Padé model are used to simulate the temperature varia-
tion T (r, t ) at the macroscopic scale r. In turn the temperature T (r, t ) in
each wind coupled with the Padé model and the degradation model. In
our large format cell, consisting of 20 winds, there will be 41 coupled
“sub-systems” of equations, 20 of which are Padé sub-systems, 20 are
degradation sub-systems and one of which is a thermal sub-system as
shown in Fig. 4.

Simulation and Results

In this section, demonstrate the performance of the DET model
by comparing its outcomes to those of a full P2D model that has
been modified to include degradation and thermal behavior. In the full
P2D model, instead of approximating the PDE governing equations
as presented in the Model domains and reduced order electrochemical
model in each wind, and Thermal approximation model sections, we
directly solve the coupled governing PDE equations using COMSOL
Multiphysics.30 Specifically, we solve the P2D model coupled with
the degradation model mentioned in Degradation model for each wind
section to simulate the electrochemical variables on the microscopic
scale. Simultaneously, we solve (6) which governs the temperature on
the macroscopic scale. We use the same parameters that are used for the
DET model simulation implemented in MATLAB/Simulink.50 These
parameters are adapted from Ref. 9 and are listed in Appendix C.

Figures 5 and 6 show simulation results from the DET model,
for the temperature distribution along the cell radius (here expressed
in terms of the wind number) for different values of the convection
coefficient h, plotted over time. Fig. 5 is for an input current of 1C
for a single charge-rest-discharge-rest cycle and Figure 6 is for an
input current associated with a UDDS (Urbane Dynamometer Driving
Schedule) profile.51 Both of these current profiles are given explicitly
in Refs. 14,46. From each figure we observe that larger convection
coefficient values h, result in more non-uniform temperature profiles,
spatially. In Fig. 5 we can see that the temperature difference between
the outer wind and the inner wind can be as high as 4°C. Alternatively,
low values of h, result in higher cell temperatures over time, however,
the temperature distribution along the cell radius is nearly uniform in
these cases.

Figures 7 and 8 show the temperatures at r = R0 and r = Ra and
the cell voltage over time resulting from the charge-rest-discharge-rest
cycle and the UDDS cycle, respectively, for the DET and P2D models.
Curves for different convection coefficient values are shown. We see

Wind 1 Wind 2 Wind nth

Iapp,1

Iapp,all

T1 T2 Tn

Vcell,NVcell,1 Vcell,2

Padé model 
for wind 1

Padé model 
for wind 2

Padé model 
for wind nth ......Vcell,1 Vcell,2 Vcell,N

Iapp,all

Iapp,2 Iapp,N

Iapp,1 Iapp,2 Iapp,N

Figure 3. Parallel connection of Padé models.
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Figure 4. A schematic representation of the DET model.

that in all of these cases the DET model results compares favorably to
the full P2D model results.

The computation times for each of these applied current profiles is
shown in Table I. All simulations were carried out on the same desk-
top computer with an Intel Core i7-6700 CPU running at 3.4GHz and
16GB RAM. We observe that the DET model requires approximately
three minutes to simulate the 1C charge-rest-discharge-rest cycle pro-
file in comparison to the reference model, which takes approximately
eight minutes. The time savings of the DET model are more evident in
the case of the UDDS profiles, with the DET model solving in approxi-

Table I. Comparison of simulation time.

Convection DET Full P2D
coefficients model model

1C discharge-rest- h=5 W/m2/K 179 s 526 s
charge-rest

h=10 W/m2/K 179 s 526 s
h=50 W/m2/K 187 s 527 s
h=100 W/m2/K 187 s 534 s

UDDS h=5 W/m2/K 91.6 s 2h 12m 8s
h=10 W/m2/K 90.31 s 2h 11m 42s
h=50 W/m2/K 88.6 s 2h15m 6s
h=100 W/m2/K 90.6 s 2h 10m 18s

mately 90 seconds, and the reference model taking approximately two
hours.

Fig. 9 shows the evolution of the degradation at the inner and outer
winds for a periodic 1C charge-rest-discharge-rest current profile and
h = 100W /m2/K . Figure 9c shows the SEI resistance at r = R0 and
r = Ra, which we can see increase over time. We also note that the
SEI resistance of the inner wind is higher than that at the outer wind.
This is due to the non-uniform temperature distribution across the
cell. The higher temperatures at the inner radii facilitate the degrada-
tion reaction leading to thicker SEI layers and thus, higher resistances.
Figure 9d shows the maximum lithium ion concentrations at r = R0

and r = Ra, which we can see decrease over time as lithium ions are
removed by the degradation reaction. Furthermore, consistent with
our observations for Fig. 9c, the maximum concentration in the in-
ner wind decreases faster than that for the outer wind. Over extended
charge cycles we observe that both the SEI film resistance and the max-
imum lithium concentration of the inner wind and outer wind diverge
significantly.

Our DET model has the capability of predicting spatial and tempo-
ral temperature and degradation distributions for a spiral wound cell.
Based on this information we can design optimal control algorithms
that minimize, over time, distributions that degrade the cell’s state-of-
health. Examples of such algorithms have been given in the literature
for situations where cell temperature is spatially uniform. Offline tra-
jectory optimization is reported in Ref. 52 and online Nonlinear Model
Predictive Control reported in Refs. 53, 54 for these simpler cases. The
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Figure 5. Simulation result of temperature distribution at different convection coefficients from DET model during a 1C charge-rest-discharge-rest cycle.

Figure 6. Simulation result of temperature distribution at different convection coefficients from the DET model during UDDS cycles.
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Figure 7. Comparison of temperature variation between DET model and the full P2D model in COMSOL at r = Ra (outer wind) and r = R0(inner wind) at
different convection coefficients during a 1C charge-rest-discharge-rest cycle.

development of such algorithms for large format cells is beyond the
scope of this paper but will be addressed in our future works.

Conclusions

This paper presents a new and computationally efficient one-
dimensional, radial, coupled degradation-electrochemical-thermal

model of a large format, spirally wound cylindrical cell. We employ a
Padé approximant model to compute the variation of electrochemical
variables and heat generation terms in each wind and couple it with
a degradation model. We derive an approximate model for the radial
temperature distribution of the cell that is, in turn, coupled with the
Padé and degradation models. The model is able to return accurate
predictions when compared to those of a full P2D model, but in a
fraction of the computation time.

Figure 8. Comparison of temperature variation between DET model and the full P2D model in COMSOL at r = Ra(outer wind) and r = R0 (inner wind) at
different convection coefficients during UDDS cycles.
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Figure 9. Evolution SEI resistance Rfilmand
maximum concentration of lithium ion cs,maxin
solid phase in negative electrode of inner and outer
winds (h = 100W /m2/K).
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Appendix A:

Derivation of (31) is achieved by substituting (22) and (29) into (30) and integrating,
namely,

LHS of (30) =
R0∫

0

ρcp
∂T (r, t )

∂t
rdr +

Ra∫
R0

ρcp
∂T (r, t )

∂t
rdr

= dA(t )

dt
ρ0cp,0

R0∫
0

γrdr + dA(t )

dt

Ra∫
R0

ρ j cp, j

(
1 + α

(
r2 − Ra

2) + β (ln r − ln Ra )
)

rdr

= dA(t )

dt
ρ0cp,0γ

R0
2

2
+ dA(t )

dt

N∑
i=1

M∑
j=1

ρ j cp, j

r2

2

(
1 + α

r2

2
− αRa

2 − β

2
+ β ln r − β ln Ra

)∣∣∣∣
ri+L j+1

ri+L j

= dA(t )

dt

⎛
⎜⎜⎜⎜⎝ρ0cp,0γR0 +

N∑
i=1

M∑
j=1

⎛
⎜⎜⎜⎜⎝

ρ j cp, j

(
ri+L j+1

)2

2

(
1 + α

(
ri+L j+1

)2

2 − αRa
2 − β

2 + β ln
(
ri + L j+1

) − β ln Ra

)

−ρ j cp, j

(
ri+L j

)2

2

(
1 + α

(
ri+L j+1

)2

2 − αRa
2 − β

2 + β ln
(
ri + L j+1

) − β ln Ra

)
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ ,
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RHS of (30) =
R0∫

0

1

r

∂

∂r

(
λr

∂T (r, t )

∂r

)
rdr+

Ra∫
R0

1

r

∂

∂r

(
λr

∂T (r, t )

∂r

)
rdr +

Ra∫
R0

q̇domainrdr

= A(t ) λ1Ra

(
α2Ra + β

1

Ra

)

+
N∑

i=1

M∑
j=1

q̇domain
j (ri, t )

( (
ri + L j+1

)2

2
−

(
ri + L j

)2

2

)
.

Now defining ξ , μ , and δ as:

ξ = ρ0cp,0γR0 +
N∑

i=1

M∑
j=1

⎛
⎜⎜⎜⎜⎜⎝

ρ j cp, j

(
ri+L j+1

)2

2

(
1 + α

(
ri+L j+1

)2

2 − αRa
2 − β

2 + β ln
(
ri + L j+1

) − β ln Ra

)

−ρ j cp, j

(
ri+L j

)2

2

(
1 + α

(
ri+L j+1

)2

2 − αRa
2 − β

2 + β ln
(
ri + L j+1

) − β ln Ra

)

⎞
⎟⎟⎟⎟⎟⎠,

μ = λwoundRa

(
α2Ra + β

1

Ra

)
,

δ =
N∑

i=1

M∑
j=1

q̇domain (ri, t )

( (
ri + L j+1

)2

2
−

(
ri + L j

)2

2

)
,

we can obtain (31).
Here q̇domain is the heat generation rate of each layer in each wind and is calcu-

lated in (11)-(14), domain ∈ {collector, neg, sep, pos}, N is the number of winds,
M is the number of layers in a wind, L1 = 0, L2 = Lneg

collector, L3 = Lneg
collector +

Lneg, .... , L9 = Lneg
collector + Lneg + Lsep + Lpos + Lpos

collector + Lpos + Lsep + Lneg, and
Lneg

collector, Lneg, Lsep, Lpos, and Lpos
collector are the thickness of the negative current collec-

tor, negative electrode, separator, positive electrode and positive current collector, respec-
tively.

Appendix B: List of symbols

Li Thickness of the layer (m)
Rs Particle radius (m)
as Specific interfacial area (m−1)
cs,max Maximum concentration of lithium in the solid phase (mol m−3)
cs,0 Initial concentration of lithium in the solid phase (mol m−3)
ce,0 Steady-state concentration of lithium in the electrolyte phase (mol m−3)
cs,e Surface concentration of lithium in a spherical electrode particle

(mol m−3)
Deff

e Effective electrolyte diffusivity (m2 s−1)
Ds Solid diffusivity (m2 s−1)
f± Mean molar activity coefficient
Rfilm Solid electrolyte interphase layer film resistance (�m−1)
R Universal gas constant (8.314Jmol−1)
t0
+ Transference number for the anion

Ds Solid phase lithium diffusion coefficient (m2s−1)
De Electrolyte phase lithum ion diffusion coefficient (m2s−1)
Qe Total amount of lithium ion in each domain (mol )
rp Radial coordinate across the solid particle radius (m)
reff Reaction rate constant (mol m−2s−1 ( mol m−1s )−1.5)
A Electrode plate area (m2)
T Temperature (K)
F Faraday’s constant (96,478 Cmol−1)
εs,εe Active material, electrolyte phase volume fraction
σ Solid phase conductivity (Sm−1)
κ Electrolyte phase ionic conductivity (Sm−1)
κeff Effective electrolyte conductivity (Sm−1)
αa ,αc Charge transfer coefficients

θ = cs/cs,max Stoichiometry of electrode
θi,min Stoichiometry of electrode at 0% state of charge
θi,max Stoichiometry of electrode at 100% state of charge
pos/neg/sep Pertaining to the positive/negative electrode/separator
N Number of winds
M Number of layers in a wind

Appendix C: Cell parameters used in the simulation

Negative Positive
Symbol Units electrode Separator electrode

Li μm 128 76 190
Rs μm 12.5 _ 8.5
A m2 1 1 1
σ Sm−1 100 _ 3.8
εs _ 0.471 _ 0.297
εe _ 0.357 0.724 0.444

brug _ 1.5 1.5 1.5
cmax

s mol m−3 26,390 _ 22,860
ce,0 mol m−3 2000 2000 2000

θi,min _ 0.05 _ 0.78
θi,max _ 0.53 _ 0.17

Ds m2s−1 3.9E-14 _ 1.0E-13
De m2s−1 7.5E-11 7.5E-11 7.5E-11
t0+ _ 0.363 0.363 0.363
k mol−1/2 m5/2s−1 1.94E-11 _ 2.16E-11
α _ 0.5 0.5 0.5

R f ilm �m2 0 _ 0

σeff = σεs , κeff = κε
brug
e , Deff

e = Deε
brug
e

κ(ce ) = 4.1253 × 10−2 + 5.007 × 10−4ce − 4.7212 × 10−7c2
e + 1.5094 ×

10−10c3
e − 1.6018 × 10−14c4

e
U neg

OCP(θ) = −0.16 + 1.32 exp(−3θ) + 10.0 exp(−2000 θ)
U pos

OCP(θ) = 4.19829 + 0.0565661 tanh(−14.5546θ + 8.60942)

−0.0275479
[

1
(0.998432−θ)0.4924656 − 1.90111

]
−0.157123 exp (−0.04738θ6) + 0.810239 exp (−40(θ − 0.133875))

Appendix D: COMSOL implementation of the full P2D
model

The implementation of the full P2D model in COMSOL in this study is an extension
of the one discussed in Ref. 55. The equations of the full P2D model are summarized
in the Table AI. The equations of the thermal model, the electrochemical model (except
Equation (A3)) and degradation model are computed on a 1D transect (in the x-direction)
of a negative electrode, separator and positive electrode domain. The diffusion of lithium
ion in the solid phase (Equation (A3)) is computed on a 2D geometry (x- and y-directions)
in which only the diffusion in the y-direction is considered. This is equivalent to solving
a 1D radial diffusion problem in the P2D model.6,55 Readers are referred to55 for more
details. The 1D geometry is discretised using a built-in mesh which consists of 162 edge
elements. The 2D geometries of the electrodes are discretised using the built-in, triangular
mesh, which consists of 464 triangular elements and 560 edge elements. The complete
mesh of the COMSOL model has 3214 degrees of freedom.

Appendix E: Implementation of the DET model

The equations of the DET model are discussed in Model domains and reduced order
electrochemical model in each wind, Thermal approximation model, Coupled degradation-
electrochemical-thermal model sections and Appendix A and they are summarized in the
Table AII. In this table, we provide a specific example of a first order Padé approximant
of the molar flux in the negative electrode. We note that not all of the Padé approximants
are given explicitly here (or in our previous paper) due to their extensive nature. However,
detailed directions on how to derive Padé approximants, like that shown in Table AII, are
given in our previous work.46
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Table AI. Equations of the full P2D model.

Boundary conditions

Microscale (0 ≤ z ≤ 1, 0 ≤ rs ≤ Rs )
Electrochemical model

The potential in the solid phase (i ∈ {neg, pos}): − σeff,neg

Lneg
∂ϕ

neg
s (z,t )
∂z

∣∣∣
z=0

= σeff, pos

Lpos
∂ϕ

pos
s (z,t )
∂z

∣∣∣
z−1

= Iapp,n

σeff,i

Li
∂ϕi

s (z,t )
∂z = ai

sF ji (z, t ). (A1)

The electrolyte potential (i ∈ {neg, sep, pos}): ∂ϕ
neg
e (z,t )
∂z

∣∣∣
z=0

= ∂ϕ
pos
e (z,t )
∂z

∣∣∣
z=1

= 0

∂
∂z (κeff,i ∂φi

e (z,t )
∂z ) − ∂

∂z (κeff,i ∂ ln ci
e (z,t )
∂z ) = −(Li )2ai

s F ji (z, t ). (A2)

Concentration of lithium in the solid phase (i ∈ {neg, pos}): Ds
∂ci

s (z,0,t )
∂r = 0, Ds

∂ci
s (z,Rs,t )

∂r = − ji(z, t ),ci
s (z, rs, 0) = ci

s,0
∂ci

s (z,rs,t )
∂t = 1

rs2
∂
∂r (Dsrs

2 ∂ci
s (z,rs,t )
∂rs

). (A3)

Concentration of lithium in the electrolyte phase (i ∈ {neg, sep, pos}): ci
e (z, 0) = ci

e,0, ∂cneg
e (z,t )
∂z

∣∣∣
z=0

= ∂cpos
e (z,t )
∂z

∣∣∣
z=1

= 0

∂ ( εi
e ci

e (z,t ) )
∂t = 1

(Li )2
∂
∂z (Deff,i

e
∂ ci

e (z,t )
∂z ) + (1 − t0+ ) ai

s ji (z, t ). (A4) Deff, neg
e
Lneg

∂cneg
e (z,t )
∂z

∣∣∣
z=1

= Deff, sep
e
Lsep

∂csep
e (z,t )
∂z

∣∣∣
z=0

,cneg
e (1, 0) = csep

e (0, 0)

Deff, sep
e
Lsep

∂csep
e (z,t )
∂z

∣∣∣
z=1

= Deff, neg
e
Lpos

∂cpos
e (z,t )
∂z

∣∣∣
z=0

, csep
e (1, 0) = cpos

e (0, 0)

The transfer of charge at the solid/electrolyte interfaces in each electrode (i ∈ {neg, pos}):
ji (z, t ) = reff,i ci

e (z, t ) αa ( ci
s,max − ci

s,e(z, t ) ) αa ci
s,e(z, t ) αc

× [exp( αaF
RT ηi (z, t )) − exp( −αcF

RT ηi (z, t ))].
(A5)

The overpotential of the intercalation reactions(i ∈ {neg, pos}):
η i (z, t ) = ϕi

s(z, t ) − ϕi
e (z, t ) − U i

OCP( ci
s,e(z, t )) − F Ri

film ji (z, t ). (A6)
The potential difference between the positive and the negative current collectors yields the cell voltage:
Vcell (t ) = ϕ

pos
s (1, t ) − ϕ

neg
s (0, t ). (A7)

Degradation model
Equations 2–5
Heat equations
Equations 7–11
Parameters and OCV temperature dependence.
Equations 32 and 33
Macroscale (0 ≤ r ≤ Ra )
1D radial thermal model
Equation 6 Equations 24–27
Kirchhoff’ circuit law
Equation 34

Table AII. Equations of the DET model.

Boundary conditions

Microscale (0 ≤ z ≤ 1, rs = Rs )
Transcendental transfer function of the molar flux in the negative electrode:9

Jneg(z,s)
Iapp(s) = νneg(s)

aneg
s FALneg(κneg

eff +σ
neg
eff )

(
σ

neg
eff cosh(νneg(s) z)+κ

neg
eff cosh(νneg(s) (z−1))

sinh(νneg(s)) )

The first order rational polynomial, Padé approximants of the molar flux in the negative electrode:46

Jneg(z,s)
Iapp(s) = aJneg

1 s+aJneg
0

bJneg
1 s+bJneg

0
Where,

aJneg

1 = −3Rneg
s

(
−4κ

neg
eff (

∂OCPneg(cs,0 )
∂cs,e

Rneg
s − 5Dneg

s FRtot )σ
neg
eff ×

(2κ
neg
eff − σ

neg
eff − 6κ

neg
eff z + 3 (κneg

eff + σ
neg
eff ) z2)

)

−3Rneg
s

(
aneg

s Dneg
s FLneg2(κneg

eff
2(4 + 5(−2 + z)z)2 + κ

neg
eff σ

neg
eff (−13 + 10z(4 + z(1 + 5(−2 + z)z))))

)
aJneg

0 = 180
∂OCPneg(cs,0 )

∂cs,e
Dneg

s κ
neg
eff σ

neg
eff

(
2κ

neg
eff − σ

neg
eff − 6κ

neg
eff z + 3(κneg

eff + σ
neg
eff )z2

)
bJneg

1 = Aaneg
s FLnegRneg

s

(
12κ

neg
eff

((
∂OCPneg(cs,0 )

∂cs,e

)
Rneg

s − 5Dneg
s FRtot

)
×

σ
neg
eff (2κ

neg
eff − σ

neg
eff − 6κ

neg
eff z + 3(κneg

eff + σ
neg
eff )z2)

)

+Aaneg
s FLnegRneg

s

(
aneg

s Dneg
s FLneg2(κneg

eff + σ
neg
eff )

(
κ

neg
eff (−8 + 15(−2 + z)2z2)

+σ
neg
eff (7 + 15z2(−2 + z2))

))
bJneg

0 = 180Aaneg
s

∂OCPneg(cs,0 )
∂cs,e

Dneg
s Fκ

neg
eff Lnegσ

neg
eff (2κ

neg
eff − σ

neg
eff − 6κ

neg
eff z + 3(κneg

eff + σ
neg
eff ) z2)

Degradation model
Equations 2–5
Heat equations
Equations 7–11
Parameters and OCV temperature dependence
Equations 32 and 33
Macroscale (0 ≤ r ≤ Ra )
Approximation of the 1D radial thermal model
Equations 22 and 31 Equations 24–27
Kirchhoff’ circuit law
Equation 34
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