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Abstract. Ensemble learning has been shown to significantly improve
predictive accuracy in a variety of machine learning problems. For a given
predictive task, the goal of ensemble learning is to improve predictive
accuracy by combining the predictive power of multiple models. In this
paper, we present an ensemble learning algorithm for regression problems
which leverages the distribution of the samples in a learning set to achieve
improved performance. We apply the proposed algorithm to a problem
in precision medicine where the goal is to predict drug perturbation
effects on genes in cancer cell lines. The proposed approach significantly
outperforms the base case.

Keywords: Ensemble learning · Machine learning · Regression ·
Bioinformatics · Gene expression

1 Introduction

In a standard regression setting, one builds a model on pre-existing learning data
with the goal of making predictions on future unseen samples. In this case, a
single model is built using a preferred learning algorithm. However, it has been
demonstrated that one can improve predictive accuracy even further by aggre-
gating the predictive power of multiple models built using the same learning data
[14]. These models can be built in a variety of ways, from varying the attributes
used in building the models to using multiple learning algorithms. This is done
to ensure heterogeneity in the models, such that given a set of new samples, they
are all wrong in different ways and their aggregation leads to improved predic-
tions [5]. The typical approach in the use of a single model or an ensemble is that
the distribution of the continuous response one is interested in predicting is often
not given much thought. For example, if one imagines that the response for the
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samples in a dataset follows a normal distribution. Then it also follows that any
model that is naively built using this data is going to be very good at predicting
samples that a near the centre of the distribution, but not those at the tails.
A close analogy to this phenomenon is the class imbalance problem in a clas-
sification setting. Where given a dataset in which one class is over-represented,
models built on this dataset using machine learning algorithms typically perform
poorly when presented with a sample from the under-represented class [2,15].
Therefore, we hypothesised that predictive performance in a regression setting
can be improved by accounting for the distribution of the response.

We take an ensemble learning approach to solving this problem. First, we split
the learning data into a pre-specified number of bins using a known discretization
technique [9]. We then build a regressor for each bin using only the samples that
belong to that bin, each of which generalises on only a restricted portion of
the distribution. We then build a classifier for each bin, treating the samples
which belong to said bin as the positive samples, and the samples in the other
bins as the negative samples. Therefore, there is a classifier-regressor pair for
each bin. Given an unseen sample, real-valued predictions are made using the
regressor for each bin. The corresponding classifier for each regressor is then
used to predict the probability that the unseen sample is similar to the samples
used in building the regressor. The predictions are then aggregated by weighting
the probabilities and applying them to the predictions. This process is described
diagrammatically in Fig. 1.

Fig. 1. Representation of the proposed approach when bin size is 3.

This approach is valuable to problems in precision medicine, where tail case
prediction is of vital importance. An example of such a problem is the prediction
of drug perturbation effects on genes in cancer cell lines, which, with improved
predictive accuracy, has the potential to dramatically improve the rate at which
new cancer drugs are developed. In our evaluation, we used data from the library
of integrated network-based cellular signatures (LINCS) [16], which curates the
drug perturbation effects on human genes. Our evaluation shows a significant
improvement in performance over the base case. Our contributions are as follows:
1. An ensemble learning approach which considers response distribution for

regression problems.
2. An application to a real-world dataset in precision medicine.
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2 Related Work

Ensemble learning takes a variety of forms, from bootstrap aggregating (bagging)
which is central to popular and robust learning algorithms like random forests [4],
to methods like stacking [3]. The proposed approach shares some similarities with
both of these methods. Stacking is most commonly used when one intends on
aggregating the predictions made by multiple learning algorithms, or if a single
learning algorithm is used, multiple models are built using subsets of the feature
space [18]. There are three main processes in a stacking procedure: meta-feature
generation, pruning, and aggregation [17]. Assume one has a learning and a test
set. In the meta-feature generation phase, meta-features are generated for both
the learning and test sets, and total to the number of models whose predictive
power one wants to aggregate. Pruning is then used to optimise for the best meta-
features. Finally, aggregation is done by learning weights using the learning set
meta-features and then applying these weights to the test meta-features to form
the final prediction.

In contrast to a typical stacking approach which we have described, we do not
generate meta-features in our approach. The utility of the meta-features is that
they provide a mechanism through which aggregating weights can be learned
using a meta-level learning algorithm. Instead, we opt for a scheme where given
a new sample, individual classifiers predict how much we can trust the predic-
tions of their corresponding regressor as described in the introduction, which
is more closely aligned with the concept of local classifiers in the hierarchical
classification literature [20]. This implies that we also do not perform a pruning
step. It is worth noting that while aggregation in stacking can be performed
using weights learned with a meta-learner, it is also possible to simply average
the predictions, we explore this in our evaluation. Other similarities exist. For
example, one can argue that our weighting and aggregating procedure is a form
of dynamic weighting, where new samples are weighted based on their similar-
ities to samples used in building a model [19]. However, rather than being a
separate step, dynamic weighting is implicit in the proposed learning procedure.

Central to the proposed method is the discretization of the continuous
response one is interested in learning how to predict. Several methods to perform
this task have been proposed, and they have been classed into supervised and
unsupervised methods [7,9]. We considered only unsupervised methods in our
evaluation. However, the use of supervised methods will be explored in future
work. Methods which use classification as a means to perform regression in an
ensemble setting have also been proposed. Ahmad et al. proposed the use of
extreme randomized discretization to perform regression via classification [12].
In contrast to what we propose, the authors do not use a classifier-regressor
pair to estimate the prediction for a new sample. Rather they do this using the
minimum or maximum of the training data points and the bin boundary [1,12].
Also closely related to what we propose is work by Gonzalez et al. for prob-
lems that involve multi-variate spatio-temporal data [11]. The main differences
in our approaches is two-fold. Firstly, they are interested in classifying bands of
attributes before performing regression. Secondly, aggregation is done by first
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selecting the best models using leave-one-out cross-validation and the median
predicted values by these models is treated as the final prediction for a new
sample.

3 Methodology

3.1 Algorithm

The proposed approach can be split into a training and a prediction phase. An
informal description follows, however, a more formal representation is given in
Algorithm 1. In the training phase, given a training set with input vectors, a
response, and a pre-specified number of bins c:

1. Discretize the response into c bins, forming c datasets.
2. For each c bin, build a regressor Rc and a classifier Cc. The regressor is built

using the training samples for the particular bin. Whereas, the classifier is
built by treating the samples in the current bin as the positive class and all
other samples in the training set as the negative class.

In the prediction phase, given a new sample:

1. With all the Rc regressors, predict values for the new sample.
2. With all the Cc classifiers, predict the probability that the sample belongs in

that c bin.
3. Generate weights using the c probabilities such that they sum to 1. This is

done by summing the c probabilities and then dividing each c probability by
this sum.

4. Get the final prediction by summing the values generated by applying each
corresponding c weight to the prediction made by its c regressor in step (1).

3.2 Considerations

When tackling a machine learning problem, the choice of learning algorithm is
vital as it plays a crucial role in predictive performance. However, it is clear
from the description of the proposed approach outlined above that it is learner
agnostic. That is, one can choose to build the classifiers and regressors using
their preferred algorithm of choice. This property is particularly useful as one
can choose to optimise for different properties using approaches from multiple
kernel learning [22] or even stack multiple learning algorithms if they so choose.
The choice of discretization technique is also open-ended, where one can choose
to use known supervised or unsupervised discretization techniques, or a custom
technique tailored to a particular problem.

When the number of bins is greater two, it will generally be the case that
there will be some form of class imbalance. This may be in favour of the positive
or negative class, and can be quite severe, depending on the distribution of the
response variable under consideration, choice of discretization technique, and



Federated Ensemble Regression Using Classification 329

the number of specified bins. Therefore, it is important that this be taken into
consideration, as it is known that class imbalance can have significant effects on
predictive accuracy [2]. To combat this, methods which balance an imbalanced
dataset such as oversampling methods like the synthetic minority oversampling
technique (SMOTE) [6] should be considered. We explore the effects of dis-
cretization technique and class imbalance in our evaluation.

Algorithm 1. Federated Ensemble Learning using Classification
Input: Training set matrix L ∈ IRm×b, response vector y, c bins, and test set matrix

T ∈ IRn×b

Output: Test set predictions
Training :

1: Split y into c bins using a discretization technique of choice, producing L =
(L1, . . . ,Lc) and Y = (y1 . . . yc)

2: for each c bin in L and Y do
3: Build a regressor Rc using Lc and yc
4: Build a classifier Cc using Lc as the positive samples and L − Lc as negative

samples. Note: class balancing may be required
5: end for

Prediction:
6: for each c regressor-classifier pair Rc and Cc do
7: Predict the response for T using Rc

8: Predict the probability that the samples in T belong in c using Cc

9: end for
The process above generates predicted response and probability matrices R,P ∈
IRn×c

10: vn =
∑c

j=1 pn,j

11: Create weight matrix W ∈ IRn×c by dividing all elements in each row in P by the
value in the corresponding row index in vn

12: Create weighted response matrix Rw ∈ IRn×c by performing the element-wise
multiplication of R and W

13: The final prediction T =
∑c

j=1 r
w
n,j

14: return T

4 Evaluation Setup

We used data from the general LINCS Phase II dataset with accession code
GSE70138. We had 7000 training samples and 3000 test samples. The predictive
task is the expression levels of 20 cancer-related genes [8,10] using perturbation
conditions as input. We evaluated four bin sizes: 2,3,4, and 5. We also considered
four discretization methods. The first involves randomly assigning samples to
bins, the second involves splitting samples evenly into bins after sorting, the third
and fourth are equal frequency interval and k-means clustering. It worth noting
that even splitting and frequency interval are the same in that they discretize a
vector of continuous variables evenly given a specified size. However, they differ
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in that equal frequency does not achieve perfect equally sized groups if there are
duplicates, naive even splitting does. For aggregation methods, we considered
simple averaging, a case in which no classifiers are used in aggregation. For the
cases in which classifiers are involved, we considered one in which class imbalance
is ignored, we refer to this simply as imbalanced for the rest of the manuscript.
The other classifier approaches used are one in which undersampling is used
to reduce the number of samples in one class when it outweighs those in the
other, and oversampling, which is the reverse. Undersampling was performed by
randomly selecting samples from the over-represented class equal to that of the
under-represented class. Oversampling was performed using SMOTE with the
smotefamily package [21], where k = 5. We used random forests as our learning
algorithm. All models were built using 1000 trees and default settings with the
ranger [24] library in R [13]. The reported performance metric for regression is
the coefficient of determination (R2), as we are interested in the amount of the
observed variance explained by the ensemble. We also report the performance
of the classifying aggregators, for these we report accuracy, precision, recall and
the F1 score. The dataset used in our experiment is available here http://dx.doi.
org/10.17632/8mgyb6dyxv.2, and it is named base fp, and the code is available
here https://www.github.com/oghenejokpeme/FERUC.

5 Results

5.1 Overall Performance

We observed that on average multiple combinations of the considered discretizer-
aggregator pairs generally outperformed the base case (see Table 1). Certain
discretizer-aggregator pairs tended to consistently perform well or poorly. Even
split and frequency interval combined with oversampling outperformed all other
combination pairs, whereas k-means combined with averaging or undersampling
generally underperformed when compared to the others (see Table 2). When
paired with oversampling, the even split and frequency interval discretizers both
achieved an average percentage performance increase of approximately 100%
over the base case. Combined, both of these methods performed best when the
number of bins is set to 5 (Table 3). With the assumption that there is no
difference in performance between these two combinations and the base case,
paired t-tests suggest that the null hypothesis can be rejected with a significance
level of 0.01, with p-values of 2.6×10−8 and 9.7×10−9 respectively. Note that the
average percentage performance difference between two competing approaches is
calculated by estimating the percentage difference in performance for each gene
pair, and then finding the mean.

5.2 Discretizer Effects

Discretization is the first step in the proposed learning algorithm, and the
method by which we stratify the distribution of the response one might be inter-
ested in predicting into narrow-bins (Algorithm 1). It is clear from Fig. 2 that

http://dx.doi.org/10.17632/8mgyb6dyxv.2
http://dx.doi.org/10.17632/8mgyb6dyxv.2
https://www.github.com/oghenejokpeme/FERUC
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Table 1. Mean predictive performance (R2) of the 20 considered cancer genes for bin
sizes 2, 3, 4, and 5. Discretization methods: random, even split, frequency interval, and
k-means. Aggregation methods: simple averaging (AVG), class imbalance is ignored
(RG), undersampling (US), and oversampling (OS). The best performing method for
each bin size is underlined.

Bins Base Random Even Split Frequency Interval K-means

AVG RG US OS AVG RG US OS AVG RG US OS AVG RG US OS

2 0.075 0.079 0.079 0.079 0.079 0.057 0.081 0.081 0.081 0.057 0.082 0.082 0.082−0.496 0.080−0.451 0.054

3 0.075 0.081 0.083 0.083 0.085 0.040 0.085 0.088 0.100 0.040 0.085 0.086 0.094−0.678 0.082−0.500 0.050

4 0.075 0.082 0.084 0.084 0.088 0.031 0.086 0.084 0.103 0.031 0.086 0.084 0.102−0.567 0.081−0.432 0.036

5 0.075 0.082 0.084 0.082 0.091 0.024 0.087 0.078 0.103 0.024 0.087 0.078 0.104−0.433 0.082−0.302 0.031

Table 2. Average percentage performance difference of the two best and worst per-
forming discretizer-aggregator combinations compared to the base case for each bin.
The percentage increase or decrease is given, followed by the number of genes for which
a discretizer-aggregator pair outperforms the base case. The best and worst performers
are in boldface.

Bin Best performers Worst performers

2 Frequency interval – oversampling k-means – undersampling

26.5%(17) −1324.2%(3)

Frequency interval – imbalanced k-means – averaging

26.4%(17) −1289.0%(1)

3 Even split – oversampling k-means – averaging

105.5%(20) −1732.5%(0)

Frequency interval – oversampling k-means – undersampling

75.3%(20) −1460.3%(0)

4 Even split – oversampling k-means – averaging

118.3%(20) −1643.3%(1)

Frequency interval – oversampling k-means – undersampling

113.4%(20) −1520.4%(0)

5 Even split – oversampling k-means – averaging

117.5%(20) −856.5%(1)

Frequency interval – oversampling k-means – undersampling

116.7%(20) −864.2%(0)
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Table 3. Predictive performance (R2) of the considered genes when bin size is 5.
Shown are the results for the base case, the even split – oversampling pair (ES–OS),
and frequency interval – oversampling pair (FRQ–OS). The percentage increase over
the base case is also given.

Genes Base ES–OS FRQ–OS

AKT1 0.197 0.207 (5.1) 0.208 (5.6)

APOE 0.071 0.088 (23.9) 0.090 (26.8)

BRCA1 0.111 0.152 (36.9) 0.152 (36.9)

CDH3 0.032 0.056 (75.0) 0.058 (81.2)

CDK4 0.291 0.294 (1.0) 0.296 (1.7)

CFLAR 0.017 0.049 (188.2) 0.049 (188.2)

EGF 0.055 0.076 (38.2) 0.076 (38.2)

EGFR 0.051 0.090 (76.5) 0.089 (74.5)

FGFR2 0.059 0.086 (45.8) 0.085 (44.1)

IGF1R −0.007 0.042 (700.0) 0.041 (685.7)

KIT 0.069 0.096 (39.1) 0.098 (42.0)

LYN 0.083 0.109 (31.3) 0.112 (34.9)

PAX8 0.011 0.041 (272.7) 0.040 (263.6)

PTK2 0.069 0.082 (18.8) 0.082 (18.8)

RAD51C 0.057 0.087 (52.6) 0.087 (52.6)

STK10 0.044 0.066 (50.0) 0.067 (52.3)

TERT 0.073 0.107 (46.6) 0.108 (47.9)

TGFBR2 0.010 0.045 (350.0) 0.044 (340.0)

TNFRSF21 −0.022 0.042 (290.9) 0.042 (290.9)

TP53 0.228 0.245 (7.5) 0.247 (8.3)

the choice of discretizer plays a crucial role in predictive performance. When
averaging is used as the aggregator, random sampling outperforms all other dis-
cretizers, with even split and frequency interval performing equally well. This
is interesting as it shows that without the aggregating classifiers, the regressors
built using methods like frequency interval perform worse than those built using
random sampling. The reason is because when the response is put into bins
using random sampling, the values in each of these bins will generally follow the
same distribution as the overall response. Therefore, aggregating the predictions
made by regressors built using these bins by averaging will generally yield good
results. This is in contrast to when methods like even split or frequency interval
are used, as each bin comprises of narrow generally non-intersecting bands of
the overall distribution. It is worth noting here though that k-means performs
remarkably poorly, producing negative R2 values, suggesting that it fits worse
than the horizontal line. One might be quick to note that this is one of the dis-
advantages of using R2 as a performance metric in a regression problem when
there is the potential for non-linearity. However, we would argue that for this
particular application, it is vital that we have a clear representation of how much
of the observed variance is explained by the proposed ensemble.

When class imbalance is ignored as is the case in the imbalanced aggregators,
we observed that even split and frequency interval have near identical perfor-
mance, with k-means and random sampling coming third and fourth depending
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on bin size. When undersampling is used to balance the dataset before building
the classifying aggregators, we observed that as the number of bins increases,
random sampling tended to outperform the even split and frequency interval
discretizers. This is because as bin size increases, the number of samples in
each bin decreases, and by undersampling, the classifying aggregators are built
using fewer and fewer samples, making them less powerful. The performance of
the random sampling discretizer does not suffer as much from this because its
regressors are built using bins which generally represent the overall distribution
of the response. We discuss this further when we discuss aggregator effects in
the next section.

The performance of the discretizers when oversampling is used to handle class
imbalance supports and contrasts with their performance when undersampling
is used. We observed that the even split and frequency interval discretizers gen-
erally perform vastly better than how they do when undersampling is used to
deal with class imbalance. In contrast to undersampling, the classifying aggre-
gators are built using datasets in which the positive class has been oversampled,
improving the models which classify new samples into bins. Given that the over-
all distribution of a response is represented in each bin when random sampling
is used, building accurate bin delineating classifiers becomes more difficult as
the samples in the positive and negative classes are very much alike. However,
the expectation is that these classifiers will essentially predict that a new sample
belongs in its bin, and produce a probability based on how closely related it is
to the positive samples used in their construction. Therefore, for the random
sampling discretizer, one would expect better performance when undersampling
is used, which is what we observed (see Fig. 2).

Fig. 2. Average discretizer performance (R2) for the considered bin sizes across the
considered aggregation approaches. Frequency interval is excluded from averaging and
undersampling aggregation results because it consistently produced negative R2 values.
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5.3 Aggregator Effects

In the previous section, we discussed the effects the choice of discretizer can
have on predictive performance. Although the discretizers were our main focus,
it is clear that there is a synergistic effect between the choice of discretizer
and aggregator. Figure 2 also shows that the choice of aggregator has a clear
effect on predictive performance, with averaging performing worse overall, over-
sampling outperforming all the others, and undersampling generally performing
worse than imbalanced. Here, our primary focus is to discuss why this is the
case, especially as it has to do with the classifying aggregators. Table 4 shows
the average predictive performance (accuracy, precision, recall, and F1 score)
for all discretizer-aggregator pairs, and for all bin sizes we considered. These
results explain the observed predictive performance discussed in the previous
two sections. Although the accuracy of the classifying models are also reported,
our discussion will be mostly centered around the precision and recall metrics,
given that we are dealing with input datasets which may be class imbalanced.

Table 4. Average predictive performance of the aggregating classifiers built using
datasets whose class representations are imbalanced (RG), undersampled (US), and
oversampled (OS) for the considered discretizers. The reported performance metrics
are accuracy (Acc), precision (Prec), recall (Rec), and F1 score.

Discretizer Aggregators Bins

2 3 4 5

Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1

Random RG 0.50 0.50 1.00 0.67 0.13 0.13 1.00 0.23 0.05 0.05 1.00 0.09 0.02 0.02 1.00 0.03

US 0.50 0.50 1.00 0.66 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67 0.50 0.50 1.00 0.67

OS 0.50 0.50 1.00 0.67 0.17 0.17 1.00 0.29 0.10 0.10 1.00 0.18 0.06 0.06 1.00 0.11

Even split RG 0.58 0.58 0.58 0.58 0.65 0.23 0.45 0.30 0.73 0.10 0.37 0.16 0.79 0.06 0.32 0.10

US 0.58 0.58 0.58 0.58 0.56 0.56 0.39 0.46 0.55 0.55 0.29 0.38 0.54 0.54 0.23 0.32

OS 0.58 0.57 0.58 0.58 0.65 0.26 0.44 0.33 0.72 0.17 0.35 0.22 0.77 0.12 0.30 0.17

Frequency interval RG 0.58 0.58 0.58 0.58 0.65 0.23 0.45 0.30 0.73 0.10 0.37 0.16 0.79 0.06 0.32 0.10

US 0.58 0.58 0.58 0.58 0.56 0.56 0.39 0.46 0.55 0.55 0.29 0.38 0.54 0.54 0.23 0.32

OS 0.58 0.58 0.58 0.58 0.65 0.25 0.44 0.32 0.72 0.15 0.36 0.21 0.77 0.12 0.30 0.16

K-means RG 0.80 0.55 0.67 0.55 0.73 0.36 0.52 0.34 0.77 0.24 0.37 0.15 0.80 0.15 0.15 0.06

US 0.60 0.60 0.55 0.52 0.60 0.60 0.39 0.42 0.60 0.60 0.30 0.34 0.60 0.60 0.24 0.29

OS 0.79 0.58 0.62 0.58 0.73 0.42 0.47 0.43 0.76 0.32 0.39 0.34 0.79 0.25 0.33 0.27

When random sampling the discretizer, we observed that across all bin sizes,
the recall of all the classifying aggregators is exactly 1. This is consistent with
previously discussed results. It shows that the classifiers are classifying all the test
samples as being similar to those used in their building. This is unsurprising since
the samples used in building each bin’s classifier follows the same distribution as
the original response vector. The precision of the aggregating methods is more
nuanced. In the case in which class imbalance is ignored, although the recall
maintains its value of 1 as bin size increases, the precision steadily decreases. This
makes sense, as the expectation is that the models will consistently become worse
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at identifying false positives. The results for undersampling and oversampling are
contrasting. While recall is also consistently 1 as bin size increases, the precision
for undersampling stays at approximately 50%, while like the class imbalance
case, the precision for oversampling steadily declines. This is also consistent with
expectation. In the case of undersampling, we are building binary bin classifiers
using a perfect 50−50 split in class representation, but with fewer samples as
bin size increases. It is no surprise that accuracy is also approximately 50%.
For oversampling, accuracy and precision both hold 50% when bin size is 2, but
steadily declines as it increases. Here, we argue that oversampling the samples in
the imbalanced class, which is usually the positive class, makes the classifiers even
worse at predicting false positives. This is to be expected, due to the properties
of the random sampling discretizer.

For the even split and equal frequency discretizers, all three aggregators have
an average value of 58% for accuracy, precision, recall, and F1 when the bin size
is 2. This suggests that the models are capable of classifying positive and nega-
tive samples equally well. However, this changes as bin size increases. When the
input dataset is imbalanced, we observed that both precision and recall steadily
decreases, with precision getting remarkably worse-off than recall. The explana-
tion for this is that the class imbalance is exacerbated by the increasing bin size
with fewer samples in each bin, making it harder for the models to identify false
positives. When undersampling is used, precision generally remains the same as
bin size increases but recall decreases. This shows that while the classifiers’ false
positive prediction rate does not get significantlyworse, its number of false negative
predictions increases. This phenomenon can be easily explained by the fact that as
bin size increases, fewer samples in general are used in building the classifiers. For
oversampling, what we observe for recall and precision are in contrast to those of
undersampling. Though they both decrease as bin size increases, recall is better
than precision. When compared to the imbalanced case, although the recall values
are similar, the precision in the oversampling case is generally better, especially
as bin size increases. This explains why oversampling outperforms the imbalanced
and undersampling cases. The difference in performance between even split and
frequency interval as seen in Table 2 can be explained by a slight increase in preci-
sion and a slight decrease in recall for even split compared to frequency interval (see
Table 4). Therefore, it is worth noting that for the proposed approach, seemingly
duplicate values should not be excluded during discretization.

For k-means, the precision and recall values are generally similar to those
of even split and frequency interval for the considered bin sizes with the excep-
tion of when bin size is 2. However, even with this similarity, we still observed
that the undersampling aggregator performed remarkably poorly when paired
with k-means (see Tables 1 and 2). Our analysis of the results showed that
this is because of a known limitation of k-means discretization, which is that
it is very sensitive to outliers [7], which we expect to mainly be at the tails of
the response distribution. Individual investigation of classifier performance for
each gene showed that this occurs because the models built using samples at
the tails have either very low precision and very high recall, or the opposite.
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This is in contrast to other discretizers, for which the precision-recall ratio is
better balanced. This is evident from the difference in F1 scores between the
different discretizers across the considered bin sizes (see Table 4).

5.4 Bin Size Effects

Figure 3 shows how aggregator predictive performance changes as bin size
increases for the considered discretizers. For the random discretizer, most aggre-
gators tend to steadily improve as bin size increases. The exception to this is
undersampling, which peaks at a bin size of 4. For even split and frequency
interval, the four aggregators behave similarly as expected. The imbalanced and
oversampling aggregators get better as bin sizes increases, with the imbalanced
aggregator doing so at a slower rate. Averaging gets worse as bin size increases
as discussed in previous sections. Lastly, the undersampled aggregators reach
peak performance at a bin size of 3 and begin to decline. When the k-means
discretizer is paired with averaging and undersampling, we see a performance
decrease from bin size 2 to 3, then steady increase from 3 to 5. However, as
noted in the previous two sections, the performance is still remarkably poor. For
oversampling, predictive performance sees a slow decline as bin size increases.
Whereas the imbalanced aggregator tends to hold its performance. From these
results, it is clear that bin size also plays a crucial role in the performance of
the proposed ensemble regression approach. However, to what extent this is the
case is beyond the scope of this work and will be the subject of future work.

Fig. 3. Average aggregator performance (R2) for the considered discretizers as bin size
increases.
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6 Discussion

An important task in the machine learning model building process is the selection
of the right parameters. Our results show that the choice of bin size, discretizer,
and aggregator all play an important role in predictive performance. Although
we do not directly evaluate it here, we argue that these parameters can be easily
optimised using the standard model selection approach with cross-validation.
Assuming a near optimal bin size has been selected, the proposed ensemble
learning algorithm is limited by the fact that it can only do as well the classifier-
regressor pairs. Although we used only random forests in our evaluation, which
is capable of building both classifiers and regressors, one can choose to use one
learning algorithm for the classifiers and another for the regressors. In fact, it
is possible to extend what we have proposed using traditional stacking, where
multiple learning algorithms are used as classifiers and regressors. Of course this
will come with increased cost in the form of computational time complexity.
Another obvious extension is in multi-target regression problems. For example,
one can imagine using this as the core predictor in an ensemble of regressor
chains [23]. All of this, along with evaluations on other datasets will be the
subject of future work.

7 Conclusion

We have presented an ensemble learning algorithm for regression using classifica-
tion which leverages the underlying distribution of the response one is interested
in predicting. We evaluated this approach on an important problem in precision
medicine, which is the in silico estimation of drug perturbation effects on genes
in cancer cell lines. We found that this approach significantly outperforms the
base case, with several directions for extension which we conjecture will further
improve its predictive capabilities.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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