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ABSTRACT
In this paper, we address the issue of the quaternionic Toledo invariant to study the character variety of two-dimensional complex hyperbolic
uniform lattices into SU(n, 2), n ≥ 4. We construct four distinct representations to prove that the character variety contains at least seven
distinct components. We also show the existence of holomorphic horizontal lift to various period domains of SU(n, 2).

Published under license by AIP Publishing. https://doi.org/10.1063/5.0004575

I. INTRODUCTION
After Weil’s local rigidity theorem of uniform lattices in semisimple Lie groups, there have been many generalizations in different con-

texts. Due to Margulis’ super-rigidity and Corelette’s theorem, lattices in higher rank semisimple Lie groups and in quaternionic, octonionic
hyperbolic groups are very rigid. Hence, it is only meaningful to study the representation variety of uniform lattices Γ in real and complex
hyperbolic groups into different Lie groups G.

A local rigidity property of lattices of a four-dimensional real hyperbolic group in Sp(2, 1) was studied in Ref. 10. Several studies apart
from the surface group have been done for complex hyperbolic lattices Γ in various semisimple Lie groups G. In terms of maximal rep-
resentations, Burger and Iozzi studied the representations of a lattice in SU(1, p) with values in a Hermitian Lie group G.4 Koziarz and
Maubon14 studied the similar representations in rank 2 Hermitian Lie groups. Pozzetti16 dealt with maximal representations of complex
hyperbolic lattices in SU(m, n). On the other hand, García-Prada and Toledo7 proved a global rigidity of complex hyperbolic lattices in quater-
nionic hyperbolic spaces. More precisely, they defined the Toledo invariant c(ρ) of a complex hyperbolic lattice Γ under the representation
ρ : Γ→ PSp(m, 1) by

c(ρ) = ∫
M

f ∗ρ ω ∧ ωn−2
0 ,

where f ρ is a descended map to M = Γ/SU(n, 1)/S(U(n) ×U(1)) from a ρ-equivariant map from Hn
C to Hm

H. Here, ω is the quaternionic
Kähler form on Hm

H, and ω0 is the complex Kähler form on M. They showed that this invariant c(ρ) satisfies Milnor–Wood inequality, and its
maximum is achieved if and only if the representation stabilizes a copy of Hn

C inside Hm
H. Such a statement on the Toledo invariant goes back

to Toledo19 where he proved that a maximal representation from a surface group into SU(1, q) fixes a complex geodesic. Hernández9 also
studied maximal representations from a surface group into SU(2, q) and showed that the image must stabilize a symmetric space associated
with the group SU(2, 2). These results are generalized to SU(p, q) by Bradlow et al. in Ref. 3.

The first goal of this paper would be to prove a similar result in

Γ ⊂ SU(n, 1) ⊂ SU(m, 2)
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using Toledo invariant

c(ρ) = ∫
M

f ∗ρ ω
n
2

for n even, where ω is the quaternionic Kähler four-form on the associated symmetric space of SU(m, 2). This Toledo invariant is constant on
each connected component of the character variety χ(Γ, SU(m, 2)). Hence, two representations with a distinct Toledo invariant must belong
to the different components of the character variety.

As a starting point, we consider the simplest case

Γ ⊂ SU(2, 1) ⊂ SU(n, 2),

n ≥ 4. This case is interesting because the symmetric space of SU(n, 2) has both Hermitian and quaternionic structures, and it is worth studying
the interplay between them. In this paper, we focus on calculating the Toledo type invariant associated with the quaternionic four-form ω
since several authors already pursued the research using powers of the Kähler form. This type of Toledo invariant using the quaternionic
four-form seems relatively new and promising.

To this end, we will consider several different embeddings coming from the natural holomorphic, totally real, and symmetric square
representations and obtain the following.

Theorem 1.1. There are at least seven distinct connected components in χ(Γ, SU(n, 2)), where Γ ⊂ SU(2, 1) is a uniform lattice and n ≥ 4.

Here, the group SU(n, 2) acts on Hom(Γ, SU(n, 2)) via conjugation on the target group, and the character variety is defined by

χ(Γ, SU(n, 2)) = Hom(Γ, SU(n, 2))//SU(n, 2)

in the sense of geometric invariant theory.
This is one of the first examples known in higher dimensional complex hyperbolic lattices. For different examples of character variety

χ(Γ, SU(2, 1)), see Ref. 20. It is known in the surface group case that there are 6(g − 1) + 1 distinct components in χ(π1(S), PSU(2, 1)).8,21

Indeed, in Ref. 8, a discrete faithful representation ρ ∈ χ(Γ, SU(2, 1)) is constructed such that on each component of S/Σ0, where Σ0 is a set of
disjoint simple closed geodesics, ρ stabilizes either a complex line or a totally real plane. Then, the Toledo invariants are maximal on the pieces
contained in the complex line and are zero on the pieces contained in a totally real plane. Hence, one can realize any even integer between
χ(S) and −χ(S). Xia finally showed that there are 6(g − 1) + 1 distinct components in χ(π1(S), PSU(2, 1)).21

To prove the global rigidity for ρ ∈ χ(Γ, G), the common technique known so far is to consider a holomorphic horizontal lifting of a
ρ-equivariant map to a proper period domain (or twistor space) where one can apply complex geometry. It was successful in the case that
García-Prada and Toledo considered in Ref. 7. However, in general, for a higher rank case, it is not known if there always exists a horizontal
holomorphic lifting.

Theorem 1.2. Consider the symmetric square representation ρ of SU(2, 1) in SU(4, 2) and in SU(n, 2), n ≥ 4, via the inclusion
SU(4, 2) ⊆ SU(n, 2). Let ι : B→ X be the totally geodesic map induced by the representation ρ, where B = SU(2, 1)/S(U(2) ×U(1)) and
X = SU(n, 2)/S(U(n) ×U(2)). Then, it lifts to a holomorphic horizontal map to the period domain D2 = SU(n, 2)/S(U(n − 1) ×U(1) ×U(2)).

See Sec. III B for the definition of the symmetric square representation.

II. QUATERNIONIC STRUCTURE OF X = SU(n, 2)/S(U(n) ×U(2)) AND ITS PERIOD DOMAINS
A. Quaternionic Kähler manifolds

A Riemannian manifold M of real dimension 4n is quaternionic Kähler if its holonomy group is contained in Sp(n)Sp(1). We denote
by PM the canonical Sp(n)Sp(1)-reduction of the principal bundle of orthogonal frames of M and by EM the canonical three-dimensional
parallel sub-bundle PM×Sp(n)Sp(1)R3 of End(TM). Since the Sp(n)Sp(1)-module ∧4(R4n)∗ admits a unique trivial submodule of rank 1, any
quaternionic Kähler manifold M admits a nonzero closed four-form ω, canonical up to homothety. In Ref. 17, it is proved that the form ω
(properly normalized) is the Chern–Weil form of the first Pontryagin class p1(EM) ∈ H4(M,Z).

Let N be a smooth closed manifold and ρ : π1(N)→ G be a representation into a quaternionic Kähler group G, i.e., the associated sym-
metric space X = G/K is a quaternionic Kähler noncompact irreducible symmetric space. Choose any ρ-equivariant smooth map ϕ : Ñ → X
from the universal covering space Ñ to X. The pull-back ϕ∗EX descends to a bundle over N, still denoted as ϕ∗EX . By the functoriality of
characteristic classes, the four-form ϕ∗ω represents the Pontryagin class p1(ϕ∗EX) ∈ H4(N,Z). As X is contractible, any two ρ-equivariant
maps give rise to the same class depending only on ρ. Then, by the integrality of the Pontryagin class, the quaternionic Toledo invariant
c(ρ)= ∫N ϕ∗ω

n
2 , for even n, is constant on each connected component of the character variety.
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B. Kähler and quaternionic structures of SU(n, 2)/S(U(n) ×U(2))
Let G = SU(p, q), p ≥ q, be in its standard realization as linear transformations on Cp+q = Cp ⊕Cq preserving the indefinite Hermitian

form of signature (p, q). Let X be the Hermitian symmetric space X = G/K, where K = S(U(p) ×U(q)). We recall briefly18 the Harish-Chandra
realization (also due to Cartan in the classical groups) of the symmetric space X into Mp×q, which might be useful in understanding various
totally geodesic embeddings in our present paper. Fix V+

0 = Cp, V−0 = Cq, two orthogonal subspaces of Cp+q, which are positive and negative
definite, respectively, with respect to the Hermitian form hC. Fix orthonormal basis {e1, . . . , ep},{ep+1, . . . , ep+q} of V+

0 , V−0 , respectively. Then,
G acts on the set X of q-dimensional negative definite subspaces. Any other q-dimensional negative definite subspace V− is a graph of a unique
linear map Ap×q = (zij) from V−0 so that

p

∑
i=1

eizij + ep+j, j = 1, . . . , q

form a basis of V−. Hence, X is identified with

X = {Z ∈Mp×q : Iq − ZtZ̄ > 0}.

The center of a maximal compact subgroup K is parameterized by the center of U(p), and it defines a complex Kähler structure. To be
more precise, let g be the Lie algebra of G and g = t⊕ p be its Cartan decomposition, where k is the Lie algebra of K, with p consisting of
matrices of the form

( 0 Z
Z∗ 0), Z ∈Mp×q.

The real tangent space at o = eK of X = G/K is identified with p. The complex structure J on ToX acts as

J( 0 Z
Z∗ 0) = (

0 iZ
−iZ∗ 0 ).

The Kähler metric on ToX is

go(A, B) = 2Tr(B∗A) = 4ReTr(W∗Z) for A = ( 0 Z
Z∗ 0), B = ( 0 W

W∗ 0 ).

The corresponding Kähler form is

Ωo(X, Y) = go(JX, Y). (2.1)

Now, let G = SU(2n, 2). The second factor U(2) of K defines a quaternionic structure as follows. The holomorphic tangent space of X at o

is identified with (0 Z
0 0), where Z ∈M2n×2. The real tangent space will be parameterized by the holomorphic tangent space via ( 0 Z

Z∗ 0) ↔ Z.

The adjoint action of k ∈ K = S(U(2n) ×U(2)) on Z ∈ p, written as a block diagonal matrix k = diag(A, D), is Z → AZD−1. Thus, the Lie algebra
action of diag(A, D) ∈ k is Z → AZ − ZD.

Now, the following three elements of the Lie algebra of su(2) ⊂ k = u(2n) + su(2)

(−i 0
0 i),( 0 1

−1 0),( 0 −i
−i 0 )

act on the tangent space as the quaternionic multiplications by i, j, k. Indeed, we have

(−i 0
0 i) : Z = (x, y)↦ (x, y)( i 0

0 −i) = (xi,−yi). (2.2)

Similarly, we find the action by the other two elements. We can express the actions in the usual quaternionic algebra, so we identify a matrix
(x, y) ∈M2n×2 = C2n ×C2n with a quaternionic vector q ∈ H2n, with H = C + Cj being the quaternionic numbers, by

X = (x, y)↔ qX = (x1 + y1j, x2 + y2j, . . . , x2n + y2nj).

Hence, the previous matrix (2.2) is identified with the quaternionic vector,
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(x1i + y1(−i)j, x2i + y2(−i)j, . . . , x2ni + y2n(−i)j)

= (x1 + y1j, x2 + y2j, . . . , x2n + y2nj)i = qX i,

i.e., the adjoint action of (−i 0
0 i) on a Lie algebra is just the multiplication of qX ↦ qX i by i on the right. It is easy to check that the adjoint

action of the other two elements corresponds to the multiplication by j and k on the right. When no confusion would arise, we shall just use
the identification X → qX as qX = X.

The parallel closed nondegenerate quaternionic Kähler four-form at the origin is given by

ω = ωi ∧ ωi + ωj ∧ ωj + ωk ∧ ωk, (2.3)

where
ωu(X, Y) = Re(q∗Y ⋅ qXu), u = i, j, k.

Here, we use q∗ ⋅ p = ∑2n
m=1q̄mpm, and Re x = x0 is the real part of a quaternionic number x = x0 + x1i + x2j + x3k. In this paper, we fix and use

the convention
α ∧ α(X1, X2, X3, X4)

= α(X1, X2)α(X3, X4) − α(X1, X3)α(X2, X4) + α(X1, X4)α(X2, X4).

The four-form ω is then K-invariant even though the individual ωi, ωj, and ωk are not invariant. This is known, but for completeness, we sketch
an elementary proof. An element k = diag(A, D) of K = S(U(2n) ×U(2)), A ∈ U(2n), and D ∈ U(2) acts on p =M2n×2 as kZ = AZD−1. We may
take D ∈ SU(2) and represent it by a unit quaternion d. Through our identification of Z = (x, y)↦ q = x + yj, the action of k is kq = Aqd−1,
where Aq is the complex matrix multiplication on quaternionic vectors q. The pull-back of ωu is k∗ωu = ωd−1ud since

(k∗ωu)(p, q) = Re((Aqd−1)∗(Apd−1)u) = Re(dq∗A∗Apd−1u)

= ωu(dpd−1, dqd−1) = Re(q∗pd−1ud) = ωd−1ud(p, q).

Hence,
k∗ω = ωd−1id ∧ ωd−1id + ωd−1jd ∧ ωd−1jd + ωd−1kd ∧ ωd−1kd

on H2n. However, the action u = αi + βj + γk→ d−1ud is orthogonal on ImH = Ri + Rj + Rk, u→ ωu is linear, and two forms ωu ∧ ωv = ωv

∧ ωu are commuting. Thus, the action preserves the symmetric tensor

i⊗ i + j⊗ j + k⊗ k = d−1id ⊗ d−1id + d−1jd ⊗ d−1jd + d−1kd ⊗ d−1kd,

and therefore, also ω = ωi ∧ ωi + ωj ∧ ωj + ωk ∧ ωk; namely, k∗ω = ω. This proves the invariance and hence the well-definedness of ω on G/K.
Then, it is easy to check that this ω and Ω2

o, where Ωo is the complex Kähler form on X defined above, are linearly independent on
H4(M,R), where M = Γ/X .

C. Twistor space and period domain of the quaternionic structures of SU(n, 2)/S(U(n) ×U(2))
We describe one twistor space and one period domain for the quaternionic structures of G/K = SU(n, 2)/S(U(n) ×U(2)).
For any Lie algebra s, we denote its complexification by sC. Let D1 = SU(n, 2)/S(U(n) ×U(1) ×U(1)) be a twistor space. We shall realize

it as an open subset in a homogeneous flag manifold. Let W = Cn+2, and let W∗ be the dual space equipped with the G-invariant metric of
signature (n, 2). Denote {ϵj} in W∗, the dual basis of {Ej}. Let Dc

1 be the set of orthogonal pairs (l, λ) in P(W) × P(W∗), i.e., satisfying ϵ(e)
= 0 for all (e, ϵ) ∈ l × λ. Then, Dc

1 is a compact homogeneous space of SU(n + 2), Dc
1 = SU(n + 2)/S(U(n) ×U(1) ×U(1)). As a homogeneous

manifold of SU(n, 2), D1 = SU(n, 2)/S(U(n) ×U(1) ×U(1)) can be realized as the open domain in Dc
1 of (l, λ) such that l and λ are negative

definite. Indeed, first, it is elementary to see that SU(n, 2) acts transitively on the domain. Second, we need to check that a stabilizer of (l, λ)
is S(U(n) ×U(1) ×U(1)). A stabilizer of the negative two-plane l + (ker λ)� in W is S(U(n) ×U(2)), and a stabilizer in S(U(n) ×U(2)) of the
pair (l, ker λ) of subspaces in W, equivalently the pair (l, λ) in P(W) × P(W∗), is exactly U(1) ×U(1). Hence, as a differentiable manifold, D1
has such a realization.

Then, D1 ⊂ P(W) × P(W∗) is an open subset equipped with the corresponding complex structure.
In general, if a homogeneous manifold G/(L ×U(1)) has a U(1) factor in the stabilizer, it inherits a complex structure as follows. Let

u(1) = RiH1, and consider the root space decomposition of gC under the action of
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H1 =
⎛
⎜
⎝

0 0

0 (1 0
0 −1)

⎞
⎟
⎠

.

Set b to be the Borel subalgebra consisting of zero and negative eigenspaces. The positive eigenspace n+ constitutes the holomorphic tangent
space for GC/B at the base point eB ∈ GC/B, and further on the whole space GC/B, in particular for open set

G/(L ×U(1)) ⊂ GC/B.

We find the holomorphic tangent space of D1 in this context. To find a realization of the complex tangent space, we fix the pair
(CEn+2,Cϵn+1) as a base point of D1. The space D1 is an open subset of the complex homogeneous space of SL(n + 2,C)/B, where B is the
Borel subgroup whose Lie algebra consists of elements in sl(n + 2,C) of the special form.

To justify this, note that B is equal to the stabilizer of (CEn+2,Cϵn+1). Hence, B should have the block matrix of the form

⎛
⎜
⎝

∗ ∗ 0
0 ∗ 0
∗ ∗ ∗

⎞
⎟
⎠

,

the size of the matrix being (n + 1 + 1) × (n + 1 + 1). Alternatively, b consists of non-positive root spaces of H1, i.e., eigenspaces of ad(H1).
Thus, holomorphic tangent space n+ consists of elements of gC of the form, the size of the matrix being the same as above,

⎛
⎜
⎝

0 0 ∗
∗ 0 ∗
0 0 0

⎞
⎟
⎠

.

We now consider another domain

D2 = SU(n, 2)/S(U(n − 1) ×U(1) ×U(2)).

More precisely, let {E1, . . . , En; En+1, En+2} be the standard basis of Cn+2 as before, and

H2 = diag(1, . . . , 1,−n, 1, 0, 0) ∈ kC,

and let U(1) = exp(iRH2) be the corresponding subgroup of K. The centralizer of H2 in K is then U(n − 1) ×U(1) ×U(2). Here, U(n − 1)
stands for the unitary group of the subspace Cn−1 ∶= ⟨E1, . . . , En−2, En⟩.

Now, the eigenspaces of positive eigenvalues of ad(H2) constitute the holomorphic tangent space of D2,

⎛
⎜⎜⎜
⎝

0 ∗ 0 ∗
0 0 0 0
0 ∗ 0 ∗
0 ∗ 0 0

⎞
⎟⎟⎟
⎠

,

written in the block form of size ((n − 2) + 1 + 1 + 2) × ((n − 2) + 1 + 1 + 2).
The compact homogeneous space Dc

2 := SU(n + 2)/S(U(n − 1) ×U(1) ×U(2)) is precisely the partial flag manifold of pairs (p1, p2) of
subspaces p1 ⊂ p2 in Cn+2 of dimensions 1and n, respectively. In particular, the map (p1, p2)↦ p2 from Dc

2 to the Grassmannian manifold
Grn(n + 2) realizes Dc

2 as the projectivization of the tautological bundle of Grn(n + 2).

D. Cohomology groups of period domains
Let X c = SU(n + 2)/S(U(n) ×U(2)) be the compact dual of X . Then, X c can be realized as Grassmannian manifolds Gr2(n + 2) of two

planes in Cn+2. Let Dc
1 = SU(n + 2)/S(U(n) ×U(1) ×U(1)),Dc

2 = SU(n + 2)/S(U(n − 1) ×U(1) ×U(2)) be as above, and

π : Dc
1,Dc

2 → X c

be the natural fibrations. The homogeneous manifolds Dc
1 and Dc

2 are equipped with a G-invariant Kähler form Ω̂; see Ref. 1, Corollary 8.59,
and Example 8.111.
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Proposition 2.1.

(1) The cohomology group H4(Dc
1) is three dimensional and is generated by π∗(Ω2), π∗(ω), Ω̂2.

(2) Let n ≥ 3. The cohomology group H4(Dc
2) is four dimensional and is generated by π∗(Ω2), π∗(ω), Ω̂2, Ω̂ ∧ π∗(Ω).

Proof. The map π defines the twister space Dc
1 as a CP1 = S2-bundle over the Grassmannian manifold X c. We recall the Gysin complex

(Ref. 2, Proposition 14.33) for the sphere covering π : Dc
1 ↦ X c,

H1(X c) ∧eÐ→H4(X c) π∗Ð→H4(Dc
1)

π∗Ð→H2(X c) ∧eÐ→H5(X c),

where ∧e is the multiplication by the Euler class e of the sphere bundle, π∗ is the pull-back, and π∗ is the integration along the fiber S2.
Now, H1(X c) = 0, H5(X c) = 0, H2(X c) = R, and H4(X c) = R2 since the cohomology of X c is known; see, e.g., Ref. 2, Proposition 23.1 for the
computation of the cohomology in complex coefficients. Thus, the above sequence reduces to

0→ R2 = H4(X c) π∗Ð→H4(Dc
1)

π∗Ð→R = H2(X c)→ 0,

from which we deduce that H4(Dc) = R3. It follows further that π∗ is an injection. The square Ω̂2 of the Kähler form is clearly not contained
in π∗H4(X c) since its integration along the fibers are nonzero; thus, H4(Dc) is generated by π∗(ω), π∗(Ω2), and Ω̂2. This proves (1).

Note that the map π defines the space Dc
2 as the projectivization P(L)↦ [L] of the tautological bundle L→ [L] of the Grassmannian X c

of n dimensional subspaces [L] in Cn+2. The (1, 1)-form Ω̂ restricted to each fiber P(L) is the Chern class c1(P(v)) of the projective space. It
follows from the Leray–Hirsch theorem [Ref. 2, (5.11) and (20.7)] or by Ref. 2, (20.8) that H4(Dc

2) is of dimension 4 and is generated by the
four forms as claimed. □

E. Pseudo-Riemannian metrics on period domains
Let X = SU(n, 2)/S(U(n) ×U(2)) and D = SU(n, 2)/K′, where K′ is a subgroup of K = S(U(n) ×U(2)). The metric on X comes from the

Killing form on g whose tangent space at o = eK is identified with p according to the Cartan decomposition g = t⊕ p. Hence, the metric on a
period domain D comes from the Killing form on t/t′ ⊕ p, where t′ is the Lie algebra of K′. This metric is positive definite on the horizontal
direction p, which coincides with the metric on X , and negative definite on t/t′ along the fiber direction of the projection π : D→ X . If Ω is
a Kähler form on X defined by such a metric, Ω̂ is a pseudo-Kähler form on D, then on the horizontal direction of TD, Ω̂ and π∗Ω coincide
since the Kähler form is determined by the metric, as in Eq. (2.1). We normalize a quaternionic Kähler form ω on X so that its restriction to
a copy of H2

C in X is equal to Ω2.

III. TOTALLY GEODESIC EMBEDDINGS OF THE COMPLEX HYPERBOLIC SPACE B IN X AND THEIR POSSIBLE
HOLOMORPHIC LIFTINGS TO PERIOD DOMAINS

We consider several natural totally geodesic imbeddings of the complex ball Bm into the quaternionic symmetric spaces and consider
the corresponding pull-back of the quaternionic four-forms and the Kähler forms. In Ref. 7, the authors study some holomorphic liftings
of mappings from the complex hyperbolic ball to quaternionic hyperbolic ball to holomorphic mapping to the (pseudo-Hermitian) twistor
space, which enable them to apply a variant of the Schwarz lemma and to prove rigidity theorems. Following a suggestion of Toledo, we shall
study holomorphic liftings in our context.

A. Holomorphic and totally real embeddings
The complex hyperbolic space Hn

C, i.e., the symmetric space SU(n, 1)/S(U(n) ×U(1)), will be realized as the unit ball B in Cn, as in
Sec. II B.

Recall also the normalization of the Kähler metric on B and on X ,

gB(u, v) = 4Re(∑uiv̄i), gX (u, v) = 4ReTrv∗u,

where the real tangent spaces of B and X at z = 0 and Z = 0 are identified with Cn and M2n×2; the respective Kähler forms are ΩB(u, v)
= gB(iu, v) and ΩX (u, v) = gX (iu, v).

A natural holomorphic embedding of Hn
C = B = {(z1, . . . , zn) ∈ Cn : ∑∣zi∣2 < 1} into X is given by

ρ : (z1, . . . , zn)↪ Z =
⎛
⎜⎜⎜
⎝

z1I2
z2I2
⋅ ⋅ ⋅

znI2

⎞
⎟⎟⎟
⎠

,
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which gives rise to zero Toledo invariant of ω. The push-forward on holomorphic tangent vectors at 0 ∈ B is

ρ∗ : x = (x1, . . . , xn) ∈ Cn ↦ X = (x1, x1j, . . . , xn, xnj) ∈ H2n,

where xl = al + ibl ∈ C and on which the forms ωj and ωk vanish. Thus,

ω(X, Y , Z, W) = ωi ∧ ωi(X, Y , Z, W) = Re(Ȳ ⋅ X̄i)Re(W̄ ⋅ Zi)

− Re(Z̄ ⋅ Xi)Re(W̄ ⋅ Yi) + Re(W̄ ⋅ Xi)Re(Z̄ ⋅ Yi)

= Re(i
n

∑
m=1

(xmȳm + x̄mym))Re(i
n

∑
m=1

(zmw̄m + z̄mwm))

− Re(i
n

∑
m=1

(xmz̄m + x̄mzm))Re(i
n

∑
m=1

(ymw̄m + ȳmwm))

+ Re(i
n

∑
m=1

(xmw̄m + x̄mwm))Re(i
n

∑
m=1

(ymz̄m + ȳmzm)) = 0.

However, when we write X = ( 0 A
A∗ 0), Y = ( 0 B

B∗ 0),

Ωo(X, Y) = go(JX, Y) = 4Re Tr(iB∗A) = 4Re(2i
n

∑
m=1

xmȳm).

Hence,
Ω2

o(X, Y , Z, W) = 4Ω2
B(x, y, z,w)

for tangent vectors X = ρ∗(x), Y = ρ∗(y), Z = ρ∗(z), W = ρ∗(w) at the image of the natural holomorphic embedding of Hn
C = B, where ΩB is

the Kähler form on B. In other words,
ρ∗Ω2

o = 4Ω2
B, ρ∗ω = 0, (3.1)

for the natural holomorphic embedding ρ of Hn
C into X .

On the other hand, another natural embedding

λ : SU(n, 1)↪ Sp(n, 1)↪ SU(2n, 2) (3.2)

gives rise to a totally real embedding

λ : B→ X , (z1, . . . , zn)↪ Z =

⎛
⎜⎜⎜⎜⎜⎜
⎝

(z1 0
0 z̄1

)
⋅ ⋅ ⋅

(zn 0
0 z̄n

)

⎞
⎟⎟⎟⎟⎟⎟
⎠

(3.3)

whose Toledo invariant of ω is
λ∗ : x = (x1, . . . , xn) ∈ Cn ↦ X = (x1, x̄1j, . . . , xn, x̄nj) ∈ H2n,

ω(X, Y , Z, W) = ωi ∧ ωi(X, Y , Z, W) = Re(Ȳ ⋅ X̄i)Re(W̄ ⋅ Zi)

− Re(Z̄ ⋅ Xi)Re(W̄ ⋅ Yi) + Re(W̄ ⋅ Xi)Re(Z̄ ⋅ Yi)

= Re(2i
n

∑
m=1

(xmȳm))Re(2i
n

∑
m=1

(zmw̄m))

− Re(2i
n

∑
m=1

(xmz̄m))Re(2i
n

∑
m=1

(ymw̄m))

+ Re(2i
n

∑
m=1

(xmw̄m))Re(2i
n

∑
m=1

(ymz̄m)) = 1
4

Ω2
B(x, y, z,w).
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Hence,

λ∗ω = 1
4

Ω2
B. (3.4)

Contrary to the SU(1, 1) case, this totally real embedding is locally rigid for n > 1; see Ref. 11.

1. Conjecture
These two particular embeddings suggest that the Toledo invariant of ω is maximal on totally real embedding and zero on holomorphic

embedding. More precisely, if a representation attains a maximum Toledo invariant, then it should be conjugate to the totally real embedding
above, and if the quaternionic Toledo invariant is zero, then it is conjugate to the holomorphic embedding.

2. Warning
If we identify the holomorphic tangent space of X with H2n by (x1 + jy1, . . . , x2n + jy2n), ω vanishes on totally real embedding and 16ω

= Ω2
o on holomorphic embedding. Hence, the convention determines which one has a maximal Toledo invariant. In Ref. 7, it seems that they

use a different convention from ours. Nevertheless, we stick to our convention in this paper.

B. Symmetric square representation of SU(2, 1) and related four-forms
Denote V = C2+1 = C2 + C3 the space C3 equipped with the Hermitian metric with signature (2, 1) and B = SU(2, 1)/S(U(2) ×U(1)), as

in Sec. II B. Recall that it is also identified as the open domain in P2 of lines C(z ⊕ e3) with a negative metric, i.e., ∣z∣ = ∣(z1, z2)∣ < 1.
Let W = V2 be the symmetric square of V . Then, W is equipped with the square of the Hermitian metric of V , and W = C4 + C2

= ((C2)2 + Ce2
3)⊕ (C2 ⊙ e3) is of signature (4, 2). Here, ei ⊙ ej = 1

2 (ei ⊗ ej + ej ⊗ ei). We fix an orthonormal basis {E1, E2, E3, E4, E5, E6} of W
with

Ej = e2
j , E4 = 1√

2
(e1 ⊗ e2 + e2 ⊗ e1) =

√
2e1 ⊙ e2,

E4+i = 1√
2

(e3 ⊗ ei + ei ⊗ e3) =
√

2e3 ⊙ ei, j = 1, 2, 3, i = 1, 2.

The square of the defining representation of H = SU(2, 1) defines a representation

ι : H → G = SU(4, 2), g ↦ ⊗2g.

As in Sec. II B, the symmetric space X of SU(4, 2) will be realized as the open domain of Grassmannian manifold Gr(2, W) of two-
dimensional complex subspaces in W with a negative metric and is further identified with the space of 4 × 2 matrices Z with matrix norm
∥Z∥ < 1 under the identification

{Zx⊕ x; x ∈ C2} ↦ Z.

Recall also the normalization of the Kähler metric on B and on X ,

gB(u, v) = 4Re(u1v̄1 + u2v̄2), gX (u, v) = 4ReTrv∗u,

where the real tangent spaces of B andX at z = 0 and Z = 0 are identified withC2 and M4×2; the respective Kähler forms are ΩB(u, v) = gB(iu, v)
and ΩX = gX (iu, v).

The representation ι : H → G induces a totally geodesic mapping (with the same notation) ι: B→ X . In terms of the above identification
of B and X as submanifolds of projective and Grassmannian manifolds, the map ι is

ι(l) = l⊙ l�,

where l� is the orthogonal complement of l in V and l⊙ l� is the subspace of vectors u⊗ v + v ⊗ u, where u ∈ l, v ∈ l�. We find now the map
ι∗ at z = 0 ∈ B.

Fixing the reference line C3 ∈ P2 and the plane C2 ⊙ e3 ∈ Gr(2, W) corresponding to the points 0 ∈ B and 0 ∈ X , the map ι is

ι : exp(tX) ⋅ (C3)↦ (exp(tX) ⋅ (C3))⊙ (exp(tX) ⋅ (C2)),
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where

X =
⎛
⎜
⎝

0 0 a1
0 0 a2
ā1 ā2 0

⎞
⎟
⎠
∈ p

and su(2, 1) = k + p is the Cartan decomposition. Thus, ι∗(X) ∈ p′ =M4×2, with su(4, 2) = k′ + p′ being the corresponding Cartan decomposi-
tion, is the linear transformation

ι∗(X) : C2 → C4,

C{E5, E6} ↦ C{(Xe3)⊙ e1 + e3 ⊙ (Xe1), (Xe3)⊙ e2 + e3 ⊙ (Xe2)}.

Note that Xe1 = ā1e3, Xe2 = ā2e3, Xe3 = a1e1 + a2e2 and

(Xe3)⊙ e1 + e3 ⊙ (Xe1) = (a1e1 + a2e2)⊙ e1 + e3 ⊙ ā1e3

= a1e1 ⊙ e1 + a2e2 ⊙ e1 + ā1e3 ⊙ e3 = a1E1 + ā1E3 +
a2√

2
E4.

A similar calculation for the second factor shows that, under the basis {Ej}, ι∗(X) corresponds to the 4 × 2 matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0
0 a2
ā1 ā2
a2√

2
a1√

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Ta.

Taking the basis vectors X =
⎛
⎜
⎝

0 0 1
0 0 0
1 0 0

⎞
⎟
⎠

, Y =
⎛
⎜
⎝

0 0 i
0 0 0
−i 0 0

⎞
⎟
⎠

, Z =
⎛
⎜
⎝

0 0 0
0 0 1
0 1 0

⎞
⎟
⎠

, W =
⎛
⎜
⎝

0 0 0
0 0 i
0 −i 0

⎞
⎟
⎠

, we find the corresponding images in H4

under ι∗

ι∗(X) = (1, 0, 1,
j√
2

), ι∗(Y) = (i, 0,−i,
k√
2

),

ι∗(Z) = (0, j, j,
1√
2

), ι∗(W) = (0, k,−k,
i√
2

)

and that

ω(ι∗(X), ι∗(Y), ι∗(Z), ι∗(W)) = −3
4

. (3.5)

Namely,

ι∗ω = − 3
64

Ω2
B, (3.6)

where ΩB is the Kähler form on B. We can likewise compute ι∗Ω2 and find

ι∗Ω2 = 1
4

Ω2
B.

Now, there is a natural inclusion of SU(4, 2) as a subgroup of SU(n, 2), where n ≥ 4, and we will also view ι as a homomorphism
ι : SU(2, 1)→ SU(4, 2)→ SU(n, 2).

C. Holomorphic lifting properties
As mentioned in the Introduction, it is of interest to know if a harmonic map f : B→ X can be lifted to a holomorphic map into a period

domain5 (or Griffiths-Schmid domain) D, namely, a homogeneous complex manifold D = G/L with a G equivariant fibration π : D→ X
= G/K. We give an elementary criterion below.
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Proposition 3.1. Suppose that there exists a holomorphic lifting f̂ of a harmonic map f : B→ X to a period domain D. Then, d(1,0) f (v) is
nilpotent for any v ∈ p+ = T(1,0)

x (B).

Proof. Let f̂ : B→ D be a holomorphic lift of f : B→ X . We can fix a reference point x = 0 and assume that f̂ (0) = o = eL ∈ D = G/L.
The holomorphic tangent space of To(D) is given by the n+-space as in Sec. II C and is a nilpotent algebra of g. Now, f = π ○ f̂ , and f ∗(0)(v)
= π∗(o)(f̂ ∗(0)(v)), for v ∈ T(1,0)

0 (B). However, f̂ (0)(v) ∈ n+ since f̂ is holomorphic, so f̂ (0)(v) ∈ n+ is nilpotent, which implies that f ∗ (0)(v) is
nilpotent since π∗ maps nilpotent elements to nilpotent elements where π is the quotient map D = G/L→ X = G/K. □

We find a holomorphic lift of the non-holomorphic map λ.

Lemma 3.2. The totally real imbedding λ : B→ X can be lifted to a holomorphic horizontal mapping into the period domain
D = SU(2n, 2)/S(U(2n) ×U(1) ×U(1)).

Proof. Let C2n+2 = Cn+1 ⊕Cn+1 = Cn
+ ⊕Cn

+ ⊕C− ⊕C− be equipped with the Hermitian form ⟨, ⟩ of signature (2n, 2) with Cn+1 being
of signature (n, 1) as before, with the sub-indices ± indicating the positivity or negativity of the form. We denote the standard basis as
{e1, . . . , en, en+1} for the first factor Cn+1 and { f 1, . . . , f n+1} for the second summand Cn+1.

Then, according to the notations in Sec. II B, the space X is the set of pairs of 2n-coordinates

(z1, . . . , zn,w1, . . . ,wn), (z′1, . . . , z′n,w′1, . . . ,w′n)

such that
z1e1 + w1 f 1 + ⋅ ⋅ ⋅ + znen + wn f n + en+1,

z′1e1 + w′1 f 1 + ⋅ ⋅ ⋅ + z′nen + w′n f n + f n+1

represents a two-dimensional negative definite subspace.
Consider the flag manifolds D of pairs (p1, p2), where p1 is an one-dimensional subspace with negative form ⟨, ⟩ and p2 is a (2n + 1)-

dimensional subspace with signature (2n, 1) containing p1. Then, D is a G = SU(2n, 2)-homogeneous manifold, and D = G/L, L = S(U(2n)
×U(1) ×U(1)). The homogeneity can be proved by the elementary linear algebra. Fixing the point p0 = (p1, p2), p1 = Cen+1, and
p2 = C2n+1 = Cn

+ ⊕ p1 ⊕Cn
+ ⊕ 0 as a reference, then the isotropic group of p in G is exactly L, proving the realization of D. The complex struc-

ture on D is realized as an open subset of the flag manifold Dc = SU(2n + 2)/S(U(2n) ×U(1) ×U(1)) = SL(2n + 2,C)/P of all pairs (p1, p2) of
one-dimensional subspaces p1 in (2n + 1)-dimensional subspaces p2, considered as a homogeneous space of SL(2n + 2,C) with P being a Borel
subgroup as the isotropic subgroup fixing the reference point p0 = (p1, p2) = (Cen+1,C2n+1) above. The fibration π : D→ X is then the map

(p1, p2)↦ p1 ⊕ p�2 .

Clearly, p1 ⊕ p�2 is a two-dimensional subspace in C2n+2 of signature (0, 2); namely, it is an element in X , and this map is G equivariant. Now,
we consider the map λ̃ : B→ D,

λ̃(z) = (p1, p2); p1 = (z1e1 + ⋅ ⋅ ⋅ + znen + en+1), p2 = (z̄1 f 1 + ⋅ ⋅ ⋅ + z̄n f n + f n+1)�,

with the orthogonal complement being computed with respect to the fixed indefinite form. It follows immediately from the formula that λ̃ is
holomorphic in z. To be more precise, complex coordinates near p0 can be chosen as

(x, x′, y, y′) ∈ Cn ×Cn+1 ×Cn ×Cn ↦ (p1, p2), p2 = p1 ⊕ q2,

p1 = C(en+1 ⊕ (x1e1 + ⋅ ⋅ ⋅ + xnen + x′1 f 1 + ⋅ ⋅ ⋅ + x′n+1 f n+1)),

q2 = span{e1 + y1en+1, . . . , en + ynen+1; f 1 + y′1 f n+1, . . . , f n + y′n f n+1}.

In terms of these coordinates, the map λ̃ is
λ : z = (z1, . . . , zn)↦ (x, x′, y, y′) = (z, 0, 0, z)

and is, indeed, holomorphic. We further have
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π ○ λ̃ : z ↦ (p1, p2)↦ p1 ⊕ p�2 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

(z1 0
0 z̄1

)
⋅ ⋅ ⋅

(zn 0
0 z̄n

)

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

This corresponds precisely to our map λ; namely, λ̃ is a lift of λ. □

We consider now the lifting property of ι.

Lemma 3.3. The above quadratic map ι : B→ X does not lift to a holomorphic horizontal mapping into D1 = SU(4, 2)/S(U(4) ×U(1)
×U(1)).

Proof. Suppose that F is a holomorphic horizontal lifting. The complexification of F∗, still denoted by F∗, maps b+, the holomorphic
tangent space of B to holomorphic tangent space n+ [up to changing of the base point under SU(2)-action]. In particular, the image of b+

under ι∗ is contained in π∗(n+), where π : D1 → X is the natural projection. In particular, ι∗(b+) is a subspace of π∗(n+). Using the above
formula for n+, we find that elements in ι∗(b+) ⊂ π∗(n+) are of the form

⎛
⎜
⎝

0 0 ∗
∗ 0 0
0 0 0

⎞
⎟
⎠

.

However, our computations above show that for

S =
⎛
⎜
⎝

0 0 a1
0 0 a2
0 0 0

⎞
⎟
⎠

= 1
2

⎛
⎜
⎝
⎛
⎜
⎝

0 0 a1
0 0 a2
ā1 ā2 0

⎞
⎟
⎠
−
√
−1
⎛
⎜
⎝

0 0 ia1
0 0 ia2
−iā1 −iā2 0

⎞
⎟
⎠
⎞
⎟
⎠
∈ b+,

(3.7)

its image ι∗ (S) is

ι∗(S) = [0 U
V 0 ],

where

U =
⎛
⎜⎜⎜⎜
⎝

a1 0
0 a2
0 0
a2√

2
a1√

2

⎞
⎟⎟⎟⎟
⎠

, V = (0 0 a1 0
0 0 a2 0).

This is a contradiction to the form of π∗(n+). □

We may construct similarly the twistor cover SU(2m, 2)/S(U(2m) ×U(1) ×U(1)) of X = SU(2m, 2)/S(U(2m) ×U(2)) as above and
consider the question of holomorphic lifting of maps from B to X . The above proof leads to a simple necessary condition for the existence.

Corollary 3.4. Given a representation ρ : Γ ⊂ SU(n, 1)→ SU(2m, 2), with a ρ-equivariant map f on the associated symmetric spaces
B = SU(n, 1)/S(U(n) ×U(1)), X = SU(2m, 2)/S(U(2m) ×U(2)), and a fixed base point o = [K] ∈ SU(n, 1)/S(U(n) ×U(1)), let

D f o( 0 X
X∗ 0) = (

0 U
U∗ 0)

be a differential map at the base point, where X ∈ Cn, U = (U1, U2) ∈M2m×2. For f to have a holomorphic lift to the twistor space, every
component of U1 is an conjugate C-linear in X, and every component of U2 is a C-linear in X. Here, we regard Df o as a map from Cn to
M2m×2 = C4m.
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Proof. Note that Df o is a real linear map between real tangent spaces ToB and T f (o)X . For X = (z1, . . . , zn) and zi = xi + iyi, let
X = (x1, . . . , xn, y1, . . . , yn) = (x, y), with the same notation, be the corresponding coordinates in R2n. Then, iX corresponds to

iX = (−y1, . . . ,−yn, x1, . . . , xn) = (−y, x)

as usual. For f to lift to the holomorphic map to the twistor space, Eq. (3.7) should read

D f o(X −
√
−1iX) = (U′1, U′2) = (0, U′2).

Hence, from U′1 = 0, we get

(A B
C D)[

x
y] −
√
−1(A B

C D)[
−y

x] = 0.

It is

(Ax + By
Cx + Dy) + ( −Cy + Dx

−(−Ay + Bx)) = 0.

From this, we get

A = −D, B = C.

This exactly implies that every component function of U1 is conjugate C-linear in X = (z1, . . . , zn) variables. Using the equation for U∗, a
similar calculation shows that every component function of U2 must be C-linear in zi variables for f to have a holomorphic lift to the twistor
space. □

We prove, however, that the map ι can be lifted to a holomorphic mapping to D2 = SU(4, 2)/S(U(3) ×U(1) ×U(2)).
Let f associate the triple (S2L�, L2, L⊙ L�) to a negative line L in V = C2+1. Then, S2L� is a positive three-dimensional space in W, L2 is

a positive line in W, and L⊙ L� is a negative plane in W. In the explicit coordinates, if L = Ce3, then L� = ⟨e1, e2⟩, and

S2L� = ⟨e2
1, e2

2, e1 ⊙ e2⟩ = ⟨E1, E2, E4⟩, L2 = ⟨e2
3⟩ = ⟨E3⟩,

L⊙ L� = ⟨e1 ⊙ e3, e2 ⊙ e3⟩ = ⟨E5, E6⟩.

Hence, the stabilizers of S2L�, L2, L⊙ L� are U(3), U(1) and U(2), respectively. Therefore, f : L↦ (S2L�, L2, L⊙ L�) induces a map

f : B→ D2 = SU(4, 2)/S(U(3) ×U(1) ×U(2)).

Since

ι(L) = (L⊙ L�, (L⊙ L�)�),

f (L) = ((S2L�, L2), ι(L)) is a lifting of ι to D2.
We claim that f is holomorphic with respect to a complex structure on the period domain D2 introduced in Sec. II C.
Hence, the claim follows from the fact that the holomorphic tangent vector in B

S =
⎛
⎜
⎝

0 0 a1
0 0 a2
0 0 0

⎞
⎟
⎠
= 1

2

⎛
⎜
⎝
⎛
⎜
⎝

0 0 a1
0 0 a2
ā1 ā2 0

⎞
⎟
⎠
−
√
−1
⎛
⎜
⎝

0 0 ia1
0 0 ia2
−iā1 −iā2 0

⎞
⎟
⎠
⎞
⎟
⎠
∈ b+

is mapped to ι∗ (S),

ι∗(S) = [0 U
V 0 ]

as in the Proof of Lemma 3.1, where
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U =
⎛
⎜⎜⎜⎜
⎝

a1 0
0 a2
0 0
a2√

2
a1√

2

⎞
⎟⎟⎟⎟
⎠

, V = (0 0 a1 0
0 0 a2 0).

Here, we give another way to prove the liftability. Note that D2 can be identified with the open SU(4, 2) orbit in the homogeneous
complex manifold D̂ of partial flags consisting of lines inside three-planes. The stabilizer of the partial flag is S(U(3) ×U(1) ×U(2)). There
is an obvious holomorphic map F from CP2 to D̂, which associates the flag l⊙ l ⊂ l⊙C2,1 to a line in C2,1. The restriction of this map to
H2
C ⊂ CP2 is a holomorphic map. Furthermore, the projection from D2 to X is

l⊙ l ⊂ l⊙C2,1 → l⊙ l�,

and hence, ι = π ○ F.
Now, we show the horizontality, i.e., the image lies in the form L⊙ L�. For any smooth curve in B, denote it by L(t) = ⟨v0 + w(t)⟩, where

w(t) ⊂ v�0 , a differentiable family of lines, such that w(0) = 0,w′(0) ∈ v�0 . Then, we can write L(t)� = ⟨v(t)⟩�, where v(0) = v0, v′(0) = w′(0)
∈ v�0 .

Since L(t)⊙ L(t)� is already horizontal, it suffices to show the horizontality of L(t)2 and S2(L(t)�). However,

L(t)2 = ⟨(v0 + w(t))⊙ (v0 + w(t))⟩ = ⟨v2
0 + v0 ⊙w(t) + w(t)2⟩.

Hence,
d
dt
∣t=0L(t)2 = v0 ⊙w′(0) ∈ L(0)⊙ L(0)�.

Similar calculation shows that
d
dt
∣t=0S2(L(t)�) = d

dt
∣t=0⟨v(t)� ⊙ v(t)�⟩

= ⟨v′(0)� ⊙ v�0 ⟩ ⊂ ⟨v0 ⊙ v�0 ⟩ ⊂ L(0)⊙ L(0)�,

completing the proof.

IV. CHARACTER VARIETY χ(Γ, SU(n, 2))

Theorem 4.1. There are at least seven distinct connected components in χ(Γ, SU(n, 2)), n ≥ 4, where Γ ⊂ SU(2, 1) is a uniform lattice in
SU(2, 1).

Proof. We view SU(4, 2) as a subgroup of SU(n, 2). Consider first the holomorphic and totally real embeddings ρ and λ as in Sec. III A.
Then, by Eqs. (3.1) and (3.4), ρ∗ω = 0, λ∗ω = 1

4 Ω2
B, whereas for the square representation ι, by Eq. (3.6), ι∗ω = − 3

64 Ω2
B. This implies that the

quaternionic Toledo invariants are

∫
Γ/H2

C

λ∗ω = 1
4∫Γ/H2

C

Ω2
B = 1

4
vol(Γ/H2

C),

∫
Γ/H2

C

ι∗ω = − 3
64∫Γ/H2

C

Ω2
B = − 3

64
vol(Γ/H2

C),

∫
Γ/H2

C

ρ∗ω = 0,

respectively.
The last representation with a different Toledo invariant is given by the embedding ϕ : (z1, . . . , zn)→ ((z1, 0), . . . , (zn, 0)). Then, the

push-forward on holomorphic tangent vectors at 0 ∈ B is

ϕ∗ : x = (x1, . . . , xn) ∈ Cn ↦ X = (x1, 0, . . . , xn, 0) ∈ H2n,
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where xl = al + ibl ∈ C and on which the forms ωj and ωk vanish and

ω(X, Y , Z, W) = ωi ∧ ωi(X, Y , Z, W)

= Re(iX ⋅ Ȳ)Re(iZ ⋅ W̄) − Re(iX ⋅ Z̄)Re(iY ⋅ W̄) + Re(iX ⋅ W̄)Re(iY ⋅ Z̄)

= Re(i
n

∑
m=1

ȳmxm)Re(i
n

∑
m=1

w̄mzm) − Re(i
n

∑
m=1

z̄mxm)Re(i
n

∑
m=1

w̄mym)

+Re(i
n

∑
m=1

w̄mxm)Re(i
n

∑
m=1

z̄mym).

However,

Ω2
B(x, y, z,w) = 4Re(i

n

∑
m=1

ȳmxm)4Re(i
n

∑
m=1

w̄mzm)−

4Re(i
n

∑
m=1

z̄mxm)4Re(i
n

∑
m=1

w̄mym) + 4Re(i
n

∑
m=1

w̄mxm)4Re(i
n

∑
m=1

z̄mym)

= 16ω(X, Y , Z, W).

Hence,

ϕ∗ω = 1
16

Ω2
B. (4.1)

Since the quaternionic Toledo invariant is constant on each connected component, we get four different connect components.
If we take the complex conjugate of ϕ, we get the embedding

ϕ̄ : (z1, . . . , zn)↦ ((z̄1, 0), . . . , (z̄n, 0)),

which entails

ω(ϕ̄∗(x), ϕ̄∗(y), ϕ̄∗(z), ϕ̄∗(w)) = Re(i
n

∑
m=1

x̄mym)Re(i
n

∑
m=1

z̄mwm)

−Re(i
n

∑
m=1

x̄mzm)Re(i
n

∑
m=1

ȳmwm) + Re(i
n

∑
i=1

x̄mwm)Re(i
n

∑
m=1

ȳmzm)

= − 1
16

Ω2
B(x, y, z,w).

This induces that
(ϕ̄)∗ω = − 1

16
Ω2

B.

The same calculation holds for the complex conjugates of λ and ι for Eqs. (3.4) and (3.6). By taking the complex conjugates of λ, ι and ϕ, we
get seven components. This completes the proof. □

Remark 4.2. Note that the above proof works for a uniform lattice Γ ⊂ SU(n, 1) except the symmetric square representation. Hence, there
are at least five distinct components in the character variety χ(Γ, SU(2n, 2)).

Note that for a lattice Γ ⊂ SU(2, 1), the holomorphic embedding ρ corresponds to the diagonal embedding γ→ (γ, γ) ∈ SU(2, 1)
× SU(2, 1) ⊂ SU(4, 2), and the totally real embedding corresponds to γ→ (γ, γ̄), whereas the last example in the previous theorem corresponds
to the embedding γ→ (γ, id) ∈ SU(2, 1) × SU(2, 1) ⊂ SU(4, 2).

In this direction, Toledo constructed the following examples.20 There exist two complex hyperbolic surfaces X = Γ/H2
C and Y = Γ′/H2

C
with a surjective holomorphic map f : X → Y with 0 < deg( f ) < vol(X)

vol(Y) , which induces a group homomorphism f ∗ : Γ→ Γ′. See also Refs. 6
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and 15 for the constructions of various subgroups Γ′ ⊂ Γ of a finite index. [The volumes vol(X) and vol(Y) can be further computed by using
the Chern–Gauss–Bonnet theorem for orbifolds.] Consider the following representation:

Γ
f ∗ÐÐ→Γ′

ϕÐ→SU(4, 2),

where ϕ is the restriction of the holomorphic embedding above. Then, the quaternionic Toledo invariant of this representation is

∫
X

f ∗(ϕ∗ω) = ∫
X

f ∗(
1

16
Ω2

B) = 1
16

deg( f )vol(Y) < 1
16

vol(X),

with 1
16 vol(X) being the smallest among the positive Toledo invariants in Theorem 4.1. We thus obtain an improvement of Theorem 4.1 in

this case, viz.

Proposition 4.3. Let Γ ⊂ Γ′ be as above. There exist at least nine distinct components in χ(Γ, SU(4, 2)).

Some versions of local rigidity for the representations in some of the components above have been studied in Refs. 11 and 12.

V. MILNOR–WOOD INEQUALITY AND GLOBAL RIGIDITY FOR QUATERNIONIC TOLEDO INVARIANT
In this section, we show that if there exists a holomorphic horizontal lifting, then the Milnor–Wood type inequality holds with a quater-

nionic Kähler form. In this section, we normalize the metrics on H2
C and on X = SU(2n, 2)/S(U(2n) ×U(2)) so that the holomorphic sectional

curvatures are equal to −1.

Lemma 5.1. Let D be a period domain of X with a pseudo-Kähler metric such that it is negative definite on vertical directions and positive
definite on horizontal directions. Its associated pseudo-Kähler form is Ω̂, which agrees with π∗(Ω) on the horizontal direction where the Kähler
form on X is denoted as Ω. If f : H2

C → D is a horizontal holomorphic map, then the Schwarz lemma holds, i.e., f ∗(Ω̂) ≤ ΩB, where ΩB is the
Kähler form on H2

C. Equality holds at every point if and only if f is a horizontal holomorphic geodesic embedding of H2
C in D.

Proof. The proof is exactly the same as the one given in Theorem 3.3 in Ref. 7. The idea is as follows. First consider the case of a mapping
from the hyperbolic plane H1

C, f : H1
C → D. If f ∗Ω̂ = uΩB1 , then by the method of Sec. 2 of Chaps. I and III of Ref. 13, one can show that

u ≤ 1. If equality holds at every point, then f is an isometric immersion. If M is the image and α is the second fundamental form, then since
both holomorphic sectional curvatures are −1, one can show that α = 0; consequently, f is a totally geodesic holomorphic embedding. For the
f : H2

C → D case, by considering all hyperbolic hyperbolic planes H1
C in H2

C, one concludes that the second fundamental form vanishes, hence
the totally geodesic embedding. □

Proposition 5.2. Let M = Γ/H2
C. Suppose that ρ : Γ→ SU(n, 2) is a representation whose associated ρ-equivariant harmonic map f : B→ X

lifts to a holomorphic horizontal map f̂ to D. Then, the Milnor–Wood type inequality holds. If equality holds, then it is a holomorphic embedding.

Proof. Since H4(M,R) = R, the pull-backs of four-forms to M are all proportional to each other up to exact forms. Specifically,

f ∗ω = f̂ ∗(π∗ω) = cf̂ ∗(π∗Ω2) + dα = c f ∗Ω2 + dα.

A Kähler form Ω̂ of D agrees with π∗(Ω) on horizontal directions; hence, f̂ ∗(Ω̂) = f̂ ∗(π∗Ω) = f ∗Ω. However, since f̂ is holomorphic, by the
Schwarz lemma,

f ∗Ω = f̂ ∗(π∗Ω) ≤ ΩB.

Hence,
1
c∫M

f ∗ω = ∫
M

f ∗Ω2 ≤ ∫
M

Ω2
B = vol(M).

Now, since we normalize ω so that its restriction to complex two-dimensional hyperbolic space is equal to Ω2, we have c = 1 and
f̂ ∗(π∗ω) = f̂ ∗(π∗Ω2) + dα, and consequently, the Milnor–Wood inequality

∫
M

f ∗ω = ∫
M

f ∗Ω2 ≤ vol(M).

Suppose that ∫M f ∗ω = vol(M). Then, f ∗Ω2 = Ω2
B pointwise, which implies that f is a holomorphic embedding by the previous lemma. □
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