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We present a reduced order model for a lithium ion battery in which Padé approximants are used to simplify complex, transcendental,
transfer functions associated with the linearized, pseudo 2-dimensional (P2D) electrochemical model of the battery. The resulting
transfer functions take the form of simple, rational polynomial functions, which can be used to compute any variable at any location
within a one-dimensional representation of the battery domain. Corrections for nonlinear behavior are also incorporated into the
reduced model. The results obtained using the reduced model compare favorably to those from the full (nonlinear) P2D model and the
computational time required to produce these results is significantly reduced. Importantly, the form of the reduced model means that
variables can be evaluated at specific discrete locations within the cell domain, without the need to compute all values of the variable
at all discrete locations, as is the case with the spatial discretization methods most commonly used to implement the P2D model. We
show that this results in further significant time savings and enhances the suitability of the model for variety of applications.
© The Author(s) 2018. Published by ECS. This is an open access article distributed under the terms of the Creative Commons
Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any
medium, provided the original work is properly cited. [DOI: 10.1149/2.0651807jes]

Manuscript submitted March 7, 2018; revised manuscript received April 16, 2018. Published May 9, 2018.

Lithium ion batteries are now commonly used for large renew-
able energy storage systems, as either as part of the power grid or
in stand-alone installations.1 A Battery Management System (BMS)
is essential in order to utilize battery storage optimally, achieve safe
charging and discharging of the battery system and prolong the battery
lifetime.2 The optimal control algorithms within a BMS require a bat-
tery model that can describe the voltage response and internal electro-
chemical parameters of the battery system during the charge/discharge
process. An accurate battery model that can represent the complex and
nonlinear internal characteristics of a battery is desirable in order to
achieve optimal utilization, maintain safety and prolong battery life.
Thus, a highly accurate battery model is an advantage in advanced
BMSs.

Depending on the application, the energy capacity of a battery
storage system can vary from kWh to MWh.1 Given that a single cell
has typically only 7.5Wh energy capacity,3 large capacity systems
are usually built using many battery packs, which in turn consist of
large numbers of lithium ion cells connected in series and parallel
to achieve the required voltage and capacity level.4 As a result, not
only is a highly accurate battery model desirable but the model itself
must also be able to be evaluated quickly, using a highly efficient
computational algorithm.

Current BMSs rely significantly on equivalent circuit models due
to their simplicity and the inherently low computational burden re-
quired to implement them.5 However, equivalent circuit models re-
quire extensive battery testing in order to validate them in a partic-
ular operational range in which the battery circuit parameters have
been identified.6 In addition, the models give only limited informa-
tion on the electrochemical characteristics and degradation response
of a battery.6 As an alternative to equivalent circuit models, the
pseudo 2-dimensional electrochemical (P2D) model, first developed
by Doyle, Fuller, and Newman,7,8 does provide detailed insights on
these characteristics.6 However, the P2D model consists of partial
differential equations (PDEs). To solve these, spatial discretization
methods are applied to yield a system of differential algebraic equa-
tions (DAEs) in the time domain.9 These methods are usually im-
plemented on a desktop computer, often using commercial software,
and are therefore not suitable for embedded BMSs, which require
much lower computational workloads. For example, as reported by
Lee, Chemistruck and Plett,5 the P2D model implemented in COM-
SOL Multiphysics10 requires about 13 min on a desktop computer,
to produce 25 min of simulated voltage response to the Urban Dy-
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namometer Driving Scheduler (UDDS)11 current profile. Such com-
putational requirements render a direct implementation of the P2D
model infeasible for use in a BMS.

Padé approximations provide a way of greatly simplifying com-
plicated transcendental transfer functions in order to produce simpler
rational polynomial transfer functions that can be used in embedded
applications.12 Previously, Padé approximations have been applied to
the transcendental transfer functions that model lithium ion diffusion
in a single, solid, spherical particle in the so called Single Particle
Model (SPM)13,14 for lithium ion batteries. Marcicki et al.,15 Zhang
et al.16 and Yuan et al.17,18 used Padé approximations for an extended
version of the SPM, which incorporates concentration change within
the electrolyte solution while maintaining the uniform current density
assumption of the SPM. These authors report that their Padé approxi-
mate model is computationally more than 50 times faster than the P2D
model.18 The batteries used in storage systems for grid applications
are designed to have a high energy density; as opposed to cells that are
specifically designed to deliver high power (like those used in electric
vehicle applications9). Such high energy density cells are generally
made with thicker electrodes,9 which results in non-uniform, lithium
ion concentration and current density profiles across the electrode.9

However, in both the SPM and extended SPM the current density is
assumed to be constant, spatially. Thus, these models can yield inac-
curate predictions when applied to the thick electrodes of high energy
density cells.9

In this work, we propose an improvement to the previous SPM
and extended SPM Padé approximation models discussed above. To
do this we consider the transcendental transfer functions of the lin-
earized P2D model and the corresponding corrections for nonlinear
behavior given by Lee, Chemistruck and Plett.5 These transfer func-
tions describe the electrochemical dynamics of the lithium ion battery
and the corrections for nonlinear behavior are used to improve the
accuracy of the linearized P2D model.5 We apply Padé approxima-
tions to these complicated transcendental transfer functions in order to
develop simpler, rational polynomial transfer functions, which form a
reduced model of cell operation that is amenable to rapid computation
and therefore embedded BMS applications. We believe that this is the
first attempt at using the Padé approximation method to simplify all
transcendental transfer functions of the linearized P2D model. Our
reduced model output includes the spatial and temporal variation of
all of the variables of the P2D model. In addition, it can be used to de-
termine any variable at any specific spatial location without the need
to compute variables at all of the discretized spatial locations; as is the
case when using spatial discretization methods to solve these models.
Importantly, the physical meaning of the approximation model can be
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Figure 1. Schematic diagram of a lithium ion cell embodying the P2D model based on Ref. 9 and transfer function of each variable in each domain based on Ref.
5.

preserved since the coefficients of these rational polynomial transfer
functions directly link to the physical parameters of the cell such as,
SEI layer resistance, particle size of the active material, lithium ion
diffusivity and solid and solution phase volume fractions. If the op-
erating conditions of the cell, and hence the values of the physical
parameters, change (for example, due to cell aging) these coefficients
are readily updated as they themselves have computationally simple
algebraic forms. Our results show that the reduced model delivers
high accuracy for low computational overhead when compared to the
P2D model.

Lithium Ion Battery Electrochemical Model

The P2D model is applied to 4 domain elements of a lithium
ion battery, namely, the negative electrode, the separator, the elec-
trolyte and the positive electrode.9 During discharge, lithium ions in
the negative electrode diffuse from the interior to the surface of the
spherical solid particles that constitute the porous electrode, where
they undergo an electrochemical reaction and are transferred into the
electrolyte phase. Thereafter, the ions travel through the electrolyte
solution to the positive electrode where they again react at the surfaces
of the solid particles (constituting that porous electrode) and are inter-
calated into these particles. These processes are shown schematically
in Figure 1 along with the definition of our modeling domain in which
the negative electrode (neg) is defined from x = 0 to x = Lneg; the
separator (sep) is defined from x = Lneg to x = Lneg + Lsep and the
positive electrode (pos) is defined from x = Lneg + Lsep to x = L tot.
The reverse of the depicted discharge process occurs in the charge pro-
cess, whereby lithium ions flow from the solid phase of the positive
electrode to the solid phase of the negative electrode. As the separator
forms an electrically insulated barrier between the electrodes, the flow
of electrons associated with the charge and discharge processes occurs
via an external circuit connecting the two compartments, doing useful
work as they do so.19

The P2D model that describes the above processes consists of five
state variables including the electric potential φs(x, t) in the solid
electrode, the electric potential φe(x, t) in the electrolyte, the lithium
concentration of the active material cs(x, r, t) of the positive and neg-
ative electrodes, the lithium concentration ce(x, t) in the electrolyte,
and the molar fluxes j(x, t) of the charge that flows between the active
material in each electrode and the electrolyte. The governing equa-
tions of the model are given as follows9 with the definitions of the
symbols shown in the equations being given in the List of Symbols.

The potential in the solid phase of each (negative and positive)
electrode is derived from the principle of conservation of charge and
is given by (for i ∈ {neg, pos}),

σeff,i ∂φi
s (x, t)

∂x
= ai

s F j i (x, t) , [1]

with the boundary conditions

−σeff,i ∂φi
s (0, t)

∂x
= σeff,i ∂φi

s (Ltot , t)

∂x
= Iapp.

The electrolyte potential is defined along the whole cell domain
and is given by (for i ∈ {neg, sep, pos} and j sep(x, t) = 0),

∂

∂x

(
κeff,i ∂φi

e (x, t)

∂x

)
− ∂

∂x

(
κ

eff,i
D

∂ ln ci
e (x, t)

∂x

)
= −ai

s F j i (x, t)

[2]

where,

κ
eff,i
D = 2RT

F
κeff,i

(
1 − t0

+
) (

1 + d ln fc/a

d ln ci
e

)
[3]

with the boundary conditions

∂φi
e (0, t)

∂x
= ∂φi

e (Ltot , t)

∂x
= 0.
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Lithium ions are transported in the solid particles of each electrode
by diffusion and their concentration is given by (for i ∈ {neg, pos}),

∂ci
s (x, r, t)

∂t
= 1

r 2

∂

∂r

(
Dsr

2 ∂ci
s (x, r, t)

∂r

)
, [4]

where the boundary conditions and initial condition are given by

Ds
∂ci

s (x, 0, t)

∂r
= 0, Ds

∂ci
s (x, Rs, t)

∂r

= − j i (x, t) and ci
s (x, r, 0) = ci

s,0.

The equation for the lithium ion concentration in the electrolyte
phase (across the whole cell domain) is derived from the principle of
concentration of mass in which the change of electrolyte concentration
is due to the diffusion and migration of the ions and their transfer at the
solid/solution interfaces (for i ∈ {neg, sep, pos} and j sep(x, t) = 0),
namely,

∂
(
εi

e ci
e (x, t)

)
∂t

= ∂

∂x

(
Deff,i

e

∂ ci
e (x, t)

∂x

)
+ (

1 − t0
+
)

ai
s j i (x, t) .

[5]

The boundary conditions and initial condition are

∂ci
e (0, t)

∂x
= ∂ci

e (Ltot , t)

∂x
= 0 and ci

e (x, 0) = ci
e,0,

respectively.
The transfer of charge at the solid/electrolyte interfaces in each

electrode is given by (for i ∈ {neg, pos}),
j i (x, t) = r eff,i ci

e (x, t) αa
(

ci
s,max − ci

s,e (x, t)
) αa ci

s,e(x, t) αc

[
exp

(
αa F

RT
ηi (x, t)

)
− exp

(−αc F

RT
ηi (x, t)

)]
[6]

where, ci
s,e is the surface concentration of lithium in a spherical elec-

trode particle.
The overpotential of the intercalation reactions in each electrode

is given by (for i ∈ {neg, pos}),
η i (x, t) = φi

s (x, t) − φi
e (x, t) − U i

OCP

(
ci

s,e (x, t)
) − F Ri

film j i (x, t) .

[7]

The potential difference between the positive and the negative
current collectors yields the cell voltage, namely,

Vcell (t) = φs

(
L tot, t

) − φs (0, t) . [8]

Equations 1–8 constitute a system of coupled PDEs and algebraic
equations that represent the P2D model for a lithium ion battery. Under
galvanostatic conditions, the input of the model is the applied current
Iapp(t) and the output of the model is the cell voltage Vcell (t). In the
separator (Lneg ≤ x ≤ Lneg + Lsep), the model involves two coupled
PDEs which are the electrolyte concentration given by Equation 5
and the electrolyte potential given by Equation 2. In the electrodes
(0 ≤ x ≤ Lneg,Lneg + Lsep ≤ x ≤ L tot), the model involves the
coupled PDEs for electrolyte concentration, given by Equation 5,
electrolyte potential, given by Equation 2 and solid phase potential,
given by Equation 1 on the macro (cell) scale (x) and Equation 4 on
the micro (particle) scale (r) (which exists at every x in the electrode
domains).20 The nonlinear nature of the P2D model means that it must
be solved numerically. As exemplified by the work of Farrell and
coworkers,21,22 this is generally achieved using a desktop computer
running finite volume or finite element software. As noted earlier,
this complexity prevents the implementation of the P2D model in
embedded real-time applications such as BMSs.

Analytic Laplace Domain Transfer Functions of Linearized P2D
Model

Truncated Taylor series expansions about a set point can be
applied to each of the variables of the P2D model to obtain a

linear form of the model. The details of this are given by Lee,
Chemistruck and Plett.5 The set-point, p∗, used by these authors
is given by the initial conditions of the cell, defined as p∗ =
{φs,e = UOC P (cs,0), cs,e = cs,0, ce = ce,0, j = 0}, where φs,e = φs −
φe. These authors also define a set of transfer functions for the cell,
shown in their respective domains in Figure 1, where the dimension-
less distance z is related to the spatial variable x via the transfor-
mations, z = x/Lneg(0 ≤ x ≤ Lneg) and z = (L tot − x)/Lpos(Lneg +
Lsep ≤ x ≤ L tot). Subsequently, the “∼” notation denotes the variables
φ̃s,e = φs,e − UOC P (cs,0), and c̃s,e = cs,e − cs,0. The transcendental
transfer functions are formed by first linearizing the governing equa-
tions of the P2D model around the set point p∗ and then taking Laplace
transforms of these linearized equations. The details of these transfer
functions are as follows.

For the phase potential difference φ
neg
s,e in the negative electrode:

φ̃
neg
s,e (z, s)

Iapp (s)
= Lneg

Aνneg (s) sinh (νneg (s))(
1

κ
neg
eff

cosh (νneg (s) z) + 1

σ
neg
eff

cosh (νneg (s) (z − 1))

)
, [9]

where:

νneg (s) = Lneg

√
aneg

s

σ
neg
eff

+ aneg
s

κ
neg
eff

(
Rneg

tot +
[

∂UOCP

∂cs,e

∣∣∣∣
cs,0

]
Rneg

s

F Dneg
s

(
tanh (β)

tanh (β) − β

))−1/2
, [10]

β = Rneg
s

√
s

Dneg
s

[11]

and s is the frequency parameter in the Laplace domain.
For the molar flux in the negative electrode:

J neg (z, s)

Iapp (s)
= νneg (s)

aneg
s F ALneg

(
κ

neg
eff + σ

neg
eff

)
(

σ
neg
eff cosh (νneg (s) z) + κ

neg
eff cosh (νneg (s) (z − 1))

sinh (νneg (s))

)
.

[12]

For the over potential in the negative electrode:

ηneg (z, s)

Iapp (s)
= F Rneg

ct
J neg (z, s)

Iapp (s)
. [13]

For the solid phase Li+ concentration on the surface of the particles
in the negative electrode:

C̃neg
s,e (z, s)

Iapp (s)
= νneg (s) Rneg

s

aneg
s F ALneg Dneg

s
(
κ

neg
eff + σ

neg
eff

) (
tanh (β)

tanh (β) − β

)
(

σ
neg
eff cosh (νneg (s) z) + κ

neg
eff cosh (νneg (s) (z − 1))

sinh (νneg (s))

)
, [14]

For the potential in solid phase of the negative electrode:

φ̃
neg
s (z, s)

Iapp (s)
= − Lnegκ

neg
eff (cosh (νneg (s)) + cosh (νneg (s) (z − 1)))

Aσ
neg
eff

(
κ

neg
eff + σ

neg
eff

)
νneg (s) sinh (νneg (s))

− Lnegσ
neg
eff (1 − cosh (νneg (s)) + zνneg (s) sinh (νneg (s)))

Aσ
neg
eff

(
κ

neg
eff + σ

neg
eff

)
νneg (s) sinh (νneg (s))

. [15]

The transfer functions for the electrolyte potential in the positive
electrode φ̃

pos
s,e (z, s)/Iapp(s), the molar flux in the positive electrode

J pos(z, s)/Iapp(s), the solid concentration on the surface of the par-
ticle in the positive electrode C̃pos

s,e (z, s)/Iapp(s) and the potential in
the solid phase of the positive electrode φ̃

pos
s (z, s)/Iapp(s), are given

by multiplying the corresponding transfer functions in the negative

yli
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electrode by (-1) and substituting the corresponding parameters of the
positive electrode.

For the Li+ concentration in the electrolyte:

C̃e (x, s)

Iapp (s)
=

K∑
k=1

C̃∗
e,k (s)

Iapp (s)
ψ (x ; λk) , [16]

where,

C̃∗
e,k (s)

Iapp (s)
= 1

s + λk

(
J neg∗

k (s)

Iapp (s)
+ J pos∗

k (s)

Iapp (s)

)
, [17]

Here λk is the kth eigenvalue, and ψ(x ; λk) the corresponding eigen-
function, for C̃e(x, s)/Iapp(s) and K is the order of the expansion.5 The

transfer functions, J neg∗
k (s)/Iapp(s)and J pos∗

k (s)/Iapp(s) as well as those
for the electrolyte potential in each domain are given in the Appendix.

The nonlinear corrections for the internal variables are computed
as follows:5

ηfinal (x, t) = η (z, t) − Rct Iapp (t)

as L A
+ 2RT

F

Iapp (t)

2κeffce(x, t) 1−α
(
cs,max − cs,e (x, t)

) 1−α
cs,e(x, t) 1−α

, [18]

cs,e (x, t) = c̃s,e (z, t) + cs,0, [19]

ce (x, t) = c̃s (z, t) + ce,0, [20]

φs,e (x, t) = φ̃s,e (z, t) + UOC P

(
cs,e (x, t)

)
, [21]

[ ϕe (x, t) ] 1 = [ ϕ̃e (x, t) ] 1 + ϕe (0, t) , [22]

ϕe (x, t) = [ϕe (x, t)] 1 + 2RT
(
1 − t0

+
)

F
ln

ce (x, t)

ce (0, t)
. [23]

Finally, the cell voltage is calculated from:

Vcell (t) = F
(

Rpos
film j

(
L tot, t

) − Rneg
film j (0, t)

) + (
U pos

OCP

(
cs,e

(
L tot, t

))
−U neg

OCP

(
cs,e (0, t)

))+φe

(
L tot, t

) + (
η f inal

(
L tot, t

) −η f inal (0, t)
)
.

[24]

The advantage of these transfer functions is that they model the
P2D variables at any spatial location in the cell domain based only
on the applied currentIapp(s). The transfer functions given in Equa-
tions 9–17 and Equations A1–A5 (in the Appendix) are complicated
and computationally expensive to calculate which, like the P2D model
from which they are derived, makes them not amenable to real time ap-
plication. The Discrete Time Realization algorithm (DRA) proposed
by Lee, Chemistruck and Plett23 can reduce the transcendental transfer
functions into an optimized, reduced order, discrete-time, state-space
model. In the DRA, Lee et al. first compute the discrete-time pulse
response of the transcendental, continuous-time, transfer functions
(Equations 9–17 and Equations A1–A5). They then apply the Ho-
Kalman algorithm to produce the state-space realization from this
discrete-time impulse response. These authors show that the resulting
simple, state-space model produced from the DRA can reduce the
computation time requirements by more than 5000 times, compared
to the P2D model. However, the DRA requires about 11 min on a
desktop computer to produce the reduced state-space model from the
transcendental transfer functions for a given set of parameters (e.g.
Rfilm, r eff , Ds, De, εe and εs). There have been two major improvements
to the classical DRA in terms of reducing the computation overhead,
the first by Gopalakrishnan et al.24 who implemented an improved
singular value decomposition scheme on a virtual Hankel matrix to

speed up the DRA. This resulted in a reduced order model that was
approximately 100 times faster than that using the classical DRA.
The second by Rodrı́guez et al.25 who applied variation of parameters
to speed up the computation of the electrolyte concentration transfer
function. In this case, the modified transfer function can be computed
3800 times faster than the previous electrolyte concentration transfer
function given by Lee, Chemistruck and Plett.5 The speed up of an
overall reduced order model using this modified transfer function is
not considered by Rodrı́guez et al.,25 however. Regardless of these im-
provements, when the values of the parameters change, for example,
due to cell aging, the DRA needs to be re-run to regenerate another
state-space model. This results in an increased run time for DRA based
reduced order models that may prevent their practical use in real-time
applications where rapid parameter updating is required.

Padé Approximation Method

In order to simplify the above transfer functions, we apply Padé
approximations. The aim of this approach is to reduce the transcen-
dental nature of the above transfer functions to ones that contain only
rational functions of simple polynomials in the Laplace domain.12

We note that an (M, N) order Padé approximation of a given transfer
function,Gi (s), centered at s0 has the form,12

Pi (s) =

M∑
m=0

ai
msm

N∑
n=0

bi
nsn

, [25]

where the superscript i associates the quantity with the corresponding
transfer function, namely, phase potential, molar flux, overpotential,
lithium concentration and solid phase potential as given by Equations
9–17 above. In Equation 25 the numerator has order M with M co-
efficients ai

m and the denominator has order N with N coefficients
bi

n .
The M+N+1 equations used to solve for the coefficients ai

m and
bi

n , of Pi (s) can be determined from the polynomial Equation,12

(
N+M+2∑

k=0

γi
k sk

)(
N∑

n=0

bi
nsn

)
−

M∑
m=0

ai
msm = 0, [26]

where the coefficients γi
k can be determined from the power series

expansion of the transfer function Gi (s), namely,

γi
k = 1

k!

(
dk

dsk
Gi (s)

)∣∣∣∣
s=s0

. [27]

Equation 26 generates a polynomial of order N(N+M+2) in s.12

Its right hand side equals zero for all s, therefore, the coefficients of
s equal zero.12 Consequently, we can create a set of M+N+1 linear
equations given in Equation 28, which includes N equations dependent
on bi

n and M+1 equations dependent on ai
m and bi

n , namely,⎧⎪⎪⎨
⎪⎪⎩

N∑
n=0

bi
nγ

i
M− j+k = 0 , k = 1, ..., N

k∑
m=0

bi
mγi

k−m = ai
k , k = 0, ..., M

. [28]

where the zeroth order term, bi
0, is assumed to be equal to 1 to

normalize the solutions.12 Solving the equations in 28, we can ob-
tain the M+1 coefficients, ai

m , (m = 0, ..., M), and N coefficients,
bi

n , (n = 1, ..., N ).13,26

There are several readily available routines that au-
tomate the above methodology. In this work we used
the PadeApproximant [Gi (s), s0, {M, N }] function in Wolfram
Mathematica27 to determine the Padé approximations to our trans-
fer functions.

As a specific example we note that the transfer function of the molar
flux in the negative electrode,J neg(z, s)/Iapp(s), given by Equation 12,

mac
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Figure 2. A low order Padé approximation model of the linear P2D model.

Figure 3. Frequency response of the Padé approximants and transcendental transfer functions of the four variables within the negative electrode.
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Figure 4. Current input and corresponding frequency con-
tent of a battery storage system that is being used to smooth
the power generated from a wind farm connected to a grid.
Current data sourced from Ref. 29.

can be approximated to first order by the Padé approximation,

J neg (z, s)

Iapp (s)
= a J neg

1 s + a J neg

0

bJ neg

1 s + bJ neg

0

, [29]

where,

a J neg

1 = −3Rneg
s

(
− 4κ

neg
eff

(
∂OC Pneg(cs,0)

∂cs,e
Rneg

s − 5Dneg
s F Rtot

)
σ

neg
eff

(
2κ

neg
eff − σ

neg
eff − 6κ

neg
eff z + 3

(
κ

neg
eff + σ

neg
eff

)
z2

) )

−3Rneg
s

(
aneg

s Dneg
s F Lneg2

(
κ

neg
eff

2
(4 + 5 (−2 + z) z)2

+ κ
neg
eff σ

neg
eff

(
− 13 + 10z (4 + z (1 + 5 (−2 + z) z))

)))
, [30]

a J neg

0 = 180
∂OC Pneg(cs,0)

∂cs,e
Dneg

s κ
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[32]

bJ neg

0 = 180Aaneg
s

∂OC Pneg(cs,0)

∂cs,e
Dneg

s Fκ
neg
eff Lnegσ

neg
eff

(
2κ

neg
eff − σ

neg
eff − 6κ

neg
eff z + 3

(
κ

neg
eff + σ

neg
eff

)
z2

)
. [33]

Similarly, the remaining transcendental transfer functions, intro-
duced above, can be approximated by their rational polynomial, Padé
approximants, given in Figure 2. In this way we can develop a system
of transfer functions that represent the variables of the P2D model
for a lithium ion battery and which have the advantage of being easy
to implement and compute in a real-time application. In addition,
the physical meaning of the approximation model can be preserved
since the coefficients of these rational polynomial transfer functions
directly link to the physical parameters of the cell such as Rfilm, r eff ,
Ds, De, εe and εs. If the operating conditions of the cell and hence
the values of the physical parameters change, these coefficients are
readily updated as they themselves have computationally simple alge-
braic forms as shown in Equations 30–33. This is in distinct contrast
to the DRA approach discussed above. We note that the outputs of
the Padé approximants are used within their corresponding nonlin-
ear correction term, given by Equations 18–23, in order to improve
the accuracy of the approximations to the purely linear P2D model.5

Further improvement could be achieved by incorporating this approx-
imation model with an observer,28 however, we leave this as future
work.

Figure 3 compares the frequency response of the Padé approximant
with their transcendental transfer function counterparts for the four
internal electrochemical variables within the negative electrode. We
note that the frequency response of each set of transfer functions
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Figure 5. Comparison between the Padé approximation model and the P2D model for a pulse current profile.

(where a set consists of a number of curves corresponding to the
range of z values between z = 0 and z = 1) depicted in Figure 3 is
for a particular set-point p∗. We consider a range of p∗ values for each
set, resulting in a family of sets, with each member of this family
corresponding to a different p∗. From this family of sets, the actual p∗

value that was used to produce a given set shown in Figure 3 was the
value that maximized the root mean squared error (when compared to
the linearized P2D model). This ensures that the frequency responses
of the Padé approximations shown in Figure 3 are the worst case
scenarios (i.e. the ones with maximum error when compared to the
linearized P2D model).

We see that the error between the Padé approximants and the
transcendental transfer functions increases as the input frequency is
increased. However, we note that in grid applications low frequencies

dominate the battery input current profile as shown in Figure 4. Figure
4a depicts the current profile, reported by Li et al.,29 of a battery storage
system that is being used to smooth the power generated from a wind
farm connected to a grid. Figure 4b shows the fast Fourier transform
of the current signal in Figure 4a. Figure 4c plots the Power Spectrum
Density (PSD) and identifies 99% occupied bandwidth,30 which is
calculated by determining where the integrated power crosses 0.5%
and 99.5% of the total power in the spectrum.30 As shown in the figure,
99% of the occupied bandwidth of the power signal have frequencies
less than 8.225 mHz. Comparing the Padé approximants with the
linearized P2D model outputs in the mHz frequency in Figure 3 we
observe that the two responses show an acceptable match, suggesting
that it is reasonable to apply the low order Padé approximants for grid
scale applications.
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Figure 6. Comparison between the Padé approximation model and the P2D model for the UDDS applied current profile.

Results and Discussion

Comparisons of Padé approximants of various cell variables with
those obtained from the full P2D model under various applied current
conditions are given in Figures 5, 6 and 7. The P2D model has been
implemented using the open source code supplied by Torchio et al.31

The cell parameters used for these simulations were obtained from
Ref. 5 and are listed in Table I.

Figure 5 compares the electrolyte concentration ce(Ltot , t), ce(0, t)
and the surface concentration in the solid phase cs,e(Ltot , t), cs,e(0, t)
and cell voltage for a pulse current profile. Figure 6 shows a similar
comparison when the Urban Dynamometer Driving Schedule (UDDS)
current profile is applied and Figure 7 shows the comparison when
the input current is that of the wind farm, grid application from Ref.
29, as depicted in Figure 4a.

In all of these cases we observe that the Padé approximations
compare very well to the P2D model outputs. The computation times
(in seconds) for each of these applied current profiles is shown in
Table II. We note that all simulations were implemented in MATLAB
R2016b and run on the same desktop computer with an Intel Core i7-

6700 CPU running at 3.4 GHz and 16GB RAM. In addition, the Padé
approximants are determined at the same discrete spatial locations as
given by the FVM grid used to solve the P2D model. We observe that
the Padé approximations require approximately 9.6 s to simulate the
pulse current profile in comparison to the P2D model, which takes
approximately 15 s. The time savings of the Padé approximations
are more evident in the cases of the UDDS and grid current profiles,
with the Padé approximation model solving in approximately 8 and
42.5 s, respectively and the P2D model taking approximately 539 and
22,494 s, respectively. It is this feature of the reduced model coupled
with the fact that the form of the Padé approximations, once obtained,
only require relatively simple rational functions to be evaluated, which
leads to the significant computational savings observed in Table II.

Like the P2D model, the Padé approximation model can be used
to predict how important cell variables will evolve both spatially and
temporally. However, another significant advantage of the Padé ap-
proximation approach is that variables can be evaluated at discrete
locations within the domain, without the need to compute all val-
ues of the variable at all discrete locations, as is the case with the
FVM implementation of the P2D model. This can result in further
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Figure 7. Comparison between the Padé approximation model with the full (nonlinear) P2D model for the applied current profile associated with the wind farm
application, as depicted in Figure 4a.

significant time savings. For instance, as shown in Equation 24, the
transfer functions of j(x, t), cs,e(x, t), ϕe(x, t), ce(x, t) and η(x, t)
at only two locations, x = L tot and x = 0, are required to compute
the cell voltage. If we only wish to calculate the cell voltage then,
as shown in Table III, the computation time of the Padé approxima-
tion model reduces to approximately 4.7 s for the pulse current profile,
and approximately 4.3 and 29.1 s for the UDDS and grid-scale current
profiles, respectively.

We now consider the application of our reduced model to battery
charging. The traditional constant current-constant voltage (CC-CV)
charging method is widely used to charge lithium batteries.32 As the
name suggests, this method applies constant current (CC) to charge the
battery to a preset voltage at which time the charging mode switches
to a constant voltage (CV) regime until the current reduces to a preset
value. The CV regime is often lengthy resulting in a long charging
time and in addition, as the battery ages, the preset voltage limit for the

CC regime often results in the cell being overcharged.9 When the cell
is being overcharged, it can be damaged and the risk of explosion is
potentially increased.9 A faster and safer method of charging has been
reported by Chaturvedi et al.,9 and is based on observing the value
of the potential difference φs − φe at the negative electrode/separator
boundary (x = Lnegin Figure 1). We note that at this point, φs − φe,
will be a minimum within the negative electrode during charging.33

Thus, when φs −φe at x = Lnegis negligible (point B shown on Figure
8a), we should stop charging to avoid overcharge and this is the reason
for monitoring this point in the approach presented by Chaturvedi et
al.9 Figure 8a depicts the cell voltage and Figure 8b depicts the over
potential, φs − φe, as given by the Padé and P2D models for a single
charge step at a rate of 1C. In the voltage limit method, we monitor the
cell voltage and switch from constant current charging to a constant
voltage mode when the cell voltage reaches 4.2V. From Figure 8a we
can see that at the point of switching (point A, 4.2V) this corresponds
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Table I. Cell parameters used in the simulation.

Symbol Units Negative electrode Separator Positive electrode

Li μm 128 76 190
Rs μm 12.5 _ 8.5
A m2 1 1 1
σ Sm−1 100 _ 3.8
εs _ 0.471 _ 0.297
εe _ 0.357 0.724 0.444
brug _ 1.5 1.5 1.5
cmax

s mol m−3 26,390 _ 22,860
ce,0 mol m−3 2000 2000 2000
θi,min _ 0.05 _ 0.78
θi,max _ 0.53 _ 0.17
Ds m2s−1 3.9E-14 _ 1.0E-13
De m2s−1 7.5E-11 7.5E-11 7.5E-11
t0+ _ 0.363 0.363 0.363
k mol−1/2 m5/2s−1 1.94E-11 _ 2.16E-11
α _ 0.5 0.5 0.5
R f ilm �m2 0 _ 0

σeff = σεs , κeff = κε
brug
e , Deff

e = Deε
brug
e

κ(ce) = 4.1253 × 10−2 + 5.007 × 10−4ce − 4.7212 × 10−7c2
e + 1.5094 × 10−10c3

e − 1.6018 × 10−14c4
e

U neg
OCP(θ) = −0.16 + 1.32 exp(−3θ) + 10.0 exp(−2000θ)

U pos
OCP(θ) = 4.19829 + 0.0565661 tanh(−14.5546θ + 8.60942) − 0.0275479 [ 1

(0.998432−θ)0.4924656 − 1.90111]

−0.157123 exp (−0.04738θ6) + 0.810239 exp (−40(θ − 0.133875))

Table II. Comparison of simulation time of the proposed approximation model to compute all cell variables at all discrete. spatial locations.

Simulation time (s) Pulse current profile UDDS Grid current profile

Proposed approximation model 9.546 s 8.015 s 42.519 s
P2D model 15.316 s 538.739 s 22494.1 s

to a state of charge (SOC) of 93.2%. This SOC will continue to
increase under the constant voltage regime, but will do so very slowly.
From Figure 8b, however, we can see that at the point of switching the
potential difference φs − φe at x = Lnegis greater than 0V. Therefore,
under the method proposed by Chaturvedi et al. we would continue to
charge at a constant current until φs − φe = 0, yielding a 6.8% extra
SOC. The additional time required for gaining 6.8% extra SOC in this
constant current regime is 243s, which is much faster than the time
required to gain the same amount of charge if we had switched to a
constant voltage regime (which would take on the order of hours). The
pivotal point here is that the values of φs − φe at x = Lnegpredicted
by our Padé approximation model compare very favorably to those
predicted by the P2D model but have the advantage of being easily
computed. An accurate and fast prediction of the φs − φe values at
x = Lneg, which cannot be easily measured empirically, means that
our Padé approximation method could be useful for control purposes
in fast charging.

Finally, we note that the accuracy of our proposed Padé approxi-
mation model can be further improved by increasing the order of the
rational functions used in the approximations. However, higher order
models result in higher computational requirements. In order to in-
vestigate this tradeoff, we increase the approximation order as shown
in Figure 9.

Figure 10 depicts the voltage error (when compared with the P2D
model predictions) for the low order approximations given in Figure 2,

and the higher order approximations given in Figure 9 for our three
previous applied current profiles (i.e. the pulse current profile, UDDS,
grid-scale application). Table IV shows the root mean square value of
the voltage error over the length of each current profile. From these
figures we observe that the accuracy of the higher order approxima-
tion model increases by some 5.4% and 7.5% for the pulse current
profile and the UDDS profile, respectively. In the pulse current pro-
files and the grid-scale profile, there are negligibly small differences
between the low and higher order approximations models. However,
as can also be seen in Table III, the computational time requirement
of the higher order approximation model increases by approximately
20% for the pulse and UDDS current profiles and 7.7% for the grid
current profile. We see that the higher order approximation model
does not result in significant improvements for any of these applied
current profiles and therefore, increasing the approximation order is
unnecessary.

Conclusions

We presented a reduced order model for a lithium ion battery
in which Padé approximants were used to simplify complex, tran-
scendental, transfer functions associated with the linearized, pseudo
2-dimensional (P2D) electrochemical model of the battery. The re-
sulting transfer functions take the form of simple, rational polynomial
functions, which can be used to compute any variable at any location

Table III. Comparison of simulation time of the proposed approximation model to compute only cell voltage.

Simulation time (s) Pulse current profile UDDS Grid current profile

Proposed approximation model 4.726 s 4.334 s 29.063 s
P2D model 15.316 s 538.739 s 22494.1 s
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Figure 8. Comparison between two charging methods (a). Cell voltage during charging. (b). The over potential φs − φe at x = Lneg.

within a one-dimensional representation of the battery domain. Cor-
rections for nonlinear behavior are also incorporated into the reduced
model. The proposed model substantially reduces the complexity of
the P2D model whilst maintaining the functionality of predicting all
of the variables of that model. The form of the Padé approximations,
once resolved, only require relatively simple rational functions to
be evaluated, which leads to significant computational savings when
solving the reduced model. Our results demonstrate that the reduced

model predictions match very closely with those obtained from the
full (nonlinear) P2D model but in a fraction of the computational
time. Importantly, variables can be evaluated at specific discrete lo-
cations within the domain, without the need to compute all values of
the variable at all discrete locations, as is the case with the FVM im-
plementation of the P2D model. This can result in further significant
time savings and enhance the flexibility of the model for a variety of
applications.

Figure 9. Higher order Padé approximation model of the linear P2D model.
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Figure 10. Cell voltage error obtained from low order and higher order Padé approximation models when compared to the predictions of the P2D model.

Table IV. Comparison of RMS error of cell voltage and the computational workload between low order and higher order Padé approximation
models.

Pulse current profile UDDS current profile Grid current profile

Order selection 1 (low order) 0.0098 V 0.0143 V 0.00822 V
Order selection 2 (higher order) 0.0093 V 0.0133 V 0.00824 V

Voltage error reduce 5.4% 7.5% -0.24%

Order selection 1 (low order) 4.726 s 4.334 s 29.063 s
Order selection 2 (higher order) 6.053 s 5.758 s 31.486 s

Computation increase 21.9% 24.7% 7.7%
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List of Symbols

as Specific interfacial area (m−1)
A Electrode plate area (m2)
ce,0 Steady-state concentration of lithium in the elec-

trolyte phase (mol m−3)
cs,0 Initial concentration of lithium in the solid phase

(mol m−3)
cs,e Surface concentration of lithium in a spherical elec-

trode particle (mol m−3)

cs,max Maximum concentration of lithium in the solid phase
(mol m−3)

De Electrolyte phase lithum ion diffusion coefficient
(m2s−1)

Deff
e Effective electrolyte diffusivity (m2 s−1)

Ds Solid diffusivity (m2 s−1)
Ds Solid phase lithium diffusion coefficient (m2s−1)
fc/a Electrolyte active coefficient
fc/a Mean molar activity coefficient
F Faraday’s constant (96,478 Cmol−1)
L tot, L Total cell thickness (m)
pos/neg/sep Pertaining to the positive/negative electrode/

separator
reff Reaction rate constant (mol m−2s−1 ( mol m−1s )−1.5)
R Universal gas constant (8.314Jmol−1)



Journal of The Electrochemical Society, 165 (7) A1409-A1421 (2018) A1421

Rfilm Solid electrolyte interphase layer film resistance
(�m−1)

Rs Particle radius (m)
t0
+ Transference number for the anion

T Temperature (298 K)
x 1D linear coordinate across the cell (m)

Greek

εs,εe Active material, electrolyte phase volume fraction
σ Solid phase conductivity (Sm−1)
κ Electrolyte phase ionic conductivity (Sm−1)
λk k theigenvalue of the electrolyte concentration func-

tion
ψ eigenfunction of the electrolyte concentration func-

tion
κeff Effective electrolyte conductivity (Sm−1)
αa,αc Charge transfer coefficients
θi,min Stoichiometry of electrode at 0%
θi,max Stoichiometry of electrode at 100% SOC

Appendix

The transfer functions used to compute the electrolyte concentration is given as,5
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where, L∗
neg = Lsep

√
εnλk/Dn , L∗

pos = Lpos
√

εpλk/Dp ,L∗
nm = (Lneg + Lsep)√

εpλk/Dp ,L∗
tot = L tot

√
εpλk/Dp .

For the electrolyte potential in the negative electrode (0 ≤ x ≤ Lneg):
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For the electrolyte potential in the separator (Lneg ≤ x ≤ Lneg + Lsep):
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For the electrolyte potential in the positive electrode (Lneg + Lsep ≤ x ≤ L tot):
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