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Abstract

Alloys have for a long time been important in the development of our society; from
the bronze age, where man learned how to alloy copper with tin, to today, where
many products are made of steel and aluminum alloys. Similarly, but maybe not as
generally well known, also in heterogeneous catalysis alloys are explored to develop
solutions to increase activity and selectivity of chemical processes. Furthermore, al-
loys have lately been proposed as a new paradigm in nanophotonics, as a means to
tailor optical properties of nanomaterials that find applications within telecommu-
nication, sensing, or biotechnology. Nanophotonics and catalysis, separately and in
combination, are the focus of this thesis. Specifically, we have compiled a library
of alloy complex dielectric functions for the late transition metals by utilizing time-
dependent density-functional theory. The calculated dielectric functions were bench-
marked by (i) nanofabricating series of alloy nanoparticle arrays with systematically
varying composition, (ii) measuring their plasmonic properties, and (iii) comparing
these properties with electrodynamic simulations of alloy nanoparticles, using the
dielectric function library as the input. The second theme in this thesis is plasmon-
enhanced catalysis. In this field there is a continuous discussion regarding the reaction
enhancing mechanisms when noble metal catalyst nanoparticles are irradiated with
visible light during a catalytic reaction. Here we investigated the role of photother-
mal enhancement of reactions by tailoring the catalytic activity of nanofabricated
particles without radiation by means of alloying Pd with Au, while keeping the op-
tical absorption cross-section constant, as confirmed by electrodynamics simulations

using our dielectric function library as the input.

Keywords: nanoalloys, nanofabrication, nanoparticles, LSPR, heterogeneous catal-

ysis, dielectric function, light, CO oxidation, palladium, gold
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1 Introduction

Alloys have been important for the development of society for a long time. The most
prominent example from history is probably the bronze age, where man started to
alloy copper with tin, which provided tools with increased hardness, stiffness or duc-
tility, depending on the composition. The situation is similar today, as the properties
of metals like iron are modified by mixing it with carbon to form steel. The proper-
ties of steel can be further tailored for specific applications by, for example, mixing
it with chromium to improve toughness, with manganese to increase wear resistance,

or with titanium to improve corrosion resistance?.

At the same time, the concept of alloying is also explored in younger areas of science
and technology, like in the field of nanophotonics?. In this area, alloying has recently
been proposed as a means to tailor optical properties of nanomaterials, to achieve
functions and properties that are not accessible when using pure elements alone -
conceptually very similar as for iron when making steel. However, the use of alloys
in nanophotonic applications is still in its infancy due to a lack of understanding
of the fundamental optical properties of alloys in general, and a lack of complex
dielectric functions of alloys that cover a wide spectral and compositional range in
particular. The latter is critical since, projected onto nanophotonics, dielectric func-
tions are a key resource for being able to predict the response of nanostructures
to light by means of modelling or electrodynamic simulations. Such predictions, in
turn, are important to both rationally design and fine-tune alloy nanostructures for
their intended applications, such as waveguides, gratings or plasmonic nanoanten-

nas.

In response, in Paper I, we have compiled a library of complex dielectric functions
for alloys of the late transition metals by utilizing time-dependent density-functional

theory. We have then benchmarked the dielectric functions calculated from first
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principles by nanofabricating series of alloy nanoparticles, measuring their plasmonic
properties and comparing these properties with electrodynamic simulations using the
derived dielectric functions as the key input. The found excellent agreement between
theory and experiment corroborated the validity of our dielectric functions, which
thereby finally provide the community with a consistent data set across a wide spec-

tral range and without limitations in alloy composition.

As a second key aspect of this thesis, I want to highlight that nanomaterials and
structures not only find application in nanophotonics but also in heterogeneous catal-
ysis, where they constitute the workhorse in a quest to increase the yield and reduce
the environmental impact of chemical processes. To pinpoint the importance of
this quest, we remind ourselves that ca. 90% of the chemical industry uses a cat-

3. An interesting concept related

alytic reaction somewhere along their value chain
to these efforts is to use light and its interaction with solid state nanomaterials as
a means to increase catalyst activity or steer selectivity. This area of technology
is commonly referred to as photocatalysis®. In recent years, a sub-area of photo-
catalysis has developed rapidly, which proposes the use of so-called localized surface
plasmon resonances (LSPR) to enhance the cross section of photocatalytic reactions
on metal nanoparticles. LSPR are resonant collective free electron oscillations in
metal nanoparticles excited by visible light. This branch of nanoscience at the in-
terface between nanophotonics and heterogeneous catalysis is commonly referred to
as plasmon-mediated catalysis. Despite its rapid development with sometimes spec-
tacular reports about rate and selectivity enhancements of plasmonic catalysts®97,
there is a discussion about the mechanistic origin of the observed effects, and in
particular the distinction between photothermal and hot-carrier mediated effects has

developed into a “holy grail” of the field®*¥.

In Paper II, we studied such photothermal effects that arise upon noble metal cat-
alyst nanoparticle irradiation with visible light during a catalytic reaction. Specifi-
cally, we applied the concept of alloying, by mixing palladium with gold in arrays of
nanofabricated catalyst particles, to tailor the catalytic activity of our model system
in the dark, while, at the same time, maintaining a constant optical cross-section
upon illumination. In this way, we are able to unambiguously show that the cat-
alytic activity is not governed by the photon flux alone but also depends strongly on

the temperature of the catalyst in the dark.



2 Alloys

2.1 Phase Diagrams

Alloys are the combination of two or more components, intermixed at the atomic

Y. They are widely used in different technologies

level, where at least one is a meta
to alter material properties like increasing the strength and hardness'. They are
furthermore explored in heterogeneous catalysis to optimize activity and selectivity,
and predicted to find application in plasmon-mediated catalysis as a means to tailor
the light harvesting capabilities of metal nanoparticles. Overall, alloys provide ample
opportunity to tailor functional material properties and to achieve functions not

obtainable by the constituent materials alone.

When designing alloys, the phase diagram for the constituent materials should be
consulted. For a unary system the phase diagram shows the phase and phase changes
of the system depending on temperature and pressure. In the case of binary alloys, the
phase diagram usually shows the phase and phase changes depending on temperature
and alloy composition for constant pressure (usually 1atm). It is also worth noting
that phase diagrams represent the system at equilibrium. Therefore, using high
heating and cooling rates will change the phase diagram. Melting points will, for
example, appear shifted, since the system may be kinetically trapped in a state

different from the equilibrium one.

Focusing now on metals only, which are the systems of relevance for my work, the
most common phases of an alloy are a solid solution and intermetallic phase. In
a solid solution, the element B, the solute is dissolved in the crystal lattice of ele-
ment A, the solvent. The phase structure of the solid solution is the same as the

one of the solvent'?. The limit of solid solubility depends on the similarity and
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Figure 2.1: a) Schematic depiction of a substitutional alloy, where the solute sub-
stitutes a solvent atom. b) Schematic depiction of an interstitial alloy,
where the solute atoms sit between the solvent atoms in interstitial

lattice sites.

difference between the atoms of solute and solvent™®. If they have a similar size
and the solute atoms replace the solvent atoms, the solid solution is called substitu-
tional ) According to the Hume-Rothery-rules™, the atoms can deviate
a maximum of 15% in size to form a substitutional solid solution. In addition to
size requirements, the chemical affinity, relative valency and lattice type need to be
taken into account. If, for example, the elements have very different electronegativ-
ities, they tend to form a compound instead of an alloy, with polar covalent bonds
between its constituents. Finally, it is important to mention that these are general
rules with many exceptions. However, they give a qualitative estimate if two atoms
would form a substitutional solid solution. If the difference in radius of the atoms

is big enough, an interstitial solid solution will form instead, where the solute atoms

occupy interstitial sites of the solvent (Figure 2.1b).

In phase diagrams, solid solutions are often denoted with a lowercase Greek letter.
In that depicts the binary phase diagram for silver and copper, this is
denoted v and 3. If it is not possible for a particular composition to form either
an « or 8 phase, a mixture of both is formed, as also indicated in [Figure 2.2l This
two-phase coexistence region is denoted as a + 3, where both phases are saturated

at equilibrium. The amount of each phase in the mixed phase can be calculated
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Figure 2.2: Phase diagram of silver-copper. The o and /3 phases are at both sides
of the diagram, at high copper and silver concentrations, respectively.
The largest part of the phase diagram in the center corresponds to
a two-phase coexistence region, where the a and [ phase are present
simultaneously. L denotes the liquid phase. In the regions o + L and
B+ L coexist the solid with the liquid phase. The data are from Kawecki
et al 4

using the Lever rulet!. Finally, a region where an alloy does not fully mix is called a
miscibility gap. If the crystal structure of an alloy differs from both constituents’, it is

called an intermetallic compound or intermetallic phase.

An example of a very simple phase diagram is the one for silver-gold (Figure 2.3)).

This system forms a random alloy throughout the whole composition range and has
a small area between the liquidus and solidus lines, where liquid and solid phases

coexist.

There are several ways to fabricate bulk alloys from their constituents. One way is to
mix the elements in liquid form, which works well for metals with a few exceptions.
Once mixed, the liquid can be cooled and upon solidification the solid-state alloy is
formed™®. Alternative ways to make alloys include the use of solutions containing

t15

the components as salt!®, electrolysisi®, or simultaneous reduction of oxides of the

components*.
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Figure 2.3: Phase diagram of silver-gold. For the largest part of the diagram it
forms either a random alloy in the solid state (below the solidus line)
or is mixed in liquid phase. In the small area between the liquidus and
solidus lines a liquid and solid phase exist simultaneously. The data are
from Okamoto et al1?

At the nanoscale, additional effective ways to make alloy nanoparticles are via col-
loidal synthesis'® or via thermal annealing of layered thin films*. The route of
thermal annealing was used in Paper I and Paper II, by nanofabricating layered
nanoparticles comprised of metal A and B by means of nanolithography (see
20. During the high temperature treatment, the system reduces the Gibbs free
energy by eliminating the concentration gradient of metal A and B via atomic diffu-
sion in the solid state, resulting in a homogeneous concentration in the end of the pro-

cess. This behavior can be described with Fick’s law of diffusion??.

2.2 Segregation

Segregation describes a phase separation process in alloys driven by de-mixing for
instance at a surface due to local energetics that are different than in the bulk of

the crystal®?. Such segregation can appear in different forms. For example, den-
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Figure 2.4: Calculated surface segregation for different palladium alloys for the
(111) plane in vacuum at 600 K. Depending on the composition and
the constituents, the surface concentration differs considerably from the
bulk composition. Common reasons driving the segregation are the en-
thalpy of mixing, surface energy, size mismatch of the atoms, or also
the gas environment. The shown concentrations are in respect to the
element alloyed with Pd. The data are from Zhao et al.??

drites may form inside the material and thereby creating regions in the bulk material
with an altered composition®®. Alternatively, one can get segregation due to an in-
homogeneous freezing process upon solidification® and many more. For my work
presented in this thesis, equilibrium segregation at the surface of an alloy is most
important. To this end, theory predicts for noble/transition metal alloys, that the
surface composition is expected to — sometimes dramatically - differ from the bulk
composition. This is exemplified for different palladium alloys in [Figure 2.4, Com-
mon reasons driving the segregation are the enthalpy of mixing, surface energy, size

mismatch of the atoms, or also the gas environment,

An estimate of which alloy that will exhibit significant surface segregation in vacuum
or inert atmospheres can be obtained by looking at the surface energies of the con-
stituents since the alloyed system tries to attain a state of lowest energy. Therefore,
the element with a lower surface energy will segregate to the surface and the driving

force for this process will be larger, the larger the difference in surface energy between
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the alloy constituents. For Palladium the surface energy is 2.05J/m?

1.5J/m? 4 Hence, as can be seen in [Figure 2.4 gold is expected to segregate to
the surface in vacuum. Nickel on the other hand has a higher surface energy than

and for gold

palladium with 2.45J/m? “¥ and therefore palladium is segregating to the surface.
Importantly, however, most of the time these materials are not used in vacuum but
under high pressure conditions, such as during a catalytic reaction. Under these
conditions physi- and chemisorption of atomic and molecular species on the surface
play an important role and will alter the segregation behavior of the alloy. In most
cases, if one of the gas atoms or molecules interacts strongly with one of the alloy
constituents, it will tend to enrich on the surface®” and create a surface composition
not present in vacuum. However, cases have been reported were the less reactive

constituent of the alloy is pulled to the surface?.



3 Dielectric Functions and

Plasmonics

3.1 Plasmons

To understand plasmons it is best to start by looking at the behavior of metals
when they interact with electromagnetic radiation. One way to do this is by us-
ing the free-electron-gas model. It describes metals as free moving electrons with
a fixed positive ion background. The model sometimes is also called the plasma

model?Z,

The driving force to excite plasmons is the external electric field, E, which can be ex-
pressed as a harmonic wave E(t) = Ege’*. The resulting motion of the electrons is a

classical harmonic oscillator and can therefore be written as=’

mX 4+ myx = —cE. (3.1)

Here 7 is the characteristic collision frequency, v = 1/7, and 7 is the relaxation
time. Further we have the effective mass, m, of an electron and the elementary

charge e.

A solution to [Equation 3.1|is%"
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Figure 3.1: Volume plasmon in a slab of metal. The displacement of the electrons

due to the electric field E creates the polarisation P.

Which leads with the polarization P = nex to

—ne
P=—E. 3.3
m(w? + iyw) (3:3)

The displacement of the electron cloud can be illustrated as shown in

The dielectric displacement, D, from Maxwell’s equations is defined as

D=¢E+P, (3.4)
which gives us
—ne
D=¢E—- —F—E 3.5
0 m(w? 4 iyw) (8:5)
wp
D:€0 1—m E:€0€E. (36)
wp is the so-called plasma frequency with wp = Z}i One can also see that in
the complex dielectric function
2
w
=1 - —L 3.7
€(w) w? + iyw (37)

appears. The complex dielectric function can be written with its real and imaginary
part separated
€(w) = € (w) + i€ (w) (3.8)

10
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Figure 3.2: The dielectric function of gold from Johnson and Christy*®. In grey the
Drude model is fitted to the data. One can see that the overall agree-
ment for the real part is good. However, the model description of the
imaginary part works only until the onset of the interband transitions
in Au. Adapted from Maier”.

where the parts are

W27'2
cl =110 (39)
2
w
p
()= — 1
() w(l 4 w?72) (3.10)

Despite its ability to rationalize the core concept, a simple model as introduced above
also comes with limitations, which can be seen in It shows the dielectric
function of gold experimentally obtained by Johnson and Christy*® and the dielectric
function of Au obtained using the free-electron-gas model fitted to the
experimental data. At around 2.5eV a strong deviation can be seen. At this point
photons can with a high efficiency excite interband transitions between the 5d and
the 6sp-band above the Fermi level®”5Y This is an effect that is not included in the

free-electron-gas model, as it treats mainly the sp-band.

11
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N light
electron wave
cloud

Electric field

Figure 3.3: The free electrons of the nanoparticle are displaced by the electric field
of the light and start oscillating. This is the classical picture of a local-

ized surface plasmon resonance.

3.2 Localized Surface Plasmon Resonance

In the section above, we have seen that plasmons are the collective oscillation of the
conduction electrons in metals. The displacement of the electrons is generated by
an external electric field and the positively charged atom cores cause the restoring
force. Due to the two counteracting forces one gets an oscillation. These oscillations
do not only occur in bulk but can also be confined to a surface and either constitute
a propagating or standing wave, which then are called surface plasmons or surface
plasmon polaritons (SPP). If the plasmon is confined in a nanoparticle it is called
localized surface plasmon (LSP) (Figure 3.3). The latter happens if the particle size is
smaller than the wavelength, A, of the external electric field and can conveniently be
described by the quasi-static approzimation®?. This model has as its core assumption
that, because the particle is much smaller than the wavelength, it can be treated as
exposed to a static electric field. Based on the Laplace equation V2® = 0, which
can be used to describe the electric field E = —V®, one can introduce the dipole
moment, p, at the center of the particle (for a more detailed derivation see Maierm),

which reads as
€ — €m

E;. (3.11)

= 4drepe,,a’
P 0 €+ 2¢,,

12



3.2 Localized Surface Plasmon Resonance

Where €, is the dielectric constant of the surrounding medium and a the radius of
the particle. Similar to the dielectric function in the section above, one can then

introduce a polarizability, o, via“’

P = €oemEy, (3.12)
which gives us
€—€
= 4ma® ——" 3.13
o Ta . ( )

From this expression it is easy to see that the polarizability experiences a maximum

if the denominator reaches zero.
Re{e(w)} = —2¢,, (3.14)

This is also called the Frohlich condition.

From [Equation 3.11] one can obtain the scattering, os.q., and absorption, o4, cross

sections as (see Bohren and Huffman®! for details)

Ko, 8w €—€m |2
scat — L = 71?4 6 m 3.15
O scat 6#’&’ 3 “ €+ 2¢,, ( )
Oaps = kIm{a} = 4nka® Im{ € tm } . (3.16)
€+ 2¢6,,

For the sake of completeness and because it is the value most often measured experi-
mentally, also the extinction cross section shall be mentioned here. It is obtained by
the combination of [Equation 3.15|and [3.16]

Oext = Oabs T Oscat (317)

€

3.18
6, + 2€,]2 + €2 (3.18)

w
Oegt = 9;6?,{2‘/

Here we can see again that the cross sections are maximized when the Frohlich
condition is met. At this point, we also note that, the particles have a larger optical
cross section than their geometrical cross section, which means they interact a lot

more strongly with light than just casting a shadow’.

13
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It is further interesting to notice that scattering and absorption scale differently with

nanoparticle size. Absorption dominates due to the a® scaling (Equation 3.16) in the

small particle regime (a < )%, while scattering dominates for larger particles due
to the a® scaling (Equation 3.15)).

3.3 Finite Difference Time Domain Electrodynamic

Simulations

The Finite Difference Time Domain (FDTD) method is a numerical computational
technique to simulate electrodynamics and calculate, for example, the LSPR of
nanoparticles and nanostructures. As opposed to Mie or Gans analytical theory«®=L,
using FDTD one is not limited to idealized shapes like spheres and spheroids. FDTD
works by solving Maxwell’s equations. They are solved in the time domain, which
has the advantage that with a single run one gets a broadband result and not just
one frequency. The finite difference in FDTD comes from the finite-difference ap-

proximation for the derivative??

df1 5 _ fa—fi
dz Ax

(3.19)

which means that finite steps in time are used. However, not only time is in finite
steps, also the space is divided into finite steps, the so-called grid. If one looks
at Maxwell’s differential equation, one can see that the electric field depends on
the change in the magnetic field (the curl) and vice versa. Calculating this curl in
multiple dimensions becomes complex. To avert this, the electric and magnetic field
components are staggered in space. Each electric field component ends up between
magnetic field components in the grid and vice versa. For each grid space Maxwell’s
equations can now be solved. This concept was introduced in 1966 by Kane Yee?

and is therefore called Yee grid.

FDTD has the advantage that it is an accurate, robust and mature method, which
has been used very successfully for decades. The numerical complexity further scales
just linearly with the problem size®? and it is easy to parallelize, and therefore use

the advantage of modern computers CPU architecture®®,

14
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Figure 3.4: An example of a total field scattered field (TFSF) light source typically
used in FDTD. In the total field region (black) both an incident and
scattered (grey) field exist. In the scattered region, only scattered light
is present. This eliminates backwards propagating energy and therefore

100% of the injected energy is incident on the simulated device object.

To simulate an incoming plane wave, a source that is often used in FDTD is the
so-called total field scattered field (TFSF) source (Figure 3.4). With this source,
the simulation is divided into different regions. The total field includes the incident
and scattered fields together and then there are regions which only include the scat-
tered field. This eliminates backwards propagating energy and therefore 100% of the

injected energy is incident on the simulated object?.

In this work, a single nanodisk was used in my simulations of the plasmonic response
of nanoparticles investigated in the experiments. However, I want to stress that, in
the experiments, the optical properties of the nanoparticles were measured from an
array of nanodisks rather than from a single one. This may be problematic since,
a priori, the optical response from an array is not identical to that of a single disk
due to, for example, both near- and far-field coupling within the array®®. However,
since simulating arrays of nanoparticles is computationally more demanding, it is a
commonly used approximation. In my case, where the experimentally studied arrays
were made by Hole-Mask Colloidal Lithography (see , they lack long-range
order and the average particle-particle distance is about 2 -3 particle diameters. For

such arrays, it has been shown®® that the spectral position and full-width-at-half-

15
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Figure 3.5: An overview of how different geometric features influence the LSPR of
metal nanoparticles. The changes in disk a) diameter, b) height, ¢) top
rounding radius, and d) tapering result in a different LSPR response.
The bottom panels present the peak position as a function of the mag-
nitude in geometric change, which demonstrates their different impact
on the peak position. The calculation was done on a SiO, substrate
with a refractive index of 1.46%7 and the dielectric function for gold
from Rahm et al®¥ (Paper I).

maximum of the LSPR peak oscillates around the value of a single particle, with
the specific values depending on the center-to-center distance of the particles in the

array.

As mentioned above, it is not only the nature of an array that it is important for
the optical response of plasmonic metal nanoparticles, but also the geometry of the
individual nanostructures. To study individual nanostructures, FDTD is very suit-
able since it essentially enables the simulation of any shape. Therefore, I show some
examples in to give an overview of how different geometric features influ-
ence the LSPR of metal nanoparticles, and I use the same geometrical features of a
nanodisk that I used in the model in Paper I. Specifically, by reducing the diameter,
the resonance frequency blueshifts as can be seen in [Figure 3.5h. This is exactly the

16
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behavior we expect by comparing it to spheres (see [Equation 3.16). Also shown in
Figure 3.5|is the influence of changing the nanodisk height b), the top rounding c)
and the angle of the tapering d). One can see by looking at the lower half of the

figure, where I plot the spectral position of the peak maximum as a function of geom-
etry change (expressed as spectrum number), that changing the diameter of the disk

yields the biggest spectral shift in resonance frequency.

3.4 Dielectric Functions of Transition Metal Alloys

As discussed in the previous chapter, when computing the plasmonic properties of
metal nanoparticles using electrodynamics simulations, such as FDTD, the complex
dielectric function of the metal is a required input. For pure metals this information
is readily available from the literature, both derived in experiments and by first
principles calculationg®?-28:5 04041,

depicts the dielectric functions of gold?®, silver®®, and palladium®” and the
corresponding LSPR calculated by FDTD for a single disk. Silver exhibits a peak at
higher energies because the real part of the dielectric function is lower and shifted to
higher energies compared to gold. Comparing silver with palladium, it is clear that
the imaginary part of the dielectric function does not have a peak as clear as gold or
silver. This is because the d-band for palladium is partially filled and intersects the
Fermi level, whereas silver and gold have completely filled d-bands. The character
of the electronic structure of palladium differs therefore compared to gold and silver,
which can also be seen in the LSPR peak that is not as strong and broader compared
to gold and silver. The width of the peak contains, further, information on the
lifetime of the plasmon. A short plasmon lifetime is the result of a high damping
factor as reflected by the imaginary part of the dielectric function. A big contribution
to the damping factor for 140 nm nanoparticles of silver, gold, and palladium in the
shown energy range is damping due to interband transitions?. Silver and gold both
have a filled d-band well below the Fermi level , which leads to interband
damping above a certain threshold, as can be seen in [Figure 3.6k, whereas interband

transition over the whole shown energy range dominate for palladium. In this case,

17
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a) The dielectric functions of gold®, silver*®) and palladium®. The
imaginary part of gold and silver features a sudden rise at around 2.5 eV
and 4 eV, respectively, where photons can with a high efficiency excite
interband transitions. In the case of palladium the d-band is only par-
tially filled and intersects the Fermi level. Therefore, interband transi-
tions dominate over the whole energy range and lead to a higher imag-
inary part than gold and silver. b) The corresponding LSPR response
calculated by FDTD using the dielectric functions above as input. Silver
and gold feature a narrow and clear peak, whereas the palladium peak
is not as strong and broader. The calculated response corresponds to a
single nanodisk comprised of gold, silver and palladium with a diameter

of 140 nm and a height of 25 nm on a fused silica support.

it can be concluded, that the plasmon lifetime for silver and gold is longer than for

palladium.

The different electronic structure of the different metals makes it difficult to derive

or predict the dielectric function for alloys from, for example, simple linear interpo-

lation schemes. For systems where the electronic structure is similar, like gold-silver,

one can use,

for example, the modified Drude-Lorentz model*®, which works quite

well (discussed in detail in [section 3.5). In that case, we can see an almost linear
shift of the d-band center (see |[Figure 3.7). If one, however, wants to generate a

dielectric function for an alloy system where the constituent materials are of signif-

icantly different character in terms of their electronic structure, like, for example,
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Figure 3.7: The electronic density of states of silver-gold and gold-palladium alloys
with the mixing ratio changing in 10% steps, as calculated by DFT
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with van der Waals correlation®®. In the case of silver-gold, which both

have filled d-bands, an almost linear shift of the d-band center becomes
apparent and it stays well under the Fermi level. In the case of gold-
palladium, one combines two elements with open and closed d-bands,
which already at low concentrations of palladium induces a strong non-
linear shift of the d-band center.

gold-palladium, this simpler model is not applicable anymore. Specifically, in the
case of gold-palladium, already a small amount of palladium shifts the d-band center
in a non-linear fashion closer to the Fermi level (see [Figure 3.7)). This is the conse-
quence of a hybridization of the Au 5ds/, states and the Pd 4d states, and leads to
a smearing of the Au 5ds, states®®. For such systems more advanced first principles
calculations like time-dependent density-functional theory have to be used, as we

have done in Paper 1.

19



3 Dielectric Functions and Plasmonics

—— Babar and Weaver

8 —— Johnson and Christy
—— Ciesielski et al.
—— Hagemann et al.
6 —— Lemarchand et al.
—— McPeak et al.
W Olmon et al.
4 —— Windt et al.
Yakubovsky et al.
2
0 4 6
Energy [eV]

Figure 3.8: Experimentally measured imaginary parts of the dielectric function for
gold collected from the literature. The overall shape of the curves is
the same, but they are all different when comparing them in detail.
The data are taken from Babar and Weaver*?, Johnson and Christy®®,
Ciesielski et al*® Hagemann et al*’, Lemarchand et al®*®, McPeak et
al*? Olmon et al*” Windt et al®¥ and Yakubovsky et al >}

3.5 Optical Properties of Alloys

As discussed above, the optical properties of a solid can be described by the complex
dielectric function

e(w) =€ +ie".

While straightforward in theory, it turns out to be experimentally challenging to
accurately measure dielectric functions since features like surface roughness, mor-
phology, surface oxidation, impurities and material thickness can dramatically affect

t51

the result®”. Additionally, even processing parameters during film growth, and the

used measurement technique have an influence on the outcome®. il-
lustrates the effect of processing parameters and sample condition for pure gold.
The overall trend is similar for all measured dielectric functions, but they differ in
absolute values, especially in the region of the Drude peak, which ranges from al-
most 0 to around 3eV. When it comes to alloys, the situation is no different and

surface segregation and potential material inhomogeneities add further difficulties.
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Therefore, reliable dielectric functions for alloy materials are very scarce in the liter-

ature.

For gold-silver alloys several attempts have been made to calculate, rather than mea-
sure, the dielectric function. The easiest way to do so is a weighted average of the
dielectric functions of the components gold and silver. However, the corresponding
results are questionable*® since the model does not take into account that there is
only one onset of the d-band. A more sophisticated approach was used by Gaudry
et al® in which a weighted average for the interband transition was used®®. But
even this approach neglects important physical change in the rest of the electronic
structure and is not accurate enough. To increase the accuracy, a more complex
analytical model was developed by Rioux et al® and fitted to experimental data.
The key point of this approach is that the actual joined density-of-states is mod-
elled and forms the basis of the analytical model. This was the first time a model
for calculating the dielectric function for gold-silver was based on the actual band-

structure.

From the above discussion, it is clear that it is not trivial to obtain dielectric functions
of alloys, even for the “easy” case of gold-silver, where the constituents have similar
electronic structure, lattice constant, crystal structure and valences*). A second con-
sequence of the above analysis of pursuit methods is that, if one is interested in the
optical properties of different and/or more complex alloys, complete and consistent
data sets for dielectric functions do not exist to date. One has to use either different
experimental data sets, which are often small in terms of studied compositions or were
only measured for a narrow spectral range, or one has to work with models that are
(too) simplistic. This situation motivated the work presented in Paper I, where we
introduce a library of transition metal alloy dielectric functions for the binary alloys
of silver, gold, copper, palladium and platinum. To calculate the dielectric functions,
we used linear response time-dependent density function theory (LR-TDDFT) with
so-called special quasirandom structures, which can reproduce random alloys on a
much smaller unit cell. This makes them an excellent choice for computational expen-
sive techniques like LR-TDDFT"#. The obtained dielectric functions are now freely
available via a web application located at https://sharc.materialsmodeling.org/

alloy dielectric_functions/.
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Figure 3.9: The dielectric functions of silver-gold and gold-palladium alloys as an
example for isovalent and non-isovalent alloys obtained by TF-LRDFT
by Rahm et al. (Paper I). The imaginary part is plotted versus the
energy and versus the alloy composition for discrete energies, resulting
in an energy cross section. The results show that the energy cross
section in the low energy region for the non-isovalent alloys has a non-

linear behavior.

From a physics perspective, the different alloys considered in Paper I can be divided
into isovalent and non-isovalent systems, for example silver-gold (isovalent) and gold-
palladium (non-isovalent), as depicted in . As the key point, one can see
that for the isovalent case the dielectric function changes linearly for all energies upon
changing alloy composition, whereas for the non-isovalent case, especially in the low
energy region up to around 4eV, the dielectric function experiences a strong non-

linear change. This clearly highlights that especially elements with different electronic
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3.5 Optical Properties of Alloys

structure show interesting non-linear behavior in their optical response upon alloying.

An effect not captured by more simple analytical models.
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4 Catalysis

4.1 Heterogeneous Catalysis

Catalysis is one of the cornerstones of modern society. In this context, many people
might only think of the three-way-catalyst in cars, but the technical relevance of
catalysis goes far beyond this application. For example, nowadays 85% - 90% of the
chemical industry uses a catalytic reaction somewhere in their processes®. Examples
include refining of crude oils, and production of bulk and fine chemicals. Among
other things, these are used in agriculture, polymers, pigments, pharmaceuticals and

consumer products.

Mechanistically, catalysis is the change of rates of a chemical reaction with the help
of a catalyst, which itself is not consumed by the process. The two main technical
reasons why catalysts are very important is that they can increase the reaction rate
towards the desired product (activity) and/or decrease the reaction rate towards an
unwanted product (selectivity) of a reaction. One way of schematically depicting a
catalytic reaction is with a so-called catalytic cycle (Figure 4.1). It shows the reaction
pathway including a catalyst with multiple elementary steps. It also shows that the

catalyst itself is not consumed during the reaction.

In catalysis, one normally differentiates between homogeneous and heterogeneous
catalysis. In homogeneous catalysis the catalyst is in the same phase as the reactants.
A famous example is the creation of the ozone hole in the 80s®. Here chlorine acted

as catalyst and increased the rate of
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product C Y catalyst Nrcactarlt A

catalyst/C A + — C catalyst/A

k catalyst/A 4}

Figure 4.1: Schematic of a catalytic cycle forming the product C out of reactants
A and B with help of a catalyst. The reaction occurs via multiple
elementary steps and the catalyst itself will not be consumed during

the reaction.

The focus of this thesis lies on heterogeneous catalysis, where the catalyst is in a
different phase than the reactants and products, typically in the solid state, meaning
the reactions occur on a surface. Heterogeneous catalysis is considered the work-horse
of the chemical and petrochemical industry®. An example is the catalytic oxidation
of carbon monoxide over noble metals like palladium, platinum or rhodium. It is
used for example in car exhaust catalysts and will be discussed in more detail in
section 4.0l

To illustrate how a catalyst works in general, it is also useful to have a look at the po-
tential energy diagram of a reaction. In[Figure 4.2]is this shown for the arbitrary reac-
tion A+B — (. It illustrates that the catalyst offers an alternative reaction pathway,
normally with several steps that are energetically favorable compared to the uncatal-
ysed reaction. To this end, it is also important to note that a catalyst only changes

the kinetics of a reaction and not the thermodynamics®.

A guiding principle in catalysis is the Sabatier’s principle. It relates to the fact that
if the interaction between catalyst and reactants is too weak, they will not bind to
the catalyst and the catalytic reaction cannot happen. On the other hand, too strong
reactant-catalyst interaction does not provide the reactant as the entire surface will
be covered at all times, not leaving any free sites for the other reactant to bind and
react. This phenomenon is known as poisoning. The same problem applies to the
product. If it binds too strongly on the surface it will not desorb and not free active

sites for the reaction to continue. This balance, and on which side a catalyst is located
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>
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reaction coordinate

Figure 4.2: The potential energy diagram of a chemical reaction A+ B — C'in the
presence and absence of a heterogeneous catalyst. By adding a cata-
lyst, the potential energy landscape changes and allows for a different

reaction pathway. Adapted from Chorkendorff and Niemantsverdriet?,

for a specific reaction, can be depicted as a volcano plot as shown in where

the ideal catalyst would be located at the top.

When it comes to catalyst materials, it is not just single elements that are used
but also alloys are becoming increasingly important, as they become more and more
available in nanoparticle form. In catalysis, alloying can be regarded as an additional
handle for tailoring activity or selectivity of the catalyst. To give one example, gold-
palladium alloys are used for the vinyl acetate synthesis, since they show superior ac-

tivity compared to the classic monometallic catalyst palladium®®.

Mechanistically, there are two kinds of effects that alloying can impose on catalyst
function®”. The first is that due to the alloying the electronic structure of the catalyst
changes. This means that chemical properties of the material and bond strengths
of the adsorbates will change, and therefore the overall reactivity®’. This effect is

usually referred to as Ligand effect.

The second effect is the ensemble or geometric effect. Due to the alloying the amount
of identical multiple surface absorption sites decreases and single-atom site abundance
increases, which in turn modifies chemisorption and therefore the reaction properties
of the adsorbates®®. For example, catalytic reactions which require large assemblies

of active sites will be effectively suppressed®”.
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Figure 4.3: A classic Volcano plot showing the activity of the oxygen reduction
reaction depending on the oxygen binding energy for different metal
catalyst materials. To increase the oxygen reduction rate is an impor-

tant step to improve low temperature fuel cells. Adapted from Ngrskov

et al®?

It should be highlighted that the composition on the surface of an alloy catalyst is
seldomly equal to the bulk composition and may dynamically change during reaction
(see section 2.2)). Due to such effects, surface alloys can emerge that would not exist

in bulk®®. Because catalysis normally happens at elevated pressures other parameters
than surface energy can be the controlling factor. If, for example, one of the com-

ponents interacts strongly with one of the reactants, it could influence the surface

composition of the alloy severely*.

4.2 Plasmon Mediated Catalysis

Plasmon mediated catalysis is a sub area of photocatalysis, where metal plasmonic
nanostructures are employed to capture light and concentrate the corresponding en-
ergy at the nanoscale, where it is anticipated to impact catalytic reactions®*?. For
simplicity, I use the term “photocatalysis” below as a general term for plasmon me-

diated catalysis.

28



4.2 Plasmon Mediated Catalysis
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Figure 4.4: a) Initially, the LSPR is excited in a nanostructure by irradiating light
at the resonance frequency. b) The plasmon can decay by either radia-
tively by re-emitting a photon or nonradiatively by Landau damping,
which creates hot charge carriers. ¢) The hot carriers will relax and
redistribute their energy via electron-electron scattering. d) The lower
energy charge carriers can now interact with phonons and lead to in-
creased temperature, which will also dissipate to the surroundings, such

as the support. Adapted from Brongersma et al &0

The field is divided into two sub-areas, namely direct and indirect photocatalysis®™.
The indirect route refers to systems that combine plasmonic nanostructures with
semiconductors. In this scheme, the LSPR captures energy from the light, which is
then transferred to the semiconductor where the catalytic process occurs. A famous
example is the plasmon-enhanced water splitting reaction on TiO, using plasmonic
gold nanoparticles to produce hydrogen®. In contrast, in the direct scheme, the plas-
monically active material acts as energy capturer and catalyst at the same time, as
demonstrated in the seminal work by Christopher et al. for the ethylene epoxidation

reaction over Ag na,nocrysta,ls@.

To provide some understanding for the energy flow in a plasmonic nanostructure after
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excitation of the LSPR, it is useful to discuss the involved processes. The first step
is to excite the LSPR by irradiating light at the resonance frequency of the nanos-
tructure at hand ) Once excited, the plasmon has two ways to decay,
either radiatively by re-emitting a photon or nonradiatively by Landau damping®”.
Landau damping creates hot charge carriers ) The term “hot” indicates
that the excitation energies are higher than the thermally exited equivalent at room
temperature. The resulting energy distribution depends on particle size®® plasmon
energy and material (electronic structure)®®. The time scale for Landau damping is
below 100 fs®%. After the hot carriers are created they will relax and redistribute their
energy via electron-electron scattering ) This happens at a time scale of
around 0.1ps to 1ps®Y. These lower energy electrons, sometimes called warm elec-
trons, can now interact with phonons and lead to increased temperature, which will

also dissipate to the surroundings, such as the support (Figure 4.4d). This happens
in a range of 100 ps to 10 ns.

In principle, all these effects can contribute to catalysis by either increasing the rate
or changing the selectivity of a reaction. The hot charge carriers can, for example,
excite electronic or vibrational transitions in adsorbed molecules or can occupy a spe-
cific molecular orbital and induce desorption, dissociation or translational motion®”.
Mukherjee et al® showed for example the dissociation of Hy at room temperature
over gold particles using a laser in the visible range. Here, the hot electron transfer
from the gold nanoparticle into an antibonding orbital of the Hy is believed to trigger

the dissociation.

Alternatively, it has also been reported that the plasmonic field enhancement or the
localized heating effect can help to drive the reaction®. To utilize field-enhancement,
typically a plasmonic particle acts as an antenna and a catalytic particle is placed
inside the near-field leading to increased activity of the catalyst®. A photochemical
rate enhancement due to near-field enhancement is expected to be proportional to
the rate of incident photons®®. Temperature induced reaction rate enhancement
works because chemical reactions, to be exact the rate constant, k, typically obey

the Arrhenius equation

k= Aexp <;§a> : (4.2)
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4.3 CO Oxidation

T is the temperature, F, is the activation energy, R is the gas constant, and A is the

pre-exponential factor.

Despite almost a decade since the first papers in the field were published, there is
(still — or maybe even more of) a controversy about the dominant reaction enhancing
mechanism in plasmon mediated catalysis®”. This important discussion is essentially
centered on the problem that it is very difficult to unambiguously distinguish between
direct influence of the energetic charge carriers® and pure thermal effects®. In some
cases, the findings can be explained either way, as was shown by Sivan et al® and

even more recently by Baffou et al.®.

One of the core problems is that the exact temperature of the catalyst is very hard to
determine. In fact, it is either not known or largely underestimated, as discussed by
Sivan et al®. This arises from the difficulty to precisely measure the temperature of
the catalyst particles or even active sites since most techniques measure the average
temperature of the sample. Another argument why direct hot-charge-carrier effects
are probably less common than claimed is the very short life time of these carriers
as is discussed above. It makes the probability of interaction with the surroundings

very low®,

4.3 CO Oxidation

Carbon monoxide is a toxic gas at concentrations above 200 ppm®. At the same
time, it is not possible for humans to detect it because it is colorless, tasteless and
odorless. The toxicity for humans and animals is based on COs ability to bind to
haemoglobin. This reduces the ability of the blood to carry oxygen®. Depending
on the concentrations and time of exposure it leads to headache, vomiting, dizziness,
chest pain, passing out and death™. Due to the high toxicity of CO, the abatement
and reduction of it is used in car-catalysts but also in respirators, for, for example,

firefighters™.

The main source of CO is the partial combustion of fuels. One to two percent of
car’s exhaust is carbon monoxide. Because we have a lot of cars in our society, they

are the biggest producers of CO. In cities transport is responsible for up to 90 %“of
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the CO emissions. To reduce the emission, today, three-way catalytic converters are

found in essentially all gasoline vehicles.

Another area where CO abatement is important is in proton exchange membrane
fuel cells (PEMFC)™. Specifically, it is critical to reduce the CO content of the
hydrogen fuel to less than 50 ppm™ since CO poisoning of the Pt catalyst otherwise

dramatically reduces fuel cell efficiency.

To this end, there are 3 ways to remove CO from a gas stream: (i) absorption,

2 Since catalytic oxidation of carbon

(ii) methanation and (iii)catalytic oxidation
monoxide to carbon dioxide is the most effective one, we will have a closer look at
that. For the catalytic CO oxidation different catalysts are used. Noble metals like
palladium, platinum or rhodium, which have high activity and have been used for a

™ Due to the limited availability and the cost of noble metals, however,

long time
oxides of less scarce metals are of high interest, such as for instance Fe, Cu, Ni,
Co™ 5510 Also explored are gold nanoparticles for low temperature CO oxidation™.
Due to the low temperature capability they are often used in breathing apparatus
and air purification™. The focus on this thesis is, however, CO oxidation on noble

metals like palladium.

The catalytic CO oxidation on noble metals, such as platinum and palladium, is a
classical example for Langmuir-Hinshelwood kinetics®. Here, all reactants first adsorb
on the surface and then undergo a reaction and desorb from the surface (Figure 4.5)).
The corresponding elementary steps can be written as follows.

k+

CO + * = COx (4.3)

ky

k3
Oy + 2% 7= 20x (4.4)

2

k3
CO * +0x = COq * +x (4.5)
ky

2

4

The * symbolizes free sites and k*/~ represent the forward and back rate constants,
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Figure 4.5: The reaction cycle and the potential energy diagram of CO oxidation.
At first CO and O5 are adsorbed on the catalyst surface and O, will be
dissociated in the process. A single oxygen atom and a CO molecule
will form a CO5 molecule on the surface. The last step is for the COy
molecule to desorb. Adapted from Chorkendorff and Niemantsverdriet.,

respectively. Step is often considered to be the rate determining step (RDS). This
is also depicted in because the energy barrier for this step is the highest
among the forward reactions. Considering the RDS, the rate for the reaction follows

as
r= k;ecoeo . (47)

Here 6, describes the coverage of CO and Oy on the surface. The reaction rate
can be plotted depending on the relative partial pressure, a, of CO and Oy for
constant temperature . It can be seen that at high O, pressure the surface
is mostly covered with oxygen and only few CO molecules can adsorb and react,
resulting in a low reaction rate. The surface is oxygen poisoned. Similarly, at high
CO concentrations, reaction rate is low due to CO poisoning®. In the range between,
the coverage of O and CO is more balanced and therefore reaction between them can
occur. In this range the rate reaches its maximum. The shape of the rate curve is

governed by the rate constants for CO and Os ad- and desorption and the formation
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Figure 4.6: The calculated rate and surface coverage of CO and O, on a surface
during CO oxidation for different CO and O, mixing rations aco. The
rate constants for CO and O, ad- and desorption and CO, formation
are chosen arbitrarily to be 10 and only serve the purpose to illustrate
the behavior of a reaction following Langmuir-Hinshelwood kinetics. It
can clearly be seen that the rate reaches a maximum and is reduced to
the sides, where high relative concentrations of CO or O,, respectively,

cover the surface and poison it.

of CO,. Thus, depending on total pressure, temperature, and catalyst material and

state, the shape of the rate curve will change.

As already mentioned, classical catalysts with high activity for CO oxidation are

L2078 More recently also small

gold nanoparticles were discovered to work for CO oxidation at low temperatures .

the noble metals platinum, palladium and rhodium

Therefore, the step to investigate gold-palladium alloys appears natural. However,
even though palladium-gold alloys are an excellent catalyst for, for example, the
hydrodesulfurization reaction™ or the direct synthesis of hydrogen peroxide from
Hy and O, they are not very efficient for the conventional catalytic CO oxidation

reaction®t.,

The to date unexplored route of alloying plasmonic active gold with palladium in
the context of plasmon-mediated catalysis is explored in Paper II. It is used to
shine light on the discussion of the reaction enhancing mechanism when noble metal

catalyst nanoparticles are irradiated with visible light during a catalytic reaction.
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By alloying palladium with gold, we tailor the catalytic activity without radiation,
while, at the same time, maintaining a constant optical cross-section. By comparing
the neat palladium and alloy systems we show that the catalytic activity is not alone
governed by the photon flux but also depends heavily on the temperature in the dark.
A fact that commonly plays a minor role in the debate on enhancing mechanism in

plasmon-mediated catalysis.
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5 Nanofabrication

5.1 Hole—Mask Colloidal Lithography

All my samples were nanofabricated with a technique called Hole-Mask Colloidal
Lithography (HCL)®. This technique offers the opportunity to make large area arrays
of nano-objects like disks and dimers, as well as layered structures in terms of their
composition. Furthermore, samples can be fabricated on a variety of surfaces, like
fused silica, silicon or sapphire. The technique falls into the area of self-assembled
nanofabrication, which has the advantage that it easily can produce nanostructures
in the sub-100-nanometer range. At the same time the technique is scalable to large

areas and comparably cost-effective®.

The process for HCL is shown in and works as follows. After choosing a
substrate (Figure 5.1h) it needs to be cleaned thoroughly. This is done by sonication
in acetone and IPA (isopropyl alcohol). After cleaning, a thin PMMA (polymethyl
methacrylate) sacrificial layer is spincoated onto the substrate (Figure 5.1b). After
the spincoating the sample is plasma treated to increase the hydrophilicity of the
PMMA. This makes it possible in the next step to dispense a polyelectrolyte solution
of PDDA (Polydiallyldimethylammonium chloride) on the surface (Figure 5.1). This
creates a positively charged layer on top of the PMMA. Subsequently, a solution with
negatively charged polystyrene (PS) beads is dispersed on the sample (Figure 5.1d).
The PS beads, due to electrostatic interactions, are thereby assembling themselves
on the surface in a quasi-random array without long-range order. The average center-
to-center distance between particles can be tuned by screening the charge of the PS
beads by adding small amounts of salt to the solution. After removing the excess

beads by extensive rinsing in water and subsequent blow-drying a layer of chromium
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Figure 5.1: The process of creating a nanodisk array with hole-mask colloidal
lithography. Using a) cleaned substrate, b) spin-coat PMMA, ¢) dis-
perse PDDA, d) disperse PS, e) evaporate mask, f) tape-strip, g) holes
in mask, h) plasma etching PMMA i) evaporate metal, j) lift-off.

is evaporated onto the self-assembled PS beads (Figure 5.1¢). After evaporation, the

PS beads are removed by tape stripping (Figure 5.1f), which leaves holes with the

diameter dictated by the PS beads in the Cr mask (Figure 5.1g). Then, by applying
an oxygen plasma etch, the PMMA layer exposed through the holes can be etched

away, leaving deep holes in the PMMA layer that extend all the way to the substrate
(Figure 5.1h). After this step, the mask is ready to be used for evaporation of the
metal (or other material) of choice. Depending on how the metal is deposited, one
can create different nanostructures by using tilting and rotation of the substrate
during evaporation®. To create nanodisks, as I have used in my work, the metal has
to be deposited at normal incidence (Figure 5.1j). Different ways to deposit material
through the mask will be discussed in the next section. The last step is the lift-off
process ) Here acetone is used to dissolve the underlying PMMA layer
to remove the mask. As the last step, the sample is rinsed with IPA and blow dried
with No.
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Figure 5.2: The process of creating an alloy nanodisk. The method uses a) a HCL
created mask. b) Through the mask metal A is evaporated and c) sub-
sequently the second metal B. d) During the lift-off the mask is removed
and leaves behind the bare layered metal particles on the substrate. e)
To create the alloy, the layered structures will be annealed at 500 °C
to provide the needed atomic mobility to induce alloy formation in the
solid state. During this process the nanoparticles will slightly change
their dimensions and shape, with the specific depending on the metal-

substrate interaction.

5.2 Material Deposition

The mask can be used to create single material or alloy structures of different
type. For alloys the two alloy constituents are consecutively evaporated through

the mask.

Technically, there is a large number of ways to grow a thin film on a surface. In
general, thin film deposition methods can be divided into two categories, physical and
chemical deposition. Chemical processes include for example wet-chemical methods
or chemical vapor deposition, like atomic layer deposition. Physical processes on the
other hand do not rely on a chemical reaction to form the thin solid film. Instead,
they use means such as thermal evaporation or sputtering. Evaporation methods rely

on the concept of evaporating a solid material by heating it to very high temperature
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Figure 5.3: Schematic illustration of the steps recovery, recrystallization and grain

growth during annealing. Adopted from Raabe??.

and the vapor then condensing on the substrate where it nucleates and grows into
a thin film. For these techniques, an ultra-high vacuum (UHV) is needed to create
the necessary mean free path for the vapor to reach the substrate. The evaporation
itself can be induced by various means. The target material can for example be
heated with a high-voltage electron beam that is rastered over a source material
(electron beam evaporation) or lasers can be used to heat the material (laser beam

evaporation).

The process of nanofabricating alloy nanodisks uses a mask created by HCL
lure 5.2h). Through the mask the first metal is evaporated (Figure 5.2p) and subse-
quently the second metal ), where the respective thickness of these two
layers dictates the composition of the alloy. For all alloy nanofabrication in Paper I
and Paper II I used electron-beam evaporation of the constituent metals. The last
step is the lift-off process ), which then yields layered nanodisks on the
substrate. To create, from this layered structure, a random alloy, one needs to anneal
the system, which was done at 500 °C for 24h in 4% H,.

5.3 Annealing

The last step in the nanofabrication of alloy nanoparticles is annealing. In fact,
this can be an important step not only when nanofabricating alloys but also when
targeting single element nanoparticles to, for example, control their morphology®3.

In case of the alloy nanostructures at hand, it is necessary to provide the needed
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Figure 5.4: A high-angle annular dark field scanning transmission electron mi-
croscopy (HAADF-STEM) image of a a) unannealed and a b) annealed
gold-palladium particle. The corresponding energy dispersive X-ray
spectroscopy (EDX) images show the lateral distribution of gold (yel-
low) and palladium (green). The HAADS-STEM images reveal a strong
reduction of grains during the annealing process. The line scan further
confirms the homogeneous distribution of both elements across the par-
ticle after annealing. Data of annealed particles taken from Rahm et

al 58

atomic mobility to induce alloy formation from the layered constituents in the solid

state (Figure 5.2).

From a classical metallurgy perspective, the annealing process can be divided into 3

major steps : (i) recovery, (ii) recrystallisation and (iii) grain growth (Figure 5.3/,
During the first recovery step, dislocations and other defects show minor movement

and rearrangement. This slightly decreases their density and more importantly it

123, Recrystallisation happens if the tem-

123

reduces the associated stress in the materia
perature reaches around 1/3 to 1/2 of the melting point of the material*®. During
this phase, new and strain free grain boundaries are formed, and high angle grain
boundaries are reduced. Also, the defect density reduces drastically. The last stage is
the grain growth where the new grains with low angle grain boundaries formed during
the recrystallization step continue to grow, thereby reducing the overall grain bound-

3

ary length and thus the free energy of the system?®. Projected onto my nanodisk

structures, given enough time and high enough temperature, they will transform into

a single crystal (Figure 5.4)).
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6 Setup/Characterization

In this chapter I will describe the setup I used for the catalysis measurements included
in Paper II. Furthermore, I will explain the different materials characterization

techniques that were used to characterize the samples.

6.1 Catalytic Flow Reactor Measurement Setup

The setup for the catalysis experiments is a plug-flow type reactor with a custom-
made pocket reactor inserted in the large quartz tube (Figure 6.1]). The gas inlet is
connected to ten mass flow controllers with a range of 10 mL/min to 1500 mL/min
that can individually be combined to give the desired gas mixtures and flow rates.

The flow reactor can be heated with a heating coil to around 600 °C inside.

The sample itself is placed inside the pocket reactor (inset [Figure 6.1)). It consists of
a rectangular glass pocket with optically flat “windows” (10 mm x 23 mm) connected
to a round glass capillary with an inner diameter of 1mm. The pocket reactor
ensures that dilution of reaction products is minimized and enables in this way the
use a small amounts of catalyst materials in combination with mass spectrometry in
general, and the use of nanofabricated samples as described in in particular.
The pocket reactor itself is positioned in the down-stream end of the flow reactor
tube such that the incoming gas mixture can be preheated. The quadrupole mass

spectrometer (QMS) is a differentially pumped system with a measurement range of
1u to 200 u.

Two K-typ thermocouples are inserted in the reactor. One is positioned 10 cm down-

stream of the gas inlet and the other one is located at the entry of the pocket reactor,
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Figure 6.1: The plug flow reactor is an insulated quartz tube that can be heated
via a resistive heating coil. It has an optical port that enables illumina-
tion for photocatalysis and optical transmittance spectroscopy measure-
ments on each side. The gas inlet is controlled by an array of mass-flow
controllers, which can be used to control the desired gas mixture and
flow rate. A glass pocket reactor is mounted inside the quartz tube,
which hosts the sample. The outlet of the pocket is directly connected
to a QMS system. To mount the sample this way ensures that dilution
of reaction products is minimized. To control and monitor the temper-
ature of the system two insulated thermocouples are placed inside the
reactor, one to monitor the reactor and the other to monitor the sample
temperature.

where it touches the sample inside the pocket from the side to accurately measure

sample temperature.

The flow reactor itself has an optical port perpendicular to the flow direction, that
can be used for optical transmission measurements via fiber coupled spectrometer
with 200nm to 1100 nm spectral range, as well as for illumination in photocatalysis
experiments by a high power light source. To this end, the first option is a 250 W

quartz tungsten halogen lamp with a high irradiance in the visible and near-infrared
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Figure 6.2: The principle of X-ray photoelectron spectroscopy: an incoming X-ray
photon kicks out an electron from an inner shell, which is measured by
an electron detector. This electron carries information about the ele-
mental composition of the probed surface, as well as about the chemical

state of the surface atoms.

spectral range (Osram 64657 HLX lamp in a Newport 67011 housing) and the second
option is a 1000 W mercury xenon arc light source that has high irradiance from the
middle-ultraviolet to the near-infrared (Newport 6295NS in a 66921 housing). This
mercury xenon arc lamp is also equipped with a liquid IR filter that features high
transmission in the 250 nm to 950 nm range®®. Both lamps are further equipped with
a condenser lens to ensure a homogeneous illumination of the sample. In Paper 11

I have used the mercury xenon arc light.

6.2 X-ray Photoelectron Spectroscopy

X-ray Photoelectron Spectroscopy (XPS) is a surface sensitive technique that provides
information about the chemical state of the surface and enables semi-quantitative
analysis of the composition of the sample®”. Because it gives information about
the chemical state of a material it is also called electron spectroscopy for chemical
analysis (ESCA)®S. The basic principle of XPS is that the energetic X-rays kick out
core electrons of an atom , which then can be measured in an electron
energy analyzer to draw conclusions about the sample by using a reference library of
XPS spectra. The surface sensitivity of XPS arises from the fact that only electrons
ejected in the first nanometers from the surface can be measured because that is the

mean free path of low energy electrons in matter®”.
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Specifically, what is measured in an XPS experiment is the kinetic energy of the
electron emitted by the material. To then derive the binding energy of the elec-
tron one has to consider which way the electron takes energetically. The electron
gets kicked out by a photon with energy, hrv. It has to overcome the binding
energy, Ep, and the work function of the sample, ®gample. This can be written

as
hy = Ebinding + (I)S + Ekin,S . (61)

In[Figure 6.3]it can be seen that the equilibrium of the Fermi levels leads to a situation

where
Eyins + Ps = Eiin xps + Pxps . (6.2)
Therefore, can be written as
hv = Eyinding + Pxps + Frin,xpPs - (6.3)
Which in turn leads to the well-known equation for the binding energy

Eyinding = v — ®xps — Erin,xps - (6.4)

The instrument itself is comprised of an X-ray source, a monochromator, a sample
holder and the electron energy analyzer. The whole system is under UHV to ensure
a long mean free path for the electrons on the way from the sample surface to the

analyzer .

The X-rays are in most cases generated by accelerating electrons onto a metal tar-
get. This leads among others to bremsstrahlung and characteristic emission lines
like the K,-line?!. These lines are generated by the incoming electron knocking out
an electron from an inner shell that gets filled by an electron from an outer shell,
thereby emitting a photon. The K,-line owes its name to the fact that the cor-
responding knocked-out core electron is located in a K-shell. Most commonly the

used targets are magnesium and aluminium due to their narrow full width at half
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Figure 6.3: A core electron gets kicked out by an irradiated photon with the energy,
hv. It has to overcome the binding energy, E'z, and the work function of

the sample, ®Pgample. Upon ejection, it carries the kinetic energy, Eyp g.

maximum (fwhm)(0.75¢eV and 0.85¢V, respectively ™ relatively high energy, and
intensity of the K,-line. In cases where higher K ,-energies are needed also silicon,
zirconium, silver, titanium or chromium are used but with the drawback of a wider
peak. A narrow line width of the X-ray source is important because this is the most
important contribution to the energy resolution of the whole system. Next in line is
the energy resolution of the energy analyzer and the intrinsic width of photoemis-

sion.

The next step after creating the X-rays is the monochromatization, which filters out
unnecessary parts of the radiation, like bremsstrahlung, and ensures that only the
K,-line remains. This not only maximizes the resolution of the instrument, due to
the narrow fwhm of the remaining K,-line, but it also removes unnecessary radia-
tion that can degrade the sample. Furthermore, the monochromator also increases
the photon flux because, in most cases, it also focuses the beam onto the sample.
The monochromator is a concave single crystal that works according to Bragg’s law

as:
nA = 2dsing. (6.5)

Where n is Bragg’s reflection order, A the wavelength of the radiation, d the lattice
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Figure 6.4: The radiation emitted by the X-ray source includes bremsstrahlung,
lower intensity characteristic lines (also known as satellites), and the
wanted characteristic lines. To filter out the bremsstrahlung and the
satellites (monochromatize) a single crystal mirror is used. To focus
the X-rays onto the sample, the source, the crystal mirror, and the
sample have to be positioned on the so-called Rowland circle. The

ejected photoelectrons are measured by an energy analyzer. Adapted

from Greczynski and Hultman®',

distance and ¢ the reflection angle. To reflect the Al — K, energy, quartz crystal
(1010) planes are usually used. However, I want to note that this effect alone only
filters the radiation but does not focus it. To focus the X-rays the crystal must be
slightly concave and the source and the sample have to be in the correct angle and

distance. Specifically, they have to lie on the same imaginary circle, the so called Row-

land circle. The whole process is shown in [Figure 6.4]

After the X-rays have kicked out an electron from the sample this electron needs to
be analyzed in terms of its kinetic energy, in order to derive the binding energy of
the electron according to [Equation 6.4 There are different kinds of electron energy
analyzers, but the most commonly used ones are of the so-called concentric hemi-
spherical type. Such analyzers consist of two concentric hemispherical electrodes.
The electrons are then accelerated to a certain energy, the so-called pass energy, and

enter the analyzer through a slit to then traverse it on a semicircle trajectory, where
they are detected at the end (see right side of [Figure 6.4)). Depending on the specific
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Figure 6.5: A typical XPS-scan of one of my sample surfaces decorated with an
array of nanofabricated palladium-gold alloy nanodisks. One can clearly
see the respective peaks for gold and palladium. The silicon and oxygen
peaks stem from the support material which is oxidized silicon and the

carbon peak is due to a thin layer of adventitious carbon.

energy the electrons have, they will have different trajectories and are only detected
with the correct energy. This energy filter is used to scan through the whole energy

range of interest.

For all this to work, vacuum is needed in the system to ensure that the photo-
electrons can travel from the sample to the detector without significant scattering.
Another reason why vacuum is important is a clean sample surface since, even if
only monolayers of hydrocarbons or water are adsorbed, the measured XPS signal
would predominantly stem from this contamination, rather than from the sample

itself.

A typical XPS notation for spectral lines gives the element, the principal quantum
number, n, the angular quantum number, [, as letter (s,p,d,f), and finally the total an-

gular momentum quantum number, j = [+s, where s is the spin.

The raw data from an XPS experiment are counts of photoelectrons (intensity) as a
function of energy. To translate this into elemental information one can start from
theory and the equation that describes the intensity from a core sub-shell, 7, for an

element, A, with its density, N4, in small angle AQ (typically set by the electron
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energy analyzers acceptance angle)”

z

[Ai:AQ

= /OOO Iy, 2)04,iWai(Bai, U)Na(z) exp (— ) dz. (6.6)

Am,E(A,i) €OS 0

Here z is the in-depth distance from the surface, a the incident angle of the X-ray
beam with intensity I, Wa(5a4,, ¥) the angular asymmetry factor at angle ¥ be-
tween X-ray and analyzer, o4 ; the total ionization cross section, Ay, g4, the effective

attenuation length and 6 the emission angle of the photoelectrons.

This approach requires in-depth knowledge about the sample and system. Therefore,
often a simpler approach is used, invoking the so-called sensitivity factors, S. For
an atom, A, the sensitivity factor, Sy, corrects the measured intensity, /4, to enable

extraction of the molar fraction, X 4, via

Ia
))f'; _ Z; | (6.7)
B
If one considers a sample composed of N different materials this leads to
1
X; = S il é (6.8)

The way the sensitivity factors are derived for different materials can vary. Most
commonly, they are obtained by measuring pure reference elements or by deriving
the so-called Scofield cross sections, which take into account the energy dependent

transmission and attenuation lengths”<.

A typical XPS spectrum obtained by sweeping over the whole energy range is called
a survey spectrum and an example of a sample with gold-palladium nanodisks is
shown in [Figure 6.5l One can clearly see the respective peaks for gold and palla-
dium. The silicon and oxygen peaks stem from the support material of oxidized
silicon and the carbon peak is due to a thin layer of adventitious carbon, which is
often comprised of polymeric hydrocarbons?®. This is usually present on any sample

that has been exposed to air. Because of its omnipresence it is quite often used as
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Figure 6.6: The Cls spectrum of adventitious carbon. One can clearly see three
different peaks, which provide information about the binding state of
the carbon via the chemical shift. Here the strongest peak corresponds
to the C—C bond. The secondary peaks correspond to the C-O—-C
and the O-C=0 bonds.

an internal reference for the energy axis of the spectrum. However, this common
practice is unfortunately not as reliable as widely assumed, as very recently shown
by Greczynski and Hultman . Therefore, referencing of the energy scale needs more

careful handling.

The survey-type XPS spectrum typically has a lower energy resolution (lower pass
energy and energy steps) and is normally used to get a quick overview of what ele-
ments are present in the sample, and a rough estimate of the composition. Especially
if all materials are present in a bigger quantity this gives already good results. Sub-
sequently, if more detailed information is required, a closer look with higher energy
resolution will provide a more detailed view of sample composition and their chemical
state, via so-called chemical shifts. In[Figure 6.6|this is shown for the Cls peak, where
the strongest peak corresponds to the C—C bond. The secondary peaks correspond
to the C—O—-C and the O-C=0 bonds.

Similarly, looking at a palladium 3d peak, one can see that it is split into two parts

(Figure 6.7), due to the spin-orbit-splitting for orbits with an angular momentum
[ # 0. Additionally, one can in this example see the contribution of PdO and

PdO,. Finally, it is important to note that it is key for the deconvolution of the
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Figure 6.7: The Pd 3d peak is due to spin-orbit splitting divided into 3d3/, and
3ds /2. Additionally one can see a contribution from PdO and PdO, on
this sample. Further it should be noticed that for this kind of analysis
the background from inelastic scattered electron needs to be removed,

in this case this was done using the Shirley background.

raw spectrum into constituent peaks to remove the underlying background from the
inelastically scattered electrons. The three most common background types are a
simple linear approximation, the Shirley background (used in and the
Tougaard-background. The Shirley background assumes that the background in-
tensity is proportional to the binding energy and the Tougaard background uses the
quantitative description of inelastic scattered electrons and is therefore the only back-
ground which has a real physical meaning, 7.e. is not purely empirical. Tougaard and
Jansson? found that using the Tougaard background offers the highest consistency

and validity of the above mentioned background types.

XPS, in Paper I and Paper 11, was utilized to analyze oxidation states single metal
nanoparticles and alloy constituents, and to confirm alloy formation after anneal-

ing.
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Figure 6.8: SEM images of (an array of) nanofabricated gold-palladium alloy nan-
odisks as a) an overview of, b) a zoom-in on a single disk, and c¢) a
region with aggregated particles. d) A single copper disk with signs of

significant oxidation, as indicated by the rough surface.

6.3 Scanning Electron Microscopy

A scanning electron microscope (SEM) is a setup that can be used to examine the
geometry and topography of a sample. The typical spatial resolution is around 1 nm
for a conducting specimen but can nowadays easily reach the sub-nanometer limit®>.
SEM is a very popular technique since it is fairly easy to obtain images of good quality
and with nanometer resolution. The main purpose of SEM in Paper I was to deter-
mine the exact geometry and surface coverage of the nanofabricated nanodisks and
their arrays, respectively, after annealing a/b). Furthermore, it was also
very valuable for the assessment of the condition of the sample in terms of aggregate
formation (Figure 6.8c) and oxidation (Figure 6.8d).

A schematic of the electron optics of a SEM is shown in [Figure 6.9h. They are
comprised of an electron source that provides electrons, up to 30keV, required for
the imaging. Quite often it is a field-emission gun due to the small spot size and high

current density it can produce. A system of lenses (condenser and objective lenses)
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Figure 6.9: (a) Schematic of the electron optics in a SEM. It is comprised of an
electron gun, condenser and objective to control density and focus of
the electron beam, a scanning coil to be able to scan the beam over the
sample, and two sensors to detect the electrons. (b) The three possible
scenarios of interaction of the primary electron (PE) beam with the
sample surface. Either secondary electrons (SE) are emitted, the PE
electrons are back scattered (BSE), or X-rays are produced. The latter
can be analyzed in so-called energy-dispersive X-ray analysis (EDX),

providing information about the elemental composition of the sample.

are subsequently used to control the beam density and the focus. A third type of
lenses are the scan coils. Their task is to raster the beam over the sample to obtain

an image of a specific sample area.

The irradiated beam of primary electrons (PE) creates a number of signals upon inter-

action with the imaged surface: (i) back scattered electrons (BE); (ii) secondary elec-

trons (SE); (iii) Auger electrons; and (iv) X-rays (Figure 6.9b)%.

BE create an image mainly due to any material contrast in the sample since the
backscattering coefficient depends on the element. The heavier the atom is the more

[

it backscatters?’. Therefore, lighter elements appear darker in the BE-image and

heavier elements brighter.

SE are electrons created by ionization of the atoms via the PE beam (Figure 6.9b).

They have an energy between a few electron volts to around 50 eV. The SE do not
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yield much information about the chemical composition of the sample but instead
reveal its topography. Due to their relatively low energy, they origin from within
only a few nanometers from the sample surface”’. For Paper I and Paper II only

secondary electron images were collected.

The created X-rays and Auger electrons can be used for analyzing the chemical
elements present in the sample. In case of X-rays, this technique is called Energy-
Dispersive X-ray Spectroscopy (EDS or EDX). It provides qualitative and quantita-
tive information about sample composition and, by rastering the PE-beam, elemental

maps can be created.

6.4 Transmission Electron Microscopy

Transmission Electron Microscopy (TEM) is similar to SEM but the electrons passing
through the sample and are analyzed behind it. This requires higher electron beam
energies, typically 50 keV to 200keV, and thin sample thickness of 10 nm to 100 nm®™.
Because typical nanostructure thicknesses in Paper I and Paper II are already
25nm special substrates are needed. Therefore, I used so-called TEM-windows as

first introduced by Grant et al 7

In Paper I and Paper II I used TEM in combination with Energy Dispersive X-
ray Spectroscopy (EDS or EDXS) to map the elemental composition of my alloy

nanostructures with high spatial resolution.
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7 Summary and Outlook

7.1 Summary of the Appended Papers

In Paper I, we compiled a library of alloy dielectric functions for ten binary alloys
based on the late transition metals palladium, platinum, copper, gold, and silver by
utilizing time-dependent density-functional theory. We benchmarked the calculated
dielectric functions by fabricating series of alloy nanoparticle arrays, measuring their
plasmonic properties and comparing these properties with electrodynamic simula-
tions using the derived dielectric functions as the input. As the key result, we found
very good agreement between experimentally measured and simulated plasmonic re-
sponse, and thus corroborated the accuracy and relevance of the calculated library of
complex dielectric functions. Seen in a wider context, this provides the community
with a uniform and consistent set of dielectric functions of the late transition metal
alloys, which are receiving increasing attention in the nanophotonics community. In
this context, we predict that they, for example, will make it possible to efficiently
screen different alloy compositions and materials without the need of producing a

large amount of samples.

In Paper II, we investigated photothermal effects as the reaction enhancing mecha-
nism when noble metal catalyst nanoparticles are irradiated with visible light during
a catalytic reaction. Specifically, we investigated the significance of the catalytic
light-off curve as an important factor to understand reaction rate enhancing mecha-
nisms upon illumination. For this purpose, we alloyed palladium with gold to tailor
the catalytic activity in the dark, while, at the same time, maintaining a constant
optical cross-section. This way we showed that the catalytic activity is not governed

by the photon flux alone but also depends strongly on the catalyst temperature in
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the dark. Furthermore, we showed, that alloying can be utilized as a means to tai-
lor the light-off curve of a catalyst to both enhance or suppress the photothermal
enhancement channel. Surprisingly, in the field of plasmon mediated catalysis the
demonstrated effects are very rarely explicitly taken into account in the assessment
discussion of potential reaction rate enhancing mechanisms upon plasmonic catalyst
illumination. Therefore, we anticipate that our explicit demonstration of up to three
orders of magnitude different photothermal rate enhancement for constant photon
flux when moving a catalyst along its light-off curve will raise the necessary aware-
ness in the field of plasmon mediated catalysis and provide novel concepts for the
assessment of light-induced catalytic reaction enhancement on plasmonic nanoparti-

cles.

7.2 QOutlook

To improve and continue my research in the next years, I can think of several ways
on how to do that. The first idea that comes to my mind is to improve the ex-
perimental setup to be able to monitor and control more parameters when studying
photocatalytic reactions. For example, installing an Iris-Diaphragm on the catalytic
reactor would enable me to control the irradiance, while simultaneously maintain-
ing homogeneous illumination of the sample. This way I could see photocatalytic
effects that depend on irradiance and provide a further handle to tweak and un-
derstand photothermal effects. Additionally, I believe that using a miniaturized
reactor would enable better thermal management and more accurate mass spec-
trometry measurements during a chemical reaction due to reduced dilution of the

product.

As a second track, I would like to continue to explore thermal effects in nanoparticles
upon illumination, how they can be tweaked and optimized, and in particular how
they can be measured accurately. Our two-dimensional samples are perfect candi-
dates for such an endeavor since they reduce the complexity of the system and avoid
thermal gradient in the third dimension. Combining my current research with the

knowledge acquired by the Langhammer group to use hydride-forming alloy nanopar-
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ticles and their ability to sense temperature dependent hydrogen with their LSPR

response could open up pathways to do that.

A third interesting route I consider is to explore different alloy combinations with
respect to both mixed materials and number of constituents in the context of fun-
damental nanomaterials science and (photo)catalysis. For example, in Paper I, we
have touched the topic of ordered intermetallic phases and their optical response. It
would be interesting to utilize the theoretical knowledge acquired and apply it to our
two-dimensional alloy samples by using them, as in situ optical sensors for monitoring
annealing processes or chemical reactions that alter an ordered phase. An interest-
ing candidate in this respect is gold-copper alloys, since this system exhibits several
different ordered phases. Furthermore, it is an interesting system for the catalysis of

propene epoxidation” and benzyl alcohol oxidation™.
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