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Abstract: Integration of an adaptive finite element method (AFEM) with a conventional least squares method
has been presented. As a 3D full-wave forward solver, CST Microwave Studio has been used to model and
extract both electric field distribution in the region of interest (ROI) and S-parameters of a circular array
consisting of 16 monopole antennas. The data has then been fed into a differential inversion scheme to get
a qualitative indicator of how the temperature distribution evolves over a course of the cooling process of
a heated object. Different regularization techniques within the Tikhonov framework are also discussed, and
a balancing principle for optimal choice of the regularization parameterwas used to improve the image recon-
struction quality of every 2D slice of the final image. Targets are successfully imaged via proposed numerical
methods.

Keywords: Thermal therapy, microwave imaging, inverse scattering, hyperthermia, adaptive finite element
method
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1 Introduction
Microwave hyperthermia [17] has shown to be a good candidate to help increase therapeutic gains of tradi-
tional cancer therapies like radio- and chemo-therapy [11, 13]. It aims to increase the tumor temperature to
therapeutic levels of 40–44 °Cwhile keepinghealthy tissue at thenormothermic temperatures. To control and
evaluate the quality of the treatment in terms of achieved temperatures in tumor as well as healthy tissues,
thermal dose monitoring is a critical instance of the treatment. To this end, a robust and preferably real-time
feedback control that helps to adjust the focal point in the target iswarranted.Hence, temperaturemonitoring
needs to be considered as an integral part of every reliable thermotherapy system [31]. In past decades, sev-
eral methods have been proposed in the literature among which the invasive measurements in tumor-related
reference points [7, 21, 27] and MR-guided thermometry [10, 14, 32] are currently in clinical use.

While use of cheap and readily accessiblemultipoint thermal probeswith thermocouples, thermostors or
fiberoptics sensors is still considered as a gold standard, the invasive nature of the procedure limits the infor-
mation about temperature distribution to few monitoring positions. MR-guided thermometry provides a 3D
non-invasive temperature monitoring; nevertheless, the acquisition is not fast enough to be integrated into
real-time schemes [32]. Furthermore, the hybrid HT-MR systems have other limitations such as high expense,
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access and compatibility issues. MR is also not suitable for intraoperative monitoring in patients with MR
incompatible pacemakers or artificial heart valves [9]. Microwave thermometry, is an alternative and appeal-
ing method as it could provide information about 3D thermal profiles while using the same antennas that
are used for heating. Such a theranostic system would resolve the complexity and costs accompanied with
MR-thermometry while providing the clinicians with sufficient information about thermal profiles during the
treatment [16].

There is a tangible change in dielectric properties of water within the temperature range of interest [22].
The fact that dielectric properties of soft-tissues are mainly dominated by water fraction makes it possible
to cast this problem into the framework of differential microwave imaging proposed in several publications
[8, 12, 16, 25]. Following a similar methodology, we consider in this study an annular phased array system
of 16 monopole antennas designed to work at the ISM band of 915MHz. At this frequency, a 1% dielec-
tric change between 28 °C and 53 °C according to in vivo measurements in animal liver tissue has been
reported [24]. Although the range of dielectric changes in the relevant scenarios may seem not to be very
large, it is still considerably higher than other non-invasive thermal monitoring options. The challenge to
reconstruct a relatively small changes is at least partly compensated by possibility to use Born or Distorted
Born approximations to linearize the inherently nonlinear volume integral equation at hand.

As far as the inversion technique is concerned, the linear least square method (LLSM) is used, which
has a smooth kernel here, meaning that the solution is highly sensitive to small perturbations in the data
and is therefore ill-posed. To deal with the ill-posedness, a wide variety of regularization schemes have been
proposed in the literature among which Tikhonov is one of the popular and efficient methods [28–30]. The
regularization parameter can be chosen either by an a priori rule like Tikhonov’s regularization strategy [1,
2, 20] or by a posteriori rules like the balancing principle [18] and Morozov’s discrepancy principle [26]. For
image quality restoration, an adaptive finite element method, developed in [23], is combined in this study
with a balancing principle for optimal choice of the regularization parameter. The main idea of an adaptive
finite element method is to obtain better image quality via local mesh refinements through minimization of
Tikhonov’s functional. Our numerical investigations show that an adaptive finite element method improves
image quality of reconstructed images compared with the standard least square method.

The paper is outlined as follows. Simulation setup and the standard least squaremethod are described in
Section 2, followed by a formulation of the adaptive finite element method described in Section 3. Balancing
principle and fixed point algorithm are also formulated in this section. Section 4 is devoted to discussion
about the results obtained. Finally, Section 5 concludes the main findings of this note.

2 Materials and methods

2.1 Forward problem and data acquisition

A cylindrical scenario has been considered with 16 monopole antennas immersed in a coupling fluid. The
matching liquid is a 20 : 7 (alcohol : water) mixture chosen based on [16] to balance conductive loss, rela-
tive permittivity and antenna matching. We used CST Microwave Studio [33] to simulate the scenario whose
CAD model is shown in Figure 1, along with the characteristic of the antenna which is designed to have its
best performance at 915MHz. The selection of this frequency is to achieve a good compromise between both
penetration depth and resolution of the final image.

The original scenario, which has an off-centered cylindrical inclusion as target, is considered as the base-
line (i.e. the initial state at t = 0 to which the dynamic cooling process of the heated target will be compared
at each time step). Then, to imitate the dynamic process of the cooling over a 10-minute window of time,
the dielectric parameters of the target have been changed in a parametric sweep of CST according to Table 1.
These parameters are also taken from [16] and adjusted accordingly to fit the scenario at hand.
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(a) (b)

Figure 1: (a) The cylindrical scenario consisting of 16 monopole antennas immersed in a matching liquid tank. The ROI is also
highlighted as an orange box. (b) Return loss (S11) of the designed antenna for the frequency band of 915MHz.

Timeline (min) ϵr(t) σ(t) (S/m)

t = 0 (baseline) 26 0.12
t = 2 28 0.15
t = 4 29 0.19
t = 6 29.8 0.21
t = 8 30.5 0.23
t = 10 31 0.24

Coupling fluid 20 : 7 isopropyl : water (ϵr = 24.5, σ = 0.46)

Table 1: Changes in permittivity and conductivity of the target as it starts to cool down from 55 °C to 29 °C over a ten-minute
window of time.

2.2 Differential image reconstruction

Throughout this section, e−iωt is assumed to be the time convention and suppressed. Let us suppose we have
a bi-static pair (i, j) of antennas located on the scan line Γ, i.e. ri, rj ∈ Γ, and for the sake of simplicity, we use
the notation Es(rj, ri) = Esji. Then, using the Lorentz reciprocity theorem and under Born approximation, the
scattered electric field between the pair at angular frequency of ω can be written as

Esji ≃ iωμ0k
2
b I(ω)∫

Ω

G(rj, r, ω) ⋅ O(r, ω)G(ri, r, ω) dv, (2.1)

where Ω is the imaging domain, I(ω) is the excitation current of the transmitter, kb is the lossless back-
ground wavenumber, and G and O = ∆ϵr + i

ωϵb ∆σ are the dyadic Green function and the object function of
the scenario, respectively.

Equation (2.1) is the standardFredholm integral equation of the first kind inwhich thedyadicGreen func-
tion relates the fields in the object domain (vector) to the scattered fields (vector). However, in heterogeneous
complex scenarios, there is no closed-form analytic expression for G. Moreover, routine measurements per-
formed with vector network analyzers (VNAs) gather S-parameters of the antennas, which are scalar instead
of the vector quantities of the scattered field at the location of the probes. Suggested by [15], an efficient way
to address both issues is to integrate a full-wave commercial software, like CST in this study, into the above-
mentioned formulawhich obviates the need for a closed-formGreen function. Finally,modifications, brought
about by considering the scattered fields replacement with their corresponding S-parameters as well as the
input power and characteristic impedance of the ports, change equation (2.1) into the following:

Sscaji (ω) ≃ C∫
Ω

ECSTinc,j(r
, ω) ⋅ O(r, ω)ECSTinc,i(r

, ω) dv, (2.2)

where C = −k2b/(4iωμ) and ECSTinc,i is the exported E-field from CST under irradiation of the i-th antenna.
Using equation (2.2) and considering the object function Ob as the baseline, we can then proceed to relate
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∆O = O(r, ts) − Ob(r) at each time step (ts) to the differential input of

∆Sji,sca = Sji,sca(ts) − Sbji,sca = Sji,tot(ts) − S
b
ji,tot

according to the following formula [16]:

∆Sscaji (ω) ≃ C∫
Ω

ECSTinc,j(r
, ω) ⋅ ∆O(r, ω)ECSTinc,j(r

, ω) dv. (2.3)

After discretizing ROI and considering A as the linear forward operator, equation (2.3) can be written as
Am = d withm = ∆O and d = ∆S. As discussed earlier, the problem is ill-posed and hence requires a regular-
ization scheme. To this end, the Tikhonov regularization functional is defined as follows [28, 29]:

F(m) = 12 ‖Am − d‖
2
L2(Ω) +

λ
2 ‖m‖

2
L2(Ω), (2.4)

where λ is the regularization parameter. The optimal value of m is found via the solution of the following
optimization problem which is basically the Fréchet derivative of functional (2.4) [4]:

F(m) = A∗Am − A∗d + λm = 0. (2.5)

Looking closely at equation (2.5), one can recognize that system (2.5) is the regularized system of normal
equations with the matrix A corresponding to the operator A, which has the following solution if normal
method is to be used:

m = (ATA + λI)−1ATd. (2.6)

Although the method of normal equations is the fastest method for solving the linear least-squares problems
(LLSP), it is not as accurate as QR or SVD decompositions. For instance, the method of normal equations is
applied to the solution of LLSPwhen the condition number of thematrixA is not large [5]. Alternatively, using
SVD of the matrix A = UΣVT and substituting it into (2.6), one can obtain a muchmore robust solution form
as follows:

m = V(Σ2 + λI)−1ΣUTd. (2.7)

Finally, it is not always trivial to determine the optimal value of λ, and it differs vastly from scenario to
scenario. This has been amatter of debate in the relevant literature and has beenwidely discussed elsewhere
[1, 2, 18, 20, 26]. Here, we just try to briefly touch upon the issue. The goal of regularization is to construct
sequences {λ(δk)}, {mλ(δk)} in a stable way so that limk→∞‖mλ(δk) − m∗‖ = 0, where a sequence {δk}∞k=1 is such
that

δk > 0, lim
k→∞

δk = 0 (2.8)

and m∗ is the “ideal” exact solution which cannot be found in real experiments but we assume that it exists;
see details in [1, 2, 18, 20].

In [1, 5], it is shown that condition (2.8) is satisfied when the following iterative update of the regular-
ization parameters λk is considered:

λk =
λ0
(k + 1)p , p ∈ (0, 1], (2.9)

where k is the iteration number and λ0 is the initial guess. So, starting from λ0 = 1 and using (2.9), optimum λ
is found to be 0.9 for this scenario.

3 Adaptive finite element method with balancing principle
For improvement of the solutionm obtained viaminimization of functional (2.4) using formula (2.7), we will
apply an adaptive finite element method (AFEM) developed in [23] combined with a balancing principle for
choosing the regularization parameter λ, for minimizing the functional

Jλ(u) =
1
2 ‖F(u) − m‖

2
2 +

λ
2 ‖∇u‖

2
2, (3.1)
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where F(u) is the convolution operator defined similarly to [23], m is the solution obtained via (2.7) and
‖ ⋅ ‖2 is the L2 norm. AFEM was tested on experimental data for reconstruction of a two-dimensional signal
measured by microtomograph and has shown significant improvement of the image restoration quality [23].

The finite element method for minimization of Tikhonov functional (2.4) was formulated in [4]. Here, we
briefly present an AFEM algorithm for minimization of functional (3.1). To find function u which minimizes
functional (3.1), we look for a stationary point of this functional with respect to u such that Jλ(u)(b) = 0,
where Jλ(u) is the Fréchet derivative of functional (3.1) acting on b; see details of derivation in [4].

To proceed further, we set-up the dimensionless computational domain Ω = {(x, y, z)} and decompose
it into two-dimensional slices Ωz for any desired value of z. Then every slice is discretized by the mesh Kh
which consists of non-overlapping triangles K satisfying the mesh regularity assumption [19] with the mesh
function h which is defined as a piecewise-constant function such that h = hK, where hK is the diameter of K
which we define as a longest side of K.

Further, we introduce the finite element space Vh consisting of piecewise linear functions in space. The
finite element method for (3.1) reads: find uh ∈ Vh such that, for all v ∈ Vh,

Jλ(uh)(v) = 0, (3.2)

where Jλ(uh) is the Fréchet derivative of functional (3.1) derived in [4].
Let us briefly present the balancing principle for choosing the regularization parameter in (3.1). Accord-

ing to [18, 28], for the Tikhonov functional

Jλ(u) =
1
2 ‖F(u) − m‖

2
2 +

λ
2 ‖∇u‖

2
2 = φ(u) + λψ(u), (3.3)

the value function G(λ) is defined as
G(λ) = inf

u
Jλ(u). (3.4)

If there exists derivative Gλ(λ) at λ > 0, then from (3.3) and (3.4) follows that

G(λ) = inf
u
Jλ(u) = φ(u) + λψ(u) = φ̄(λ) + λψ̄(λ).

The balancing principle for finding the optimal regularization parameter finds λ > 0 such that the fol-
lowing condition is satisfied: φ̄(λ) = Cλψ̄(λ), where C is determined using a priori information about the
solution [18]. We will consider the case when C = 1. In our computations, we have used the fixed point
algorithm, summarized in Algorithm 1, whose convergence was studied in [18].

(1) Start with the initial approximations λ0, and compute the sequence of λk in the following steps.
(2) Compute the value function G(λk) = infu Jλk (u) for (3.3), and get reconstruction uλk .
(3) Update the regularization parameter λ := λk+1 as

λk+1 =
‖φ̄(λk)‖2
‖ψ̄(λk)‖2

(4) Choose tolerance 0 < θ < 1. Stop computing regularization parameters λk if computed λk are stabilized,
i.e., if |λk − λk−1| ≤ θ. Otherwise, set k := k + 1, and go to step (2).

Algorithm 1: Fixed point algorithm.

This method is based on the next theorem which follows from [23, Theorem 5.1].

Theorem 1. Let uh ∈ Vh be a finite element approximation of the regularized solution uλ ∈ H2(Ω) on the finite
element mesh Kh with the mesh function h. Then there exists a constant D = const. > 0 defined by

‖Jλ(u1) − J

λ(u2)‖ ≤ D‖u1 − u2‖ for all u1, u2 ∈ H1 (3.5)
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such that the following a posteriori error estimate for the regularized solution uλ and for all uh ∈ Vh holds:

‖uh − uλ‖H1(Ω) ≤
D
λ
CIR(uh). (3.6)

Here, CI is the interpolation constant and R(uh) is the residual R(uh) := ‖huh‖L2(Ω).

Proof. Let uh be the minimizer of Tikhonov functional (3.1). Then functional (3.1) is strongly convex on the
space H1 with the strong convexity constant λ, and thus

λ‖uh − uλ‖2H1(Ω) ≤ |(J

λ(uh) − J


λ(uλ), uh − uλ)|, (3.7)

where Jλ(uh), J

λ(uλ) are the Fréchet derivatives of functional (3.1). Since uλ is the minimizer, (Jλ(uλ), v) = 0

for all v ∈ H1. Using (3.7) with the splitting uh − uλ = (uh − Phuλ) + (Phuλ − uλ) for (uh , Phuλ) ∈ Vh, where Ph
is the orthogonal projection of uλ, together with the Galerkin orthogonality principle

(Jλ(uh) − J

λ(uλ), uh − Phuλ) = 0,

we obtain
λ‖uh − uλ‖2H1 ≤ |(Jλ(uh) − J


λ(uλ), Phuλ − uλ)|. (3.8)

The right-hand side of (3.8) is estimated via (3.5) as

|(Jλ(uh) − J

λ(uλ), Phuλ − uλ)| ≤ D‖uh − uλ‖H1(Ω)‖Phuλ − uλ‖H1(Ω).

Using this equation in (3.8), we obtain ‖uh − uλ‖H1(Ω) ≤ Dλ ‖Phuλ − uλ‖H1(Ω). By the property of orthogonal
projection, ‖Phuλ − uλ‖H1(Ω) ≤ CI‖huλ‖H2(Ω), with the interpolation constant CI , we get the a posteriori error
estimate

‖uh − uλ‖H1(Ω) ≤
D
λ
||Phuλ − uλ‖H1(Ω)≤

D
λ
CI‖huλ||H2(Ω). (3.9)

The term ‖huλ‖H2(Ω) can be estimated for all uh ∈ Vh similarly to [23, Theorem 5.1]:

‖huλ‖H2(Ω) ≤ ‖huh‖L2(Ω). (3.10)

Using estimate (3.10) in the right-hand side of (3.9), we get a posteriori estimate (3.6).

According to the above theorem, the finite element mesh Kl := (Kh)l, with l = 0, 1, . . . ,M denoting number
of mesh refinements, is locally refined in the neighborhood of those points of slice Ωz where the computed
residual vector R(uh) := |huh| attains its maximal values. To get the function ml := (mh)l on the new refined
mesh Kl, l = 1, . . . ,M, we use interpolation ofml−1 from the mesh Kl−1 to the new refined mesh Kl using the
procedure described in [3]. For ease of access and more clarity, the whole process of AFEM is tabulated in
Algorithm 2.

(1) Generate the initial mesh K0 in Ωz. Obtain m0 via (2.7). Compute the sequence of reconstructions
ul := (uh)l, l ≥ 0, on the refined meshes, as follows.

(2) Compute the finite element solution ul on Kl using the finite element method (3.2).
(3) Use the fixed point algorithm (balancing principle) for determining the optimal regularization parame-

ter λl.
(4) Refine locally the mesh Kl at all points where

R(ul) ≥ βmax
Ωz

R(ul), (3.11)

where β ∈ (0, 1) is an a priori chosen parameter (see details in [6]) and R(ul) := R(uh) on the mesh Kl.
(5) Construct a new mesh Kl+1 in Ω. Interpolate ml to ml+1 using barycentric interpolation of [3].
(6) Stop mesh refinements when ‖ul+1 − ul‖L2(Kl+1) < η1 or ‖R(ul+1) − R(ul)‖L2(Kl+1) < η2 for the tolerances

η1, η2 chosen by the user. Otherwise, set l := l + 1, and go to step (2).

Algorithm 2: Adaptive algorithm
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Figure 2: Time series of |∆O(r)| every 2 minutes from t = 2 up to 10 minutes. First and second rows are 2D cuts in the transverse
and lateral planes, respectively. The third row is a 3D visualization of the same scenario as the contrast changes over time.
The border of the target is also shown with a white dashed line in the plots.

4 Results and discussion
Reconstruction results using a regularized least squares method for the scenario described in Section 2.1 are
shown in Figure 2. From the plots, it can be seen that the shape and location of the heated target have been
retrieved successfully and that the contrast grows over time as the scenario keeps deviating more and more
from the baseline. As explained earlier, this is a qualitative indicator of changes in constitutive parameters
of the target, which indirectly refers back to its temperature changes over time. However, the changes in
the dielectric property of the target, as reported in Table 1, are somewhat arbitrary in this study and more
importantly are uncorrelated to any thermal changes in the target because they are just simply taken from [16]
and then rescaled. Therefore, in a future study, a proper correlation between these properties is necessary so
as to map the changes in |∆O(r)| back to temperature.

To test feasibility of AFEM, we set-up the dimensionless computational domain

Ω = {(x, y, z) : x ∈ [0, 39], y ∈ [0, 41], z ∈ [0, 25]}

and decompose it into two-dimensional slices Ωz for any desired value of z ∈ [0, 25]. The optimal value of
the regularization parameter λ was computed by the fixed point algorithm for an initial guess for the regular-
ization parameter λ0 = 0.1. Convergence of fixed point algorithm is presented in the left column of Figure 3.
These figures show that the optimal λ was found on the interval λ ∈ [0.46, 0.48] on all refined meshes. Then
the AFEM computations were performed in the software package WavES [34] with β = 0.5 in (3.11) which
allows to refine meshes locally at places where the inclusion was located; see Figures 4, 5.

In the transverse plane, Figure 4 compares the original reconstructions on the unrefined initial FEMmesh
with that of AFEM on locally adaptedmeshes at each time step. One can see from these plots how the density
of themesh changes around theborder of the target andhow this changebecomesmore andmorepronounced
as the contrast grows bigger and bigger due to thermal changes of the target as time goes by. Figure 5 does
the same but in the lateral plane. All in all, one can argue that these figures clearly show improvement in
the shape detection of the target. Contrast, which means better resolvability of the target to be imaged from
its background, has also been improved significantly. Finally, convergence of AFEM is presented in the right
columnof Figure3. All convergence results are given for reconstructions shown in Figures 4. Analyzing results
of Figures 3–5, we can conclude that reconstructions obtained by AFEM improve the initial reconstructions
of the target.
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Figure 3: Left figures: convergence of fixed point algorithm for computation of the optimal regularization parameter λ.
Here, l is the number of mesh refinement, nno is the number of nodes and nel is the number of elements in the mesh Kl.
Right figures: convergence of AFEM on adaptive locally refined meshes. All results are presented for reconstructions
shown in Figure 4.
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We note that an adaptive finite element method in three dimensions with mesh refinement in the whole
three-dimensional domain Ω is an ongoing work, and it will be presented in a forthcoming publication.

t = 2min

t = 4min

t = 6min

t = 8min

t = 10min

Figure 4: Reconstructions in the transverse plane. The first two figures on the left are the reconstruction obtained by
formula (2.7) and the same reconstruction on the coarse finite element mesh. The next two figures are the reconstruction
obtained by AFEM using Algorithm 2 with β = 0.5 and the same solution on the locally refined mesh.
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t = 2min

t = 4min

t = 6min

t = 8min

t = 10min

Figure 5: Reconstructions in the lateral plane. The first two figures on the left are the reconstruction obtained by formula (2.7)
and the same reconstruction on the coarse finite element mesh. The next two figures are the reconstruction obtained by AFEM
using Algorithm 2 with β = 0.5 and the same solution on the locally refined mesh.

5 Conclusions
A feasibility study on the numerical characteristic integration of an FDTD-based forward solver with an inver-
sion scheme has been presented. The standard scheme has then been supplemented by AFEM to gain higher
quality reconstructions during the course of the cooling process of a heated object. More specifically, reg-
ularized least squares, combined with an adaptive finite element method, is used for image restoration.
A balancing principle is also applied for optimal choice of the regularization parameter. Numerical tests show
that an adaptive algorithm improves image quality compared with that of the standard techniques.

Current and future work considers development of fully 3D adaptive refinement algorithm and its appli-
cation on real experimental scenarios. One possibility for a future study is to have a hyperthermia treatment
planning for the scenario in which the electromagnetic power deposition will be first beamformed to focus
on the target and then passed on to a thermal simulator to calculate the corresponding temperature distribu-
tion. Finally, to validate the performance of the thermal imaging presented here, dielectric properties of ROI
can be updated based on their temporal temperature distributions of the previous step and then fed into the
reconstruction algorithm at each time step accordingly.
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