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Abstract: For a spatially periodic convection-diffusion problem, we analyze a time stepping method based on
Lie splitting of a spatially semidiscrete finite element solution on time steps of length k, using the backward
Euler method for the diffusion part and a stabilized explicit forward Euler approximation on m > 1 intervals
of length k/m for the convection part. This complements earlier work on time splitting of the problem in
a finite difference context.
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1 Introduction

In this paper, we shall consider a numerical method for the solution of the convection-diffusion problem in
the square Q = (0, 1) x (0, 1),

%—ltjzv-(aVU)+b-VU+F inQ, fort>0, withu(0)=1VY, (1.1)
with periodic boundary conditions, where, with x = (x1, x»), the initial function V = V(x), the positive defi-
nite 2 x 2 matrix a = a(x) = (a;j(x)), the vector b = b(x) = (b1(x), b»(x)) and the forcing term F = F(x, t) are
1-periodic in x; and x, and smooth. Our method is an explicit-implicit time stepping method based on Lie
splitting of a spatially discrete finite element version of (1.1).

With AU = -V - (aVU) and BU = b - VU, the exact solution of (1.1) may be formally expressed as
t
U(t) = )V + J E(t-y)F(y)dy fort>0, where&(t)=e 4B,
0
This representation in terms of the solution operator £(t) of the homogeneous case of (1.1) is the basis for our
discretization method. Such a method was analyzed in [1] within the framework of finite differences, and here
our purpose is to carry out the corresponding program with finite elements. We refer to [1] also for further
references to work on splitting methods.
As a first step to define our finite element splitting method, we thus consider a spatially discrete finite
element version of (1.1). Let Ty be a quasi-uniform family of triangulations of Q, and let Sy be the periodic,
continuous piecewise linear functions on Jj. With (-, - ) the inner product in L,(Q), and

AW, x)=(a-Vy,Vy), B,x)=(b-Vip,x) forally,y e Sp,
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the standard Galerkin spatially semidiscrete version of (1.1) is then to find u(t) € Sy, for t > 0 such that
(ug, ) +A(u, x) - B(u, x) = (F,x) forally € Sy, t>0, withu(0)=v="W
This equation may also be expressed in matrix form. With {CD]-}].AL , the pyramid function basis for S, let
M = (my), myj = (D, Dj), A= (ay), aij = A(D;, D;), B =(by), bij = B(D;, D)),
f=)T, fi=(F,®) and v=(vq,...,vy).
With up(t) = Zfil uj()®jandu = (uy, ..., uy)’, we have
Mu' + Au=Bu+f fort>0, withu(0)=v. (1.2)

For our purposes, it will be more convenient to use instead a semidiscrete method based on the lumped
mass method, employing the approximate inner product on Sy defined by

3
0n= T Wenp) with Wen(h) = 5lel Y f(Pe) = [ £dx,
T€Th j=1 T

where, for a triangle 7 of the triangulation T, Prj, j = 1, 2, 3, are its vertices and where |7| = area(7); cf. [2,
Chapter 15]. We shall then consider the semidiscrete problem, with u(t) € Sy, for t > 0,

(ue, Y)n + A(u, x) = B(u, x) = (F,x) forally € Sp, t >0, u(0)=v. (1.3)
Introducing the operators Ay, Bp: Sp — Sp by

(A, n =AW, x),  (Brp, Y)n =By, x) forally,x € Sp,
equation (1.3) may also be written as
Ur+Apu—Bpu=f fort>0, withf=PyF, u(0)=v, (1.4)

where Py: L, — Sy, is defined by (P,F, X)n = (F,x) for all y € Sy. In matrix form, this means that the matrix
M in (1.2) is replaced by the diagonal matrix D = (d;;), where dj; = (®;, ®;)p. The solution of (1.4) satisfies

t
u(t) = En(v + JEh(t )y dy, where Ep(t) = et B0 forts 0,
0

We recall that E,(t), the solution operator of the homogeneous case of (1.4), is stable and that the solution
of (1.4) satisfies an O(h?) error estimate for suitable v.

To define our basic finite element splitting method, let k be a time step and t, = nk for n > 0. On each
time interval (f,-1, tn), we then introduce the Lie splitting Ep x = ekBre=kan of E1, (k) and define a time discrete
solution of (1.4) by

u" = Epqu™t + kf" forn=1, withu®=v. (1.5)

We note that the two factors of Ej, i are associated with the hyperbolic and parabolic parts of equation (1.1),
For a computable discretization in space and time, we then need to replace e ¥4 and e+ by rational
functions of A, and By, respectively. For the parabolic part, we shall use the implicit backward Euler operator

Qnic = (In + kAp) ™ = e7F4n, (1.6)
where Iy, is the identity operator on Sy. For the hyperbolic part, we define
Hpx =1In+kBp - ykth = e"B",

where the operator Ly, defined by (Ln, x)n = (V§, Vy) for all Y, x € Sy, is added to secure stability, under
a mesh-ratio condition for k/h. In matrix form, the application of Hp, i takes the form

DwW = (D + kB - yk*L)v, where £ = (l), lj = (VD;, VD)),

where the diagonal matrix on the left shows that Hy, i is essentially explicit.
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More generally, on each interval (t,-1, t,), we shall allow the use m steps of the hyperbolic time stepping
operator with step kp, = k/m, i.e., instead of Hp,k, we apply H,’['f Ky = e*Br, This will increase the accuracy and
the bound for the mesh ratio but not significantly the cost of the computation since Hj i, is explicit. We
consider thus the time discrete solution defined for n > 1 by

Uy = Enjmtly - +kf",  where Epjom = Hy'y Qni,  With i = v. (1.7)
Our main result is then that, for v appropriate, the error satisfies
1" - Uta)ll < CH(UR + CHU)k + CF (Uky  fort, < T.

We remark that the first term in this error bound comes from the spatial discretization, the second from the
splitting and the backward Euler discretization of the parabolic part, and the third from the approximation of
the hyperbolic part. In [1], numerical illustrations of these partial errors were presented in the finite difference
case, in the present context essentially corresponding to uniform triangulations, and we note that the spatial
discretization is then of order O(h?). In [1], the choice of m to balance the last two terms was also discussed.

2 Splitting of the Semidiscrete Problem

In this section, we will show that the result u™ in (1.5) of Lie splitting of the spatially discrete problem (1.3)
differs from the exact solution U(t,) of (1.1) by O(h + k), under the appropriate regularity assumptions and
choice of v.

For 1-periodic functions, we define || V||s = || Vl|lgs(q) for s > 0. Note that [[AV]ls < Cl|Vls+2, [BVIls < CIVlls+1
and || V|s < C(IAS/2 V| + | VI), where | V] = [|V||L,(q). Further, for (1.1), we recall the stability estimates

le tA=By|s + le A V|s + |eBV|s < Cr|V|s fors=0, 0<t<T, 2.1
and the smoothing property
IE@V]; < CEED2| Vg foro<s<j, t>0. (2.2)

We begin the analysis with the following stability result for the operator Ej  in (1.5). Here and below,
we shall use the norm [[y|| = (¥, X),ll/ 2 on Sp, which is equivalent to [y|| or, more precisely, satisfies

2l < 1l < -
Lemma 2.1. With Bo = 1||div blic, we have, forv € Sy and t > 0,
le™ " An=Boyy + eBrv], < efollviy and e Vly < [Vilh. (2.3)
Further, for Ep i = eBre~k4r we have
IER (vin < ety forv e Sy, n>o0. (2.4)
Proof. Since, for y € Sp,
IBOG ! = 1B - VX, X1 = 15(div by, X)I < BolixlI® < Bollxll3, (2.5)
we have, for the solution u(t) = e~/4»=Bwy of (1.4) with f = 0,
(ug, Wh + A(u, u) = Bu, u) < Bolull; fort>o.

Hence (d/dt)|lully < Bollulln, from which the first part of (2.3) follows. The other parts are shown analogously.
For (2.4), we conclude
IER viin = (e Bre~ n)v]ly < efo ™|y, O
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We next show an error estimate for one step of the Lie splitting of (k).
Lemma 2.2. We have, for &) = ekBe kA
IExV - MOV < CK VI, j=1,2. (2.6)

Proof. Setting G(t) = e!Be~tA — ¢~4=B) and noting that G(0) = G'(0) = 0, we have, by Taylor’s formula,

, 1
GV = (G(k) — G(0) - kG (0)) V]| < zkz SUEIIG"(S)VII-

Here, for s < k,
IG"s)VI<C ) [B'eBARe 4| + (A - B)?eS“ BV < C|| V],

i1+iy=2
which by (2.1) shows (2.6) for j = 2. In the same way, the case j = 1 follows from |G’ (s) V| < C||V|, for s < k.
O

We shall need error bounds for the spatial discretizations of the parabolic and hyperbolic parts of Ej, x. Here
and below, we shall use the Ritz projection Ry : H' — Sy, defined by A(R,V -V, x) = 0 for all x € Sp,, where

A@,x) = A, x) + (¥, X). Recall that
IRRV - Vs < CWS|V]; fors=0,1, s<j<2. (2.7)
We also recall that, for e (1, x) = (Y, Y)n — (Y, X),
len(W, X)I < CR*IVYIIVYI < CH Il forall, x € Sy, j=0,1, (2.8)
where, in the last step, we have used the inverse inequality
Ixlla < vh~ 'l forx € S, (2.9)
valid since the family {73} is quasi-uniform.
Lemma 2.3. Forany € > 0 and forj = 0, 1, we have

le 4" RnV ~ Rne V] < CKh|VIs;, whereso=1+e, s1=3, (2.10)
le*Br R,V — RyekB V|| < CkW || V]|y4. (2.11)

Proof. For (2.10), we set W(t) = e""AV and w(t) = e""4" R, V. We want to bound 6(k), where 8 = w — R, W.
With p = R, W - W, we have

O, \)n +AB, x) = (ot x) + (0, X) — en(Ry Wy, x) forally € Sp, fort>0.
Choosing y = 0, we find, using (2.7) and (2.8), for t > 0,
d 1(3_s:
Ellellh < C(lpell + lipll + RIRE Well1) < Ch|W|i3 < Cht 30 s’)||V||s,~-

Since 6(0) = 0, this shows [|0(k)]| < Chk%(sf’l)llvusi and thus (2.10).
For (2.11), we set W(t) = !BV and w(t) = e’®»R,, V. In this case, again with = w — R, W, p = Ry W - W,
we have
(B, X)n = B(6,X) = (P, X) + B(p, X) — €n(Ru Wy, x) forally € Sp, fort > 0.

Choosing x = 6 and using (2.5), (2.7) and (2.8), we find

d ; .
7¢19n < BollOll + Clllpell + ol + WRyWelj) < BollBlln + CH I Vll1j,

which implies (2.11) since 6(0) = 0. O

This shows the following error estimate for the operator Ep .
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Lemma 2.4. For any € > 0, we have, for j =0, 1, withsg = 1+ ¢, 51 = 3,

|EnkRRV = RpEFOVI < CeK RIVIls; + KM Voo (2.12)
Proof. Recalling & = e*Be*4, we have
En xRy — Rpé&x = e*Br(e ™nRy, — Rpe ™ ) + (e*Br Ry, — Rye*B)e ™4,

Hence, by Lemmas 2.1 and 2.3, |[Ep,kRnV — RnEx V| is bounded as in (2.12). By Lemma 2.2 and the bounded-
ness of Ry, we also find |[Rx(&x — E(K) V|| < CkIH|| Vll242j,j = 0, 1. Together, these estimates show the lemma.

O
We now show a global error estimate for the homogeneous equation.
Lemma 2.5. We have, for any € > 0, if |v — V|| < Ch|| V|1,
IE} v — Et)VIl < Cp phllVIl1se + C rklIVll24e  fortn < T. (2.13)

Proof. We find, using (2.4), and Lemma 2.4 with j = O for the first term on the right below and with j = 1 for
the terms in the sum, and then the smoothing estimate (2.2),

I(Ep xR — Ru€(ta)) VI =

n-1 )
Y Ey (EnaRn - Rhé:(k))e(tj)V“
j=0

n-1
< Cl(En,kRn = RhER)VI + C Y I(En,kRn - RnE)Et) V]
j=1
n-1
< Cehl|Vliyse + CIVIz + Ck Y (RIEt) VI3 + KIEt) ViIa)
j=1
n-1 Lie/2
< cg(l DN Al )(h||V||1+s + kI Vl21e)-
j=1
Since ||E2,k(v — Ry + IRy = DE(t,) V|| < Ch|| V1, (2.13) follows. O

One possible choice for v with [|v — V|| < Ch||V||; which will be used below is v = P, V. In fact, since
(PrV = PrV, )n = —en(PrV, x),

we find |PrV = PrV|n < Ch|Pr V|1 < Ch| V|1, from which our claim follows.
We now show a complete error estimate for our basic splitting method.

Theorem 2.1. Let u" be the solution of (1.5) with |v - V| < Ch| V|1 and U(ty) that of (1.1). Then we have, for
anye>0,t, <T,
lu — U(ta)ll < Ci;,ThZIJrs(U, tn) + Cg,TkZhs(U, tn),

where

t t
Zs(U, t) = |Vls + JIIF(Y)IIS dy, Zs(U,t) = Zs(U, t) + JIIF'()’)II dy.
0 0

Proof. In view of Lemma 2.5, it suffices to consider the case v = 0. Recalling that f = P,F, we may write the
error e = u" - U(t,) as

ty
n .
e~ kY Eplf - [ et - nFo) dy
j=1 0

=k Y (Ep 1Py - E(tny))F + Z(kean_j)Ff - j &(tn - Y)F(y) dy) =J'+]", I = (i, ty).
j:1 j:1 Ij
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To bound J', we set Fp i,j = E’h P — E(tj) and write
&

K(ER P~ E(ta D = | Fnson i F @) dy + [ [ TnsonsF'(0) do dy.
I Iy

<

By Lemma 2.5, we find

n

Y J Fn,kn-F(y) dy

j=1 I;

ty
<Cer J(hIIF()’)IIm + kIF(Y)l2+¢) dy
0

and, since Jp, ,; is bounded,

tl' th
n
Y | [FhiniF @ dody] < cerk [IF mI ay.
=15y 0

Thus J' is bounded as claimed. Similarly, J" = ¥, J ' where

U]
" j d
i J(s(tn_]-)Ff ~ &(ta - YF() dy = J | 25 (€ttn - OF@) dody

~ <

- I I E(tn - 0)((A - B)F(0) + F'(0)) do dy.
I

<

Thus, using the stability of £(¢),

ty

n
W< Y < CTkJ(||F(U)||2 +F'(o)l)do fort, <T.
j=1 0

Adding these estimates completes the proof. O

3 Complete Discretization in Time and Space

We now turn to the analysis of the complete discretization using the operators Qp x and H}’l" ko in (1.6) and
(1.7) for the parabolic and hyperbolic factors of Ep = ekBre=kAn We note that, since

|(Bri, X)nl < I1b - VXl < B1lVplllixll - for i, x € Sp,  where B = Sléplb(X)I,

we have |Bpy|n < 1V for i € Sp. FurtPer, by (2.9), ILpYlln < vR7LV].
We shall first consider the stability of Ep i, m.

Lemma 3.1. We have |Qp kVln < IVIn forv € Sp. Let Bo = %lldiv bl and B1 and v as above. Then, ify > B%, we
have
IH} . vin < (L+Bok)lvin  for km/h < Ao = (v = B/ (yv)2.
The time stepping operator Epx,m = H}', Qn,x is stable and
IR iV lln < €Pn VIR for t = 0. 3.1)

Proof. The first inequality is obvious by the definition of Qp,x. For the hyperbolic part, we begin with m = 1.
Settingw! = Hp v, w° = v, we have 0;w' + ykLpv = Bpv, where 0,w' = (w! — w®)/k. Recalling (2.5), we have

(0w, V)n + ykIIVVI® = B(v, v) < BolvI* < Bollvll?
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or, writing v = (w! +v) - J(w! - v),
AW = Vi) - 3wt = vIZ + yi2IVvI? < Boklvilz. (3.2)
Here, since w! — v = kByv — k?*yLyv and using (2.9), we have, for k/h < Ao,
Liw! —viz < K2IBpvI; + Y2 K ILavI; < k(B3 + Y2V ADIVVI? = vk [Vv]>.

Hence, by (3.2), [w!|7 < (1 + 2Bok)|IvI}, which shows our claim for m = 1.
For m > 1, we have

IH . Vi < (1 + Bokm)™ IVIn < ePoXvIln  for kn/h < o, 3.3)

and (3.1) now follows at once. O

For our analysis, we shall need norms on S, which are analogues of | - ||s. We introduce Aj: S, — Sy, by
(A, x) = A, x) for all y € Sp. Noting that Ay, is positive semidefinite, we set Aj, = Ap, + I, and define

1Plin,s = 1432l = @S, Y12 forally € Sp, fors = 0.

For s = 1, we have the obvious norm equivalence c||{|l1 < [Pln,1 < Cll; for Y € Sy, with ¢ > 0, and, by the
inverse inequality (2.9),
1¥ln,s < (0/h)*Plln; foryp eSp, O0<j<s. (3.4)

We shall need the following lemma.

Lemma 3.2. We have
le®Viinz < ClIvinz forveSy, 0<t<Ch. (3.5)

Proof. We first show
IBhplln,1 < Cllplin,2  for € Sp. (3.6)

We see at once that Py, is bounded on L, and, using (2.9),

1Priplls < IRnplls + Ch™HIPrtp = lln + Ch™IRnY — Il < Cllls.

Inequality (3.6) may also be formulated as |B,Thy|1 < CllY| for € Sp, where Ty = Z;l, To show this
inequality, we have, with T = (A + )1,
IBRTrpll < [Pa(b - V)l + CR™ Y [Pr(b - V(Th — D)YlIn
< CIVTYll + CRYI(Th = Dla < CITYI2 < Cliyll.
With w(t) = etBrv and W, n2 = (Zhl/), Ehx) for i, x € Sy, we have, using (3.4) and (3.6),
1d
2 dt

Hence, by integration, |w(¢)|ln,2 < CeCth™ [vVlln,2, which shows (3.5). O

2 -1 =11y 112
1wl = (We, Wh,2 = (Baw, Wn,2 < Ch™ [ Bpwlln, 1 [Win,2 < Ch™ Iwlly 5.

We have the following error estimates for one step of the parabolic and hyperbolic approximations.

Lemma 3.3. We have, forv € Sy,
1(Qn, = e M)Vl < CKR IVIin,245 + I IVIIR 2425, =0, 1. 3.7)
With B1,y, Ao as in Lemma 3.1, we have, for ky,/h < Ao,
IHy = eyl < Cm P Vin,,  forv € Sh. (3.8)
Proof. We first note that, with Qp x = (I + kAp)71,

1(Qn,i - e vl < CKM1AL VI < CTIViIn,24; forall v € Sp.
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Estimate (3.7) will now follow from

1Qn.k = Qu,iIVl + (€ — e v < CkI|Viln,24;  forall v e Sp. (3.9)
Setting w! = Qp xv, W' = Qniv, w° = w0 = vand ’/ = w/ — W/, we have

@', O + A, ) = en(dew', x)  fory € Sy
or, with y = w?, since w® = 0, and using (2.8),
1Qnk = QuiVll = lw' | < CKW 100w < CKW | ApW'l < CKR[ViIn,24-

Now, let w(t) = e~tAnv, w(t) = e-tAny, and set 6(t) = w(t) — w(t). Then

(Bt )n + A0, x) = en(We, x) fory € Sp, t >0, with 6(0) = 0.

Setting y = 0 and using (2.8), we obtain

k k
16(k)lln < CH juwt(s)uj ds < CW juixhv‘v(s)u,- ds < CkW |Vl 245,
0 0

which completes the proof of (3.9).
We turn to (3.8) and begin with m = 1. We have

I(Hp, ik — e*B)v < [I(In + kBy — e*Br)v| + y k2| Lyv|
Using (3.6) and (3.5), we obtain

kB 2 2 sB, 2
I(Hp,k — ")Vl < Ck* supl|Bye**"v|| < Ck*||v]lp,2-
s<k

To complete the proof, we show ||Lyv|| < C||v|n,2 or, equivalently, with Tj as in Lemma 3.2, |[LyThv| < C|lv|.
For this, we use the Ritz projection defined by (VRyw, Vy) + (Rxw, x) = (Vw, Vx) + (w, x) forall y € Sp,. We find
(LnRnw, Y)n = (VRrw, VX) = (VW, VX) — (Rpw — W, x) = —(Aw, X) — (Rpw — w, x) and hence ||[LyRpw| < Cllw|>.
Using also [|Lyy| < Ch=2|lx|, the proof is completed by

ILx Tawll < ILRRRTW] + CR™>(IRWTw — Tw|| + | Taw — Tw|) < Cllw].
To show (3.8) for m > 1, we write
m-1 Mol .
Hp v—-eBrv =3 H") " (Hp, - enPryelnbry, (3.10)
j=0
By Lemma 3.2 with t = jky, < k < Aoh, we have |[e/*=Bry|, , < C||[v|5.,. Using (3.10), (3.3) and the already
proven case of (3.8), with k replaced by k,, we find
m-1 .
I} v — e Prvlin < X |[(Hp i, — efmPryelnBry|
j=0

m-1
2 jkmB 2 -171,2
< Chyy Y NPyl < CmkyIviln,2 = Cm K Vil - O
j=0

As a result, we have the following error estimate for the completely discrete time stepping operator.

Lemma 3.4. Ify > ﬁ% and ky/h < Ag, we have, withsg =1 +¢€,51 = 3,

IEnk,mRrV = RREUVI < C'kW | VIls; + C"K* || Vllg42) + C"'m 2| VI, forj =0, 1.
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Proof. In view of Lemma 2.4, it remains to bound (Eh,k,m — En,x)RnV. We have, for v € Sy, by Lemmas 3.1
and 3.3,

I(Enkom = En )Vl < IHY . (Qux - e vl + I(Hy = e Brye "y
< C'kW Vi, 1425 + C" K VIR 2425 + €' m K2 V]I,
For v = R, V, we find ||[v||n,» < C| V||, and since ARy, = PhA,
IVlin,4 = IA2R, VIl = |AnPhAV] < [ARRRAVI + [An(Py, - Rp)AV]
< |PhA2 V| + Ch™2R?|[ AV, < CI|Vl4,
and similarly, ||v|ln,3 < ClIV]5, which completes the proof of the lemma. O
This implies the following result for the homogeneous equation.

Lemma 3.5. Lete >0andy > ﬂ%. Then, if ||[v — V|| < Ch|| V|, we have, for ky,/h < Ag, tn < T,
IIEZ,k,mV — E(tn) VIl < CLrhl VliLse + CLrkl Viia4e + Crm™ k| V.

Proof. Using the stability of Eh,k,m and Lemma 2.4 instead of Lemma 3.4, the result follows as that in
Lemma 2.5. [

We are now ready to formulate our main result.

Theorem 3.1. Assume thaty > ﬁ%. Then, for the solutions u" of (1.7) with ||v — V| < h||V|y and U(ty) of (1.1),
we have, with Zs(U, t) and Zs(U, t) as in Theorem 2.1, forany € > 0 and kp/h < Ao,

||ﬁn - U(ta)ll < Cé,ThZHe(U, tn) + C;,.;I,Tk22+£(U, tn) + Cg,,Tmilkze(Uy tn).

Proof. The proofis analogous to that of Theorem 2.1, with Ej, x replaced by E n.k,m» the stability property (2.4)
by (3.1), and Lemma 2.5 by Lemma 3.5. O
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