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Abstract: For a spatially periodic convection-diffusion problem, we analyze a time steppingmethod based on
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a finite difference context.
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1 Introduction
In this paper, we shall consider a numerical method for the solution of the convection-diffusion problem in
the square Ω = (0, 1) × (0, 1),

∂U
∂t
= ∇ ⋅ (a∇U) + b ⋅ ∇U + F in Ω, for t ≥ 0, with u(0) = V, (1.1)

with periodic boundary conditions, where, with x = (x1, x2), the initial function V = V(x), the positive defi-
nite 2 × 2 matrix a = a(x) = (aij(x)), the vector b = b(x) = (b1(x), b2(x)) and the forcing term F = F(x, t) are
1-periodic in x1 and x2 and smooth. Our method is an explicit-implicit time stepping method based on Lie
splitting of a spatially discrete finite element version of (1.1).

With AU = −∇ ⋅ (a∇U) and BU = b ⋅ ∇U, the exact solution of (1.1) may be formally expressed as

U(t) = E(t)V +
t

∫
0

E(t − y)F(y) dy for t ≥ 0, where E(t) = e−t(A−B).

This representation in terms of the solution operator E(t) of the homogeneous case of (1.1) is the basis for our
discretizationmethod. Such amethodwas analyzed in [1]within the framework of finite differences, and here
our purpose is to carry out the corresponding program with finite elements. We refer to [1] also for further
references to work on splitting methods.

As a first step to define our finite element splitting method, we thus consider a spatially discrete finite
element version of (1.1). Let Th be a quasi-uniform family of triangulations of Ω, and let Sh be the periodic,
continuous piecewise linear functions on Th. With ( ⋅ , ⋅ ) the inner product in L2(Ω), and

A(ψ, χ) = (a ⋅ ∇ψ, ∇χ), B(ψ, χ) = (b ⋅ ∇ψ, χ) for all ψ, χ ∈ Sh ,
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the standard Galerkin spatially semidiscrete version of (1.1) is then to find u(t) ∈ Sh for t ≥ 0 such that

(ut , χ) + A(u, χ) − B(u, χ) = (F, χ) for all χ ∈ Sh , t ≥ 0, with u(0) = v ≈ V.

This equation may also be expressed in matrix form. With {Φj}Nj=1 the pyramid function basis for Sh, let

M = (mij), mij = (Φi , Φj), A = (aij), aij = A(Φi , Φj), B = (bij), bij = B(Φi , Φj),
f = (fj)T , fj = (F, Φj) and v = (v1, . . . , vN)T .

With uh(t) = ∑Nj=1 uj(t)Φj and u = (u1, . . . , uN)T , we have

Mu󸀠 +Au = Bu + f for t ≥ 0, with u(0) = v. (1.2)

For our purposes, it will be more convenient to use instead a semidiscrete method based on the lumped
mass method, employing the approximate inner product on Sh defined by

(ψ, χ)h = ∑
τ∈Th

Wτ,h(ψχ) withWτ,h(f) =
1
3 |τ|

3
∑
j=1
f(Pτ,j) ≈ ∫

τ

f dx,

where, for a triangle τ of the triangulation Th, Pτ,j , j = 1, 2, 3, are its vertices and where |τ| = area(τ); cf. [2,
Chapter 15]. We shall then consider the semidiscrete problem, with u(t) ∈ Sh for t ≥ 0,

(ut , χ)h + A(u, χ) − B(u, χ) = (F, χ) for all χ ∈ Sh , t ≥ 0, u(0) = v. (1.3)

Introducing the operators Ah , Bh : Sh → Sh by

(Ahψ, χ)h = A(ψ, χ), (Bhψ, χ)h = B(ψ, χ) for all ψ, χ ∈ Sh ,

equation (1.3) may also be written as

ut + Ahu − Bhu = f for t ≥ 0, with f = P̃hF, u(0) = v, (1.4)

where P̃h : L2 → Sh is defined by (P̃hF, χ)h = (F, χ) for all χ ∈ Sh. In matrix form, this means that the matrix
M in (1.2) is replaced by the diagonal matrixD = (dij), where dij = (Φi , Φj)h. The solution of (1.4) satisfies

u(t) = Eh(t)v +
t

∫
0

Eh(t − y)f(y) dy, where Eh(t) = e−t(Ah−Bh), for t ≥ 0.

We recall that Eh(t), the solution operator of the homogeneous case of (1.4), is stable and that the solution
of (1.4) satisfies an O(h2) error estimate for suitable v.

To define our basic finite element splitting method, let k be a time step and tn = nk for n ≥ 0. On each
time interval (tn−1, tn), we then introduce the Lie splitting Eh,k = ekBh e−kAh of Eh(k) and define a time discrete
solution of (1.4) by

un = Eh,kun−1 + kf n for n ≥ 1, with u0 = v. (1.5)

We note that the two factors of Eh,k are associated with the hyperbolic and parabolic parts of equation (1.1),
For a computable discretization in space and time, we then need to replace e−kAh and ekBh by rational

functions of Ah and Bh, respectively. For the parabolic part, we shall use the implicit backward Euler operator

Qh,k = (Ih + kAh)−1 ≈ e−kAh , (1.6)

where Ih is the identity operator on Sh. For the hyperbolic part, we define

Hh,k = Ih + kBh − γk2Lh ≈ ekBh ,

where the operator Lh, defined by (Lhψ, χ)h = (∇ψ, ∇χ) for all ψ, χ ∈ Sh, is added to secure stability, under
a mesh-ratio condition for k/h. In matrix form, the application of Hh,k takes the form

Dw = (D + kB − γk2L)v, where L = (lij), lij = ((∇Φi , ∇Φj)),

where the diagonal matrix on the left shows that Hh,k is essentially explicit.
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More generally, on each interval (tn−1, tn), we shall allow the usem steps of the hyperbolic time stepping
operator with step km = k/m, i.e., instead of Hh,k, we apply Hmh,km ≈ e

kBh . This will increase the accuracy and
the bound for the mesh ratio but not significantly the cost of the computation since Hh,km is explicit. We
consider thus the time discrete solution defined for n ≥ 1 by

ũnm = Ẽh,k,m ũn−1m + kf n , where Ẽh,k,m = Hmh,kmQh,k , with ũ0m = v. (1.7)

Our main result is then that, for v appropriate, the error satisfies

‖ũn − U(tn)‖ ≤ C󸀠T(U)h + C
󸀠󸀠
T (U)k + C

󸀠󸀠󸀠
T (U)km for tn ≤ T.

We remark that the first term in this error bound comes from the spatial discretization, the second from the
splitting and the backward Euler discretization of the parabolic part, and the third from the approximation of
the hyperbolic part. In [1], numerical illustrations of these partial errorswere presented in the finite difference
case, in the present context essentially corresponding to uniform triangulations, and we note that the spatial
discretization is then of order O(h2). In [1], the choice of m to balance the last two terms was also discussed.

2 Splitting of the Semidiscrete Problem
In this section, we will show that the result un in (1.5) of Lie splitting of the spatially discrete problem (1.3)
differs from the exact solution U(tn) of (1.1) by O(h + k), under the appropriate regularity assumptions and
choice of v.

For 1-periodic functions, we define ‖V‖s = ‖V‖Hs(Ω) for s ≥ 0. Note that ‖AV‖s ≤ C‖V‖s+2, ‖Bv‖s ≤ C‖V‖s+1
and ‖V‖s ≤ C(‖As/2V‖ + ‖V‖), where ‖V‖ = ‖V‖L2(Ω). Further, for (1.1), we recall the stability estimates

‖e−t(A−B)V‖s + ‖e−tAV‖s + ‖etBV‖s ≤ CT‖V‖s for s ≥ 0, 0 ≤ t ≤ T, (2.1)

and the smoothing property

‖E(t)V‖j ≤ Ct−(s−j)/2‖V‖s for 0 < s < j, t > 0. (2.2)

We begin the analysis with the following stability result for the operator Eh,k in (1.5). Here and below,
we shall use the norm ‖χ‖h = (χ, χ)1/2h on Sh, which is equivalent to ‖χ‖ or, more precisely, satisfies

1
4 ‖χ‖h ≤ ‖χ‖ ≤ ‖χ‖h .

Lemma 2.1. With β0 = 1
2 ‖div b‖ℂ, we have, for v ∈ Sh and t ≥ 0,

‖e−t(Ah−Bh)v‖h + ‖etBh v‖h ≤ eβ0 t‖v‖h and ‖e−tAh v‖h ≤ ‖v‖h . (2.3)

Further, for Eh,k = ekBh e−kAh , we have

‖Enh,kv‖h ≤ e
β0 tn‖v‖h for v ∈ Sh , n ≥ 0. (2.4)

Proof. Since, for χ ∈ Sh,

|B(χ, χ)| = |(b ⋅ ∇χ, χ)| = |12 (div bχ, χ)| ≤ β0‖χ‖
2 ≤ β0‖χ‖2h , (2.5)

we have, for the solution u(t) = e−t(Ah−Bh)v of (1.4) with f = 0,

(ut , u)h + A(u, u) = B(u, u) ≤ β0‖u‖2h for t ≥ 0.

Hence (d/dt)‖u‖h ≤ β0‖u‖h, fromwhich the first part of (2.3) follows. The other parts are shown analogously.
For (2.4), we conclude

‖Enh,kv‖h = ‖(e
kBh e−kAh )nv‖h ≤ eβ0nk‖v‖h .
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We next show an error estimate for one step of the Lie splitting of E(k).

Lemma 2.2. We have, for Ek = ekBe−kA,

‖EkV − E(k)V‖ ≤ Ckj‖V‖2j , j = 1, 2. (2.6)

Proof. Setting G(t) = etBe−tA − e−t(A−B) and noting that G(0) = G󸀠(0) = 0, we have, by Taylor’s formula,

‖G(k)V‖ = ‖(G(k) − G(0) − kG󸀠(0))V‖ ≤ 12 k
2 sup
s≤k
‖G󸀠󸀠(s)V‖.

Here, for s ≤ k,
‖G󸀠󸀠(s)V‖ ≤ C ∑

i1+i2=2
‖Bi1esBAi2e−sAv‖ + ‖(A − B)2e−s(A−B)V‖ ≤ C‖V‖4,

which by (2.1) shows (2.6) for j = 2. In the same way, the case j = 1 follows from ‖G󸀠(s)V‖ ≤ C‖V‖2 for s ≤ k.

We shall need error bounds for the spatial discretizations of the parabolic and hyperbolic parts of Eh,k. Here
and below, we shall use the Ritz projection Rh : H1 → Sh defined by Â(RhV − V, χ) = 0 for all χ ∈ Sh, where
Â(ψ, χ) = A(ψ, χ) + (ψ, χ). Recall that

‖RhV − V‖s ≤ Chj−s‖V‖j for s = 0, 1, s ≤ j ≤ 2. (2.7)

We also recall that, for εh(ψ, χ) = (ψ, χ)h − (ψ, χ),

|εh(ψ, χ)| ≤ Ch2‖∇ψ‖‖∇χ‖ ≤ Chj‖ψ‖j‖χ‖ for all ψ, χ ∈ Sh , j = 0, 1, (2.8)

where, in the last step, we have used the inverse inequality

‖χ‖1 ≤ νh−1‖χ‖ for χ ∈ Sh , (2.9)

valid since the family {Th} is quasi-uniform.

Lemma 2.3. For any ε > 0 and for j = 0, 1, we have

‖e−kAhRhV − Rhe−kAV‖ ≤ Cεkjh‖V‖sj , where s0 = 1 + ε, s1 = 3, (2.10)
‖ekBhRhV − RhekBV‖ ≤ Ckhj‖V‖1+j . (2.11)

Proof. For (2.10), we set W(t) = e−tAV and w(t) = e−tAhRhV. We want to bound θ(k), where θ = w − RhW.
With ρ = RhW −W, we have

(θt , χ)h + A(θ, χ) = −(ρt , χ) + (ρ, χ) − εh(RhWt , χ) for all χ ∈ Sh , for t ≥ 0.

Choosing χ = θ, we find, using (2.7) and (2.8), for t ≥ 0,

d
dt
‖θ‖h ≤ C(‖ρt‖ + ‖ρ‖ + h‖RhWt‖1) ≤ Ch‖W‖3 ≤ Cht−

1
2 (3−sj)‖V‖sj .

Since θ(0) = 0, this shows ‖θ(k)‖ ≤ Chk 1
2 (sj−1)‖V‖sj and thus (2.10).

For (2.11), we setW(t) = etBV and w(t) = etBhRhV. In this case, again with θ = w − RhW, ρ = RhW −W,
we have

(θt , χ)h = B(θ, χ) − (ρt , χ) + B(ρ, χ) − εh(RhWt , χ) for all χ ∈ Sh , for t ≥ 0.

Choosing χ = θ and using (2.5), (2.7) and (2.8), we find

d
dt
‖θ‖h ≤ β0‖θ‖ + C(‖ρt‖ + ‖ρ‖1 + hj‖RhWt‖j) ≤ β0‖θ‖h + Chj‖V‖1+j ,

which implies (2.11) since θ(0) = 0.

This shows the following error estimate for the operator Eh,k.
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Lemma 2.4. For any ε > 0, we have, for j = 0, 1, with s0 = 1 + ε, s1 = 3,

‖Eh,kRhV − RhE(k)V‖ ≤ Cεkjh‖V‖sj + Ck1+j‖V‖2+2j . (2.12)

Proof. Recalling Ek = ekBe−kA, we have

Eh,kRh − RhEk = ekBh (e−kAhRh − Rhe−kA) + (ekBhRh − RhekB)e−kA .

Hence, by Lemmas 2.1 and 2.3, ‖Eh,kRhV − RhEkV‖ is bounded as in (2.12). By Lemma 2.2 and the bounded-
ness of Rh, we also find ‖Rh(Ek − E(k))V‖ ≤ Ck1+j‖V‖2+2j, j = 0, 1. Together, these estimates show the lemma.

We now show a global error estimate for the homogeneous equation.

Lemma 2.5. We have, for any ε > 0, if ‖v − V‖ ≤ Ch‖V‖1,

‖Enh,kv − E(tn)V‖ ≤ C
󸀠
ε,Th‖V‖1+ε + C󸀠󸀠ε,Tk‖V‖2+ε for tn ≤ T. (2.13)

Proof. We find, using (2.4), and Lemma 2.4 with j = 0 for the first term on the right below and with j = 1 for
the terms in the sum, and then the smoothing estimate (2.2),

‖(Enh,kRh − RhE(tn))V‖ =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

n−1
∑
j=0
En−j−1h,k (Eh,kRh − RhE(k))E(tj)V

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ C‖(Eh,kRh − RhE(k))V‖ + C
n−1
∑
j=1
‖(Eh,kRh − RhE(k))E(tj)V‖

≤ Cεh‖V‖1+ε + Ck‖V‖2 + Ck
n−1
∑
j=1
(h‖E(tj)V‖3 + k‖E(tj)V‖4)

≤ Cε(1 + k
n−1
∑
j=1
t−1+ε/2j )(h‖V‖1+ε + k‖V‖2+ε).

Since ‖Enh,k(v − RhV)‖ + ‖(Rh − I)E(tn)V‖ ≤ Ch‖V‖1, (2.13) follows.

One possible choice for v with ‖v − V‖ ≤ Ch‖V‖1 which will be used below is v = P̃hV. In fact, since

(P̃hV − PhV, χ)h = −εh(PhV, χ),

we find ‖P̃hV − PhV‖h ≤ Ch‖PhV‖1 ≤ Ch‖V‖1, from which our claim follows.
We now show a complete error estimate for our basic splitting method.

Theorem 2.1. Let un be the solution of (1.5) with ‖v − V‖ ≤ Ch‖V‖1 and U(tn) that of (1.1). Then we have, for
any ε > 0, tn ≤ T,

‖un − U(tn)‖ ≤ C󸀠ε,ThZ1+ε(U, tn) + C󸀠󸀠ε,TkẐ2+ε(U, tn),

where

Zs(U, t) = ‖V‖s +
t

∫
0

‖F(y)‖s dy, Ẑs(U, t) = Zs(U, t) +
t

∫
0

‖F󸀠(y)‖ dy.

Proof. In view of Lemma 2.5, it suffices to consider the case v = 0. Recalling that f = P̃hF, we may write the
error en = un − U(tn) as

en = k
n
∑
j=1
En−jh,k f

j −
tn

∫
0

E(tn − y)F(y) dy

= k
n
∑
j=1
(En−jh,k P̃h − E(tn−j))F

j +
n
∑
j=1
(kE(tn−j)F j − ∫

Ij

E(tn − y)F(y) dy) = J󸀠 + J󸀠󸀠, Ij = (tj−1, tj).
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To bound J󸀠, we set Fh,k,j = E
j
h,k P̃h − E(tj) and write

k(En−jh,k P̃h − E(tn−j))F
j = ∫

Ij

Fh,k,n−jF(y) dy + ∫
IJ

tj

∫
y

Fh,k,n−jF󸀠(σ) dσ dy.

By Lemma 2.5, we find

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

n
∑
j=1
∫
Ij

Fh,k,n−jF(y) dy
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ Cε,T

tn

∫
0

(h‖F(y)‖1+ε + k‖F(y)‖2+ε) dy

and, since Fh,k,j is bounded,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

n
∑
j=1
∫
Ij

tj

∫
y

Fh,k,n−jF󸀠(σ) dσ dy
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ Cε,Tk

tn

∫
0

‖F󸀠(y)‖ dy.

Thus J󸀠 is bounded as claimed. Similarly, J󸀠󸀠 = ∑nj=1 J󸀠󸀠j , where

J󸀠󸀠j = ∫
Ij

(E(tn−j)F j − E(tn − y)F(y)) dy = ∫
Ij

tj

∫
y

d
dσ
(E(tn − σ)F(σ)) dσ dy

= ∫
Ij

tj

∫
y

E(tn − σ)((A −B)F(σ) + F󸀠(σ)) dσ dy.

Thus, using the stability of E(t),

‖J󸀠󸀠‖ ≤
n
∑
j=1
‖J󸀠󸀠j ‖ ≤ CTk

tn

∫
0

(‖F(σ)‖2 + ‖F󸀠(σ)‖) dσ for tn ≤ T.

Adding these estimates completes the proof.

3 Complete Discretization in Time and Space
We now turn to the analysis of the complete discretization using the operators Qh,k and Hmh,km in (1.6) and
(1.7) for the parabolic and hyperbolic factors of Eh,k = ekBh e−kAh . We note that, since

|(Bhψ, χ)h| ≤ ‖b ⋅ ∇ψ‖‖χ‖ ≤ β1‖∇ψ‖‖χ‖ for ψ, χ ∈ Sh , where β1 = sup
Ω
|b(x)|,

we have ‖Bhψ‖h ≤ β1‖∇ψ‖ for ψ ∈ Sh. Further, by (2.9), ‖Lhψ‖h ≤ νh−1‖∇ψ‖.
We shall first consider the stability of Ẽh,k,m.

Lemma 3.1. We have ‖Qh,kv‖h ≤ ‖v‖h for v ∈ Sh. Let β0 = 1
2 ‖div b‖ℂ and β1 and ν as above. Then, if γ > β

2
1, we

have
‖Hmh,km v‖h ≤ (1 + β0k)‖v‖h for km/h ≤ λ0 = √(γ − β21)/(γν)2.

The time stepping operator Ẽhk,m = Hmh,kmQh,k is stable and

‖Ẽnh,k,mv‖h ≤ e
β0 tn‖v‖h for tn ≥ 0. (3.1)

Proof. The first inequality is obvious by the definition of Qh,k. For the hyperbolic part, we begin with m = 1.
Settingw1 = Hh,kv, w0 = v, we have ∂̄tw1 + γkLhv = Bhv, where ∂̄tw1 = (w1 − w0)/k. Recalling (2.5), we have

(∂̄tw1, v)h + γk‖∇v‖2 = B(v, v) ≤ β0‖v‖2 ≤ β0‖v‖2h
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or, writing v = 1
2 (w

1 + v) − 1
2 (w

1 − v),

1
2 (‖w

1‖2h − ‖v‖
2
h) −

1
2 ‖w

1 − v‖2h + γk
2‖∇v‖2 ≤ β0k‖v‖2h . (3.2)

Here, since w1 − v = kBhv − k2γLhv and using (2.9), we have, for k/h ≤ λ0,

1
2 ‖w

1 − v‖2h ≤ k
2‖Bhv‖2h + γ

2k4‖Lhv‖2h ≤ k
2(β21 + γ

2ν2λ20)‖∇v‖
2 = γk2‖∇v‖2.

Hence, by (3.2), ‖w1‖2h ≤ (1 + 2β0k)‖v‖
2
h, which shows our claim for m = 1.

For m > 1, we have

‖Hmh,km v‖h ≤ (1 + β0km)
m‖v‖h ≤ eβ0k‖v‖h for km/h ≤ λ0, (3.3)

and (3.1) now follows at once.

For our analysis, we shall need norms on Sh which are analogues of ‖ ⋅ ‖s. We introduce Āh : Sh → Sh by
(Āhψ, χ) = A(ψ, χ) for all χ ∈ Sh. Noting that Āh is positive semidefinite, we set Âh = Āh + Ih and define

‖ψ‖h,s = ‖Âs/2h ψ‖ = (Âshψ, ψ)
1/2 for all ψ ∈ Sh , for s ≥ 0.

For s = 1, we have the obvious norm equivalence c‖ψ‖1 ≤ ‖ψ‖h,1 ≤ C‖ψ‖1 for ψ ∈ Sh, with c > 0, and, by the
inverse inequality (2.9),

‖ψ‖h,s ≤ (ρ/h)s−j‖ψ‖h,j for ψ ∈ Sh , 0 ≤ j ≤ s. (3.4)

We shall need the following lemma.

Lemma 3.2. We have
‖etBh v‖h,2 ≤ C‖v‖h,2 for v ∈ Sh , 0 ≤ t ≤ Ch. (3.5)

Proof. We first show
‖Bhψ‖h,1 ≤ C‖ψ‖h,2 for ψ ∈ Sh . (3.6)

We see at once that P̃h is bounded on L2 and, using (2.9),

‖P̃hψ‖1 ≤ ‖Rhψ‖1 + Ch−1‖P̃hψ − ψ‖h + Ch−1‖Rhψ − ψ‖ ≤ C‖ψ‖1.

Inequality (3.6) may also be formulated as ‖BhThψ‖1 ≤ C‖ψ‖ for ψ ∈ Sh, where Th = Â−1h . To show this
inequality, we have, with T = (A + I)−1,

‖BhThψ‖1 ≤ ‖P̃h(b ⋅ ∇T)ψ‖1 + Ch−1‖P̃h(b ⋅ ∇(Th − T))ψ‖h
≤ C‖∇Tψ‖1 + Ch−1‖(Th − T)ψ‖1 ≤ C‖Tψ‖2 ≤ C‖ψ‖.

With w(t) = etBh v and (ψ, χ)h,2 = (Âhψ, Âhχ) for ψ, χ ∈ Sh, we have, using (3.4) and (3.6),

1
2
d
dt
‖w‖2h,2 = (wt , w)h,2 = (Bhw, w)h,2 ≤ Ch

−1‖Bhw‖h,1‖w‖h,2 ≤ Ch−1‖w‖2h,2.

Hence, by integration, ‖w(t)‖h,2 ≤ CeCth
−1
‖v‖h,2, which shows (3.5).

We have the following error estimates for one step of the parabolic and hyperbolic approximations.

Lemma 3.3. We have, for v ∈ Sh,

‖(Qh,k − e−kAh )v‖ ≤ Ckhj‖v‖h,2+j + Ck1+j‖v‖h,2+2j , j = 0, 1. (3.7)

With β1, γ, λ0 as in Lemma 3.1, we have, for km/h ≤ λ0,

‖(Hmh,km − e
kBh )v‖ ≤ Cm−1k2‖v‖h,2 for v ∈ Sh . (3.8)

Proof. We first note that, with Q̄h,k = (Ih + kĀh)−1,

‖(Q̄h,k − e−kĀh )v‖ ≤ Ck1+j‖Ā
1+j
h v‖ ≤ Ck1+j‖v‖h,2+2j for all v ∈ Sh .
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Estimate (3.7) will now follow from

‖Qh,k − Q̄h,k)v‖ + ‖(ekAh − e−kĀh )v‖ ≤ Ckhj‖v‖h,2+j for all v ∈ Sh . (3.9)

Setting w1 = Qh,kv, w̄1 = Q̄h,kv, w0 = w̄0 = v and ωj = wj − w̄j, we have

(∂̄tω1, χ)h + A(ω1, χ) = εh(∂̄tw̄1, χ) for χ ∈ Sh

or, with χ = ω1, since ω0 = 0, and using (2.8),

‖Qh,k − Q̄h,k)v‖ = ‖ω1‖ ≤ Ckhj‖∂̄tw̄1‖j ≤ Ckhj‖Āhw̄1‖j ≤ Ckhj‖v‖h,2+j .

Now, let w(t) = e−tAh v, w̄(t) = e−tĀh v, and set θ(t) = w(t) − w̄(t). Then

(θt , χ)h + A(θ, χ) = εh(w̄t , χ) for χ ∈ Sh , t ≥ 0, with θ(0) = 0.

Setting χ = θ and using (2.8), we obtain

‖θ(k)‖h ≤ Chj
k

∫
0

‖w̄t(s)‖j ds ≤ Chj
k

∫
0

‖Āhw̄(s)‖j ds ≤ Ckhj‖v‖h,2+j ,

which completes the proof of (3.9).
We turn to (3.8) and begin with m = 1. We have

‖(Hh,k − ekBh )v‖ ≤ ‖(Ih + kBh − ekBh )v‖ + γk2‖Lhv‖

Using (3.6) and (3.5), we obtain

‖(Hh,k − ekBh )v‖ ≤ Ck2 sup
s≤k
‖B2he

sBh v‖ ≤ Ck2‖v‖h,2.

To complete the proof, we show ‖Lhv‖ ≤ C‖v‖h,2 or, equivalently, with Th as in Lemma 3.2, ‖LhThv‖ ≤ C‖v‖.
For this, we use the Ritz projection defined by (∇R̃hw, ∇χ) + (R̃hw, χ) = (∇w, ∇χ) + (w, χ) for all χ ∈ Sh. We find
(Lh R̃hw, χ)h = (∇R̃hw, ∇χ) = (∇w, ∇χ) − (R̃hw − w, χ) = −(∆w, χ) − (R̃hw − w, χ) and hence ‖Lh R̃hw‖ ≤ C‖w‖2.
Using also ‖Lhχ‖ ≤ Ch−2‖χ‖, the proof is completed by

‖LhThw‖ ≤ ‖Lh R̃hTw‖ + Ch−2(‖R̃hTw − Tw‖ + ‖Thw − Tw‖) ≤ C‖w‖.

To show (3.8) for m > 1, we write

Hmh,km v − e
kBh v =

m−1
∑
j=0

Hm−j−1h,km (Hh,km − e
kmBh )ejkmBh v. (3.10)

By Lemma 3.2 with t = jkm ≤ k ≤ λ0h, we have ‖ejkmBh v‖h,2 ≤ C‖v‖h,2. Using (3.10), (3.3) and the already
proven case of (3.8), with k replaced by km, we find

‖Hmh,km v − e
kBh v‖h ≤ eβ0k

m−1
∑
j=0
‖(Hh,km − ekmBh )ejkmBh v‖h

≤ Ck2m
m−1
∑
j=0
‖ejkmBh v‖h,2 ≤ Cmk2m‖v‖h,2 = Cm−1k2‖v‖h,2.

As a result, we have the following error estimate for the completely discrete time stepping operator.

Lemma 3.4. If γ > β21 and km/h ≤ λ0, we have, with s0 = 1 + ε, s1 = 3,

‖Ẽh,k,mRhV − RhE(k)V‖ ≤ C󸀠khj‖V‖sj + C󸀠󸀠k1+j‖V‖2+2j + C󸀠󸀠󸀠m−1k2‖V‖2 for j = 0, 1.
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Proof. In view of Lemma 2.4, it remains to bound (Ẽh,k,m − Eh,k)RhV. We have, for v ∈ Sh, by Lemmas 3.1
and 3.3,

‖(Ẽh,k,m − Eh,k)v‖ ≤ ‖Hmh,km (Qh,k − e
−kAh )v‖ + ‖(Hmh,km − e

kBh )e−ktAh v‖

≤ C󸀠khj‖v‖h,1+2j + C󸀠󸀠k1+j‖v‖h,2+2j + C󸀠󸀠󸀠m−1k2‖v‖h,2.

For v = RhV, we find ‖v‖h,2 ≤ C‖V‖2, and since ÂhRh = Ph Â,

‖v‖h,4 = ‖Â2hRhV‖ = ‖ÂhPhAV‖ ≤ ‖ÂhRhAV‖ + ‖Âh(Ph − Rh)ÂV‖
≤ ‖Ph Â2V‖ + Ch−2h2‖ÂV‖2 ≤ C‖V‖4,

and similarly, ‖v‖h,3 ≤ C‖V‖3, which completes the proof of the lemma.

This implies the following result for the homogeneous equation.

Lemma 3.5. Let ε > 0 and γ > β21. Then, if ‖v − V‖ ≤ Ch‖V‖1, we have, for km/h ≤ λ0, tn ≤ T,

‖Ẽnh,k,mv − E(tn)V‖ ≤ C
󸀠
ε,Th‖V‖1+ε + C󸀠󸀠ε,Tk‖V‖2+ε + CTm−1k‖V‖ε .

Proof. Using the stability of Ẽh,k,m and Lemma 2.4 instead of Lemma 3.4, the result follows as that in
Lemma 2.5.

We are now ready to formulate our main result.

Theorem 3.1. Assume that γ > β21. Then, for the solutions ũn of (1.7) with ‖v − V‖ ≤ h‖V‖1 and U(tn) of (1.1),
we have, with Zs(U, t) and Ẑs(U, t) as in Theorem 2.1, for any ε > 0 and km/h ≤ λ0,

‖ũn − U(tn)‖ ≤ C󸀠ε,ThZ1+ε(U, tn) + C󸀠󸀠ε,TkẐ2+ε(U, tn) + C󸀠󸀠󸀠ε,Tm−1kZε(U, tn).

Proof. The proof is analogous to that of Theorem2.1, with Eh,k replaced by Ẽh,k,m, the stability property (2.4)
by (3.1), and Lemma 2.5 by Lemma 3.5.
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