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Abstract: Utilizing Bragg surface plasmon polaritons (SPPs) on metal nanostructures for the use in
optical devices has been intensively investigated in recent years. Here, we demonstrate the integration
of nanostructured metal electrodes into an ITO-free thin film bulk heterojunction organic solar cell,
by direct fabrication on a nanoimprinted substrate. The nanostructured device shows interesting
optical and electrical behavior, depending on angle and polarization of incidence and the side of
excitation. Remarkably, for incidence through the top electrode, a dependency on linear polarization
and angle of incidence can be observed. We show that these peculiar characteristics can be attributed
to the excitation of dispersive and non-dispersive Bragg SPPs on the metal–dielectric interface on the
top electrode and compare it with incidence through the bottom electrode. Furthermore, the optical
and electrical response can be controlled by the organic photoactive material, the nanostructures,
the materials used for the electrodes and the epoxy encapsulation. Our device can be used as a
detector, which generates a direct electrical readout and therefore enables the measuring of the
angle of incidence of up to 60◦ or the linear polarization state of light, in a spectral region, which
is determined by the active material. Our results could furthermore lead to novel organic Bragg
SPP-based sensor for a number of applications.

Keywords: plasmons; Bragg SPPs; angle of incidence; nanoimprint lithography; grating; organic
solar cell

1. Introduction

In recent years, substantial research in the field of nanophotonics has targeted the understanding
and manipulation of light–matter interactions on the nanoscale. In particular, metallic nanostructures
that allow the excitation of plasmons, such as localized surface plasmons (LSPs) on isolated metal
nanostructures, surface plasmon polaritons (SPPs) propagating at metal–dielectric interfaces or gap
plasmon polaritons (GPPs) on metal–insulator–metal interfaces and the coupling of plasmonic modes
gained great attention and can be addressed and utilized [1–3]. Consequently, the generation or filtering
of colors [4,5], the spatial redirection of light [6–8], extraordinary optical transmission (EOT) [9,10], as
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well as optical cloaking and light trapping in optoelectronic devices [11–14] have been demonstrated
over the last years. Nanogratings have attracted much attention due to easy excitation of Bragg
SPP plasmons by diffraction and direct coupling of the wave vector of the incoming light to the
reciprocal lattice vector of a grating [1,15–17]. The coupling condition of dispersive SPPs depends on
the periodicity of the grating and the angle of incidence and the polarization state of the incoming
light [18]. The advantages of Bragg SPPs, such as easy excitation, the angular dependent coupling
condition, polarization sensitivity, as well as the field enhancements, are widely used in surface
plasmon resonance (SPR) sensors [19–22], for surface plasmon coupled light emission [23], in photo
detectors [11,24] and in plasmonic solar cells [12,25–28].

Although the angle- and polarization-dependent coupling condition of Bragg plasmon excitation
principally allows for the SPP plasmon-based determination of the angle of incidence (AOI) or the
polarization state of light rays, nowadays, non-SPP-based devices are used to determine the AOI.
Such devices often consist of bulky and complex optical systems with lenses, apertures, and sensor
arrays, e.g., CCD-cameras, light field cameras, or sun sensors. Light field cameras based on the Talbot
effect [29–31] simultaneously capture information on intensity and direction of the light in the far field
by angle dependent intensity patterns on a photodetector generated by micro lenses or a diffraction
grating [32–35]. Sun sensors often use pinholes or apertures placed in a distance in front of an active
pixel array to determine the position of the sun, stars, or the location coordinates of space-crafts [36],
satellites, or Mars rovers [37]. In contrast, polarization sensitive photoreceptors are used for navigation
and water detection by insects in nature. For instance, desert ants (genus Catraglyphys) use celestial
polarization patterns and a high level of processing to find direct routes into their home nest [38].

Here, we follow the examples in nature and propose the idea of an organic Bragg SPP-based
device to enable angle- and polarization-sensitive detection. We investigate the combination of a flat,
thin film organic solar cell with integrated periodic metallic nanostructures. Although operation of
such sensors in the visible spectral range are highly desirable, their realization is challenging, and
the number of studies on this specific topic is rather moderate. There are a few articles reporting on
polarization and wavelength-selective photodetectors based on SPP enhanced photoconductivity in
tunnel junctions [24,39,40]. For a fixed angle and a fixed wavelength, Turker et al. [41], and very recently
Saito et al. [20] and Tsukagoshi et al. [42], reported on SPR sensors based on a metal grating coupler
embedded onto a diode, capable of detecting changes in the refractive index of the surrounding medium
without the need of an external readout setup. Senanayake et al. [11] fabricated a surface plasmon
enhanced photodetector based on nanopillars, which exhibits an angle dependent photo-response
due to excitation of SPPs in the infrared spectral region. In addition, studies on plasmonic solar cells
with incorporated periodic metallic nanogratings need to be considered as well. However, in only a
few of the studies, the angular response due to SPP coupling was correlated with the performance
of plasmonic optoelectronic devices based on nanogrids [12,13,43–50]. In most studies, the devices
either lack of clear plasmonic modes in the wavelength region where charge carriers are generated, or
the plasmonic influence on the device performance is not significant. Moreover, most studies do not
provide angle dependent measurements or discuss the discrepancies between optical and electrical
measurements in detail.

In this article, we report the design and fabrication of an angle and polarization sensitive plasmonic
detector based on a nanostructured thin film organic solar cell. The nanostructured semi-transparent
metallic bottom and top electrodes of the cell allow for light coupling to Bragg plasmons. For both sides
of incidence (bottom or top illumination), we find a unique response as a function of the AOI and the
linear polarization state of light. Our findings could lead to new types of SPP-based sensors for various
applications. One possible application could be the detection of the AOI similar to a sun sensor, in the
visible or IR spectral region. Our device is able to detect incoming light for large AOI of at least 60◦ in a
small and adjustable spectral range. Additionally, the design could be used as integrated organic SPR
sensors, which allow direct integration into microfluidic or lab-on-a-chip devices and would enable a
direct electrical readout of the signals without the need for sophisticated external readout hardware.
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2. Materials and Methods

2.1. Materials

OrmoStamp was purchased from micro resist technology (Berlin, Germany).
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) Clevios P.Al 4083
was purchased from Heraeus (Hanau, Germany), diluted with water, and 0.7% Zonyl as
surfactant was added. Zonyl was purchased from Sigma-Aldrich (Vienna, Austria). The
poly(3-hexylthiophene-2,5-diyl) (P3HT) was purchased from Rieke metals (Lincoln, NE, USA) and the
[6,6]-Phenyl C61 butyric acid methyl ester [60] PCBM was purchased from Solenne BV (Groningen,
Netherlands). P3HT and PCBM were mixed in a ratio of 1:0.7, dissolved in chlorobenzene, and steered
for 1 day at 70 ◦C. To determine the layer thicknesses, each layer was individually spin coated (4000
rpm) on a silicon substrate (as delivered) and the thickness was measured on a scratch made with an
scalpel by atomic force microscope (AFM, Bruker corporation, Billerica, MA, USA). The thicknesses of
the PEDOT:PSS and P3HT/PCBM layers were 15 and 86 nm, respectively.

2.2. Device Fabrication

The fabrication steps are schematically depicted in Figure 1a. Firstly, a 2D square lattice of
nanostructures is imprinted on a 25 × 25 mm2 glass substrate by UV-based nanoimprint lithography
(UV-NIL) as described elsewhere [51]. OrmoStamp [52] was used as UV-curable nanoimprint resist.
The nanostructures were selected to exhibit the (+1, 0) Bragg SPP mode within the spectral region of λ
= 350–650 nm, overlapping with the absorption of the P3HT/PCBM. For this purpose, a silicone NIL
master with nanostructures, written with e-beam lithography and successively etched in the silicone,
was used. The nanostructures have a feature size of 190 nm, in x and y, and a height of h = 275 nm, as
sketched in Figure 1b. The unit cell size of the square lattice is Px = Py = 360 nm. Figure 1c shows a
typical topography of the nanoimprinted substrate measured with an AFM. In Figure S1, additional
AFM measurements and an electron microscopy image of the cross section through the detector are
presented. The bottom electrode is a semi-transparent 25 nm thin silver (Ag) layer deposited by
thermal evaporation directly onto the imprinted substrate resulting in a nanomesh that contains square
holes at the bottom and square layers on top of the 275 nm high posts. Subsequently, thin PEDOT:PSS
hole-conduction layer was spin coated directly on top of this nanostructured electrode and annealed
for 30 min at 150 ◦C on a hotplate (adapted form [53]). This was followed by a thin photoactive layer
(P3HT/PCBM), which was spin coated and annealed for 5 min at 80 ◦C on a hotplate. The nominal
thickness of the PEDOT:PSS (14 nm) and P3HT/PCBM (86 nm) layer was determined by spin coating
the corresponding layers on silicon substrates. On the nanostructured substrates, the spin coated
active layer generates a wavy surface with a periodicity given by the underlying NIL pattern. After
coating of the active layer, the topography height of around 140 nm was measured (Figure S1d). Unless
mentioned otherwise, the semi-transparent top electrode consists of a 10-nm calcium (Ca) and 50-nm
Ag layer deposited, in a nitrogen atmosphere in a glove box, on top of the spin-coated polymers, which
gives a solid corrugated metal electrode with a topography height of about 140 nm (Figure S1). The
device was encapsulated with UV-curing epoxy resin and a 130-µm-thick glass cover slide in the glove
box, in order to prevent degradation. A photograph of a final device comprising 8 cells is shown in
real colors in Figure 1d. The individual cells are defined by the spatial overlap of the bottom electrode
and the individual top electrodes (indicated by dashed orange lines).
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Figure 1. Manufacturing and detector details. (a) Fabrication of nanostructures on a glass substrate
by nanoimprint lithography, followed by Ag deposition of the bottom electrode. Spin coating of
PEDOT:PSS and P3HT/PCBM, metal deposition of the top electrode and encapsulation. (b) Schematic
of a unit cell. (c) AFM topography image of the nanoimprinted substrate. (d) Photograph of the final
device in true colors, comprising eight individual cells confined by the spatial overlap of the electrodes
(indicated by dashed orange lines).

2.3. Optical Characterization

Angular-resolved zero-order transmission (T) and zero-order reflection (R) measurements were
performed using an in-house built setup. The samples were illuminated by a broadband white light
source (tungsten halogen, UV-IR) coupled to a fiber and slightly focused to a round spot with a diameter
of 1 mm. T/R measurements were performed using linearly polarized light (GT 10-C Glan-Taylor Calcite
Polarizer, Thorlabs, Bergkirchen, Germany) with the electric field either perpendicular (s-polarized) or
parallel (p-polarized) to the plane of incidence. Polarization was controlled by turning the polarizer.
All optical measurements and electrical characterization were carried out by setting the incidence
plane to Φ = 0◦ azimuthal angle with respect to the nanostructure orientation. The measurements
were performed either with incidence through the nanostructured bottom electrode (bottom electrode
incidence spectra, BI) or through the semi-transparent corrugated top electrode (top electrode incidence
spectra, TI). The transmitted or reflected light was collected by a lens, collimated into an optical fiber
and detected with a CCD spectrometer (B&W Tek, BRX112E-V, Newak, DE, USA, range 400–1050
nm). The angle of incidence θ was varied in 2◦ steps for transmission measurements, which was a
good tradeoff between resolution and measuring time. For each angle increment, 25 spectra were
accumulated for 40-ms exposure time each. The resulting angle dependent spectra were then corrected
by the response function of the setup to yield the transmittance. Reflection measurements were
performed using the same setup in 5◦ increments. Each spectrum was accumulated 25 times with
10-ms exposure time. The resulting angle dependent spectra were again corrected by the response
function of the setup to yield the reflectance.

2.4. Electrical Characterization

I–V characteristics of the devices were measured on an Oriel solar simulator using an AM1.5
spectrum. The external quantum efficiency (EQE) was determined using a setup consisting of a Xenon
lamp, a monochromator, a linear-polarizer, a chopper wheel, and a lock-in amplifier (Stanford Research
System SRS830, Sunnyvale, CA, USA). The samples were mounted on a manual rotation stage with the
cell under investigation centered on the rotation axes illuminated with a monochromatic light spot of
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rectangular shape of 2 × 0.5 mm2. For determining the light spectrum and the number of incoming
photons, a calibrated photodetector (Hamamatsu S2281-01, Herrsching am Ammersee, Germany)
was used. Angle dependent EQE measurements were performed by rotating the sample in 5◦ steps
from 0◦ to 60◦ incident angle with 0◦ being the normal incidence. For each incremental step, the
wavelength of the monochromatic excitation light was scanned at λ = 305–700 nm in 6-nm steps. All
cells were checked for degradation effects before and after performing EQE measurements. No cell
degradation was observed during the measurements and all cells showed a homogenous response
over the complete active area.

2.5. Numerical Simulation

All simulations were performed in the frequency domain with the commercial finite element solver
COMSOL™ (Burlington, MA, USA), version 5.2, using the Wave Optics package. The geometrical
parameters are taken from scanning electron microscope (SEM, Zeiss1540 XB Oberkochen, Germany)
and AFM measurements as described in Section 2.2. The refractive indices of the epoxy and the
nanoimprinted structure were assumed to be purely real with a value of n = 1.5. The dielectric functions
of silver and P3HT were taken from Johnson and Christy [54] and Ng et al. [55], respectively.

3. Results

Our proposed angle dependent detector consists of a 2D square lattice nanoimprinted on a
substrate and a solution processed thin film organic solar cell on top (Figure 1). The nanostructures
were selected to have Bragg SPP modes in the absorbing wavelength region of P3HT/PCBM. The
top and bottom electrodes exhibit different optical properties as a consequence of their different
morphologies. As stated above, the top electrode is a continuous corrugated layer with structure
heights of about 140 nm, while the bottom electrode is a nanomesh that contains square holes at the
bottom and square layers on top of the 275-nm high posts. Compared to an open hole array, such a
blocked hole array can transmit more light, due to coupling of SPPs and LSPs, known as extraordinary
optical transmission (EOT) through blocked holes [10].

To investigate the plasmonic effect of the two different electrodes on the device performance, we
carried out optical and electrical characterizations of the sample as a function of the angle of incidence
(AOI, θ) for both sides of illumination, top incidence (TI) and bottom incidence (BI). The optical
characterization reveals the plasmon-coupling conditions, whereas the electrical characterization,
especially the external quantum efficiency (EQE) measurements in the wavelength region between 350
and 650 nm, unveil the direct plasmonic influence on the charge carrier generation in P3HT/PCBM.
Additionally, I–V measurements were performed on full devices in order to characterize the performance
and the diode behavior.

Figure 2 shows the experimental device characterization for excitation with light incident through
the top electrode (TI) in the case of p-polarization. The left panels sketch the respective experimental
situation, the middle panels show the experimental results, and the right panels show the numerically
simulated spectra as a function of wavelength and angle of incidence. The simulations were carried out
with COMSOL Multiphysics® (cf. Section 2.5 for more details). It should be noted that the simulation
results strongly depend on the properties of the materials. There is an especially big disagreement in
the literature on the complex refractive index (RI) of the active material P3HT/PCBM. Figure S2 shows
real and imaginary parts of P3HT/PCBM refractive index taken from three different sources [55–57].
Despite significant variations of the RI data, our simulation fits qualitatively well to the obtained
experimental results in case of the RI data from Ng et al. [55], which we use for all simulations shown in
the main text. The Bragg SPP coupling condition allows analytically calculating the Bragg SPP modes
dispersion (cf. the Supplementary Materials). The white and black dashed lines in the panels represent
the (±1, 0) and (+2, 0) dispersive modes of the SPP at the silver/epoxy interface. They correspond well
with the main measured and simulated dispersive features; however, some additional dispersive and
non-dispersive features are visible in both simulations and experiments.
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Figure 2. Schematics (left panel) for Angle-resolved device characterization for p-polarized excitation,
incident on the top electrode (TI stands for top incidence). Middle panels show experimental data
and right panels show corresponding simulated spectra. (a) Transmission (T) spectra; (b) reflection
(R) spectra; (c) absorption calculated from T and R; and (d) external quantum efficiency (EQE)
characterization. The right panel in (d) shows a simulation of the energy absorbed in the active layer.
The abrupt decrease in EQE between 600 and 650 nm is caused by the absorption edge of the active
material. The incidence plane was set to Φ = 0◦ azimuthal angle for all measurements. Dispersive SPP
modes are clearly visible in all graphs, and calculated SPP modes are shown by dashed lines.

The total transmission through the device (Figure 2a) is below 2%, with clearly visible Bragg SPPs
in the spectrum. In Figure 2b, the reflection measurements reveal that the metal top electrode acts
as a mirror with a reflectivity of up to 80%. Only for light fulfilling the SPP coupling condition, the
reflection drops down to 20%. Additional insights can be gained by the absorption A = 100%-T-R,
as shown in Figure 2c. The experimental absorption maxima are consistent with the excitation of
dispersive (±1, 0) SPP modes. Light, fulfilling the coupling conditions to the SPP, is absorbed with high
efficiency within the device. Particularly, we want to address the maximum in absorption at shorter
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wavelengths (below 610 nm), which originates from coupling to the (+1, 0) mode. For larger AOI,
anti-crossing with the (−2, 0) mode is apparent in the simulation, which is absent in the experiment. In
general, energy coupled to SPP modes could be dissipated in the metal as Ohmic losses, be reemitted,
or it could get absorbed in the dielectric or in the photoactive layer. Energy absorbed in the photoactive
layer creates excitons, which can decay in charge carriers or recombine radiatively or non-radiatively.
The external quantum efficiency (EQE) should represent a convolution of the absorption spectrum
of the active layer and the plasmonic modes of the device. This can be nicely observed in Figure 2d
(middle), where the measured EQE is plotted as a function of the incident wavelength and AOI. Due to
the band edge and low absorption in the P3HT/PCBM above 650 nm, the (−1, 0) SPP mode is very
weak in the EQE measurement, but measurable up to around 700 nm. In contrast, the (+1, 0) SPP mode
is well resolved in the EQE measurement. The measured EQE at λ = 515 nm for off-mode (θ = 0◦) and
on-mode (θ = 20◦) condition are EQETI = 3.02% and EQETI = 10.9%, respectively. This gives a relative
enhancement factor of 3.6, which leads to a strong angular dependent signal for p-polarized light. At
λ = 686 nm, at the band edge of P3HT/PCBM, the EQETI = 0.103% for the off-mode case and for the
on-mode EQETI = 0.539%. This results in a SPP-induced enhancement of 5.2 at the band edge. One can
indirectly access the EQE by simulating the absorbed energy just in the active layer (Figure 2d, right).
The dispersion of the absorbed energy in the active layer is in excellent agreement with the dispersion
of the experimentally measured EQE (Figure 2d, middle). Both the (+1, 0) mode and the onset of the
(−1, 0) mode are well resolved. The difference is that, in the simulations more modes are prominent,
the anti-crossing of the (+1, 0) mode with the (−2, 0) mode is more pronounced, and the (−2, 0) mode is
clearly visible in the simulation compared to the experiments.

The optical and electrical characterizations in case of s-polarized light are shown in Figure 3. One
notes that all optical and electrical characteristics at normal incidence are identical to the corresponding
characteristics for p-polarization, as one expects from the symmetry of the nanostructures. The
experimental and simulated transmission for the device is shown in Figure 3a. The measured
transmission for s-polarization is again below 2% and shows an almost angle independent absorption
edge at around 610 nm and a dispersive feature with higher transmission starting at 660 nm for θ=

15◦ until 790 nm for θ = 40◦. The drastic change in transmission at λ = 610 nm, is caused by the
change due to the absorption edge of P3HT/PCBM (see Figures S2 and S4f) and an underlying SPP
mode. Reflection and absorption spectra (Figure 3b,c) show in detail the (±1, 0) SPP mode, which
is only slightly dispersive in the case of s-polarization, in contrast to p-polarization. In comparison
to the absorption (Figure 3c, middle), the EQE measurement (Figure 3d, middle) shows two distinct
modes in the wavelength region between 550 and 650 nm. The appearance of two modes in the
EQE measurement instead of one is most likely caused by a slight rotation of the sample during the
measurement leading to a mode splitting.

The corresponding simulations are presented in Figure 3a–d (right). Clear Bragg SPP modes
are also present in the simulation results and agree well with the measurements. However, again,
the simulation results show more observable SPP modes as well as their evolution for all calculated
spectra. The main (0, ±1) mode is prominent in the simulation as well as in all measurements. Two
essential features of the optical properties should be highlighted here: First, for oblique incidence,
a clear polarization dependent behavior is visible when comparing the EQE for p-polarization and
s-polarization, (Figures 2d and 3d, respectively). Second, SPP modes excited with the s-polarization
exhibit very limited dispersion in contrast to SPP modes excited with p-polarization.
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Figure 3. Schematics (left) for angle-resolved device characterization for s-polarized excitation with
top incidence (TI) (middle) and corresponding simulated spectra (right). (a) Transmission (T) spectra;
(b) reflection (R) spectra; (c) absorption measurement derived from T and R; and (d) external quantum
efficiency (EQE) characterization. The simulation in (d) shows the absorbed energy in the active layer.
The plateau at 600–650 nm is caused by the absorption edge of the active material overlapping with the
(0, ±1) SPP mode. The incidence plane was set to Φ = 0◦ azimuthal angle for all measurements. SPP
modes are clearly visible in all graphs, and calculated SPP modes are shown by dashed lines.

To determine the origin and location of the observed SPPs and to exclude the influences between
both metal electrodes, half-cell devices were fabricated, optically characterized, and numerically
simulated. A half-cell device with top electrodes only (Figure 4) was fabricated to investigate SPP
modes at the metal–P3HT/PCBM and at the metal–epoxy interfaces. Additionally, devices without
electrodes i.e., patterned polymer layers, were fabricated in order to get information on polymer
absorption (see Figure S4).
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Figure 4. Schamatics (left) for side and angle resolved device characterization with p-polarized
excitation (middle) and simulated spectra (right) of a half-cell device without a bottom electrode. (a–c)
Zero-order transmission and side dependent reflection measurements. The incidence plane was set to
Φ = 0◦ azimuthal angle for all measurements. Side dependent reflection measurement shows clear
differences in SPP mode excitation. Dashed lines show the analytically calculated Bragg SPP modes
at metal–epoxy (green labels in the simulation results) and metal–P3HT/PCBM interfaces (light blue
labels in measurements).

Figure 4 shows the side dependent optical characterization of a half-cell device without a bottom
electrode for p-polarized excitation together with analytically calculated SPP modes. The modes on
the P3HT/PCBM–Ag interface are labeled in the experimental results of Figure 4a, and the modes
at the metal–epoxy interface are labeled in the simulation results. The transmission measurements
as well as the simulated spectra presented in Figure 4a reveal SPP modes at both metal–dielectric
interfaces. The simulations disclose that the (±1, 0) SPP mode is located at the Ag–epoxy interface,
starting at around λ = 606 nm for normal incidence (θ = 0◦), while another (±1, 0) SPP mode at the
P3HT/PCBM–Ag interface starts at around λ = 707 nm for normal incidence (θ = 0◦). The energetic
(wavelength) difference between those SPPs arises from the refractive index differences between the
P3HT/PCBM, with average real part of the RI in the visible spectral range around 1.9, and the epoxy
with a purely real refractive index of n = 1.5. The excitation of the SPPs at the respective interfaces
is confirmed additionally in the reflection measurements presented in Figure 4b,c. In the case of BI
excitation, the reflection spectra show primarily the SPP modes at the P3HT/PCBM–metal interface,
while TI excitation predominantly couples to SPP modes at the metal–epoxy interface.

This shows that SPPs at both interfaces at the top electrode are present in the case of the half-cell
device and are clearly visible in the experiments and the simulations. This is in contrast to observations
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from the full-cell device (Figures 2 and 3), where only the SPP modes at the metal–epoxy interface are
prominent and visible, as revealed by the transmission measurements in Figure 2a. The absence of the
P3HT/PCBM–metal SPP modes in the full device suggests that the bottom electrode strongly affects the
Bragg SPP coupling conditions. These modes are either suppressed due to the presence of the bottom
electrode or energetically shifted due to plasmonic coupling between the modes at the top and the
bottom electrodes. Specifically, the part of the bottom electrode on top of the nanoimprinted pillars,
which is very close to the top electrode, could affect the coupling.

Next, the influence of the bottom electrode on device characteristics is investigated by
angle-resolved measurements. In Figure 5, the angle resolved device characterization and simulated
spectra for p-polarized excitation are shown. The transmittance for bottom incidence is the same as for
top incidence within experimental error, as presented in Figure S5. Absorption, ABSBI, and EQEBI are
shown in Figure 5c,d, respectively. The reflection, absorption, and EQE for BI differ significantly from
the corresponding results for TI. There are no clear Bragg SPP modes visible in the reflection spectra
(Figure 5b). Distinct SPP modes are observed neither in the EQE nor the absorption spectra. For BI, the
absorption at λ = 350–650 nm is in the range of 80%, which can be attributed to the good absorption
of P3HT/PCBM in this wavelength region. The absorption and EQE spectra show a broad spectral
minimum, between 500 and 700 nm, for small AOI and a broad maximum for larger AOI in the same
region. For the full device, EQE lies between 16% and 29.8% over the whole spectrum and AOI range.
By comparing the measured EQEBI with EQETI, one notices that, in the case of TI, the energy coupled
to SPP modes is generating less charge carriers. For instance, at 521 nm and 20◦ AOI, which represents
a region with Bragg SPP coupling for TI, the external quantum efficiency for TI is EQETI(p-pol) = 10.1%,
while for BI, the EQEBI(p-pol) = 21.9%. Furthermore, the absorptions at 521 nm and 20◦ AOI for TI and
BI are comparable, ABSTI(p-pol) = 66.34% and ABSBI(p-pol) = 71.76%. This confirms that for TI only a part
of the energy coupling to SPPs gets absorbed in the active layer, generating excitons and charge carriers.
Angle resolved device characterization for BI and s-polarized excitation are presented in Figure S6.

Additionally, our results show that, for bottom incidence, our device acts as an ITO free thin
film organic solar cell with no prominent angular dependency. I–V characteristics presented in the
Supplementary Materials (Table S1 and Figure S7) show, for BI (TI) through the 25-nm Ag bottom
electrode (10-nm Ca/50-nm Ag top electrode), a short circuit current density of Jsc = 5.5 mAcm−2 (Jsc =

1.06 mAcm−2), a fill factor FF = 0.62 (FF = 0.56), and an open circuit voltage Voc = 0.6 V (Voc = 0.53 V).
The difference in the device characteristics is mainly due to the different transparency of the electrodes.
Furthermore, the power conversion efficiency (PCE), under AM1.5 spectrum, is PCEBI = 1.88% when
excited through the bottom electrode and PCETI = 0.4% when excited through the top electrode at normal
incidence. The cells show a considerable PCE of up to 1.88% (see Table S1), which is an interesting
demonstration for the realization of an ITO-free solar cell using metal electrodes. The efficiency is
comparable with other ITO-free P3HT:PCBM organic solar cells with metal electrodes [57,58]. The
presented approach might be very interesting due to its simple fabrication without any complex etching
or lift-off steps and the ability of upscaling to roll-to-roll NIL processes. However, the maximum EQE
of 30% is lower in comparison to optimized ITO–PEDOT:PSS–P3HT/PCBM solar cells reaching up to
60% [59]. Nevertheless, performance optimization was not within the scope of this study. The lower
EQE originates from higher reflectivity of the metal bottom electrode compared to an ITO bottom
electrode and different work functions.
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Figure 5. Schematics (left) for angle resolved device characterization with p-polarized excitation for
bottom incidence (BI) (middle) and simulated spectra (right). (a) Transmission (T) spectra; (b) reflection
(R) spectra; (c) absorption measurement derived from T and R; and (d) measured external quantum
efficiency (EQE) characterization and the simulated absorbed energy in the active layer. The abrupt
decrease in EQE between 600 and 650 nm is caused by the absorption edge of the active material. The
incidence plane was set to Φ = 0◦ azimuthal angle for all measurements.

Since transmission spectra are independent of the side of incidence, they point out that SPPs
are excited in either case of incidence. However, for BI, the influence of the SPP modes on EQE is
not as prominent. This is very interesting since blocked hole arrays are known to support both SPPs
and LSPs [10]. The 25-nm Ag bottom electrode exhibits a number of plasmon modes over the whole
spectrum, as shown in the Figure S4 where transmission measurements of the bottom electrode without
PEDOT:PSS and P3HT/PCBM layer are presented. However, measurements show that the plasmonic
modes of the bottom electrode have no significant influence on the EQE of the final device. For instance,
the >50% transmission at normal incidence indicates EOT since transmission through a plain solid
25-nm Ag layer gives a maximum transmission of only around 10% (e.g., λ = 500–900 nm) [60]. Our
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findings are in good agreement with other reports, as similar designs have been investigated before
and often no significant influence due to Bragg modes in the EQE was observed for excitation through
the bottom electrode [13,47]. The reason for the difference between BI and TI originates from the
different shapes of the electrodes and different reflection spectra. In addition, the bottom electrodes are
often made of ITO, and, if metal is used, they are usually very thin to ensure high transmission and
therefore SPP modes are not as strong as for the thicker top electrodes.

EQE measurements confirm that only for top incidence, a part of the energy from the Bragg
SPP modes excited at the metal–epoxy interface is absorbed in the active layer and generates charge
carriers, either by direct absorption of the SPP energy in the active material or by SPP induced high
transmission through the top electrode. Although the transmission measurements (Figures 2a and
5a) revealed that the same SPP modes are excited with both TI and BI, the influence on the EQE is
only observed for TI. The local electric field distributions in one unit cell, corresponding to BI and TI
exaction at 505 nm for various AOI, are displayed in Figure S3. The following two reasons may explain
this behavior. First, for TI, the top electrode acts as a very good mirror with reflectivity reaching 80%,
whereas, where coupling to SPP at the metal–epoxy interface occurs, reflection drops to 20%. The EQE
measurements show that only incident light at the SPP wavelength is efficiently absorbed by the active
layer and generates charge carriers. Secondly, SPPs at the top metal–epoxy interface are not excited
efficiently in the case of BI, and, thus, there is no significant influence on the EQE. The reason, therefore,
might be that up to 96% of the light gets absorbed in a single pass through the active layer (see Figure
S4) by leading to only few percent of the incoming light reaching the metal top electrode. Indeed, this
light could excite plasmons at the P3HT/PCBM–metal interface, but in contrast to TI these SPPs should
lower the respected EQE. However, measurements point out that these SPPs are either not present or
simply too weak to significantly contribute to a change of the EQE.

Our device architecture facilitates angle and polarization dependent response when using TI,
allowing for the conceptual design of a Bragg SPP-based organic detector, sensitive to both, the AOI
and the polarization state of light. The most important features enabling an angle and polarization
dependent response are the corrugated semi-transparent top electrode supporting Bragg SPP modes,
an active material in close contact with the nanostructured electrode providing a spatial overlap of the
electromagnetic modes with the charge generation regions, and the spectral overlap of the SPP modes
with the absorption of the active material which facilitates the charge generation. Light coupled to SPPs
on the metal–epoxy interface and subsequently absorbed in the active material creates a photocurrent,
which can be used as detector signal and is strongly linked to the coupling condition for SPPs, as can
be seen in Figures 2d and 3d.

The SPP coupling condition depends on the epoxy encapsulation, the photoactive layer, the
electrode materials, and the unit cell size (see Supplementary Materials). The use of epoxy encapsulation
with a different refractive index could shift the coupling conditions, which allows a shift of the resonances.
The active layer itself should not drastically influence SPP coupling condition, since SPPs are located at
the metal–epoxy interface, but a change of the active material would change the response dramatically
due to the change in the absorbing and thus charge generating spectral region. The active material
P3HT/PCBM absorbs light up to 650 nm, which gives a negative angular response, since the resonance
of the (+1, 0) mode blue-shifts for increasing AOI. In comparison, a detector using another active
material, absorbing for example at λ = 650–900 nm, would exhibit a positive angular response due
to the redshift of (−1, 0) SPP mode for increasing AOI. Our findings further show that the choice of
the top electrode material and thickness strongly influences the signal strength (Figure S8). A thin
top electrode shows higher intrinsic transmission but a lower signal to background ratio compared
to thicker ones. The 10-nm Ca/50-nm Ag top electrode used in this work represents a good tradeoff.
Another influence on the coupling condition of SPPs arises from the unit cell size of the corrugated
top electrode. Smaller unit cells would blueshift the resonances, whereas larger unit cell sizes would
redshift the resonances (Figure S8b). Furthermore, a rectangular unit cell or line and space pattern [39],
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instead of a square unit cell, would change SPP resonances for p- and s-polarization and hence could
improve the polarization sensitivity.

This effect could be utilized to detect the AOI by using a narrow band excitation. The generated
response strongly depends on the AOI and the polarization state of the light. It should be noted
here that it is not possible to determine both azimuth and polar angle simultaneously. Therefore,
for the proposed application as AOI detector, the p-polarization between emitter and detector must
be guaranteed. The concept of a detector device, capable of detecting the AOI of an incoming light
ray, is illustrated in Figure 6a. The proposed device would comprise a detector array of a number of
individual detectors. Additionally, a linearly polarized light source with a narrow emitter wavelength
is necessary. The polarization of the emitter needs to be set to p-polarization. The individual detectors
would have different responses in order to be able to calculate the properties of the incoming light. The
necessary different responses could either be created by using different epoxy encapsulations, different
unit cell dimension of the nanostructures, or different absorber layers for the individual detectors.
For example, by using nanoimprint lithography for the substrate fabrication, one could fabricate all
nanostructures, in one imprint step, by imprinting a number of different detectors with different unit
cell sizes. All other process steps would stay the same.

Figure 6. (a) Schematic illustration of the detector concept used for the detection of the AOI of incoming
light. (b) Sensitivity and spectral shift of the resonance peak depending on the angle of incidence.

The angular sensitivity of the detector can be measured by the spectral shift of the Bragg plasmon
resonance while changing the AOI by 1◦. Our detector shows an angular sensitivity of up to 6 nm for
p-polarized light, as can be seen in Figure 6b. The calculated SPP modes for different unit cell sizes are
shown in Figure S8. We propose to take advantage of the characteristics of the (−1, 0) mode, namely
the dispersion over a spectral range of 180 nm. An array of 12 individual pixels (detectors) is necessary
for the detection of a signal covering an AOI from 0◦ to 60◦, by using a signal with a narrow spectral
width (FWHM) of 15 nm. The benefit of our design is that such a detector can be easily fabricated
directly on one substrate in one imprint process by just using a special designed master, containing an
arrangement of 12 individual patterns. Additionally, at least one reference cell (with no SPP excitation)
for detecting the signal strength might be necessary. A graphical solution for covering the whole AOI
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range is shown in Figure S9. By using a number of emitter wavelengths, a reduction of individual
detectors could be possible. Even using only one detector and a wavelength sweep for the excitation,
the determination of the AOI should be possible as long as the detector knows the emitted wavelength
at each time. Finally, by comparing the signals of the individual detector, one could calculate the AOI
of the signal.

4. Conclusions

We successfully designed and fabricated an angle of incidence (AOI) and polarization state
sensitive plasmonic device. The device is based on an ITO-free thin film bulk heterojunction organic
solar cell, which has two semi-transparent metal electrodes enclosing the PEDOT:PSS hole-conduction
layer and photoactive layer P3HT/PCBM. The device was easily fabricated by spin coating and metal
deposition on top of a nanoimprinted substrate.

A thorough analysis of the optical and electrical device characteristics, together with simulations,
shows a significant influence of the side of excitation, the AOI and the polarization state of the signal
on the EQE of the device. With excitation through the thin bottom electrode (BI), the device acts as
an ITO-free organic solar cell with a considerable PCE of 1.88% and an EQE of up to 30% without
performing any optimization. The most interesting behavior is revealed with top incidence (TI) where
the device shows a clear AOI and polarization dependent response. We conclusively present that
with TI the coupling of light to Bragg SPP modes on the corrugated top metal–epoxy interface occurs
and that this coupling and the subsequent absorption and charge carrier generation in the device
allows for an AOI and polarization dependent response. We show that SPP coupling condition can be
controlled in several ways, which allows for an adaption of resonance condition, spectral range, and
sensitivity. Based on our results for TI, we propose a concept of polarization sensitive Bragg SPP-based
detector capable of detecting the AOI of at least up to 60◦. In brief, a Bragg SPP-based AOI detector
should consist of an array of individual devices showing different responses. This can be utilized
by using different unit cell sizes, active materials or epoxy encapsulation materials. The individual
SPP-based devices should be arranged in an array to be able to calculate the properties of the angle of
the incoming light ray for p-polarized light.

In addition, our detector concept could lead to the realization of novel organic SPP-based sensors
for a number of applications. For instance, our sensor concept could be used for an organic integrated
SPR biosensor. By exchanging the epoxy with a thin functionalized silica protection layer and an
analyte solution, one can detect changes in refractive index instead of AOI. Such a sensor would allow
direct integration into microfluidic or lab-on-a-chip devices and would enable a direct electrical readout
of the signal without the need of a large external setup. Furthermore, our device fabrication could be a
promising strategy to demonstrate angular and polarization dependent behavior when using light
emitting materials and operating the sensor as an OLED.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/9/1866/s1,
Figure S1. 3D visualizations of AFM measurements, a sketch as well as a scanning electron microscope (SEM)
image of the device in different fabrication stages. Figure S2. Refractive index for P3HT:PCBM from different
sources. Figure S3. Electric field distribution in one unit cell for BI and TI for various AOI. Figure S4. Side
and angle-resolved characterization on different half-cell devices. Figure S5. Comparison of side dependent
zero order transmission measurement for device with 25-nm bottom and 10-nm Ca/25-nm Ag top electrode.
Figure S6. Angle-resolved device characterization with bottom incidence (BI) for s-polarized excitation. Table
S1. Current–density–voltage characteristics of devices with 25-nm Ag front electrode and different top electrode
thicknesses and materials. Figure S7. Current–voltage (J-V measurements) measurements for bottom incidence
for a device with 25-nm bottom electrode and 10-nm Ca/50-nm Ag top electrode. Figure S8. Detector response
(EQE) for devices with different top electrode thicknesses for normal incidence (TI) for p-polarized light. Figure
S9. Necessary number of detectors depending on wavelengths to cover the complete range of AOI.
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