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A B S T R A C T   

Anisotropic 1-site and 2-site self-consistent models are developed to describe the elastic-viscoplastic behavior of 
polycrystalline materials deformed to finite strains on the basis of rate-dependent crystallographic slip and a 
generalized Hill-Hutchinson self-consistent approach. The choice of rate-dependent constitutive law at single 
crystal level implemented in the models is discussed through fitting experimental data and calibrating viscous 
parameters. It is found that drag-stress type Norton law works well for the 1-site elastic-viscoplastic self- 
consistent (EVPSC) model while threshold stress type Norton law is suitable for the 2-site EVPSC model to assure 
that the viscoplastic inter-granular interaction is realistic. Both models have been verified by thoroughly fitting 
experimental data in literatures. For the 1-site EVPSC model, selected experimental data covers both macroscopic 
and microscopic mechanical responses of steels during deformation with a large range of strain rate from the 
quasi-static (10− 4 s− 1) to the dynamic (∼ 104 s− 1). For the 2-site EVPSC model, in situ neutron diffraction data of 
nickel-based superalloys with various microstructures was fitted. Both models generally fit the experimental data 
well. A comparison between the EVPSC and elastic-plastic self-consistent (EPSC) models on the prediction of 
lattice strains has also been made for both the 1-site and 2-site cases, which verifies the predictability on lattice 
strains of the newly developed EVPSC models. A validation of the homogenization approach for the EVPSC 
modeling has been performed, which confirms that the proposed EVPSC models are applicable for cubic structure 
materials with finite deformations. Our formulation of EVPSC modeling developed in this work shines a spotlight 
on the way of developing a multi-functional self-consistent model to predict both macroscopic and microscopic 
deformation behaviors of various polycrystalline materials under different loading rates of 10− 4 s− 1 ∼ 104 s− 1.   

1. Introduction 

In situ diffraction is a superior technique to provide fundamental 
understanding of microscopic deformation of various polycrystalline 
metals by quantifying the evolution of lattice strains within the bulk of 
the materials [1–9]. Since the individual reflections are contributed 
from subsets of grains due to the large penetration depth and large gauge 
volume, self-consistent (SC) modeling is often used to quantitatively 
interpret the experimental data by correlating the macroscopic behavior 
of heterogeneous materials with the knowledge of their single crystals 
[1–5,9–11]. 

Most widely used SC models are the elastic-plastic self-consistent 
(EPSC) model [12] and the viscoplastic self-consistent (VPSC) model 

[13] for single phase materials applications. These models are developed 
based on the Hill-Hutchinson approach [14,15]. The model assumptions 
are that all grains have an ellipsoidal shape and that they are embedded 
in an infinite homogeneous equivalent medium (HEM), which proper
ties are the homogenized (weighted average) of all the grains. The 
Eshelby’s solution [16] then gives a uniform stress and strain in each 
grain. The effect of grain morphology on stress and strain accommoda
tion is considered in this inclusion formalism in comparison with the full 
constraint Taylor approach [17]. Since most of the structural materials 
are precipitation strengthened alloys in the rapid developing field of 
aerospace technology, recent efforts on the development of SC models 
have been motivated by the need of capturing the deformation behaviors 
of individual phases in such alloys. In these alloys, such as titanium (Ti) 
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alloys [18] and nickel-based (Ni-based) superalloys [19], the precipi
tation and parent phases have specific orientation relationship. Thus, 
2-site SC models are required to account for the strong correlation in 
morphology and orientation between neighbor grains due to the vicinity 
effect between the two phases. Lebensohn and Canova pioneered the 
development of 2-site SC modeling by considering two interacting grains 
of different phases deforming in the HEM [20]. They developed a 2-site 
large strain VPSC model and applied it to two Ti alloys exhibiting 
different microstructures. Texture formation for various microstructures 
was well predicted and discussed. An important limitation is that VPSC 
models do not involve elastic strains and hence cannot be used to 
compare against lattice strains measured by in situ neutron diffraction. A 
2-site EPSC model was formulated by Daymond et al. [10] where the 
ellipsoidal pair deforms as a unit in the HEM and that effective 
eigen-strain is uniform. In Ref. [1,4,10], this model was used to simulate 
the lattice strain evolution of Ni-based superalloys with different 
γ′microstructures at ambient and elevated temperatures. However, only 
strains up to 3% was studied and no lattice rotation or texture devel
opment was accounted for. Recently, Li et al. [11] have addressed the 
issue and implemented a 2-site EPSC model for finite strain applications. 
The model has been verified by well fitting various data sets of in situ 
lattice strains of Ni-based superalloys measured by neutron diffraction 
technique. 

Although EPSC and VPSC models for both single phase and two- 
phase materials at finite deformation applications have been well 
developed, the EPSC models cannot simulate rate-dependent problems 
since it neglects the strain rate sensitivity of materials, while the VPSC 
models cannot simulate lattice strains since it neglects the elastic 
deformation. From this perspective, the elastic-viscoplastic self-consis
tent (EVPSC) model [21–26] is more appropriate to study the experi
mentally observed relaxation and creep associated with finite hold time 
for data acquisition of the in situ neutron diffraction, where both elas
ticity and strain rate relativity are considered. In the above mentioned 
models, the material properties (strain, stress, and strain rate) are 
assumed to be uniform within the ellipsoidal inclusion and in the infinite 
HEM. Indeed, the distribution of strain and stress within an inclusion is 
non-uniform for non-linear viscous materials, i.e. the matrix displays 
viscoplastic heterogeneity. Nevertheless, the assumption of the unifor
mities is an acceptable approximation of the Eshelby inclusion problem 
for non-linear viscous cases, which has been verified with a good 
agreement by comparing to the results calculated by finite element 
method for various inclusion shapes and loading conditions [27,28]. 
Moreover, Wang et al.′s 1-site EVPSC model [24,25] has been largely 
utilized in fitting in situ neutron experimental data of face-centered cubic 
(f.c.c.) structure 316 L austenitic stainless steels [29,30] and hexagonal 
close-packed (h.c.p.) structure magnesium [25,31,32] and zirconium 
[33] alloys. Good agreements between simulated results and experi
mental data are obtained. It should be emphasized that the EVPSC model 
can reproduce monotonic, stress relaxation, and strain creep results of 
stress-strain curves and lattice strain evolutions with a single set of 
hardening parameters, while the EPSC model needs three different sets 
of hardening parameters to fit the three cases separately due to the fact 
that the EPSC model does not account for the physical mechanisms of 
viscous behavior [29]. It thus can be seen that the EVPSC model is su
perior to the EPSC model in fitting in situ neutron diffraction data where 
stress relaxation or strain creep often occurs during data acquisition. 
However, to the authors’ knowledge, there is no general anisotropic 
EVPSC modeling for both single phase and multi-phase materials 
applications. 

The objective of the present paper is to develop anisotropic 1-site and 
2-site EVPSC models applicable for finite deformation of single phase 
and two-phase polycrystalline materials on the basis of rate-dependent 
crystallographic slip and a generalized version of Hill-Hutchinson SC 
approach. At single crystal level, two types of Norton law are imple
mented to describe the rate-dependent constitutive relation, where 

stiffness tensor is used as that often utilized in EPSC models, in contrast 
with the most widely employed VPSC [13,20] and 1-site EVPSC models 
[24] where compliance tensor is used. Since the SC models with various 
deformation systems involve a large number of fitting parameters, it is 
difficult to determine them univocally. A convincing way to reduce the 
number of suitable parameter combinations is not only fitting the 
macroscopic stress-strain curves and deformed textures, but also 
simultaneously fitting the microscopic lattice strains measured by in situ 
neutron diffraction. The proposed EVPSC models are verified by doing 
so. In Section 2, the formulations and implementations of the 1-site and 
2-site EVPSC models are given. Further, in Section 3 the results are given 
for single phase steels and two-phase Ni-based superalloys with a 
detailed discussion, and discussion on the validation of the homogeni
zation approach for the EVPSC models developed in this work. Finally, 
in Section 4 we give some general conclusions. 

2. Modeling 

2.1. Constitutive relations for rate-sensitive single crystals 

The elastic constitutive equation for a crystal is specified by Hooke’s 
law: 

σ̇c =E :
(

ε̇c − ε̇p
c

)
=E :

(

ε̇c −
∑

α
γ̇α

c mα
c

)

(1)  

where σ̇c, ε̇c, ε̇p
c are the stress rate, the strain rate, and the plastic strain 

rate, respectively. E is the elastic stiffness, γ̇α
c is the shear rate on the α-th 

slip system, and the symmetric Schmid tensor is defined in terms of the 
slip direction (bα

c ) and slip-plane normal (nα
c ) as mα

c = sym(bα
c ⊗ nα

c ). In 
order to specify γ̇α

c to complete the constitutive function, Norton law is 
assumed for the definition of the viscoplastic multiplier: 

γ̇α
c

(
σc, τα

c

)
=

1
t∗

〈Φα
c

(
σc, τα

c

)
〉m

Cm = γ̇0
c
〈Φα

c

(
σc, τα

c

)
〉m

Cm (2)  

where t∗ is the natural relaxation time, and we define γ̇0
c = 1/t∗ as a shear 

rate parameter in this work. m is the rate-sensitive exponent, the inverse 
of which (1/m) is strain rate sensitivity. C is a constant set to be 1 MPa to 
deduct the unit. Here, 〈 •〉 is the McCauley bracket defined as: 

〈Φα
c

(
σc, τα

c

)〉=
{

Φα
c

(
σc, τα

c

)
If Φα

c

(
σc, τα

c

)
> 0(3a)

0 If Φα
c

(
σc, τα

c

)
≤ 0(3b)

where Φα
c (σc, τα

c ) is the yield function of slip system α mainly depending 
on the stress in the crystal and the resistance of the slip system. There are 
at least two ways to define it. The most commonly used one is to divide 
by τα

c , as shown in Eq. (4a) [13,15,21,22,24]. The other one is to subtract 
by τα

c and thereby interpret it as a threshold hardening stress (Eq. (4b)), 
as introduced in text books [34,35]. Both are employed in this work. 
With Eqs. (4a) and (4b), we define the Norton law as Type I and Type II, 
respectively. 

Φα
c

(
σc, τα

c

)
=

⎧
⎪⎨

⎪⎩

⃒
⃒
⃒
⃒
σc : mα

c

τα
c

⃒
⃒
⃒
⃒(4a)

σc : mα
c − τα

c (4b)

For the actual computations, the shear rate of the α-th slip system γ̇α
c 

must be estimated for each time increment. Here, we do linearization 
around nσc and nτα

c from previous time step tn: 

γ̇α
c

(
σc, τα

c

)
≈ γ̇α

c

( nσc,
nτα

c

)
+

∂γ̇α
c

∂σc

⃒
⃒
⃒
⃒

t=tn

:
(
σc −

nσc

)
+

∂γ̇α
c

∂τα
c

⃒
⃒
⃒
⃒

t=tn

(
τα

c −
nτα

c

)
(5)  

with 
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∂γ̇α
c

∂σc
=mγ̇0

c
mα

c

τα
c

〈Φα
c

(
σc, τα

c

)
〉m− 1

Cm

σc : mα
c⃒

⃒σc : mα
c

⃒
⃒

or mγ̇0
cmα

c
〈Φα

c

(
σc, τα

c

)
〉m− 1

Cm (6a)  

∂γ̇α
c

∂τα
c
= − mγ̇0

c
〈Φα

c

(
σc, τα

c

)
〉m− 1

Cm

⃒
⃒σc : mα

c

⃒
⃒

(
τα

c

)2 or − mγ̇0
c
〈Φα

c

(
σc, τα

c

)
〉m− 1

Cm (6b)  

τα
c −

nτα
c = τ̇α

c Δt =
dτα

c

dγacc
c

∑

β
hαβ γ̇β

c Δt (6c) 

In Eqs. (6a) and (6b), the first expression is for Type I (the drag-stress 
type) Norton law as shown in Eqs. (2) and (4a), and the second 
expression is for Type II (the threshold stress type) Norton law as shown 
in Eqs. (2) and (4b). In Eq. (6c), γacc

c is the accumulated shear strain in the 
crystal; hαβ are the latent hardening coupling coefficients, which are 
used to empirically account for the obstacles on system α from system β. 
τα

c is the critical resolved shear stress (CRSS) defined by an extended 
Voce hardening law [36]: 

τα
c = τα

0 +
(
τα

1 + θα
1 γacc

c

)
(

1 − exp
(

−
θα

0 γacc
c

τα
1

))

(7)  

where τα
0, θα

0, θα
1, and τα

0 + τα
1 are the initial CRSS, the initial hardening 

rate, the asymptotic hardening rate, and the back-extrapolated CRSS, 
respectively. It should be emphasized that all slip systems are active as 
soon as the resolved shear stress is different from zero for the case with 
Type I Norton law utilized, whereas only slip systems of which the 
resolved shear stress reaches the CRSS can be activated for the case with 
Type II Norton law employed. 

Substituting Eq. (6c) into Eq. (5) with some manipulations, we can 
obtain: 

γ̇α
c

(

σc, τα
c

)

=
∑

β
H̃− 1

αβ

(

γ̇β
c

(

nσc,
nτβ

c

)

+
∂γ̇β

c

∂σc

⃒
⃒
⃒
⃒
⃒

t=tn

:

(

σc −
nσc

))

(8)  

where H̃αβ is the matrix notation of h̃αβ, which has the following 
expression: 

h̃αβ = δαβ −
∂γ̇α

c

∂τα
c

⃒
⃒
⃒
⃒
⃒

t=tn

dτα
c

dγacc
c

hαβ Δt (9)  

where δαβis the Kronecker delta. 
Inserting Eq. (8) into Eq. (1), the constitutive equation can be ob

tained with some manipulations: 

σ̇c =Lc : ε̇c + σ̇0
c (10)  

with 

Lc =B− 1 : E (11a)  

σ̇0
c = − B− 1 : E :

∑

α

∑

β
H̃− 1

αβ γ̇β
c

( nσc ,
nτβ

c

)
mα

c (11b)  

B= I + E : Δt
∑

α

∑

β
H̃− 1

αβ mα
c ⊗

∂γ̇β
c

∂σc

⃒
⃒
⃒
⃒

t=tn

(11c)  

2.2. Homogenization approach for EVPSC modeling 

According to the SC approach developed by Hill and Hutchinson [14, 
15], we assume an ellipsoidal elastic-viscoplastic single crystal (1-site) 
or two interacting ellipsoidal elastic-viscoplastic crystals of different 
phases (2-site) Ωc embedded in an extended infinite homogeneous 
equivalent medium (HEM) R3. The proposed homogenization approach 
aims at determining the macroscopic response of the extended infinite 
HEM with some specific boundary conditions, which is given by the 
relation between the macroscopic stress rate and strain rate tensors (σ̇ 

and ε̇). The constitutive relation is assumed with the same format as Eq. 
(10). It thus has the following expressions within and outside of the 
crystal: 

σ̇ =

⎧
⎪⎨

⎪⎩

Lc : ε̇ + σ̇0
c in Ωc(12a)

L : ε̇ + σ̇0in R
3
\Ωc(12b)

where Land σ̇0are the overall stiffness and relaxation stress rate tensors, 
respectively. In the absence of volume forces, the static equilibrium 
condition with a prescribed boundary condition imposes: 
{

− σ̇⋅∇ = 0in R
3
(13a)

u→ε⋅x as |x|→∞in Ωc(13b)

Define τ̇ = σ̇ − σ̇ = σ̇ − L : ε̇ − σ̇0, then Eq. (13a) becomes (using −
σ̇⋅∇ = 0): 

− τ̇⋅∇ = 0 in ​ R3 (14)  

where 

τ̇ =

⎧
⎨

⎩
Lc : ε̇ − L : ε̇ + σ̇0

c − σ̇0in Ωc

(

15a
)

L : (ε̇ − ε̇)in ​ R3
\Ωc

(
15b
)

According to Eshelby’s equality, the stress and strain rates of the 
ellipsoidal inclusions in a HEM are equal for: 

σ̇c =Lc : ε̇c + σ̇0
c =L :

(
ε̇c − ε̇∗c

)
+ σ̇0 (16)  

where ε̇ = ε̇c within the crystal, which is constant inside Ωc. Here, ε̇∗c is 
the eigenstrain rate satisfying: 

− L : ε̇∗c =
(

Lc − L
)
: ε̇c +

(

σ̇0
c − σ̇0

)

(17) 

We now define the strain rate deviation to be ˙̃ε = ε̇ − ε̇, then Eq. (15) 
can be rewritten as: 

τ̇ =

⎧
⎨

⎩

L :
(
˙̃ε − ε̇∗c

)
in Ωc

(
18a
)

L : ˙̃ε in R
3
\Ωc

(
18b
)

2.2.1. 1-Site EVPSC modeling 
Eshelby introduced the Eshelby tensor P[16] that relates the eigen

strain rate ε̇∗c and the strain rate deviation ˙̃ε as [37]: 

˙̃ε=P : ε̇∗c (19) 

Combining Eqs. (17) and (19) with some manipulations, we can 
obtain: 

ε̇c =Ac : ε̇ − Ac : P : L− 1
:

(

σ̇0
c − σ̇0

)

(20)  

where 

Ac =
(
I+P :

(
L− 1

: Lc − I
))− 1

(21) 

Inserting Eq. (20) into Eq. (12a) and taking weighted average on 
both sides of the equation, the following expression can be obtained: 

〈σ̇c〉= 〈Lc : Ac〉 : ε̇+ 〈σ̇0
c − Lc : Ac : P : L− 1

:
(
σ̇0

c − σ̇0
)〉 (22) 

Comparing it with the macroscopic constitutive law (Eq. (12b)), we 
can identify: 

σ̇ = 〈σ̇c〉 (23a) 
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L= 〈Lc : Ac〉 (23b)  

σ̇0 = 〈σ̇0
c − Lc : Ac : P : L− 1

:
(
σ̇0

c − σ̇0
)〉 (23c) 

Then σ̇0can be solved from Eq. (23c) as: 

σ̇0 =
(

I− < Lc : Ac : P >: L− 1
)− 1

:<
(

I − Lc : Ac : P : L− 1
)
: σ̇0

c > (24)  

2.2.2. 2-Site EVPSC modeling 
For the 2-site case, there are two interacting ellipsoidal inclusions 

(#1 and #2) embedded in the extended infinite HEM. The eigenstrain 
rates ε̇∗c and the strain rate deviations ˙̃εc = ε̇c − ε̇ are obtained by the four 
symmetric Eshelby tensors as [11,16,20]: 

˙̃ε1 = ε̇1 − ε̇ = P11 : ε̇∗1 + P12 : ε̇∗2 (25a)  

˙̃ε2 = ε̇2 − ε̇ = P21 : ε̇∗1 + P22 : ε̇∗2 (25b)  

where P11 and P22 are the ordinary Eshelby tensors for the two in
clusions; and P12 and P21 are the Eshelby tensors that connects the 
eigenstrain rate of one inclusion and the local deviation in strain rate of 
the other. For details regarding derivations and results for the 2-site 
Eshelby tensors we refer to Ref. [20,38]. 

In this subsection, we define the following notation for the subscript 
designations of the tensors for inclusions #1 and #2: 

c= 1, 2 and c =

{
1 c = 2 (26a)
2 c = 1 (26b)

Combining Eqs. (17) and (25) to eliminate the eigenstrain rates ε̇∗c , 
the following can be obtained with some manipulations: 

ε̇c =Ac : ε̇ − Ḣc (27)  

where the concentration tensor Ac takes the form: 

Ac =
(
B c : C− 1

c : Bc − C c
)− 1

:
(
B c : C− 1

c + I
)

(28)  

and the extra term Ḣcis: 

Ḣc =
(
B c : C− 1

c : Bc − C c
)− 1

:
(

Ḋ c + B c : C− 1
c : Ḋc

)
(29)  

with 

A∗
d = I − L− 1

: Ld (d = c, c ) (30a)  

Bc = I − Pcc : A∗
c (30b)  

Cc = Pc c : A∗

c/c (30c)  

Ḋc = Pcc : L− 1
:

(

σ̇0
c − σ̇0

)

+ Pc c : L− 1
:

(

σ̇0
c/c − σ̇0

)

(30d) 

Inserting Eq. (27) into Eq. (12a) and taking weighted average on 
both sides of the equation, we can obtain the following equation: 

〈σ̇c〉= 〈Lc : Ac〉 : ε̇+ 〈σ̇0
c − Lc : Ḣc〉 (31) 

Comparing it with the macroscopic constitutive law (Eq. (12b)), we 
can identify: 

σ̇ = 〈σ̇c〉 (32a)  

L= 〈Lc : Ac〉 (32b)  

σ̇0 = 〈σ̇0
c − Lc : Ḣc〉 (32c) 

Then σ̇0can be solved from Eq. (32c) as: 

σ̇0 = (I − 〈Xcc + Xc c 〉)− 1
: 〈(I − Xcc) : σ̇0

c − Xc c : σ̇0
c/c 〉 (33)  

where 

Xcd = Lc :
(
B c : C− 1

c : Bc − C c
)− 1

:
(

B c : C− 1
c : Pcd : L− 1

+ P c d

: L− 1
)

(d = c , c )

(34)  

2.3. Finite strain approach for EVPSC modeling 

Texture evolution, finite strain formulation, and the update of ma
terial state should be incorporated in the EVPSC model for finite strain 
applications. The schemes are the same as that were employed for the 
EPSC models in Ref. [11,39]. Here, we summarize some mostly related 
ideas, and explain the implementation specifically for the 1-site and 
2-site EVPSC models. 

In order to account for texture evolution at arbitrary strains, the 
applied macroscopic rotation rate, local rotation rate, and crystal lattice 
rotation rate are calculated for rotations of the sample, ellipsoid, and 
crystal lattice, respectively. For the 2-site EVPSC model, crystal lattice 
co-rotation rate is used for each pair instead of using the individual ones. 
Due to the crystal lattice rotation (for the 1-site EVPSC model) or co- 
rotation (for the 2-site EVPSC model), all Cauchy stress rates are 
updated to the reference coordinate system by introducing the Jaumann 
rate of the Cauchy stress σ̂c after solving the ellipsoidal inclusion equi
librium equation and reaching convergence. After reaching self- 
consistency, the shape and morphological orientation of each ellipsoid 
is updated, where the relative position of the two ellipsoids within each 
pair is also updated for the 2-site case. Detailed information and related 
equations are omitted here to avoid redundancy, which are provided in 
Appendix A. 

3. Results and discussion 

In this section, the applicability of the 1-site and 2-site EVPSC models 
to various rate-dependent deformations is checked by fitting the 
experimental data from published work [1,4,10,29,40,41]. Viscous pa
rameters γ̇0

c and m in Eq. (2) are identified for different cases and the 
validity of the homogenization approach is checked for the proposed 
EVPSC models in this work. It is noted that Type I Norton law (Eq. (2) 
and (4a)) is utilized for the 1-site EVPSC model and Type II Norton law 
(Eq. (2) and (4b)) is employed for the 2-site EVPSC model to fit the 
experimental data. The numerical code of the 1-site EVPSC model 
employed in this work is an update of the 1-site EPSC code (Version 4) 
developed by Tomé and coworkers written in Fortran 77 [12,39], and 
that of the 2-site EVPSC model is an update of the 2-site EPSC code 
developed by Li et al. [11]. Detailed results and discussion are given in 
the following subsections. 

3.1. Application of 1-site EVPSC model to dynamic mechanical responses 
of steels at various strain rates and temperatures 

The materials studied in this section are a 316 L stainless steel with f. 
c.c. structure [40] and a Fe-based high temperature alloy with 
body-centered cubic (b.c.c.) structure [41]. Both are single phase ma
terials. The 1-site EVPSC model is used to simulate the stress-strain 
curves for the 316 L stainless steel deformed at strain rates of 1000 
s− 1, 3000 s− 1, 5000 s− 1and temperatures of 20 ◦◦C, 200 ◦◦C, 400 ◦C, 800 
◦C, and that for the Fe-based high temperature alloy deformed at strain 
rates of 4f000 s− 1, 6000 s− 1, 9000 s− 1, 12000 s− 1at 20 ◦C and temper
atures of 20 ◦C, 200 ◦C, 400 ◦C, 500 ◦C, 600 ◦C, 700 ◦C, 800 ◦C with a 
strain rate of 9000 s− 1. In the model, 500 grains with random initial 
texture are chosen for the two cases [29]. Activated slip system for the f. 
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c.c. 316 L stainless steel is {111}<110> and that for the b.c.c. Fe-based 
high temperature alloy is {110}<111> . Results are shown in Figs. 1 and 
2, respectively. The predicted results generally fit the experimental data 
well. 

The fitting parameters in the 1-site EVPSC model are the viscous 
parameters of γ̇0

c and m as far as the flow rule (Eq. (2)) is concerned and 
coefficients of τ0, τ1, θ0, θ1 for the extended Voce hardening law (Eq. 
(7)). The shear rate γ̇0

c is chosen constant to be 10− 3 s− 1 in this subsection 
since it has less effects on the simulated results than the rate-sensitive 
exponent m does. Other parameters used to best fit the experimental 
data are given in Table 1. The evolutions of m and τ0in terms of tem
perature for the two selected materials are plotted in Fig. 3 (a) and 3(b), 
respectively. It indicates that m increases (i.e. 1/mincreases) with 
increasing temperature at strain rates of 1000 s− 1, 3000 s− 1, 5000 s− 1 for 
the 316 L stainless steel and the strain rate of 9000 s− 1 for the Fe-based 
high temperature alloy. This is consistent with Larour et al. [42]. Since 
for a given strain rate with increasing temperature, more thermal energy 
fluctuation is available to overcome short range obstacles and the strain 
rate sensitivity of flow stress is then decreased. For the Fe-based high 
temperature alloy, a reasonable result is observed that τ0 decreases with 
increasing temperature. However, for the 316 L stainless steel, τ0 does 
not change much with increasing temperature. This may be because γ̇0

c is 
also temperature dependent but chosen to be constant in this case. It is 
hard to accurately calibrate all the fitting parameters in the model with 
only knowing the macroscopic stress-strain curves. We hence do not 
discuss further about the parameters used for these dynamic compres
sions here. In order to know more details along with the macroscopic 
stress-strain curves, we calculated the stress relaxation curves at a strain 
of 0.01 with hold time thold = 0.001 s at different temperatures for the 
two alloys, as shown in Fig. 3(c) and (d), respectively. It reveals that the 

stress relaxes rapidly to a saturated value for all the studied cases and the 
amount of relaxation stress decreases with increasing temperature for 
both materials. 

3.2. Application of 1-site EVPSC model to static mechanical response of a 
316 L austenitic stainless steel 

Wang et al. [29] have performed a comprehensive comparison 
among in situ neutron diffraction techniques used for measuring lattice 
strains: monotonic loading without interrupts, loading with strain holds 
(stress relaxation), and loading with stress holds (strain creep). A 
tangent compliance-based EVPSC modeling [24] is performed in the 
work to interpret the experimental data of a 316 L austenitic stainless 
steel. Both the experimental and numerical results reveal that the in
fluence of the stress relaxation on the lattice strain evolution is more 
significant than that of the strain creep. A comparison between the 
EVPSC and EPSC models on the prediction of the three cases indicates 
that the EVPSC model is better suited to interpret in situ neutron 
diffraction data of rate-sensitive materials than the rate-insensitive EPSC 
model, especially when stress relaxation occurs during the traditional 
strain-controlled in situ neutron diffraction experiments. In this section, 
we will use the experimental data in Ref. [29] to verify our 1-site EVPSC 
model on the prediction of stress-strain curves and in situ lattice strains 
for the 316 L austenitic stainless steel with static loading modes of 
monotonic, relaxation, and creep. 

In our model, 500 grains with random initial texture are chosen [29], 
and {111}〈110〉 type slip system is set to be active. The applied loading 
rate is 10− 4 s− 1. Before fitting the experimental data, the rate-sensitive 
exponent m is calibrated with the initial shear rate γ̇0

c set constant to 
be 10− 3 s− 1. m is adjusted from 50 to 200 at a strain of 0.01 and a stress 

Fig. 1. Comparison of stress-strain curves measured (points, data from Ref. [40]) and simulated (lines) for a 316 L stainless steel deformed at different strain rates of 
1000 s− 1, 3000 s− 1, 5000 s− 1 and temperatures of (a) 25 ◦C, (b) 200 ◦C, (c) 400 ◦C, and (d) 800 ◦C. 
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of 256 MPa with hold time thold = 900 s. Relaxation stress and creep 
strain for different m values are shown in Fig. 4. The respective stress 
and strain versus time curves for each case are shown in the embedded 
panels labeled as (a′ ) and (b′ ) in Fig. 4. The amount of relaxation stress 
and creep strain decreases with increasing m. The case m = 66 gives the 
most appropriate results in both relaxation stress and creep strain at the 
strain of 0.01 and the stress of 256 MPa for the alloy comparing to the 
experiments, which is later employed to fit the experimental data. 
Comparing to the strain rate sensitivity for the dynamic case of 316 L 
stainless steel (1/m = 1/7.5 = 0.13) discussed in Section 3.1, 1/ m = 1/
66 = 0.015 is largely decreased for this quasi-static case. This is 

consistent with Larour et al. [42]. Since for a given temperature with 
decreasing the strain rate, more waiting time is necessary for disloca
tions to overcome short range obstacles, and therefore it is less strain 
rate sensitive. Coefficients describing the extended Voce hardening law 
(Eq. (7)) of τ0 = 81.6 MPa, τ1 = 31.5 MPa, θ0 = 295 MPa, θ1 = 6.5 MPa 
are determined to simultaneously predict the stress-strain curves and 
lattice strains measured with monotonic loading, relaxation, and creep. 
A comparison between the experimental data and the simulated results 
obtained with our 1-site EVPSC model is shown in Fig. 5. The calculated 
stress-strain curves for the three cases fit the experimental data well, as 
shown in Fig. 5(a–c). In order to fit the transverse lattice strains, data 
from 10 different directions perpendicular to the loading direction is 
collected and averaged since there are only 500 grains included in the 
model to speed up the simulation. Predicted lattice strains of {111}, 
{200}, and {220} reflections are shown in Fig. 5(g–i), where results 
labeled as “relaxation” and “creep” respectively are time-averaged 
values during 900 s hold. Comparing to the experimental data from 
Ref. [29], as re-plotted in Fig. 5(d–f), all the lattice strains are well 
predicted except the transverse lattice strains of {200} plane, which 
deviates from the experimental data during the elastic-plastic transition 
area. This is slightly better compared to the results predicted by the 
EPSC model in Ref. [29] if comparing Fig. 5(h) with Fig. 5(k). It should 
be noted that the rate-sensitive exponent m and the hardening param
eters determined from our 1-site EVPSC model are not exactly the same 
as that used in Wang et al.‘s EVPSC model [29], but they are quite 
similar, where m = 66 and τ0 = 81.6 MPa are set in this work while m =

60 and τ0 = 84 MPa are used in their work. It thus can be concluded that 
the proposed 1-site EVPSC model is applicable to the prediction of 
strain-rate-related relaxation and creep behaviors of cubic structure 
materials during in situ neutron diffraction experiments with similar 
viscous parameters and hardening coefficients as that used in Wang 
et al.′s EVPSC model [29]. 

3.3. Application of 2-site EVPSC model to axial lattice strains of Ni-based 
superalloys measured by neutron diffraction under static in situ tensile tests 

Ni-based superalloys are composed of γ matrix and γ′ precipitates 
with coherent interfaces [19], of which the in situ neutron diffraction 
data is suitable for checking a 2-site EVPSC model. In this section, we use 
the in situ neutron diffraction data of Alloy 720Li with a microstructure 
of two randomly intermixed size distribution of γ′precipitates at 20 ◦C, 
400 ◦C, 500 ◦C, and 650 ◦C from Daymond et al. [10] to check our 2-site 
EVPSC model on the prediction of axial lattice strains. 

In the model, 5000 grain pairs with random initial morphological 
and crystallographic orientation distributions are chosen, which is the 
same as that used in the 2-site EPSC model [11]. Spherical grains are 
assumed for both phases at the start of the simulation (see microscopy 

Fig. 2. Comparison of stress-strain curves measured (points, data from 
Ref. [41]) and simulated (lines) for a Fe-based high temperature alloy deformed 
at (a) different strain rates at 20 ◦C and (b) different temperatures with a strain 
rate of 9000 s− 1. 

Table 1 
Parameters determined for the 1-site EVPSC model to best predict the experimental data of a 316 L stainless steel and a Fe-based high temperature alloy at various 
strain rates and temperatures. The hardening coefficients τ0, τ1, θ0, and θ1 are in MPa.  

Exp. data T (◦C)  ε̇(s− 1)  Phase m Slip system τ0  τ1  θ0  θ1  

316 L stainless steel [40] 25 1000̃5000  Austenite 7.5 {111}〈110〉  43 29 60 1.5  
200   8.0  46 28 70 1.3  
400   8.8  46 32 95 2.5  
800   10.5  48 25 58 1 

Fe-based high temperature alloy [41] 20 4000 Low-carbon martensite 10.3 {110}〈111〉  86 6 17 0   
6000          
9000          
12000         

200 9000 Low-carbon martensite 11.3 {110}〈111〉  78.5 6 17 0  
400   11.8  73.5 6 17 0  
500   12.5  68.5 6 17 0  
600   13.9  60.2 6 17 0  
700   14.5  55 6 17 0  
800   15.1  49.4 6 17 0  
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pictures in Fig. 1 in Ref. [10]). The interaction factor fγ− γ′ defining the 
interaction strength between γ and γ′ grains [11] is set to be 1 for all the 
cases studied with the 2-site EVPSC model in this work to avoid extra 
uncertainties for the identification of the viscous parameters. All the 
cases are performed under uniaxial tension with a strain rate of 10− 4s− 1, 
and monotonic loading mode is assumed in the model. In order to be 
consistent with the 1-site EVPSC model utilized to fit the experimental of 
single phase materials in Sections 3.1 and 3.2, Type I (drag-stress type, 
Eqs. (2) and (4a)) Norton law was first implemented in the 2-site EVPSC 
model. Calibrations of the viscous parameters of m within the range of 
50 ̃300 with fixed γ̇0

c = 10− 3 s− 1and γ̇0
c within the range of 10− 10̃1s− 1 

with fixed m = 200 were performed at a strain of 0.01 and a stress of 
1148 MPa with hold time thold = 900 s. How the relaxation stress varies 
with respect to m and γ̇0

c are shown in Fig. 6(a) and (b). It is found that 
the relaxation stress only depends on m at a specific strain and stress 
state in the case of employing Type I Norton law. Considering the 
computational error, a constant relaxation stress of about 40 ̃ 41 MPa is 
observed with m = 200 as γ̇0

c changes (Fig. 6(b)). According to the result 
shown in Fig. 6(a), a large rate-sensitive exponent m = 200 had to be 
used to give a reasonable relaxation stress of around 40 MPa for 
Ni-based superalloys at the strain of 0.01. Experimental data measured 
at 20 ◦C and 400 ◦C was fitted with m = 200 and γ̇0

c = 10− 3 s− 1. Results 
are shown in Fig. 7(a and b) and 7(e-f), respectively. The amount of 
stress relaxation at various strains is shown on the macroscopic 
stress-strain curves as “drops”, but not used for data process of lattice 
strains since monotonic loading mode is prescribed. Results predicted 
with the 2-site EPSC model [11] are also plotted in the figures as a 
comparison. Obvious deviations from the experimental data and the 
results predicted by the 2-site EPSC model during the elastic part and the 
elastic-plastic transition area can be observed for both temperatures 
(Fig. 7(b) and (f)). It may be because the grain-grain interaction between 
γ and γ′ phases is not correctly captured with large m, according to the 
predicted results with the 2-site EPSC model for the cases that fγ− γ′ is 
largely different from 1 (see Figs. 8 and 9 in Ref. [11]). Besides, Leb
ensohn and Tomé have estimated the viscoplastic behavior of 

Fig. 3. Parameters used to best fit the experimental data measured at different strain rates for a 316 L stainless steel [40] and a Fe-based high-temperature alloy [41]: 
(a) the rate-sensitive exponent m and (b) the initial CRSS τ0 as a function of temperature. The stress versus time curves for different cases at a strain of 0.01 with hold 
time thold = 0.001 sare shown in panels (c) and (d) for the 316 L stainless steel and the Fe-based high-temperature alloy, respectively. 

Fig. 4. Calibration of the rate-sensitive exponent m: (a) relaxation stress and 
(b) creep strain as a function of m at a strain of 0.01 and a stress of 256 MPa 
with hold time thold = 900 s. The corresponding stress and strain versus time 
curves are shown in the embedded panels named (a’) and (b’), respectively. 
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anisotropic zirconium alloys and noticed that for values of m larger than 
20, the VPSC model based on secant formulation loses its ability to 
describe realistic viscoplastic inter-granular interactions [13]. However, 
for Wang et al.′s 1-site EVPSC model [24] and our 1-site EVPSC model 
checked in Sections 3.1 and 3.2, which are both based on tangent 
formulation, respective m = 60 and m = 66 give good predictions on 
macroscopic stress-strain curves and microscopic lattice strains of the 
standard 316 L stainless steel simultaneously. These values of m are 
within the reasonable range of 50 ̃66.7 for stainless steel, which is not 
rate-sensitive at room temperature [43]. Therefore, we decreased m to 
60 and assumed high relaxation stresses of 117 MPa and 122 MPa, 
respectively, for the temperatures of 20 ◦C and 400 ◦C at the strain of 
0.01 according to Fig. 6(a) to reach the relaxed state. Similar results of 
lattice strains to the cases with m = 200 were obtained, as shown in 
Fig. 7(d) and (h). It thus can be concluded that the 2-site EVPSC model 

with Type I Norton law implemented does not describe realistic visco
plastic grain-grain interactions. 

In [22], a “threshold” shear stress τXis suggested to be included in the 
description of shear rate γ̇α

c with drag-stress type Norton law (Type I, Eqs. 
(2) and (4a)) to remove the rate-sensitive character without using large 
rate-sensitive exponent m, i.e. Φα

c =
σc :mα

c − τX
τα

c
, which is an extension of Eq. 

(4a). In our case, we use Φα
c = σc : mα

c − τα
c instead, i.e. Type II (Eq. (2) 

and (4b)), in order to explicitly present a “threshold” shear stress as 
traditionally used in solid mechanics [34,35]. With Type II Norton law 
implemented in the 2-site EVPSC model, calibrations of the viscous 
parameters of m within the range of 3 ̃ 8 with fixed γ̇0

c = 10− 9 s− 1 and γ̇0
c 

within the range of 10− 10̃10− 3s− 1 with fixed m = 4are also done at the 
strain of 0.01 and the stress of 1148 MPa with hold time thold = 900 s. 
Results are shown in Fig. 6(c and d), which demonstrate that the 

Fig. 5. Comparisons of measured and simulated stress-strain curves: (a) monotonic loading, (b) loading with strain holds (stress relaxation), and (c) loading with 
stress holds (strain creep), and lattice strains of {111}, {200}, and {220} planes: (d–f) measured by in situ neutron diffraction from Ref. [29], (g–i) simulated with the 
1-site EVPSC model proposed in this work, and (j–l) simulated with EPSC model from Refs. [29]. AD and TD stand for axial direction and transverse direction, 
respectively. 
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relaxation stress decreases with increasing m and γ̇0
c . The relaxation 

stresses of 40 MPa, 43 MPa, 35 MPa, 37 MPa are obtained at the strain of 
0.01 at 20 ◦C, 400 ◦C, 500 ◦C, and 650 ◦C by assuming m = 4 and γ̇0

c =

10− 9 s− 1 in the model for Alloy 720Li studied in Ref. [10]. A comparison 
of measured and simulated stress-strain curves and lattice strains for the 
alloy is shown in Fig. 8. The predicted lattice strains with Type II Norton 
law implemented in the 2-site EVPSC model generally fit the experi
mental data well, which also approach the simulated results with the 
2-site EPSC model [11] except for the 500 ◦case at relatively large strains 
where the total deformation is large (ε = 0.3). Nevertheless, the 
anomalous behavior of Ni-based superalloys [44] below the peak 
strength temperature around 500 ◦is captured by the 2-site EVPSC 
model. 

A further comparison is made between the 2-site EVPSC model with 
Type II Norton law implemented and the 2-site EPSC model [11] on the 
prediction of evolution of the average number of active systems per 
grain (AVACS), relative activity of {111}〈110〉 and {100}〈110〉 slip 
systems in γ′ phase, deformed texture, and phase specific stress of γ and 
γ′ phases for Alloy 720Li at 20 ◦C, 400 ◦C, 500 ◦C, and 650 ◦C. Results are 
shown in Fig. 9 ̃11. Fig. 9(a), (c), (e), and (g) indicate that slip systems 
are more easily activated in the 2-site EVPSC model in contrast to that in 
the 2-site EPSC model, where the slip systems are activated earlier and 
the AVACS is much larger. Both models give the same general conclu
sion that the AVACS of γ phase is larger than that of γ′ at 20 ◦C, but it 
reverses at 400 ◦Cand 500 ◦C, and then reverses back at 650 ◦C. Evo
lutions of the relative activity of {111}〈110〉 and {100}〈110〉slip sys
tems in γ′phase predicted with the two models at 20 ◦C, 400 ◦C, 500 ◦C, 
and 650 are shown in Fig. 9(b), (d), (f), and (h), respectively. At 20 ◦ , 
only {111}〈110〉 slip system is activated and it starts earlier in the 2-site 

EVPSC model than that in the 2-site EPSC model. At high temperatures, 
both {111}〈110〉 and {100}〈110〉 slip systems are activated with {100}〈 
110〉 starting earlier and {111}〈110〉starting later in the 2-site EVPSC 
model than that in the 2-site EPSC model. Big differences at 500 ◦C and 
650 ◦C are observed. At 500 ◦C, the relative activity of {111}〈110〉 and 
{100}〈110〉 slip systems alternates twice as predicted with the 2-site 
EPSC model; however, the alternation predicted by the 2-site EVPSC 
model occurs later. At 650 ◦C, {100}〈110〉 slip system is predominant 
first and then {111}〈110〉 slip system becomes more active after a few 
plastic deformations predicted with the 2-site EVPSC model, which is 
different from the result obtained with the 2-site EPSC model where 
{100}〈110〉slip system is predominant during the whole deformation. 
These differences in the evolution of deformation mechanisms predicted 
with the two models have an accumulated effect on the simulated grain 
orientation distribution. Fig. 10 shows the deformed textures predicted 
with the two models. A comparison of the predicted fiber volume of 
〈111〉, 〈110〉, and 〈100〉 components parallel to the tensile axis (i.e. AD) 
between the two models is presented for each temperature. Pole figures 
predicted with the 2-site EVPSC model are embedded in each panel, and 
that predicted with the 2-site EPSC model can be found in Fig. 6 in 
Ref. [11], which were obtained by using the MTEX open-source package 
[45]. A similar texture is displayed for the two models when the 〈111〉 
fiber is strengthened and the 〉》 〈110〉 fiber is weakened during plastic 
deformation. But for the 2-site EVPSC model the 〈111〉fiber becomes 
weaker and the 〈110〉fiber stronger as compared to that from the 2-site 
EPSC model (Fig. 10). The strength of the 〈100〉fiber predicted by the 
two models is almost the same. Nevertheless, results of the evolution of 
phase specific stress of γ and γ′phases calculated with the two models are 
quite close for the four temperatures, as shown in Fig. 11. Lastly, the 
reference hardening of individual slip systems in γ and γ′phases used in 

Fig. 6. Calibration of viscous parameters utilized in Type I Norton law: relaxation stress as a function of (a) m with fixed γ̇0
c = 10− 3s− 1, (b) γ̇0

c with fixed m = 200, 
and Type II Norton law: relaxation stress as a function of (c) m with fixed γ̇0

c = 10− 9s− 1, and (d) γ̇0
c with fixed m = 4 at a strain of 0.01 and a stress of 1148 MPa with 

hold time thold = 900 s. It is noted that m is the rate-sensitive exponent and γ̇0
c is the shear rate parameter. The corresponding stress versus time curves are shown in 

the embedded figures named (a’–d’), respectively. 
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Fig. 7. Comparison of stress-strain curves and axial lattice strains measured (points, data from Ref. [10]) and simulated (lines) for Alloy 720Li utilizing Type I Norton 
law with fixed shear rate parameter γ̇0

c = 10− 3s− 1: (a–b) 20 ◦C, m = 200, (c–d) 20 ◦C, m = 60, (e–f) 400 ◦C, m = 200, and (g–h) 400 ◦C, m = 60. Results predicted 
with the 2-site EPSC model are shown as a comparison. AD stands for axial direction. 
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Fig. 8. Comparison of stress-strain curves and axial lattice strains measured (points, data from Ref. [10]) and simulated (lines) for Alloy 720Li utilizing Type II 
Norton law with fixed shear rate parameter γ̇0

c = 10− 9s− 1 and rate-sensitive exponent m = 4at: (a–b) 20 ◦C, (c–d) 400 ◦C, (e–f) 500 ◦C, and (g–h) 650 ◦C. Results 
predicted with the 2-site EPSC model are shown as a comparison. AD stands for axial direction. 
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the two models according to the extended Voce hardening law (Eq. (7)) 
adjusted to best fit the experimental data is compared for the four 
temperatures, as shown in Fig. 12. It indicates that the initial CRSS τ0for 
the slip systems used in the 2-site EVPSC model is higher than that 
employed in the 2-site EPSC model except the {100}〈110〉slip system in 
γ′phase at 500 ◦, which is close to the peak strength temperature for 
Ni-based superalloys. Ni-based superalloys have the property that the 
yield stress at high temperatures is larger than at room temperature 

[44]. The result that larger τ0is used for the slip systems in the 2-site 
EVPSC model than that for the 2-site EPSC model is consistent with 
the 1-site case studied in Ref. [29] for a 316 L stainless steel where 
respective τ0 = 84MPa and τ0 = 66MPa are employed in the 1-site 
EVPSC and 1-site EPSC models, respectively. The exception observed 
at 500 ◦may connect with the reality that m depends on the temperature, 
as referring to the dynamic cases shown in Fig. 3 with Type I Norton law 
implemented in the 1-site EVPSC model, which is ignored here for the 

Fig. 9. Comparison of the 2-site EVPSC (Type II Norton law, γ̇0
c = 10− 9s− 1, m = 4) and 2-site EPSC models on the prediction of the evolution of AVACS and relative 

activity of {111}〈110〉 and {100}〈110〉 slip systems in γ′ phase for Alloy 720Li at:(a–b) 20 ◦C, (c–d) 400 ◦C, (e–f) 500 ◦C, and (g–h) 650 ◦C. 
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Fig. 10. Comparison of the 2-site EVPSC (Type II Norton law, γ̇0
c = 10− 9s− 1, m = 4) and 2-site EPSC models on the prediction of fiber volume of 〈111〉, 〈110〉, and 

〈100〉components parallel to the tensile axis (i.e. AD) for Alloy 720Li at: (a) 20 ◦C, (b) 400 ◦C, (c) 500 ◦C, and (d) 650 ◦C. The initial result is shown with dashed 
rectangles in each panel. Pole figures predicted by employing the 2-site EVPSC model is embedded in each panel, where AD and TD stand for axial direction and 
transverse direction, respectively. 

Fig. 11. Comparison of the 2-site EVPSC (Type II Norton law, γ̇0
c = 10− 9s− 1, m = 4) and 2-site EPSC models on the prediction of phase specific stress of γ and 

γ′ phases for Alloy 720Li at: (a) 20 ◦C, (b) 400 ◦C, (c) 500 ◦C, and (d) 650 ◦C. 
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static 2-site case with Type II Norton law employed and set to be the 
same as m = 4for all the temperature cases to avoid any ambiguities 
caused by using different values of m while making a comparison among 
cases. Yet the rate-sensitive exponent m has little effect on the axial 
lattice strains [29], and the amount of stress relaxation does not influ
ence the evolution of lattice strains as along as the final relaxed state is 
reached (comparing Fig. 7(b) with 7(d), and 7(f) and 7(h)), we do not 
characterize the exact value of m at each temperature. 

3.4. Application of 2-site EVPSC model to transverse lattice strains of Ni- 
based superalloys measured by neutron diffraction under static in situ 
tensile tests 

In this section, in situ neutron diffraction data of Alloy RR1000 with 
fine, medium, and coarse γ′microstructures at 20 ◦C from Ref. [1] and 
750 ◦C from Ref. [4] is used to verify the 2-site EVPSC model on the 
prediction of transverse lattice strains. It should be emphasized that 
Type II Norton law is employed in the model with m = 4 and γ̇0

c =

10− 9 s− 1. Spherical grains are assumed for both phases at the initial 
state in the simulation (see microscopy pictures in Fig. 1(c) in Ref. [1] 
and Fig. 1 in Ref. [4]), and the interaction factor fγ− γ′ is fixed to be 1. The 
same as that used in Section 3.3, 5000 grain pairs with random initial 
morphological and crystallographic orientation distributions are 
included in the model. The applied strain rate is set to be 10− 4s− 1. Data 
from 10 different directions perpendicular to the loading direction is 
collected and averaged to present the transverse lattice strain of each 
reflection. The reference hardening of individual slip systems in γ and γ′

phases used in the 2-site EVPSC model according to the extended Voce 
hardening law (Eq. (7)) is compared with that utilized in the 2-site EPSC 
model [11] for the selected cases. Results are plotted in Fig. 13. The 
initial CRSS τ0 for the slip systems used in the 2-site EVPSC model is 
higher than that was used in the 2-site EPSC model for all the cases at 20 
◦C; however, for the cases at 750 ◦C, τ0 in the 2-site EVPSC model is 
slightly lower than or very close to that used in the 2-site EPSC model. 

This may be because m should be different at high temperatures from the 
ambient temperature case but neglected here. Since we do not have the 
stress-strain curves with stress relaxations or strain creeps, the exact 
value of m for each case is not further calibrated here. Instead, we focus 
on the effect of stress relaxation, which often occurs during the tradi
tional strain-controlled in situ neutron diffraction experiments, on the 
predicted transverse lattice strains by employing the 2-site EVPSC 
model. 

Respective relaxation stresses of 40 MPa, 37 MPa, and 37 MPa at 20 
◦C and 37 MPa, 36 MPa, and 35 MPa at 750 ◦C at the strain of 0.01 for 
fine, medium, and coarse γ′ microstructures are assumed. In this section, 
two loading modes are studied, including monotonic loading without 
interrupts and loading with strain holds (stress relaxation). Macroscopic 
stress-strain curves and lattice strains are shown in Fig. 14, where results 
labeled as“monotonic” and “relaxation” are respective values obtained 
under monotonic loading and time-averaged values during 900 s 
constant-strain hold in panels (c-f). For monotonic loading mode, as 
shown in Fig. 14(c and d), the simulated lattice strains generally fit the 
experimental data and approach the results predicted by the 2-site EPSC 
model [11] except transverse lattice strains of γ {200} and γ′{100} at the 
elastic-plastic transition area, where the calculated values are much 
larger in compression in contrast to the experiments at specific applied 
stresses. However, this can be greatly improved by accounting for the 
stress relaxation while calculating the lattice strains, as displayed in 
Fig. 14(e and f). Although transverse lattice strains of γ {200} and 
γ′{100} are improved at both temperatures, the result at 20 ◦C still de
viates from the experimental data while that at 750 ◦C fits the experi
ments well, which is the same difficulty to deal with as it compares to the 
2-site EPSC model (Fig. 13 in Ref. [11]). 

3.5. Discussion on the validity of the homogenization approach for EVPSC 
modeling 

In the proposed EVPSC models, tangent approximation of the 

Fig. 12. Comparison of the reference hardening of individual slip systems in γ and γ′ phases used in the 2-site EVPSC (Type II Norton law, γ̇0
c = 10− 9s− 1, m = 4) 

and 2-site EPSC models according to the extended Voce hardening law (Eq. (7)) adjusted to the experimental curves of Alloy 720Li at: (a) 20 ◦C, (b) 400 ◦C, (c) 500 
◦C, and (d) 650 ◦C. 
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constitutive law is employed for both crystals and the matrix (Eq. (12)). 
This approximation is valid only if the strain rate ε̇ is not much different 
from the overall strain rate ε̇ (i.e. the weighted average strain rate over 
all the grains) [46]. Furthermore, we assume the relaxation stress rate σ̇0 
to be uniform in the matrix. It is commented that the uniform relaxation 
stress in the matrix leads to strong inclusion-matrix interactions [47]. 
Since the relaxation stress rate is associated with rate-dependent crys
tallographic slip and depends on the stress state (Eq. (24) and (33)), this 
assumption would be valid if the stress in the matrix is uniform [47]. 
Therefore, the heterogeneities of the material should not be too strong. 
We checked the normalized standard deviations of strain and stress in 
the grains with the 1-site EVPSC model for a single phase f.c.c. structure 
material deformed to a large strain of 1.0 under both dynamic 
compression and static tension, and with the 2-site EVPSC model for 
Alloy 720Li at 20 ◦C, 400 ◦C, 500 ◦C, and 650 ◦C from Refs. [10], as 
discussed in Section 3.3, under static tension extended to a large strain of 
1.0. The normalized standard deviations of strain and stress in the grains 
are defined as Eq. (35): 

SD(X)i =

⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒
⃒
∑N

n=1X2
n,iωn − X2

i

⃒
⃒
⃒

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑6

i=1X2
i

√ (i= 1, 6) (35)  

where SD(X)i stands for the standard deviation of the i-th component of 
X (strain or stress) with i = 1,6 in Voigt notation. Xnrepresents the strain 
or stress in grain number n and ωn is the corresponding weight deter
mined by the volume fraction. Xi =

∑N
n=1Xn,iωn is the i-th component of 

the weighted average value of the strain or stress in the grains. For the 
single phase material with the 1-site EVPSC model, 500 grain pairs with 
random initial texture is chosen. The activated slip system is assumed to 
be {111}〈110〉 type. The hardening parameters used for compression 
with a strain rate of 1000 s− 1 are τ0 = 43 MPa, τ1 = 29 MPa, θ0 = 60 
MPa, θ1 = 1.5 MPa, and that for tension with a strain rate of 10− 4 s− 1 are 
τ0 = 81.6MPa, τ1 = 32.5 MPa, θ0 = 298 MPa, θ1 = 66.2 MPa. Viscous 
parameters of Type I Norton law are γ̇0

c = 10− 3 s− 1 for both cases, and 
m = 7.5 for the dynamic compression and m = 66 for the static tension. 
Parameters employed in the 2-site EVPSC model for Alloy 720Li are the 
same as those used in Section 3.3 except the total grain pairs where only 
500 grain pairs are chosen instead of 5000 pairs to speed up the simu
lation. Results are shown in Fig. 15. It reveals that the standard deviation 
(SD) of strain in the grains along loading direction is small for all the 
selected cases in this section, while that of stress severely depends on the 
specific plastic deformation. The SD of stress decreases as deformation 
progresses for the dynamic case while it increases for the static cases. 
The magnitude of the SD of stress is less than 0.3 within the range of 
strain (ε) from 0 to 1.0 for the chosen cases except for Alloy 720Li at 20 
◦C where the SD of stress is approaching 0.5 at ε = 1.0. Thus, our ho
mogenization approach for the EVPSC model is applicable for cubic 
structure materials at finite strains where only slip is activated during 
plastic deformation, especially when ε ≤ 0.2 (Fig. 15(b) and (d)). Its 
application extended to h.c.p. structure ploycrystalline materials or 
materials with twinning activated during plastic deformation still needs 
to be validated though. 

Fig. 13. Comparison of the reference hardening of individual slip systems in γ and γ′ phases used in the 2-site EVPSC and 2-site EPSC models according to the 
extended Voce hardening law (Eq. (7)) adjusted to the experimental curves of Alloy RR1000 with fine, medium and coarse γ′ microstructures at 20 ◦C and 750 ◦C. 
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4. Conclusions  

• 1-site and 2-site EVPSC models for finite strain applications have 
been developed. Type I (drag-stress type) Norton law works well for 
the 1-site EVPSC model while Type II (threshold stress type) Norton 
law should be used in the 2-site EVPSC model to assure that the 
viscoplastic inter-granular interaction is realistic. The advantage of 
the proposed EVPSC models in this work is that all mathematical 
conveniences of the linear Eshelby solution from the 1-site and 2-site 
EPSC models are retained. 

• The 1-site EVPSC model has been verified firstly by fitting the dy
namic stress-strain curves at different strain rates and temperatures 
for a 316 L stainless steel and a Fe-based high temperature alloy. It 
has also been tested on the prediction of static mechanical response 
during in situ neutron diffraction. Applied stress versus lattice strain 
curves for a 316 L stainless steel have been well fitted with an 
exception that transverse lattice strains of {200} have relatively 
larger deviations from the experimental comparing to other crys
talline planes. Nevertheless, the predictions of the transverse {200} 
behavior was better predicted by the EVPSC model compared to the 
EPSC model. 

Fig. 14. Comparison of (a–b) stress-strain curves and (c–f) lattice strains measured (points, data from Ref. [1,4]) and simulated with the 2-site EVPSC model 
assuming different loading modes (i.e. monotonic loading without interrupts and loading with strain holds) for Alloy RR1000 with different γ′ microstructures at 20 ◦C 
and 750 ◦C. Results of the 2-site EPSC model [11] are plotted as a comparison. 
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• The 2-site EVPSC model is firstly applied to predict axial lattice 
strains of Alloy 720Li with intermixed γ′precipitates at ambient and 
elevated temperatures. The anomalous behavior of Ni-based super
alloys below the peak strength temperature around 500 ◦has been 
well captured. Although there are obvious deviations from the 
experimental data in the prediction of axial lattice strains at rela
tively large strains at 500 ◦, the overall evolution and magnitude of 
the simulated results are acceptable. It has also been compared to the 
2-site EPSC model in the prediction of AVACS, relative activity of 
{111}〈110〉 and {100}〈110〉 slip systems in γ′ phase, deformed 
texture, and phase specific stress of γ and γ′ phases. Similar conclu
sions can be drawn from the two models with some small differences.  

• The 2-site EVPSC model is also applied to predict transverse lattice 
strains of Alloy RR1000 with fine, medium, and coarse γ′ micro
structures at 20 ◦C and 750 ◦C. Simulated lattice strains of loading 
with strain holds are more approaching to the experimental data 
than those of monotonic loading, which indicates that the effect of 
stress relaxation on the measured and/or simulated lattice strains 
cannot be neglected. The model generally fits the experimental data 
well except for transverse lattice strains of γ {200} and γ′{100} at 20 
◦C, which is the same difficulty to deal with as it compares to the 2- 
site EPSC model proposed previously by the authors.  

• A validation of the homogenization approach for the EVPSC models 
has been done by studying the normalized standard deviations of 
strain and stress in the grains under both dynamic compression and 
static tension up to the strain 1.0. The results indicate that the het
erogeneities of the selected materials at finite strains are not strong, 
especially when ε ≤ 0.2. It is confirmed that the proposed EVPSC 
models are applicable for cubic structure materials with finite de
formations where only slip is activated during plastic deformation. 

Their applicability to h.c.p. structure polycrystalline materials or 
materials with twinning activated during plastic deformation still 
needs to be validated and it is underway. 
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Fig. 15. Dynamic compression and static tension deformed to a large strain of 1.0 for a single phase f.c.c. structure material with the 1-site EVPSC model, and static 
tension extended to a large strain of 1.0 for Alloy 720Li at various temperatures discussed in Section 3.3 from Ref. [10] with the 2-site EVPSC model: (a) and (c) 
stress-strain curves, (b) and (d) corresponding normalized standard deviations of strain and stress in the grains along loading direction. SD in Panels (b) and (d) stands 
for standard deviation. 
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Appendix A. Details of finite strain approach for EVPSC modeling 

Appendix A.1 Accounting for texture evolution at arbitrary strains 

Rotations of the sample, ellipsoid, and crystal lattice are taken into account [48].  

(1) Applied macroscopic rotation rate: 

Ω̇=
1
2
(
l − lT) (A.1)  

where lis the macroscopic velocity gradient.  

(2) Local rotation rate: 

ω̇c = Ω̇ + ˙̃ωc (A.2)  

where ˜̇ωcis the deviation from the macroscopic rotation rate, of which the expressions are given in terms of Eshelby tensors in Ref. [48] for the 1-site 
SC models and [11,20] for the 2-site SC models.  

(3) Crystal lattice rotation rate: 

ω̇lat
c = ω̇c − ω̇pl

c (A.3)  

with the plastic rotation rate ω̇pl
c taking the form: 

ω̇pl
c =

∑

α
qα

c γ̇α
c (A.4)  

where qα
c = skw (bα

c ⊗ nα
c )is the skew-symmetric Schmid tensor, and γ̇α

c is the shear rate on the α-th slip system. 
For the 2-site model, further considerations must be taken in order to accurately describe the strong correlation in both morphology and crys

tallographic orientation between the ellipsoidal inclusions within each pair. In order to address the former, weighted average local rotation rate is used 
[11]: 

ω̇ave =w1 ω̇1 + w2 ω̇2 (A.5)  

where w1and w2are the volume fractions of each phase. As a result, the crystal lattice rotation rate calculated via Eq.(A.3) is changed into the following 
form: 

ω̇lat
c = ω̇ave − ω̇pl

c (A.6) 

In order to account for the latter, crystal lattice co-rotation rate is used in the 2-site EVPSC model [11]: 

ω̇lat
corot =

1
2

(
ω̇lat

1 + ω̇lat
2

)
(A.7)  

Appendix A.2 An approximate finite strain algorithm 

Similar to Neil et al. [39], the Jaumann rate of the Cauchy stress σ̂cis introduced to account for crystal lattice rotation (Eq.(A.3)) or co-rotation (Eq. 
(A.7)) for the 1-site and 2-site EVPSC models, respectively. The constitutive rules for both grain level (Eq. (12a)) and macroscopic scale (Eq. (12b)) are 
rewritten: 

σ̂ c =Lc : dc + σ̇0
c (A.8a)  

σ̂ =L : d + σ̇0 (A.8b) 

In this approximate approach, the SC equations in Section 2.2 are modified with replacing σ̇, σ̇c, ε̇, and ε̇cby σ̂ , σ̂ c, d, and dc, respectively. After 
solving the ellipsoidal inclusion equilibrium equation and reaching convergence, all Cauchy stress rates are updated to the reference coordinate 
system using the definition of the Jaumann derivative as follows: 

σ̇c = σ̂c + ω̇lat
c σc − σc ω̇lat

c (A.9a)  

σ̇ = σ̂ + Ω̇ σ − σ Ω̇ (A.9b)  

where ω̇lat
c should be computed with Eqs.(A.3) and (A.7) for the 1-site and 2-site EVPSC models, respectively. 
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Appendix A.3 Schemes to update the material state 

The following updates should be introduced after reaching self-consistency for the finite strain SC approach [11,12,39]:  

(1) Deformation and reorientation of ellipsoids: In the 1-site model, velocity gradient of a crystal (lc) is used to update the shape of the ellipsoid. In 
the 2-site model, we use the weighted average velocity gradient of the two ellipsoids within a pair (lave = w1 l1 + w2 l2) to update the shape of 
each ellipsoid in order to allow each ellipsoid to deform individually with the constraint from its partner. The deformation gradient of each 
ellipsoid at the i-th time step is defined as: 

Fi+1
c =

(
I+ li

c Δt
)
⋅Fi

c (A.10a)  

Fi+1
c =

(
I+ li

ave Δt
)
⋅Fi

c (A.10b)  

where Eqs.(A.10a) and (A.10b) are for 1-site and 2-site cases, respectively. It should be noted that lc = dc + ω̇cand lave = dave + ω̇avewith dave =

w1 d1 + w2 d2, and the contributions of ω̇cand ω̇aveare taken into account in a separate step (see Item (2) below). The updated shape and orientation of 
the ellipsoid is given by the square root of eigenvalues and eigenvectors of F⋅FT.  

(2) Rotations of ellipsoid and crystal lattice: Rodrigues’ rotation formula is used to update the morphological orientation with ω̇cfor the 1-site case 
(Eq.(A.2)) and ω̇avefor the 2-site case (Eq.(A.5)), and the crystallographic orientation with ω̇lat

c for the 1-site case (Eq.(A.3)) and ω̇lat
corot(Eq.(A.7)) 

for the 2-site case.  
(3) More updates for the 2-site EVPSC model [11]: The relative position of the two ellipsoids within each pair is rotated with ω̇ave(Eq.(A.5)) in order 

to follow the rotation of the local coordinate system. The distance between the two ellipsoids is also updated by adding up the average length of 
the three principal axes of ellipsoid # 1 and that of ellipsoid # 2. 
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of intergranular stresses based on a large-strain viscoplastic self-consistent 
polycrystal model, Model. Simulat. Mater. Sci. Eng. 6 (1998) 447–465, https://doi. 
org/10.1088/0965-0393/6/4/011. 

[38] M. Berveiller, O. Fassi-Fehri, A. Hihi, The problem of two plastic and 
heterogeneous inclusions in an anisotropic medium, Int. J. Eng. Sci. 25 (6) (1987) 
691–709, https://doi.org/10.1016/0020-7225(87)90058-9. 

[39] C.J. Neil, J.A. Wollmershauser, B. Clausen, C.N. Tomé, S.R. Agnew, Modeling 
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[48] C.N. Tomé, R.A. Lebensohn, C.T. Necker, Mechanical anisotropy and grain 
interaction in recrystallized aluminum, Metall. Mater. Trans. 33A (8) (2002) 
2635–2648, https://doi.org/10.1007/s11661-002-0385-x. 

H. Li et al.                                                                                                                                                                                                                                        

https://doi.org/10.1016/j.actamat.2014.03.038
https://doi.org/10.1016/j.actamat.2014.03.038
https://doi.org/10.1016/j.ijsolstr.2015.07.004
http://refhub.elsevier.com/S0921-5093(20)31389-7/sref34
http://refhub.elsevier.com/S0921-5093(20)31389-7/sref34
http://refhub.elsevier.com/S0921-5093(20)31389-7/sref35
http://refhub.elsevier.com/S0921-5093(20)31389-7/sref35
https://doi.org/10.1016/S1359-6454(01)00190-2
https://doi.org/10.1016/S1359-6454(01)00190-2
https://doi.org/10.1088/0965-0393/6/4/011
https://doi.org/10.1088/0965-0393/6/4/011
https://doi.org/10.1016/0020-7225(87)90058-9
https://doi.org/10.1016/j.ijplas.2010.03.005
https://doi.org/10.1155/2011/173782
https://doi.org/10.1155/2011/173782
https://doi.org/10.1186/s40064-016-2169-6
https://doi.org/10.1002/srin.201200099
https://doi.org/10.1002/srin.201200099
https://doi.org/10.1007/s11661-998-0041-1
https://doi.org/10.1007/BF02819263
https://doi.org/10.1107/S0021889808030112
https://doi.org/10.1107/S0021889808030112
https://doi.org/10.1016/0001-6160(87)90297-5
https://doi.org/10.1016/0001-6160(87)90297-5
http://refhub.elsevier.com/S0921-5093(20)31389-7/sref47
http://refhub.elsevier.com/S0921-5093(20)31389-7/sref47
http://refhub.elsevier.com/S0921-5093(20)31389-7/sref47
http://refhub.elsevier.com/S0921-5093(20)31389-7/sref47
https://doi.org/10.1007/s11661-002-0385-x

	Elastic-viscoplastic self-consistent modeling for finite deformation of polycrystalline materials
	1 Introduction
	2 Modeling
	2.1 Constitutive relations for rate-sensitive single crystals
	2.2 Homogenization approach for EVPSC modeling
	2.2.1 1-Site EVPSC modeling
	2.2.2 2-Site EVPSC modeling

	2.3 Finite strain approach for EVPSC modeling

	3 Results and discussion
	3.1 Application of 1-site EVPSC model to dynamic mechanical responses of steels at various strain rates and temperatures
	3.2 Application of 1-site EVPSC model to static mechanical response of a 316 ​L austenitic stainless steel
	3.3 Application of 2-site EVPSC model to axial lattice strains of Ni-based superalloys measured by neutron diffraction unde ...
	3.4 Application of 2-site EVPSC model to transverse lattice strains of Ni-based superalloys measured by neutron diffraction ...
	3.5 Discussion on the validity of the homogenization approach for EVPSC modeling

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Details of finite strain approach for EVPSC modeling
	Appendix A.1 Accounting for texture evolution at arbitrary strains
	Appendix A.2 An approximate finite strain algorithm
	Appendix A.3 Schemes to update the material state

	References


