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Objectives: MDR bacteria have become a prevailing health threat worldwide. We here aimed to use optical DNA
mapping (ODM) as a rapid method to trace nosocomial spread of bacterial clones and gene elements. We believe
that this method has the potential to be a tool of pivotal importance for MDR control.

Methods: Twenty-four Escherichia coli samples of ST410 from three different wards were collected at an
Ethiopian hospital and their plasmids were analysed by ODM. Plasmids were specifically digested with Cas9
targeting the antibiotic resistance genes, stained by competitive binding and confined in nanochannels for imag-
ing. The resulting intensity profiles (barcodes) for each plasmid were compared to identify potential clonal
spread of resistant bacteria.

Results: ODM demonstrated that a large fraction of the patients carried bacteria with a plasmid of the same
origin, carrying the ESBL gene blaCTX-M-15, suggesting clonal spread. The results correlate perfectly with core
genome (cg)MLST data, where bacteria with the same plasmid also had very similar cgMLST profiles.

Conclusions: ODM is a rapid discriminatory method for identifying plasmids and antibiotic resistance genes.
Long-range deletions/insertions, which are challenging for short-read next-generation sequencing, can be easily
identified and used to trace bacterial clonal spread. We propose that plasmid typing can be a useful tool to iden-
tify clonal spread of MDR bacteria. Furthermore, the simplicity of the method enables possible future application
in low- and middle-income countries.

Introduction

The prevalence of MDR pathogens is increasing rapidly worldwide.
The annual number of deaths caused by MDR infections reached
�700000 in 2015 and could increase to an estimated 10 million in
2050, according to recent estimations.1 MDR infection is a severe
issue in hospital settings, especially in ICUs, where many patients
receive broad-spectrum antibiotics. It has thus been demon-
strated that ICUs serve as long-term selection environments of
MDR bacteria through selection of resistant strains in the micro-
biota, which can subsequently spread among patients and cause
hospital-acquired infections.2,3 The incidence of hospital-acquired
infections is 5–10 times higher in ICUs than in general wards.4

In Ethiopia and other East African countries, some phenotypic
and a few molecular-based studies have been conducted to
address the burden and consequences of antimicrobial resistance

(AMR). Studies from Kenya,5 Tanzania,6 Uganda7 and other
countries reported high prevalence of AMR to different classes
of antimicrobials.8 A meta-analysis study on articles published
from 2007 to 2017 reported that an average of 45%
(range 27.5%–62.5%) of Escherichia coli strains were resistant to
commonly prescribed antimicrobials in Ethiopia.9 Another study
from Jimma University Medical Center, Ethiopia, in 2014 reported
that 28% of E. coli and 70% of Klebsiella pneumoniae were ESBL
producing.10 However, specific factors related to the cause and dis-
semination of AMR remain to be studied. Furthermore, an in-depth
study requires an alternative to expensive and accurate diagnostic
tools to study both local and regional outbreaks.

Current methods to characterize bacteria and their antibiotic re-
sistance genes are either time-consuming or not able to associate
the resistance genes with specific strains or genetic contexts.
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For example, multilocus variable-number tandem repeat analysis
(MLVA) is a PCR-based assay that uses size variations of each locus
to identify gene relatedness between patient isolates, but it is not
discriminatory enough when faced with certain bacterial clones.11

Bacterial culture methods that provide phenotypic information
typically require 1–3 days, and PFGE calls for lengthy sample prep-
aration and extended gel running time, which overall requires sev-
eral working days. Next-generation sequencing (NGS) provides
single-base resolution, but the overall procedure from sample
preparation to sequencing and bioinformatics analysis remains
technically challenging and time-consuming. Novel approaches,
such as long-read sequencing, are still expensive and thus less
feasible, in particular in low-income settings.12

AMR is, to a large extent, caused by transmission of genes on
mobile genetic elements, such as plasmids. Plasmids can be read-
ily transferred among bacteria via conjugation.13 Typical plasmids
providing resistance to multiple antibiotics are relatively large
(�50–300 kb), and the transfer of a single such plasmid can be suf-
ficient to convert a susceptible strain to an MDR phenotype.14,15

When a strain has acquired a plasmid, transmission of the resist-
ant strain between patients can occur, and detection of that plas-
mid may serve as a proxy for strain transmission. Techniques to
classify plasmids have been used for many years, including repli-
con typing16,17 and classification of relaxases,18 but these often
have too low resolution, for example to confirm that plasmids
from two different samples are identical. Furthermore, these tech-
niques cannot link a specific resistance gene to a certain plasmid in
samples with more than one plasmid, which is common for MDR
bacteria.19 Thus, a rapid method to identify and characterize plas-
mids carrying drug-resistance genes in clinical samples with high
resolution can be useful to detect both clonal and horizontal dis-
semination of AMR genes.20

Optical DNA mapping (ODM) techniques directly visualize long DNA
molecules at the single DNA molecule level and provide long-range infor-
mation on the DNA sequence.21 We have reported a competitive binding
based ODM method to label DNA molecules with two small molecules,
YOYO-1 and netropsin, that create fluorescence intensity profiles along
DNA molecules, where AT-rich regions are dark and GC-rich regions are
bright.22,23 The labelled DNA molecules are stretched uniformly in nano-
fluidic channels, and the obtained fluorescence profiles are herein
named ‘barcodes’. We have demonstrated that the barcodes
can be used to identify plasmids from a database of all
sequenced plasmids24 and to trace plasmids during resistance
outbreaks in hospitals.20 We have also implemented a CRISPR/
Cas9-based protocol to identify specific genes and determine
on which plasmid a specific gene is located,25 which increases
the applicability of the method.26,27

In this study, we analysed clinical samples from patients in
three separate wards in an Ethiopian hospital. NGS identified 24
E. coli samples belonging to ST410 from three wards that all car-
ried the blaCTX-M-15 resistance gene. Using ODM complemented
with CRISPR/Cas9 digestion we demonstrated that up to 18 sam-
ples contained the same plasmid, either identical or with insertions
or deletions. The samples with the same plasmid also had a very
similar NGS profile, suggesting that plasmid mapping can be used
to detect clonal bacterial spread. Samples with a less similar NGS
profile did not contain the common plasmid. We discuss how
ODM-based plasmid typing could be used to predict clonal spread

of bacteria and therefore potentially be a useful method in low-
and middle-income countries (LMICs).

Materials and methods

Bacterial isolates and patients

The strains were collected as part of an epidemiological study conducted in
Jimma University Medical Center, Jimma, Ethiopia. The strains were iso-
lated from clinical specimens collected from patients admitted to three dif-
ferent wards in the hospital [paediatric (Ped), medical (Med) and surgical
(Sur)]. Thirteen strains were isolated from diarrhoeic stool collected from
paediatric patients between the ages of 2 months and 10 years. Four
strains were isolated from urine samples (two from the medical ward and
two from the surgical ward). One strain was isolated from an infected
wound in the surgical ward.

WGS
Illumina NGS was performed for all strains investigated. A few colonies after
overnight growth were lysed with a solution of BSA (0.5 mg/mL) in PBS buf-
fer (pH 7.4). The lysate was then transferred to a 96-well plate, and the DNA
was extracted with a MagNA Pure 96 (automated DNA extraction system).
The extracted and purified DNA was sent for NGS to the SciLifeLab
(Stockholm, Sweden). Sequencing was carried out on a short-read sequenc-
ing (Hiseq2500, Next Generation Sequencing) platform. The Nextera Library
Prep Kit (MWxNXTR00x-PCR-based amplification) was used. Reads obtained
were assembled on SPAdes Version 3.9, a web tool for genome assembly at
CGE (https://cge.cbs.dtu.dk/services/SPAdes/) and assembled genomes
were analysed for resistome and MLST using ResFinder, VirulenceFinder
and MLST typing tools, respectively.

Additionally, three selected strains, Ped1, Sur3 and Med1, were sub-
jected to MinION nanopore (Oxford, Nanopore, Oxford, UK) long-read
sequencing. DNA was extracted using a Qiagen EZ1 microbial kit (according
to the manufacturer’s instructions). Library preparation was done by using
a ligation kit (SQK-LSK109) and with the Nanopore Native Barcoding
Expansion kit (EXP-NBD-104). The sequencing was done on the MinION
with a run setting of local base-call for 10 h, generating 271323 reads. The
assemblies of the nanopore reads and short reads from NGS were com-
bined through Unicycler v0.4.7 (bacterial genome assembly pipeline).

Draft genome sequences were deposited at NCBI with BioProject ID
PRJNA593604.

Plasmid preparation
The plasmid extraction procedure has been described in detail elsewhere.25

Briefly, the bacterial strains were incubated with selective medium (LB
broth with 30 mg/L ampicillin) overnight, followed by DNA extraction using
NucleoBond Xtra Midi Kit (Macherey-Nagel). The eluted DNA was then pre-
cipitated with isopropanol, washed with 70% ethanol, and reconstituted
with Tris-EDTA buffer. The DNA concentration was measured using a
QubitTM dsDNA BR Assay Kit (Thermo Fisher, MA, USA).

Sample preparation for ODM
To identify the presence of the antibiotic resistance gene blaCTX-M-15, Cas9
(PNAbio) was used to digest the circular plasmids.25 Cas9 forms a complex
with tracrRNA and crRNA. The crRNA was designed to target blaCTX-M

group 1, where blaCTX-M-15 belongs. The Cas9 reaction was carried out
with NEB buffer 3 at 37�C for 1 h. The sequence of the crRNA targeting the
blaCTX-M group 1 gene was CCGTCGCGATGTATTAGCGT.

In order to obtain the sequence-specific patterns, DNA was stained with
YOYO-1 (Invitrogen) and netropsin (Sigma–Aldrich) with a typical molar
ratio of 1:1.8 for YOYO-1 to DNA base pairs, and 1:70 for YOYO-1 to netrop-
sin.22,23 k-DNA (48502 bp, New England Biolabs) was added as an internal
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standard for size determination. The staining was done in 0.5% TBE buffer,
and the samples were incubated at 50�C for 30 min.28 The samples were
then diluted with MQ water to reduce the ionic concentration to 0.05% TBE
for optimal stretching in the nanofluidic channels. To suppress photonick-
ing, b-mercaptoethanol (Sigma–Aldrich) was added at 3% (v/v).

Experimental procedure (microscopy)
Nanofluidic chips were fabricated using standard photo- and e-beam lith-
ography methods and sealed by fusion bonding.29 The nanochannels had
dimensions of 100%150 nm2 and a length of 500 lm and were aligned and
connected through two microchannels, which in turn were connected to
the four sample loading wells. Micro- and nanofluidic channels were pre-
wetted using 0.05% TBE buffer with 3% v/v BME. Ten microlitres of sample
solution was then loaded and pressed into the micro/nanochannels using
nitrogen gas. The fluorescently stained plasmid DNA molecules were forced
into the nanochannels and stretched for imaging. For samples with lower
plasmid concentration, a pre-concentration step was applied, which began
with a reduced pressure (400 mBar) to aggregate DNA molecules at the en-
trance of the nanochannels, and then a high-pressure pulse (2000 mBar)
to push all the DNA molecules simultaneously into the nanochannels. The
confined and stretched plasmid DNA molecules were then imaged using an
inverted fluorescence microscope (Zeiss AxioObserver.Z1) with a 100% oil
immersion objective (Zeiss, NA = 1.46) and an EMCCD camera
(Photometrics Evolve). For each DNA molecule, 50 frames with an exposure
time of 100 ms were recorded.

Data analysis
Detailed analytical workflows have been described elsewhere.25,27 To ob-
tain the representative barcodes for each sample, the 50 frames were first
aligned and merged to generate consensus intensity profiles (barcodes).
Consensus cuts by Cas9 were revealed when the individual barcodes in the
consensus barcode started and ended at the same location. For each iso-
late, at least six barcodes were averaged to generate representative con-
sensus barcodes, and the plasmid sizes were determined by comparing
with the size of k-DNA.

The representative consensus barcodes for each sample were then
compared pairwise to investigate whether they matched entirely, or par-
tially, the latter indicating an insertion or deletion.20 To identify a complete
match, barcodes were stretched to the same length and compared, and if
the P value for this comparison (Pcomp) was <0.01, the barcodes, and hence
the plasmids, were considered the same. Complete matches were only
considered when the measured size difference was less than 10%. In a se-
cond step, two barcodes were compared at their measured sizes by allow-
ing the shorter barcode to shift along the longer one, and if the P value for
this comparison (Ppart) was <0.01, then it was considered a partial match. If
the comparison failed the two criteria, the barcodes, and hence plasmids,
were considered not the same.

Results

A large investigation of Gram-negative bacilli resistant to common
antibiotics was performed at Jimma University Medical Center in
Jimma, Ethiopia, in 2016. In the current study, we selected, based
on NGS, a group of E. coli isolates of ST410 carrying the blaCTX-M-15

gene, originating from 24 different patients. By comparing the
plasmid barcodes between patients, we wanted to identify a po-
tentially ongoing outbreak, as then identical plasmids would be
expected (Figure 1). Interestingly, the strains originated from
patients that were treated in three different wards [paediatric (16),
surgical (5) and medical (3)], and a potential outbreak would indi-
cate transmission of bacteria between wards in the hospital.

The plasmids in all samples were analysed with ODM to obtain
barcodes that could be used to compare plasmids between iso-
lates. Figure 2(a) shows a histogram of sizes measured for the
plasmid carrying the blaCTX-M-15 gene in all isolates. While the plas-
mids in many samples had a very similar size of around 100 kb, a
few plasmids stood out with significantly different sizes, both
larger and smaller, indicating that these plasmids were different
from the common 100 kb plasmid.

To investigate the similarity between the plasmids, we com-
pared the barcodes for the plasmids carrying blaCTX-M-15 in all

Clinical samples from different wards Nanofluidic device Confined DNA in nanochannels

Compare barcode with target geneBacterial culture

Plasmid
extraction

One-step labeling
Cas9 digestion

Figure 1. Schematic overview of ODM for plasmid characterization. Clinical samples were collected from three different wards in an Ethiopian hos-
pital. Bacteria were cultured and the plasmids extracted. The plasmids were treated with CRISPR/Cas9 to create site-specific breaks at the gene of
interest. This creates uniform, linearized DNA molecules that were then stained with YOYO-1 and netropsin to generate sequence-correlated fluores-
cence intensity profiles along the DNA, termed DNA barcodes. The barcodes are unique for every plasmid and can be used as a fingerprint to investi-
gate transmission of plasmids by comparing barcodes of plasmids from different patients.
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isolates. The results are summarized in the matrix in Figure 2(b),
where we place each pair of plasmids in one of three categories,
and define P < 0.01 as a significant match (see the Materials and
methods section).20 The three categories were: matching when
they were stretched to the same length (green in Figure 2b);
matching but one was shorter than the other (yellow); or non-
matching (red). Fourteen plasmid pairs were in the green category,
suggesting they were identical, but there were also plasmids in the
yellow and red categories. We discuss below these different
groups of plasmids separately. In one of the samples (Med3) we
did not find a plasmid encoding blaCTX-M-15, suggesting the gene
was located on the chromosome (labelled white in Figure 2b).

First, we compared the barcodes for all plasmids that had a size
of around 100 kb (Figure 3a) and shown as green in Figure 2(b).
Since we used Cas9 with a crRNA targeting blaCTX-M-15, we could
directly pinpoint the presence of this gene on the plasmids. The
barcodes were found to be highly similar, and the blaCTX-M-15 gene

was located at the same position in all of them, clearly supporting
that it was the same plasmid.

Ped13 was unique because it was significantly longer than the
other plasmids (�10 kb longer), but still obtained a P value below
0.01 when compared with many of the 100 kb plasmids in
Figure 3(a). However, this P value dropped more than one order
of magnitude when adjusting the lengths to their measured re-
spective lengths. The blaCTX-M-15 gene was at the same location,
further supporting that Ped13 featured the same plasmid, but with
a �10 kb insertion. In Figure 3(b) the Ped13 plasmid is compared
with the plasmid in Ped1 when stretched to their respective sizes.

Next, we investigated the plasmids that were labelled yellow in
Figure 2(b) (Sur1, Sur2, Sur3 and Med2, Figure 3b). These were sig-
nificantly smaller than the plasmid in Figure 3(a). The yellow plas-
mids were compared with the plasmid in Figure 3(a) by taking the
respective lengths into account and using Ped1 as a representative
barcode, allowing the shorter plasmid to be partially matching to
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the longer one.20 This analysis confirmed that the plasmids were
indeed similar also in these samples, except that they all had dele-
tions. With Ped1 as reference, Sur1 contained a deletion of �5 kb,
Sur2 and Sur3 contained deletions of�10 kb and Med2 contained
a deletion of�30 kb. These deletions also matched the sizes in the
histogram in Figure 2(a). Importantly, these results confirmed that
the barcodes from plasmids in Sur2 and Sur3 were identical. For
Sur1 and Med2, the location of the blaCTX-M-15 gene along the bar-
code was the same as for the plasmids in Figure 3(a), but for Sur2
and Sur3 it was shifted�7.5 kb.

Figure 3(c) compares the barcodes for the plasmids carrying the
blaCTX-M-15 gene in the five samples labelled red in Figure 2(b),
with the barcode of Ped1 representing the plasmid in Figure 3(a).
In all these samples, it is evident from the barcodes that the
plasmids were not the same, in agreement with the statistical ana-
lysis. This was further emphasized by the fact that the blaCTX-M-15

gene location for the best matches in Figure 3(c) were also not
correlated.

As a control of our observations, we performed long-read nano-
pore sequencing of three of the isolates: Ped1, Sur3 and Med1
(Figure 4). For Ped1 and Sur3 the long-read sequencing yielded

contigs covering the intact plasmids, and when transformed
into theoretical barcodes they showed an excellent overlap
with the corresponding ODM barcodes. For Med1 the full plas-
mid could not be assembled from the long-read sequencing,
but a 59 kb contig containing the blaCTX-M-15 gene was identi-
fied. The theoretical barcode from this contig overlaps perfectly
with a region of the plasmid in Med1. For all three plasmids the
gene location matched perfectly between the theoretical and
experimental barcodes.

The blaCTX-M-15-containing contigs obtained for the plasmids in
Ped1, Sur3 and Med1 were compared with the RefSeq database
(https://www.ncbi.nlm.nih.gov/refseq/). All three plasmids show
great similarity (�99.9%) to plasmid pCTX-M-15_22372 isolated in
India. The theoretical barcode for pCTX-M-15_22372 is compared
with the experimental barcodes for Ped1, Sur3 and Med1 in
Figure 4(d), again showing great similarity. pCTX-M-15_22372 had
the blaCTX-M-15 gene at the same position as Sur3, but shifted
�7.5 kb compared with Ped1 and Med1. The observation that all
plasmid sequences were so similar to pCTX-M-15_22372, and
hence each other, answered the question remaining from the bar-
coding experiment—whether the Sur2 and Sur3 plasmids were
related to the main outbreak plasmid. The barcodes indicated this,
but the fact that the resistance gene was shifted 7.5 kb did not
agree with this observation. From the long-read sequencing data,
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we could confirm that the plasmids were highly similar, suggesting
that they are of the same origin.

The plasmid barcoding data showed that the same plasmid was
found in 18 different patients in three different wards, suggesting that
the same bacterial strain had spread between the three wards. We
returned to the NGS data and conducted an in-depth analysis of the
chromosomal DNA. This analysis is summarized in the core genome
(cg)MLST-basedminimumspanningtree inFigure5,where it is correlated
to the plasmid typing. The plasmid typing agreed very well with the
cgMLST data; the samples with similar plasmids also have a core gen-
ome with a similarity of at least 99.5%. All these strains shared similar re-
sistance profiles [blaCTX-M-15, blaOXA-1, blaCMY-2, aac(60)-Ib-cr, aad5, catB3,
su1/sul2] as extracted from ResFinder, and none of them encoded any of
the virulence genes investigated. Samples that showed no similarity in
the plasmids all showed a significant difference also in the cgMLST.

Discussion

We have in several previous studies reported the use of ODM to
characterize and trace bacterial plasmids collected in hospital set-
tings.20,24 Our recent demonstration that Cas9 can be used to
identify specific genes further improves the method and enables
analysis of plasmids in great detail in a single experiment.25,27 The
study of plasmids from isolates collected in a rural hospital in
Ethiopia using ODM presented here highlights the usefulness of
the technique in different ways.

First, the ODM analysis identified a large group of isolates that
contained a plasmid of the same size, where the blaCTX-M-15 gene
was located at the same position along the plasmid. We would like
to stress the advantage of obtaining the barcodes rather than only
the plasmid sizes.30 The barcodes can both differentiate plasmids
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when plasmid sizes are similar and also identify the same plasmids
with different sizes when an insertion or deletion occurs, which is
common in plasmids. The exact location of such structural varia-
tions can, as described in a previous study, be confirmed with
PCR.27 Large-scale variations (5–30 kb identified here), which are
challenging to short-read sequencing techniques, are rapidly
detected with ODM. This, in turn, means that transmission routes
where such structural changes have occurred can also be identi-
fied. The results were confirmed with long-read sequencing of a
small fraction of samples. This might become a general strategy,
where representative samples are identified with ODM and ana-
lysed in further detail with long-read sequencing.

Second, we wish to highlight the possibility of using plasmid
typing as a proxy for identifying clonal spread of bacteria and, in
turn, ongoing outbreaks. While plasmids can also spread horizon-
tally, the identification of the same plasmid in as many as 18 dif-
ferent patients in a hospital is a reliable indicator of an ongoing
outbreak, as plasmid transmission will also only happen whenever
strain transmission occurs. Plasmid typing might become a
straightforward method to detect such outbreaks, especially when
new methods for typing of plasmids, such as the one presented
here, are being developed. Another possible explanation for the
high prevalence of a bacterial strain with an identical plasmid in
the hospital setting could be that this particular strain is wide-
spread in the community. We want to stress that this could not be
resolved with the ODM technique, but it would also be highly chal-
lenging with competing techniques like NGS. In this particular
study there was a strong overlap between similarity of the plas-
mids and the cgMLST data, where a clone of E. coli ST410 was
shown to have the same plasmid. Compared with cgMLST, we
foresee that plasmid typing with ODM might, at least in some set-
tings, be a more accessible and faster technique that does not re-
quire NGS or bioinformatics analysis. Plasmid ODM also directly
confirms that the same plasmid is present in all strains from an
outbreak.

Third, we would like to stress the potential future use of the
method in LMICs. The barcodes generated using the principle pre-
sented here rely on variations in a strong emission signal, which is
in stark contrast to most competing techniques, where specific se-
quence motifs are labelled with one or a few fluorophores.21 While
not yet implemented, we believe that the presented assay can be
transferred to simple and cheap microscopy formats. YOYO-
stained molecules have been visualized using a fluorescence
microscope based on a smartphone camera, which will be an
appealing format for LMICs.31

Conclusions

This study analysed plasmids from isolates collected from three
different wards in a rural Ethiopian hospital using both ODM and
NGS. The results demonstrate a potentially ongoing outbreak of
E. coli ST410 where the same plasmid was found in three differ-
ent wards. Small changes in the plasmid due to insertions and
deletions were found in some of the plasmids. The NGS data
correlate well with the ODM data, where strains with the same
plasmid are closely related while strains that were less related
also did not harbour the same plasmid. We propose that ODM of
plasmids can be a useful tool to detect transmission of bacteria

and plasmids in hospital settings and that the method might be
applicable in LMICs.
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