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Abstract
This thesis deals with a theoretical analysis of heat currents, their exploitation
and their control in nanoscale devices. The motivation for this study is twofold.
(i) The development of nanoscale devices sets up the basis of many applications
ranging from nanoelectronics to quantum technology. Such nanodevices, typi-
cally operated at low temperatures, are highly sensitive to heating effects. Hence
the successful performance of these devices relies on controlling and managing
this heat. (ii) Nanostructures provide appealing systems to study quantum and
nonequilibrium thermodynamics because, at such small scales, the behavior of
systems is highly affected by size confinement and quantum effects.
The central purpose of this thesis is to investigate the impact of specific

characteristics of quantum systems, in particular of quantum size confinement,
nonequilibrium effects and phase coherence, on heat transport quantities. A
better understanding of this impact can lead to an improved control and ex-
ploitation of heat. This can be used for the evacuation of heat from the system,
cooling, or producing power using waste heat. We propose different experi-
mentally accessible setups. In these setups, we theoretically study transport
quantities using a scattering formalism.
We pursue three main study lines in different setups: (i) We investigate phase-

dependent heat transport in normal- and superconducting hybrid junctions. We
show how disorder influences this, both in simple junctions as well as in a heat
circulator. (ii) We analyze thermodynamical machines, which use nonequilib-
rium states as their resource instead of heat. Such devices show a "demonic
behavior" since they seemingly challenge the second law of thermodynamics.
(iii) We analyze how to exploit energy filtering of quantum conductors to per-
form thermoelectric cooling at the example of a quantum spin Hall device in the
whole range from linear to nonlinear response.

Keywords: heat currents; fluctuations; phase-dependent heat transport; ther-
moelectric devices; nonequilibrium thermodynamics.
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BdG Bogoliubov-de Genes.

COP coefficient of performance.
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Lor Lorentzian.
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QSH quantum spin Hall.

RB rectangular barrier.

SNS superconductor-normal-metal-superconductor.

2-DEG two-dimensional electron gas.
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1 Introduction
This thesis provides a study of thermal effects and heat transport in mesoscopic
devices. A particular focus is on heat control exploiting unique effects occurring
in systems confined to low dimensions and in systems operated in the quantum
regime.

Mesoscopic devices have prospective applications in fields such as nanoelec-
tronics and quantum technology. Their size lies between the atomic and macro-
scopic scales. In this regime, the system shows non-classical behavior. Such
mesoscopic devices are often realized in nanometer-sized structures. In addition
to the size, mesoscopic conductors need to operate at low temperatures in or-
der to make quantum effects experimentally accessible [1]. The heating, along
with the reduced thermal conductivity in thin layers of semiconductors such as
silicon, due to quantum confinement effects [2], make major issues in the evac-
uation of the generated heat in nanodevices. This affects the functionality of
these devices. To prevail over these harmful effects, heat currents dissipated in
the systems need to be controlled and regulated to maintain the reliability of
nanodevices.

Mesoscopic systems are also of fundamental interest since they exhibit quantum-
mechanical properties due to their small sizes, and at the same time, it is possi-
ble to perform electronic transport measurements on them. Generally, electronic
transport happens together with the transport of energy (since electrons carry
both charge and energy), and part of this energy dissipates as heat.2 Mesoscopic
physics investigates how this electronic transport is influenced by quantum ef-
fects. The effects arising from size confinement and quantum features also in-
fluence the heat transport by electrons. This thesis, as the main subject of its
study, investigates the exploitation of these effects to control heat.

Controlling and exploiting heat in mesoscopic systems is a topical field of in-
terest [3–8] that would find applications in many fields of nanoscience, including
thermal management, thermal isolation, energy harvesting, and cooling [9–12].

In addition to the practical interest in heat current control in nanodevices,
2 Note that we do not treat heat transport due to phonons or photons, which in shielded
low-temperature devices as the ones we consider, is suppressed.
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2 Chapter 1. Introduction

there is a fundamental interest in heat transport in generic nanoscale structures.
Recently, the field of quantum thermodynamics, the study of thermodynamical
properties of quantum- and nanoscale systems, has gained much interest. In this
context, for example, quantum heat engines and refrigerators have been theoret-
ically studied [13–16]. Furthermore, the possibility of enhancing the efficiency of
thermoelectric devices using quantum effects, for heat to electricity conversion
and also energy harvesting [5, 17, 18], is currently addressed. Even in the classi-
cal regime, the thermodynamic behavior of small scale systems is fundamentally
different from the one of macroscopic devices, which can typically be described
by average, equilibrium properties. Nonequilibrium effects and fluctuations are
the topics of the research fields of nonequilibrium and stochastic thermodynam-
ics, see e.g. [19–22]. The theoretical results of this thesis contribute to these
fields.

In this context, we consider various configurations of nanostructures and study
heat transport in them. Our research has three main headings. On one hand, in
paper II, we address thermoelectric cooling using energy filtering barriers. On
the other hand, the thesis discusses the effects of nonequilibrium resources for
heat-engine-type of systems that are the subject of paper III. Finally, we analyze
the role of phase-coherent properties on heat flows that includes papers I and IV.

1.1 Thermoelectric cooling
To control heat, one can exploit thermoelectric properties of systems [23]. These
properties relate electrical power to heat transport, making it possible to cool
down a system using electrical power [3] or to produce electrical power (work)
from heat.

Energy-filtering is at the basis of the thermoelectric performance of a system.
This is done by a conductor that has an energy-dependent transmission, which
can be due to quantum effects and size confinement. Famous examples of systems
with energy-dependent transmissions are quantum point contacts (QPCs) and
quantum dots (QDs). These systems have been investigated operating as quan-
tum heat engines and refrigerators and they have shown large output power and
efficiencies [23–25]. Among devices with energy-filtering characteristics, a novel
system is a quantum spin Hall (QSH) device. In such a device, particles travel
along counter propagating, spin-resolved edge channels called helical edge states.
Recently, a QSH device in which the helical edge states are coupled through a
magnetic island has been proposed as a thermoelectric [26]. Unlike quantum
dot and QPC that have simple peak-shaped and step-like energy-dependent
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transmissions, the QSH device shows complex features that we identified to be
combinations of the ones in QPCs and QDs. The cooling power of this device
had previously only been addressed in [26] for limited parameter regimes (linear
regime). However, the thermoelectric cooling at large voltage and temperature
differences (nonlinear regime) has not been considered. To illuminate this un-
charted aspect, in paper II, we analyze the full cooling performance of the QSH
device with a magnetic island. We also do a full performance analysis of the
device, including the study of efficiencies, and present results for both linear and
nonlinear regimes.

1.2 Nonequilibrium effects
Standard thermodynamics deals with equilibrium states. According to the ze-
roth law of thermodynamics, when two bodies are in thermal equilibrium with
a third one, all of them have the same temperature. Nonetheless, microscopic
systems can often not be well described by thermal equilibrium. Examples of
these systems are not only the above described mesoscopic systems, but can also
be found in biological and chemical systems. These systems have a nonequilib-
rium nature that can even stem from time-dependent or nonconservative forces.
The field of stochastic thermodynamics describes these systems, addressing, for
example, chemical reactions and biological processes from a thermodynamic per-
spective [27]. Namely, stochastic, nonequilibrium thermodynamics yields a de-
scription of microscopic systems, where fluctuations play an important role [28,
29].

In paper III, mesoscopic systems are investigated that are smaller than their
thermalization length. This means, in particular, that particle distributions in
the setup can not thermalize to equilibrium distributions. Most interestingly,
it has recently been shown that nonequilibrium distributions can be used as a
resource, instead or in addition to heat, which is standardly used as a resource
for macroscopic thermodynamic engines.

1.2.1 Demonic action of a nonequilibrium resource
Using a nonequilibrium distribution as a resource, work can be done in some
working substance without the need to inject any energy or heat into it, but
by cooling down parts of the working substance [30, 31]. This reminds to some
extent of a Maxwell demon, which can reduce the entropy of a gas of particles
without doing any work on it.
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Note, however, that there is a striking difference: A Maxwell demon relies
on measurement and feedback on the microscopic degrees of freedom of the gas
particles. The puzzle of the apparent contradiction with the laws of thermody-
namics is solved when taking into account the heat dissipated when erasing the
information acquired by the Maxwell demon from the measurements. Here, in
the system of our interest, which is not information-driven, but operated by a
nonequilibrium resource, the average work production in the working substance
does not contradict the second law of thermodynamics for the following reason:
entropy is produced in the nonequilibrium resource even in the absence of heat
flow. This setup is therefore also referred to as an N-demon (where the "N"
stands for nonequilibrium).

Following up on these initial studies [30, 31], it is of our interest to know more
about the role of the nonequilibrium distribution. In paper III, we analyze the
performance of devices acting similarly to a heat engine to produce power and
to a refrigerator to perform cooling, but exploiting a nonequilibrium resource in
addition to or instead of heat. For this, we specifically show how efficiencies of
the machines can be used to identify the "demonic" action. Most importantly,
we also propose a "free-energy efficiency", which fully captures the used resources.

1.3 Phase-coherent heat transport in normal- and
superconducting devices

One class of particularly relevant nanoscale devices are setups containing super-
conducting elements, since also the heat transport in such junctions is remark-
ably influenced by the specific characteristics of superconductivity [3, 32]. One of
these characteristics is the superconducting temperature-dependent energy gap.
The energy gap makes superconductors good energy filters, in the sense that
they only allow quasiparticles (constituting the energy carriers in superconduc-
tors) at specific energies to tunnel out from or into an electrode. Depending on
the device operation, this makes the superconducting electrode or closeby nor-
mal conductors to be cooled [33]. Therefore having superconducting elements
as part of hybrid systems is useful for cooling: it allows for an implementation
of electronic refrigerators [3], thereby improving the performance of electronic
devices.

However, in this thesis, the focus is on superconducting junctions used as heat
rectifiers and heat current switches [34, 35]. Here, another aspect of supercon-
ductors plays the most important role, namely the possibility of heat current
control via the phase-dependence of superconducting junctions. It has been
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theoretically predicted [32] that heat currents through so-called Josephson junc-
tions, consisting of two superconductors separated by an insulator (SIS), depend
on the relative phase of the superconducting condensates of the two supercon-
ducting regions. Only a few years ago, this intriguing effect was also proven
experimentally [35, 36]. Since then, the study of phase-coherent caloritronics
has caught a lot of attention in both theoretical and experimental researches,
see [37] for a recent review.

These developments motivate theoretical studies on how phase-dependent heat
transport depends on the properties of possibly complex hybrid (normal (N)-
and superconducting (S)) junctions. The focus in this thesis is on junctions,
consisting of extended, possibly diffusive, conductors, in which many transport
channels with randomly distributed transmission probabilities can contribute to
heat transport via quasiparticles. The impact of these transmission statistics on
the phase-dependent thermal conductance has not received much attention so
far.

In order to approach the role of complex junction properties on heat trans-
port, we use a scattering matrix that allows us to straightforwardly implement
different types of junction properties. We use this both for the theoretical de-
scription of the heat-conductance statistics of diffusive SNS junctions, but also
for heat conductance calculations of NS junctions [38].

The possibility of controlling heat currents by the superconducting phase mo-
tivates the study of heat flows in other structures containing superconductors.
In this work line, devices that have rarely been studied are heat circulators.
These resemble circulators in electronics used, for instance, in radar or amplifier
systems [39]. A heat circulator is a versatile device with two or more terminals,
and when a heat current enters through one of the terminals, it will transmit
in a particular direction. Recently, a three-terminal heat circulator with super-
conducting contacts has been suggested [40]. In this proposal, a three-terminal
device composed of three superconducting contacts with a central scattering re-
gion and the presence of a magnetic field is suggested as a phase-coherent heat
circulator. By changing the device’s parameters, such as a magnetic field or su-
perconducting phases, heat flows in a clockwise or anticlockwise direction. This
type of device can be employed in phase-coherent caloritronics [37]. However,
also in normal conducting systems, heat circulators would be of interest. In
paper IV, we analyze the characteristics of a similar quantum heat circulator as
proposed in Ref. [40] with an ideal ring shape structure for a setup composed
of normal contacts and compare its performance with the superconducting one.
Importantly, in paper IV, we study different types of circulators deviating from
the ideal ring-shape circulator.
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1.4 Thesis outline
The rest of this thesis is organized as follows.

Chapter 2 presents a brief overview of standard systems in thermodynamics
that lead to heat control and exploiting heat for applications. Without aiming
at a complete overview of the conventional thermodynamics, this chapter intro-
duces the basic picture of thermodynamical systems required for following the
research in this thesis. Chapter 3 introduces the relevant nanostructures consid-
ered in this thesis. Theoretical analysis of this thesis and appended papers are
based on the scattering formalism. Chapter 4 formulates the transport quanti-
ties using this formalism and describes different types of scatterers introduced
in chapter 3. These quantities are used to characterize and analyze the perfor-
mance of systems studied in the appended papers. The focus of chapter 5 is the
review of studies on the confinement and quantum effects we considered to ex-
ploit in order to control heat transport in the systems proposed in the appended
papers. Chapter 6 gives an overview of the appended papers. In Chapter 7, the
overall conclusions of the thesis are summarized.



2 Thermodynamic engines and
operations

As mentioned in the previous chapter, developments in nanofabrication and
mesoscopic devices motivate the investigation of controlling and exploiting heat
flows using quantum properties [3]. Although thermodynamics have been started
as a macroscopic theory more than a century ago, the laws of thermodynamics
are persistent in quantum level to a large extent or can serve as a starting point
for extensions. Therefore it is beneficial to review schemes and implementations
of heat control at macroscopic scales.

In this chapter, some relevant example systems leading to the control and reg-
ulation of heat are briefly touched. In addition, the principles of performance of
two major systems in thermodynamics, namely heat engines and refrigerators,
and the laws limiting their performance are reviewed.

2.1 Controlling heat flow
Heat control and heat transfer are often alongside the fundamental concepts
of thermodynamics. Heat transfer is the process of thermal energy transport
through a material or from one body to another and usually transfers from hot
to cold regions. This is well known from everyday life.

Controlling heat transfer is essential in a wide variety of fields in science and
engineering. Controlling the direction and amount of heat flow is an essential
matter, which is the subject of papers I and IV. In many fields, one of the goals
of heat control is efficient energy consumption, for instance, in heating or cooling
systems. An example of importance of temperature and heat control would be
in electronics where they are crucial since heating in an electronic device affects
its performance and can have harmful effects. Therefore, cooling of electronic
components is a key matter in the industry. In this concern, paper II aims to
reverse the flow of heat in order to perform cooling. Typically, systems which
exploit heat use energy or heat flow as a resource. Apart from this, a resource
other than (or in addition to heat) can be used to implement analogies to engines

7



8 2 Thermodynamic engines and operations

and refrigerators. This is the topic addressed in paper III.

Controlling and exploiting heat in classical scales has a long tradition and is
a known concept. This goes back to the beginning of industrial revolution and
rise of thermodynamics [41]. Among relevant systems to exploit heat are heat
engines, heat pump and refrigerators, heat valves, electronic heat sinks, heat
circulators and so on. In the following, a number of these systems applicable for
controlling and exploiting heat transfer are brought to attention.

2.1.1 Heat valve
Thermal valves or heat valves are a class of devices that are used to control
heat in many applications and are known from daily life. Analogous to the
electronic valves, heat valves control heat flows in electronic or thermal circuits.
Among them are thermostatic radiator valves that are self-regulating devices
that control an environment’s temperature by changing the flow of hot water to
the radiator, or thermostatic mixing valves that combine hot and cold water to
ensure constant safe temperatures. There are also thermal expansion valves that
are components in refrigerators and air conditioning systems that control refrig-
erant and heat flow in the system. In electronics, thermal valves can be useful
in thermal management systems to limit the amount of heat flow in devices and
remove waste heat from electronic components and batteries to prevent over-
heating. It is perceived from traditional applications that heat valves can be
used to isolate and balance heat.

Due to particular relevance of control and manipulation of heat flow in meso-
scopic systems [4], heat valves found their place in this field. In this regard,
a number of proposals have been suggested. In particular, there was recently
a proposed system that employs superconducting junctions as heat (thermal)
valve [42]. In this work, phase-coherent property is used to control electronic
heat conductance in Josephson junctions. This is related to paper I, where phase-
coherent properties and temperature dependent energy gap in superconductors
have been used for heat transport control and management in superconducting
structures. A recent realization of a quantum heat valve that bridges mesoscopic
thermodynamics to quantum information is in quantum systems composed of
superconducting qubits [43]. These heat valves are relevant for the realization
of quantum heat engines and refrigerators.
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Figure 2.1: Left: Heat engine. Part of the heat flow from the hot reservoir is
converted to the output power in the working substance. Right: Refrigerator. Power
is absorbed to cool down the cold reservoir.

2.1.2 Heat circulator
Heat circulators are in analogy to charge current circulators that are widely used
in electronics. A circulator in electronics is a non-reciprocal multi-port device
that transports radio frequency or microwave signals in the clockwise or anti-
clockwise rotational direction [44]. Breaking reciprocity and making one-way
electronic components can help for example to enhance data capacity in wire-
less networks [45]. In a similar manner, heat circulators can be proposed. In
thermal circuits, heat circulators can be used to route heat currents in thermal
circuits and isolate them from unwanted parts of the device. Not only in thermal
circuits, but heat circulators are also important tools in fields such as biology
and chemistry, where sometimes there is a need to keep samples at specific tem-
peratures. For this aim, typically a type of heat circulator called immersion
circulator that uses a fluid for circulating heat are used.

At the nanoscale, there have been developments in achieving nonreciprocity
using quantum effects [39, 46] and, recently, there have been efforts to establish
that concept in thermal transport [40].

2.2 Heat engine
One of the means of exploiting heat is to use it for generating power in heat
engines. Development of heat engines traces back to the beginning of thermo-
dynamics [47] that started by the evolution of heat engines, and the principles
behind the engines, that were evolved by Carnot [48] led to laws of thermody-
namics. A heat engine is a system that converts heat or thermal energy into
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Figure 2.2: Sketch of a two-terminal system with two different conductors, and
junctions at different temperatures, T1 and T2 and a voltage difference V .

mechanical or electrical energy or work [49]. This engine receives heat from a
hot reservoir or a source with high temperature (Th) and converts a portion of it
to work. The remaining heat that is waste heat, is dumped to the surroundings
or a cold reservoir with low temperature (Tc) as a sink. In Fig. (2.1) different
components of a heat engine are schematically represented. There is a working
substance that absorbs thermal energy (Jh) and generates work or power (P )
out of it by exploiting its properties. The working substance can be fuel, gas, or
a liquid.

2.2.1 Steady-state heat engines using thermoelectrics
A class of heat engines is based on the thermoelectric effect, which means that
is transforms waste heat into electricity.

Consider two different macroscopic conductors connected in one end and, at
the other ends, applied to terminals of a voltmeter, see Fig. (2.2). This system
can be considered as a thermoelectric heat engine. One can apply a voltage
bias or a temperature gradient or both to the two conductors. If there is only
a voltage bias, it will result in a charge current flow. Besides, applying only
a temperature gradient will make a flow of heat current. However, there exist
other phenomena called thermoelectric effects. The first one was discovered in
1821 by T. J. Seebeck [50]. He showed that applying a temperature gradient
to two conductors and heating the junction between them, without an electric
field, will produce an electric current in addition to heat flow. This current is a
thermoelectric current that in an open circuit results in a thermoelectric poten-
tial difference known as the Seebeck potential. J. Peltier observed the second
of the thermoelectric effects in 1834 [51]. This effect tells us that if a charge
current passes through two conductors’ junction, depending on the direction of
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this current, there will be a heating or cooling effect. 1 The Seebeck and Peltier
effects are not independent. We see their dependence through coefficients that
describe these two effects.

There has been recent interest in quantum systems as thermocouples, which
are often referred to as three-terminal thermoelectrics [52]. Many works have
pointed out how quantum mechanics can provide new approaches to design ther-
moelectric materials and devices [53, 54]. One of our interests in paper III is
investigating possible thermoelectric effects in a suggested device configuration.

Onsager relations

Overall, applying voltage and temperature gradients will establish thermody-
namic forces that impose charge (I) and heat currents (J). Assuming small
voltage and temperature gradients, the thermodynamic forces are given by
Fe = ∆V/T and Fh = ∆T/T 2. Onsager relations give the relation of these
forces to charge and heat currents as [55]

I = LeeFe + LehFh,

J = LheFe + LhhFh, (2.1)

where the coefficients Lij are Onsager coefficients. Using these coefficients one
obtains the following transport coefficients: Electrical conductance, G, that is
the ratio of charge current to the voltage gradient when no temperature gradient
is present

G =
(
I

∆V

)
∆T=0

= Lee
T
. (2.2)

Under the condition of zero charge current, the ratio of heat flow to the temper-
ature gradient defines the thermal conductance, κ

κ =
(
J

∆T

)
I=0

= 1
T 2

(
Lhh −

LheLeh
Lee

)
. (2.3)

Setting the charge current to zero, the Seebeck coefficient that is also called
thermoelectric power in the literature [56], is obtained as

S = −
(∆V

∆T

)
I=0

= 1
T

Leh
Lee

. (2.4)

1 One should distinguish Peltier heating or cooling from Joule heating, which appears in
conductors when a charge current flows in them and is related to the conductor’s electrical
resistivity.
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The Peltier coefficient, indicated by M , is obtained by setting ∆T to zero

M =
(
J

I

)
∆T=0

= Lhe
Lee

. (2.5)

According to Onsager reciprocal relation in the absence of magnetic field, Lij =
Lji, and therefore Seebeck and Peltier coefficients are dependent as M = TS.
Besides this, the thermal and electrical conductances are related by theWiedemann-
Franz law that says the ratio of these two conductances is proportional to the
temperature

κ

G
= π2

3

(
kB
e

)2
T. (2.6)

This ratio tells that the proportionality is the same for conductors at the same
temperatures.

2.2.2 Power and efficiency
There are two most frequently used quantities that characterize the conversion
of heat to work in heat engines. Those quantities are generated power and
efficiency. Consider a heat engine that is an electrical system with two hot and
cold reservoirs. In this system, the generated power in the working substance is

P = I∆V, (2.7)

where I is the electrical current flowing against the voltage gradient ∆V . The
typical definition of efficiency is the benefits extracted from the system with
respect to the costs. Considering this definition for the efficiency of a heat
engine gives a relation that is the ratio of the generated power to the input heat,

η = P

Jh
, (2.8)

with Jh referring to the heat flowing out of the hot reservoir into the working
substance.

2.2.3 The second law and Carnot limit
The operation of heat engines is bounded by limits imposed by the second law
of thermodynamics [57]. The second law originates from the fact that heat nat-
urally flows from hotter to colder bodies. The second law in heat engines can
be formulated as the statement that the complete conversion of heat into work
is impossible (Kelvin’s statement). This statement rules out the perfect engine.
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The Carnot efficiency is a manifestation of the second law in heat engines,
and it is universally valid. Carnot’s theorem provides the upper bound on a
heat engine’s efficiency working between two reservoirs at temperatures Th and
Tc. This theorem tells us that this heat engine can not be more efficient than a
Carnot engine operating between the same hot and cold temperatures. Carnot
engine is a reversible engine operating between a source at temperature and a
sink at temperatures Th and Tc, respectively. The efficiency of the Carnot engine
is

ηCarnot = 1− Tc
Th
. (2.9)

This sets a maximum limit to heat engine efficiencies that depends only on the
two temperatures [52].

In the quantum regime, when the baths are thermal, the Carnot efficiency
limit is equally applicable for a small quantum system. However, if the baths
are nonthermal, the story changes. We address the changes in the limits of
efficiencies in paper III.

2.3 Refrigerator

2.3.1 Thermoelectric and absorption refrigerators
As the natural flow of heat is from regions with high temperatures to low tem-
perature ones, the reverse process can be done by refrigerators. Refrigeration
has a high impact in everyday life and industry, and the high demand for cooling
in many fields provided the practical impetus for developments of the science of
refrigeration.

One type of common refrigerators that can be called thermoelectric refriger-
ator is like a heat engine running backward, that is it absorbs work or power
(Pabs) to extract heat from a cold reservoir (Jc) and dumps out this heat into
a hot reservoir (Jh), depicted in Fig. (2.1). Here cooling is done by electrical
power.

Another type of refrigerator that is called absorption refrigerator performs
cooling by heating. In these types of systems, heat is directly used to do cool-
ing. This gives another evidence for waste heat to be useful. In cooling by
heating, a heat source that can be waste heat is used as a source to provide
energy to drive the cooling process. Traditionally these refrigerators are used
when electricity is not available. An absorption refrigerator has three reservoirs,
two in high (Th) and low (Tc) temperatures and one at ambient temperature
(T0). The heat flow from the hot reservoir to a reservoir at T0 is used to drag
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heat out of the cold reservoir [52].

The study of cooling by heating has also become popular in quantum sys-
tems [33, 58, 59]. In paper III we address the performance of an analogy to an
absorption refrigerator in a device operated by a nonequilibrium resource.

2.3.2 Cooling power and coefficient of performance
Analogous to a heat engine, refrigerators’ performance is characterized by two
quantities that are cooling power and coefficient of performance or COP. Cooling
power is defined as the heat current Jc that flows out of the cold reservoir. The
COP of a standard refrigerator that is in principle the efficiency is defined as
the ratio of cooling power that is the outcome of refrigeration, to the absorbed
power that is the cost,

COP = Jc
Pabs

. (2.10)

If the absorbed power is electrical power, it will be equal to Pabs = −I∆V . In
absorption refrigerators, the efficiency is defined as the ratio of the cooling power
that is the benefit, to the cost that is the heat flow out of the hot reservoir (that
is driving the process),

COPabs = Jc
Jh
. (2.11)

2.3.3 The second law and Carnot limit
Considering the second law for refrigerators, one can make the statement that
there is no refrigerator that can transfer heat from a colder to a hotter reservoir
without using any work or power (Clausius’s statement).

The performance of a refrigerator is bounded by the Carnot coefficient of
performance that is the maximum efficiency a refrigerator can get when it is
operating between a cold and hot reservoir with temperatures Tc and Th and is
given by

COPCarnot = Tc
Th − Tc

. (2.12)

It is worth to note that the laws of thermodynamics let the coefficient of perfor-
mance to exceed one [52].

For absorption refrigerator the upper bound on efficiency is given by

COPCarnot
abs = 1− T0/Th

T0/Tc − 1 , (2.13)
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where T0 is the environment temperature. This efficiency is the same as the
Carnot heat engine’s efficiency, whose power output goes into a Carnot refriger-
ator [52].





3 Nanodevices used for heat
control

We have already underlined the importance of heat transport control in mesoscale.
Mesoscopic devices belong to a category of systems in nanometer size. These
devices are particularly relevant in quantum technologies. In this regards, nanos-
tructures such as two-dimensional electron systems, quantums dots, and super-
conducting structures are widely employed [60–64]. This makes it important
to gain a broader insight of capabilities and characteristics of these structures.
The study of fundamental principles behind the operation of nanodevices are
accessed in mesoscopic physics. One of the aims of this field is to understand
nanoscale systems and devices. It investigates the quantum mechanical prop-
erties of particles such as electrons. In this spirit, in the arena of mesoscopic
physics, building devices in which there is control over transport of carriers are
crucial. Confinement of electrons in nanostructures led to development of one
type of these systems that is two-dimensional electron gas (2-DEG). Among
confined systems, quantum dots caught attention since they can be integrated
with both electronic and photonic components in miniaturized chips. Quantum
dots are one of the structures that made it possible to control charge flux down
to the single particle level [65].

This chapter introduces a few nanostructures essentially relevant for this the-
sis. Parts of the devices we focus on are confined systems at the nanoscale
including quantum Hall structures, quantum point contacts, and quantum dots.
Here, we summarize some of the features of these systems. To do so, this chapter
begins with a review over two dimensional electron gas (2-DEG) and formation
of quantum point contacts (QPCs) and quantum dots (QDs) out of a 2-DEG.
The chapter then provides an introduction on the quantum spin Hall (QSH)
device.

Another class of highly relevant devices that we study in papers I and IV
contain superconducting junctions. Description of some relevant properties of
these junctions are presented in the second part of this chapter.

17
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Figure 3.1: (a) Layers of a GaAs/AlGaAs heterostructure. (b) Conduction band
of a junction of n-type AlGaAs and GaAs. A 2-DEG forms at the interface.

3.1 Two-dimensional electron gas (2-DEG)
The two-dimensional electron gas or 2-DEG has been extensively used in the
study of transport properties in mesoscopic systems. It is a system of electrons
confined in one dimension. A common 2-DEG can be found in metal-oxide-
semiconductor (MOS) structures, for instance in the interface of silicon oxide
(SiO2) and p-doped silicon (p-Si) [66]. In this case, the 2-DEG gets formed at
the semiconductor-insulator interface. One can also form a 2-DEG as a con-
ducting interface between two different semiconductors. A material system that
provides a high-quality conduction channel is a heterojunction of gallium ar-
senide (GaAs) and aluminum gallium arsenide (AlGaAs) [67]. Growing a GaAs
substrate and on top of that, AlGaAs, a thin two-dimensional conducting layer
forms in the interface.

GaAs has a smaller bandgap than AlGaAs. When an n-doped AlGaAs (silicon
donors can be used) is in contact with GaAs, the Fermi energy in the wide gap
side is higher than the narrow gap. This results in electrons flowing away from
n-AlGaAs, leaving positively charged dopants behind. What happens then is
that due to this charge and the resulting electrostatic potential, there is a pecu-
liar band bending effect in the conduction band next to the interface that forms
a triangular-shaped confinement region, see Fig. (3.1). This creates a potential
well with bound states in it. In this region, the Fermi level is inside the conduc-
tion band. The sharp peak of electron density in the interface corresponds to a
2D free electron gas constrained in one dimension. In a typical structure, the
2-DEG is buried in about 100 nm below surface of the crystal, and it is not on
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Figure 3.2: Schematic representation of QPC. Two metal gates (golden) deposited
on top of a 2-DEG make a constriction (QPC) by depleting the region below the
gates from electrons. The voltage bias V drives electrons through QPC.

the surface.

The two dimensional electron gas is the basic system to form structures with
more confinement on electrons, such as quantum point contact (QPC) and quan-
tum dots. Moreover, the quantum Hall effect was first observed in 2-DEG [68].
In papers II and III, the electron transport in QPC, quantum dots, and through
edge states in a quantum Hall system is considered.

3.1.1 Quantum point contact (QPC)
Confining electrons further, brings them from two to one dimension where quan-
tum point contact arises. This section explains how the quantum point contact
(QPC) is made out of a 2-DEG. QPCs are constrictions created by gate voltages
in different nanoscale conductors such as a 2DEG. They are shaped electro-
statically with the gate electrodes [69–71]. Gates are metals placed on top of
a crystal. Consider a system of 2-DEG, as depicted in Fig. (3.2), with two
gates placed on top connected capacitively to the 2DEG, with a gap between
the gates (split-gate configuration). When applying a negative voltage on the
golden gates, this potential will repel electrons from underneath the gates and
induce a positive charge in the 2-DEG. If the gate is continuous and goes all
the way across the 2-DEG without splitting, for a very negative potential on
the gate, the 2-DEG will be separated in two disconnected parts with a region
depleted of electrons in between. For the split gates configuration, depleting the
region underneath the gates will produce imprints of the gates in the 2-DEG,
where there will be no electrons. This makes a constriction where the number
of channels of 2-DEG remained is comparable to electron’s wavelength. This
structure is called a quantum point contact and is a remarkable example of a
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Figure 3.3: Schematic representation of a quantum dot configuration in a 2-DEG.
The Golden area represents the metal gates, similar to the QPC structure. The
central region is the dot connected by QPCs to the rest of the 2-DEG region [75].

one-dimensional system. This system is fully controllable, and one can change
its width and length by gate configuration. The quantization of charge con-
ductance in QPCs is a well-known property that was experimentally observed
in 1988 [72]. Shortly after that, experiment on thermopower measurements in
QPC was reported [73].

From particles arriving at QPC only a finite number of them are transmitted.
These are distinguished as open and closed channels [74]. The probability of this
transmission that is dependent to energy of particles, is describes in chapter 4.

3.1.2 Quantum dot (QD)
A full confinement of electrons leads to formation of quantum dots. In a 2-
DEG system, using patterned electrostatic gates, one can make different kinds
of constrictions. One example is QPC that is explained in the last section. Now
consider another structure called quantum dot observed in an experiment in
1988 in a 2-DEG in the interface of GaAs/AlGaAs [76, 77]. Similar to QPC,
using metallic gates to deplete the regions below the gates in 2-DEG can make
zero-dimensional islands, see Fig. (3.3). These islands are charged islands with
the size of the order of electron’s wavelength and are famous as quantum dots
(QDs). This type of constriction is confined in all three directions, and because
of this, a QD is sometimes referred to as a zero-dimensional system [78].

The shape and size of the dot can be controlled by gate voltages. The small
size of the island says that electrons are confined to discrete levels. In the QD
configurations, a quantized number of electrons, ne, can locate with n being an
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integer number. The transport properties of a QD can be measured by coupling
it to leads and passing current through the dot.

QDs are of interest for thermoelectric applications and their thermoelectric
properties have been investigated both in theory and experiment [79–81]. The
focus on quantum dots in this thesis is their use in the transport of charge and
energy (heat). We consider single level Lorentzian quantum dots. This is em-
ployed in papers II and III in the devices we study.

An electron that tunnels onto the island has to overcome a certain Coulomb
potential, which can be large due to small capacitance resulting from the small
size of the quantum dot. When charges are confined in three dimensions, one
needs to consider the capacitance effect since capacitance becomes very small,
and that means the charging energy becomes large. The energy required to add
one electron to a QD with n number of electrons on the QD is determined by
the charging energy due to the Coulomb potential [82]. Charging energy for one
electron is Ec = e2/C where C is the capacitance. The charging energy for an
island with the size 100 nm is of the order of 1 meV. If kBT�Ec, the charging
energy can be neglected [78].

Aharonov-Bohm ring

Aharonov-Bohm (AB) effect is about quantum mechanical effects that arise
when a particle passes through a region with nonzero vector potential. An ex-
perimental arrangement that was suggested in a 1959 paper by Aharonov and
Bohm tells that a charged particle confined to a circular ring in a region with a
nonzero vector potential (A) is affected by the presence of A.

The applicability of quantum dots for exploring phase-coherent properties in
mesoscopic physics [83] led to realization of AB rings using quantum dots [84].
This has been investigated in numerous studies to fabricate high quality quan-
tum rings [85] and to assess Aharonov-Bohm features with QD in one or two
arms of the interferometer or a triple quantum dot configuration [86–89]. It
has also been demonstrated in a recent experiment that interferometry can be
used to readout a QD defined in a nanowire that is useful in the interferometric
readout of qubits [90].

A ring structure configuration composed of quantum dots is considered in this
thesis in the structure of a heat circulator considered in paper IV.
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Figure 3.4: Schematic illustration showing right and left moving skipping orbits of
particles at edges of the sample in a perpendicular magnetic field.

3.1.3 Quantum Hall effect
The classical Hall effect was discovered in 1880 [91], and it is explained as the
following. Consider a two dimensional plane of a conductor, to which a per-
pendicular magnetic field is applied. Pushing current through the plane in the
x-direction, as shown in Fig. (3.4), it is observed that in addition to the usual
longitudinal voltage that exists for any accessive conductor, one can also measure
a transverse voltage, VH, (Hall voltage) across the sample. What is happening
is that as charge q, carried by the current in x-direction, enters the magnetic
field region, its trajectories curve due to the Lorentz force. Therefore opposite
charges accumulate at the two edges of the sample in y-direction, which means
an electric field is set up in the y-direction. What is measured in experiment
is the Hall resistance, Rxy = VH/I, where I is the current density, jx times Ly.
One finds Rxy = B/qn, n being an integer, that shows Rxy is linearly dependent
to B with the slope being the density of charge carriers. By cooling the sample
one starts to see the appearance of steps instead of the straight line, and when
the temperature is low enough, the steps get very sharp and form plateaus.
The value of the Hall resistance at the plateaus is found to be h/ne2, where n
is an integer [92]. This is the phenomenon of (integer) quantum Hall (QH) effect.

Edge states in quantum Hall

Consider an electron close to the edge of the sample. This particle moving in
a curved trajectory might run into the edge, then it will scatter and bounce off
the edge under the influence of Lorentz force, and it will travel along the edge in
a skipping orbit trajectory, see Fig. (3.4). This is the classical view. Quantum
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mechanically, the wave function of the electrons are confined in one-dimensional
edge channels. In this effect, backscattering of electrons is impossible. Therefore
this channel is not only simply one-dimensional, but it is a channel where parti-
cles can only move one way since the magnetic field forces particles to move only
in one dimension. These channels are known as chiral edge channels. We here
show a simple description of edge state transport that can explain the plateaus
in the Hall resistance.

Consider a noninteracting two dimensional system of electrons (2-DEG) with
dimensions Lx and Ly. The electrons in this system with charge e and effective
mass m∗ under an applied perpendicular magnetic field, have the Hamiltonian
H = (p − eA)2/(2m∗) with A being the vector potential resulting from the
magnetic field. Taking the magnetic field in the z-direction, the vector potential
in Landau gauge can be written as A = −Byêx. The y component of momentum,
px commutes with the Hamiltonian, [px, H] = 0, therefore the eigenstates of px
are plane waves in x direction. To solve the Schrödinger equation we make an
ansatz

ψ(x, y) = eikxφ(y), (3.1)
where k is the momentum in x-direction. Choosing periodic boundary condition
gives eik(x+Lx) = eikx. This tells us kLx = 2πj with an integer j. Now we consider
the Schrödinger equation to solve it for φ(y). Here we consider a confinement
potential, V (y)

1
2m∗

[
− ~2 ∂

2

∂y2 + (−i~∂x + eBy)2 + V (y)
]
eikxφk(y) = Eeikxφk(y). (3.2)

Taking a parabolic confinement potential V (y) = m∗ω2
0y

2/2 as suggested in [93]
and substituting this into Eq. (3.2) we obtain[

− ~2

2m∗
d2

dy2 + 1
2m
∗ω2(y − y′0)2 + 1

2m
∗ω

2
cω

2
0

ω2 y2
0

]
φk(y) = Eφk(y), (3.3)

where the guiding center is y0 = l2k and l =
√
~/eB is the magnetic length. The

Eq. (3.3) shows a harmonic oscillator with the center at y′0 = y0ωc2/ω2 where
ω2 = ωc2 + ω2

0 and y0 = −l2k. ωc = eB/m∗ is the cyclotron frequency. Using
the definitions of y0 and the magnetic length we have k = m∗y0ωc/~ and then
we can write the last term on the left side of Eq. (3.3) as

1
2m
∗ω

2
cω

2
0

ω2 y2
0 = ~2k2

2M , (3.4)

where M = m∗ω
2

ω2
0
. Finally the eigenenergies of the harmonic oscillator in Eq.

(3.3) are

En =
(
n+ 1

2

)
~ωc + ~2k2

2M . (3.5)
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Figure 3.5: Landau-level energies at the bulk and edges of a quantum Hall sample.

We see that in the case of no confinement, the energy levels are degenerate.
These eigenenergies correspond to transport channels in the scattering picture.
These Landau-level energies are shown in Fig. (3.5). The bulk Landau levels
are filled and separated from the Fermi level and hence do not participate in
conduction, resulting in zero currents in the bulk of the sample. Near the edge,
the Landau levels rise and cross the Fermi level. Therefore, for one filled bulk
Landau level, there are only two Fermi points, a right and left moving ones,
confined to the top and bottom edge of the sample, and contribute to creating a
current flow at the edges. As a result, the bulk remains insulating, and there are
chiral edge channels where the particles propagate in two different directions,
which gives rise to the Hall conductance.

Quantum spin Hall (QSH)

In contrast to the quantum Hall effect that exists only in the presence of mag-
netic fields, a so-called quantum spin Hall effect that was theoretically predicted
in 2006 [94] and experimentally realized in 2007 in HgTe quantum wells [94]
happens in the absence of any magnetic field .

In the spin Hall (SH) effect, a spin current flows in a transverse direction in
response to an applied electric field in a longitudinal direction. Unlike the Hall
effect, which happens in the presence of an applied magnetic field, the SH effect
does not need any magnetic field. What leads to the intrinsic spin Hall effect is
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Figure 3.6: Helical edge states in quantum spin Hall (QSH) effect. The top edge has
a right- mover channel with spin up (red) and a left-mover with spin down (blue),
and conversely for the lower edge.

the spin-orbit interaction.

Quantized spin Hall effect can be understood as two copies of the integer quan-
tum Hall states, one for up and one for down spins. The two spins in one edge
flow in opposite directions in the presence of an electric field, Fig. (3.6) therefore
there is no net Hall current, but there is a net flow of spin. This spin current de-
fines a quantized spin Hall conductivity, which refers to the name quantum spin
Hall (QSH) effect. The edge states for up and down spins propagate in opposite
directions. These are called helical edge states. The results of computing the
eigenstates using tight-binding model show a bulk energy gap between valence
and conduction bands, but inside this gap, some bands are localized at the edge.
The up and down spins have positive and negative group velocities respectively.

To backscatter at the same edge, an electron requires a spin-flip on edge, which
requires the breaking of time-reversal symmetry. Since time-reversal symmetry
is preserved, no backscattering is allowed. While the presence of a magnetic
field and breaking of time-reversal symmetry induces backscattering along with
the edge states, it has been shown that inter boundary scattering is possible
at a constriction like a QPC in the absence of a magnetic field [95]. In this
work, spin preserving tunneling between the opposite edges is investigated in a
Fabry-Perot interferometer. In another work, a tunnel junction between helical
edge states has been studied via a constriction in a QSH system [96]. In this
work, a constriction is considered in a four-terminal quantum spin Hall setup
that induces an electron-tunnel coupling between the helical edge states in the
two opposite edges.
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3.2 Superconducting junctions
Superconducting devices are well paired up with nanotechnology due to their
versatile and notable characteristics. One of the specific interests of this the-
sis is devices containing superconducting junctions, namely hybrid structures of
normal-metal and superconductors. In order to formulate the scattering formal-
ism in superconductors in the next chapter, we first here explain some basics of
the behavior of superconducting transport states.

3.2.1 Bogoliubov-De Gennes equation
The Bogoliubov-De Gennes equation (BdG equation) describes the behavior of
superconducting states. The scattering states in superconductors are eigenfunc-
tions of the BdG equation that has the form of two Schrödinger equations for
electron and hole wave functions coupled via the superconducting energy gap.

i~
∂f

∂t
=
[
−~

2∇2

2m − µ(x) + V (x)
]
f(x, t) + ∆(x)g(x, t), (3.6a)

i~
∂g

∂t
= −

[
−~

2∇2

2m − µ(x) + V (x)
]
g(x, t) + ∆(x)f(x, t). (3.6b)

Here ∆(x) is the space dependent energy gap and µ(x) is the chemical poten-
tial. In a normal metal [that is, for ∆(x) = 0], Eqs. (3.6) are two independent
Schrödinger equations for electrons and holes. On the contrary, in a supercon-
ductor we have ∆(x) 6= 0, and the electron and hole wave functions are coupled.
We now assume that µ(x),∆(x) and V (x) are all constant. As a result, the
solutions for Eqs. (3.6) are plane waves f = ueikx−iEt/~ and g = veikx−iEt/~.
The amplitude |v|2 represents the probability that a pair of states (k,−k) is oc-
cupied, whereas |u|2 is the probability that such a pair of states is unoccupied,
which also implies |u|2 + |v|2 = 1. In the absence of an external field V = 0,
substituting f and g into (3.6) gives:

Eu =
(
~2k2

2m − µ
)
u+ ∆v, (3.7a)

Ev = −
(
~2k2

2m − µ
)
v + ∆u. (3.7b)

Now, we want to obtain the dispersion relation for a superconductor. To do this,
we need to calculate u or v by solving the set of equations (3.7). Eventually,
this procedure allows for finding the Bogoliubov spectrum (dispersion relation)

E2 =
(
~2k2

2m − µ
)2

+ ∆2, (3.8)
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Figure 3.7: Dispersion relation for a superconductor, see Eq. (3.8), showing the
energy gap of a superconductor.

which is also illustrated in Fig. (3.7). Solving the equation above for the wave
vector, we get

~k± =
√

2m
(
µ±
√
E2 −∆2

)
. (3.9)

The two momenta k+ and k− correspond to particle- (electron-) and hole-like
excitations, respectively. Knowing that |u|2 + |v|2 = 1, we have the energy de-
pendences of u and v

|u|2 = 1
2

(
1± (E2 −∆2)1/2

E

)
= 1− |v|2. (3.10)

The Bogoliubov spectrum illustrated in Fig. (3.7) corresponds to the spectrum
of quasiparticles in superconductors and there is a gap in the energy spectrum.
This energy gap indicated by ∆, is considered as a temperature and phase de-
pendent gap ∆ = |∆(T )|eiϕ [97].

The Bogoliubov states are used to calculate the scattering (reflection and
transmission) amplitudes in order to obtain the transport quantities in super-
conducting junctions from scattering theory in chapter 4.

3.2.2 Josephson junction
One of the hybrid structures we concentrate on is the Josephson junction—a
structure containing two superconductors connected by an insulator (SIS) or
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Figure 3.8: (a) Scheme of a temperature biased SQUID made of two identical
superconductors S1 and S2. RJ is the normal state resistance of each junction
and Q̇SQUID(Φ) is the heat current flowing from the hotter to the colder supercon-
ductor [36]. (b) Structure of a Josephson junction with two superconductors with
different phases ϕ1, ϕ2 (Φ = ϕ1 − ϕ2).

a small normal metal conductor (SNS), Fig. (3.8). Indeed, Josephson junc-
tions form the basis of an extensively used device, the superconducting quan-
tum interference device (SQUID) [98]. In panels (a) and (b) of Fig. (3.8) a
scheme of this device and a Josephson junction respectively, are shown. Trans-
port across Josephson junctions is governed by the phase difference between the
two superconducting condensates of the junction. This phase difference leads
to a dissipationless charge current in the absence of any bias voltage. This
current is a supercurrent that can flow between two superconductors across a
non-superconducting material. This charge current is carried by Cooper pairs,
and depends on the phase difference of the two superconducting condensates (Φ)
through the relation Is = Ic sin Φ where Ic is the critical current that is the max-
imum supercurrent that can flow. To explain this, we can think of evanescent
tails of the two superconductors’ wave functions in the barrier between the two
superconductors. When the two superconductors are close enough (for a bar-
rier thickness shorter than the superconductor’s coherence length), these tails
overlap, which makes the transport of cooper pairs happen [97]. This famous
effect is known as the Josephson effect and has first been predicted by Brian
Josephson [99, 100]. Importantly, this current flows in the absence of any heat
current!

However, when a temperature bias is applied between the two superconduc-
tors, there will be a heat current flowing through the junction. This heat is
carried by electron- and hole-like quasiparticle excitations in the superconduc-
tors at energies above the superconducting gap. This heat current’s striking
property is its dependence on the phase difference of the two superconducting
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condensates, as predicted by Maki and Griffin [32] and illustrated by [36]. We
study this phase-dependent heat transport using the scattering theory formalism
in paper I.

As we see in the formulation of heat current in chapter 4, the phase dependency
of heat current is through the transmission probability of the Josephson junc-
tion. This phase-dependent transport of quasiparticles across the junction takes
place via Andreev reflection at the superconductor’s interface. The Andreev
reflection is a type of particle scattering that occurs at the interfaces between a
superconductor and a normal conductor and consists in a back reflection of, e.g.,
an electron-like quasiparticle into a hole by transferring a charge of 2e to the
superconductor [101]. For the heat current considered in paper I, also Andreev
reflection above the gap is relevant.





4 Scattering theory
The theoretical approach we use to study electronic charge and heat transport
is scattering theory. The scattering theory of electronic transport in mesoscopic
conductors, as we use it here, was first developed by Landauer and Büttiker, see
Refs. [102–105] for seminal papers and [106] for reviews. The scattering theory
gives intuitive, simple descriptions about transport phenomena, and it is most
applicable for systems in which the many-body interaction between particles
is negligibly small. In this chapter, we review the properties of the scattering
theory for normal and superconducting systems. We then introduce different
probabilities for nanostructures, which are considered in the appended papers.

4.1 General background
Electrons undergo scattering while traversing nanostructures. These scatterings
which affect the transport properties can be due to defects in nanostructures or
potential barriers. A scattering matrix describes this scattering. Let us assume a
multi-terminal nanostructure consisting of a central scattering region connected
to reservoirs via perfect leads, as presented in Fig. (4.1). All the reservoirs are at
thermal equilibrium with different temperatures Tα and chemical potentials µα.
A particle flux coming into the scatterer from one of the reservoirs is scattered
in the central region. These particles are either reflected or transmitted to any
of the other reservoirs. The wave functions of particles emitted from a reservoir
can be written as a linear combination of plane waves [74]

ψ(rα) =
N∑
n

1√
2π~vαn

Φαn(yα, zα)[aαn(E)eik
(αn)
x xα + bαn(E)e−ik

(αn)
x xα]. (4.1)

Here, the indices α and n respectively indicate different leads and transport
channels and N denotes the total number of channels. Particle velocity in
channel n is indicated by vαn and Φαn is the transverse wave function. The
wavefunctions propagate along the axis xα and rα = (xα, yα, zα) with yα and
zα being the transversal directions. The wave vector depends on energy as
kαnx =

√
2m(E − Eαn)/~ with Eαn representing the energy of particle with mode

n in lead α. We here assume that particle scattering happens without energy
loss; in other words, it is elastic. The coefficients aαn and bαn are respectively

31
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Figure 4.1: schematic representation of a multi terminal mesoscopic conductor
with a central scattering region.

the amplitudes of particles coming from reservoirs to the scattering region (in-
coming) and particles reflecting or transmitting through the scattering region
(outgoing). These incoming and outgoing particle fluxes are related linearly via
the scattering matrix as follows

bαn(E) =
∑
β

∑
m
sαn,βm(E)aβm(E), (4.2)

and in vector form as
~b = Ŝ~a. (4.3)

The element sαn,βm(E) of the scattering matrix Ŝ shows a particle to be scat-
tered from channel m of lead β to channel n of lead α. When calculating the
transport quantities in the next section, it is appropriate to define field opera-
tors. Field operators ψ̂(rα, t) and ψ̂†(rα, t), are operators that annihilate and
create particles at a given point in each lead and time. In lead α we have

ψ̂(rα, t) =
N∑
n

∫ dE√
2π~vαn

e−iEt/~Φαn(yα, zα)[âαn(E)eik
αn
x xα + b̂αn(E)e−ik

αn
x xα],

ψ̂†(rα, t) =
N∑
n

∫ dE√
2π~vαn

eiEt/~Φ∗αn(yα, zα)[â†αn(E)e−ik
αn
x xα + b̂†αn(E)eik

αn
x xα].

(4.4)

The fermionic operators, âαn(E) (â†αn(E)) and b̂αn(E) (b̂†αn(E)) are related by
the scattering matrix defined in Eq. (4.2)

b̂αn(E) =
∑
β

∑
m
sαn,βm(E)âβm(E). (4.5)
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These fermionic operators, âαn(E) and b̂αn(E), obey anti-commutation relations,

{â†αn(E), âβm(E′)} = δαβδnmδ(E − E ′),
{â†αn(E), â†βm(E′)} = 0,
{âαn(E), âβm(E ′)} = 0, (4.6)

and analogously for b̂ operators.

In general, a scattering matrix in a normal metal is block-diagonal and satisfies
the symmetry relation

ŜN =
(
ŝ0(E) 0

0 ŝ0(−E)†
)
, (4.7)

where N labels the normal metal. The two blocks correspond to the scattering
matrices for electrons and holes. These blocks are not coupled in a normal
metal, but they are in a superconductor as will be discussed in Sec. (3.2.1).
A scattering matrix Ŝ is a unitary matrix, Ŝ−1 = Ŝ†, guaranteeing current
conservation at the scatterer. In the presence of a magnetic field, B, the matrix
fulfills the relation ŜT (B) = Ŝ(−B) due to the time-reversal symmetry. For a
two-terminal structure, α, β ≡ L,R, we can represent the scattering matrix in a
block structure for electrons as

ŝ0(E) =
(
ŝLL ŝLR
ŝRL ŝRR

)
=
(
r̂ t̂′

t̂ r̂′

)
, (4.8)

where r̂, (r̂′) is the reflection and t̂, (t̂′) the transmission matrices.
The resulting transmission probabilities from the scattering matrix govern the

charge and heat current through a junction, which we describe in the following
sections.

4.2 Transport quantities
The method we use for the calculation of transport observables is the Landauer-
Büttiker formalism which is based on calculating currents with the help of scat-
tering states [102, 105, 107]. We are mainly interested in particle, charge and
heat currents.

4.2.1 Charge and heat current operators
Here we give a derivation of the explicit expressions for charge and heat currents.
We start by writing the charge current density, and we obtain the charge current
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operator at lead α
Îα(xα, t) =

∫
dyαdzαĵα(rα, t). (4.9)

The charge current density, ĵ satisfies a continuity relation that guarantees
charge conservation,

∂ρ̂

∂t
+ ∇· ĵα = 0 (4.10)

The charge density operator, ρ̂, is defined by the square of field operator as
ρ̂ = −e|ψ̂|2. Substituting this into the continuity relation gives

−∂ρ̂
∂t

= e∂|ψ̂|2

∂t
= ∇· [−e~2im [ψ̂†∇ψ̂ − (∇ψ̂†)ψ̂]]. (4.11)

Therefore we identify the current density as

ĵα = e~
2im [ψ̂†∇ψ̂ − (∇ψ̂†)ψ̂]. (4.12)

Substituting Eqs. (4.4) into Eq. (4.12) and the result into Eq. (4.9) considering
the orthonormality of transverse wave functions, we obtain the charge current
at lead α

Îα(t) = −e
h

N∑
n

∫
dEdE′ei(E−E

′)t/~[â†αn(E)âαn(E ′)− b̂†αn(E)b̂αn(E ′)]. (4.13)

We attain the average charge current by taking the quantum average of Eq.
(4.13). Assuming the reservoirs to be at equilibrium, we have the following
relations for the average of incoming and outgoing fermionic operators,

〈â†αn(E)âβm(E ′)〉 = δαβδnmδ(E − E ′)fα(E),
〈b̂†αn(E)b̂βm(E ′)〉 =

∑
α′,β′

∑
n′,m′

sαn,α′n′(E)sβm,β′m′(E)〈â†α′n′(E)âβ′m′(E′)〉. (4.14)

Since the incoming states in Eq. (4.13) are distributed following the Fermi
distribution, therefore

fα(E) = 1
1 + exp

(
(E − µα)/(kBTα)

) (4.15)

determines the fermionic particle occupation in the lead α. Using Eqs. (4.14)
we can write the charge current in Eq. (4.13) as

Îα(t) = −e
h

∑
β,γ

∑
m,n

∫
dEdE′ei(E−E

′)t/~[â†βm(E)Amnβγ (α;E,E ′)âγn(E ′)], (4.16)

where
Amnβγ (α;E,E ′) = δαβδαγδmn −

∑
l

s†αl,βm(E)sαl,γn(E ′). (4.17)
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In case there are only two reservoirs left (L) and right (R), Eqs. (4.14) for α = L
gives

〈â†Ln(E)âLn(E)〉 = fL(E),
〈b̂†Ln(E)b̂Ln(E)〉 = RnfL(E) +DnfR(E), (4.18)

where Rn is the reflection probability of channel n in lead L and Dn = 1 − Rn
is the transmission probability from lead R to L in channel n. Substituting this
into Eq. (4.13) gives

IL = −e
h

N∑
n=0

∫
dEDn

[
fL(E)− fR(E)

]
. (4.19)

Here the current flows out of terminal L.
Particles (electrons and holes) carry energy as well as charge. Similar to

the charge flow, we can write the continuity equation for the energy flow as
∂ρ̂E

∂t + ∇· ĵEα = ρES where ρES is the energy density of a source. Integrating both
sides over the entire volume of the system we obtain the relation for the source

ρES = ψ̂†(E, rα)∂U(t)
∂t

ψ̂(E, rα), (4.20)

where U(t) is a time-dependent potential we consider in the Hamiltonian of an
electron. The energy current density can be written as

ĵEα (rα, t) = ~2

2m [ψ̂†∂∇ψ̂

∂t
− (∇ψ̂†) ∂̂ψ

∂t
]. (4.21)

The total energy current operator at lead α will be

ÎEα (xα, t) =
∫
dyαdzαĵ

E
α (rα, t). (4.22)

Substituting the field operators of Eqs. (4.4) into Eq. (4.21) and the result into
Eq. (4.22) gives

ÎEα (t) = 1
h

∑
n

∫
dEdE′

(
E + E ′

2

)
ei(E−E

′)t/~[â†αn(E)âαn(E′)− b̂†αn(E)b̂αn(E ′)].

(4.23)
In addition to the energy current, we are in particular interested in heat currents.
The extra energy current with respect to Fermi level is defined as heat current,
and it can be expressed in terms of particle and energy currents as follows,

Ĵα = ÎEα −
µα
e
Îα, (4.24)

where µα denotes the equilibrium electrochemical potential of lead α. Similar
to the charge current as in Eq. (4.19), the average heat current flowing out of
terminal L for the two-terminal case is

JL = 1
h

N∑
n=0

∫
dE(E − µL)Dn

[
fL(E)− fR(E)

]
. (4.25)
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4.2.2 Linear response: charge and heat conductances
In chapter 3, in the Onsager relation section, charge and heat conductances were
introduced. To achieve the charge and heat conductance in a normal metal,
we employ the linear response approximation. In order to be in the linear re-
sponse regime, we need the voltage and temperature gradients applied through
the system to be small compared to the temperatures of the system. Applying
voltage and temperature biases through a system drives charge and heat cur-
rents. We consider the applied voltage Vα and temperature biases ∆Tα as terms
added to the equilibrium values of chemical potential and temperature such as
Tα = T + ∆Tα and µα = µ − eVα. If these biases are small compared to the
equilibrium values then the linear response occurs. These biases enter the charge
and heat currents through Fermi function. Expanding the Fermi function of Eq.
(4.15) around these values gives

fα(E) ≈ f(E) + ∂f

∂T
∆Tα + ∂f

∂µ
(eVα)

= f(E)− ∂f

∂E

[(E − µ)∆Tα
T

+ eVα

]
, (4.26)

where ∂f/∂E = −1/4kBT cosh2[(E − µ)/2kBT ] is the derivative of Fermi func-
tion with respect to energy. Substituting the expansion of Eq. (4.26) into the
expressions for charge and heat currents, average of Eqs. (4.19) and (4.25) gives
charge and heat conductances.
In the absence of a temperature gradient, ∆T = 0, using Eq. (4.19) for an
energy independent transmission Dn and taking V in the first order we have

G = ∂Iα
∂Vβ

∣∣∣∣∣∣
{V }=0

= G0
N∑
n=0
Dn , (4.27)

where G0 = e/h is the charge conductance quantum.
In the absence of voltage gradient for a two-terminal conductor and assuming
the temperature gradient of ∆T between the two terminals left and right we
approximate the difference of Fermi functions as

fL(E)− fR(E) ≈ − ∂f
∂E

(E − µ)∆T
T
. (4.28)

Inserting this into Eq. (4.25) we consequently obtain

J(T ) ≈ −k
2
BT

h

N∑
n=0
Dn

∫ ∞
0
dE

(
E − µ
kBT

)2
∂f

∂E
∆T. (4.29)

We considered the transmission eigenvalues Dn to be energy independent. Such
an assumption allows for calculating analytically the energy integral in the equa-
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tion above, yielding ∫ ∞
0
dE

(
E − µ
kBT

)2
∂f

∂E
= −π

2

3 . (4.30)

As a result, the heat current in the linear response regime takes the form

J(T ) = π2kBT

3h
N∑
n=0
Dn ·∆T ≡ κN(T ) ·∆T. (4.31)

The heat conductance of a normal metal κN(E) corresponds simply to the heat
conductance quantum, defined as κ0 = π2kBT/(3h), multiplied by the sum over
transmission eigenvalues. The charge and heat conductances are related by
Wiedemann-Franz law, as introduced in chapter 3.

4.2.3 Charge and heat current noise
Together with the average currents, noise in charge and heat currents gives us
additional information about transport such as the charge of the current carri-
ers. An example is that noise measurements were used to prove that the charge
carriers are fractionally charged in the fractional quantum Hall states [108]. Two
types of noises that exist in the kind of systems we study are thermal and shot
noises [109, 110]. Thermal noise always exists in mesoscopic conductors with
finite temperatures. Thermal agitation of the charge carriers causes fluctua-
tions of the occupation number of the states of the system. The occupation
number fluctuations lead to equilibrium current fluctuations, which are related
to the conductance of the system via the fluctuation-dissipation theorem. The
fluctuation-dissipation theorem quantifies the relation between thermal fluctu-
ations and the response of the system. While thermal noise is present in the
system’s equilibrium state, when the system is driven out of equilibrium, an-
other type of noise arises that is called shot noise. Shot noise originates from
the quantized nature of charge.

Charge current noise has been long calculated [110]. In order to calculate the
current fluctuations, a correlation function of the currents in two leads α and β
at times t and t′ is defined as

Sαβ(t− t′) = 1
2〈∆Îα(t)∆Îβ(t′) + ∆Îβ(t′)∆Îα(t)〉. (4.32)

The Fourier transform of this correlation is known as noise power.

2πδ(ω + ω′)Sαβ(ω) = 〈∆Îα(ω)∆Îβ(ω′) + ∆Îβ(ω′)∆Îα(ω)〉, (4.33)

where ∆Îα(ω) = Îα(ω)− 〈Îα(ω)〉 and

〈∆Îα(ω)∆Îβ(ω′)〉 = 〈Îα(ω)Îβ(ω′)〉 − 〈Îα(ω)〉〈Îβ(ω′)〉. (4.34)
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Using Eq. (4.13), the Fourier transform of the current operator, Îα(ω) is

Îα(ω) = e

~
∑
β,γ

∑
m,n

∫
dE[â†βm(E)Amnβγ (α;E,E + ~ω)âγn(E + ~ω)]. (4.35)

To calculate the average product of currents in Eq. (4.34) we use Eqs. (4.16)
together with the average of the products of four Fermionic operators

〈â†αn(E1)âβm(E ′1)â†α′n′(E2)âβ′m′(E′2)〉 − 〈â†αn(E1)âβm(E ′1)〉〈â†α′n′(E2)âβ′m′(E′2)〉
= δαβ′δβα′δnm′δmn′δ(E1 − E′2)δ(E′1 − E2)fα(E1)[1− fβ(E2)]. (4.36)

Substituting the averages of currents into Eq. (4.33) we obtain the charge current
noise

Sαβ(ω) = e2

h

∑
α′,β′

∑
n′m′

∫
dE Tr[An

′m′

α′β′ (α;E,E + ~ω)Am
′n′

β′α′ (β;E + ~ω,E)]

×{fα′(E)[1− fβ′(E + ~ω)] + fβ′(E)[1− fα′(E + ~ω)]}, (4.37)

The zero-frequency limit of charge current noise is

Sαβ = e2

h

∑
α′,β′

∑
n′m′

∫
dE Tr[An

′m′

α′β′ (α;E)Am
′n′

β′α′ (β;E)]

×{fα′(E)[1− fβ′(E)] + fβ′(E)[1− fα′(E)]}. (4.38)

In the two-terminal case the charge current noise is

S = 2e2

h

∑
n

∫
dE {Dn[fL(E)(1− fL(E)) + fR(E)(1− fR(E))]

+Dn(1−Dn)(fL − fR)2}. (4.39)

Starting from Eq. (4.32) and following the same procedure as charge current
noise for heat currents we reach to heat current fluctuations. In zero frequency
we have

SJαβ = 1
h

∑
α′,β′

∑
n′m′

∫
dE E2 Tr[An

′m′

α′β′ (α;E)Am
′n′

β′α′ (β;E)]

×{fα′(E)[1− fβ′(E)] + fβ′(E)[1− fα′(E)]}. (4.40)

We will use the heat current noise in the continuation of papers III and IV.

4.3 Superconducting systems
After reviewing the scattering formalism for heat transport in a normal metal,
we introduce the scattering formalism for a superconductor, and we show the
scattering behavior of transport channels in superconductors.
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4.3.1 Scattering theory for superconductors
Using the Landauer formula for heat currents in a superconductor, as shown in
detail in the Licentiate thesis [111], we obtain

ĴS
α(t, T ) = 1

h

N∑
n

∑
i=e,h

∫ ∞
max(∆)

dE dE ′ ei(E−E
′)t/~

×
(
E + E ′

2

)[
b̂†αn,i(E)b̂αn,i(E ′)− â†αn,i(E)âαn,i(E ′)

]
. (4.41)

In the expression above, there are two parts for electron- (i = e) and hole-
like (i = h) quasiparticle contributions to the heat current with a sum over
N transport eigenchannels in a superconducting lead. The gap ∆ in the lower
limit of integration should be understood as the maximum gap in the case we
have different superconducting leads with unequal gap functions. Here, the
operators â(†)

i,n (âi,n) and b̂
(†)
i,n (b̂i,n) represent incoming and outgoing states to

the superconductor’s junction with the scatterer and in this case they indicate
Bogoliubov operators. As mentioned before, the incoming and outgoing states
are related to each other by a scattering matrix specific to the junction under
consideration. Here, the electrochemical potential is set to µα = 0. Analogous to
normal metal, the heat-current for a two-terminal case is shown as the following
expression,

JS
L(T ) = 1

h

N∑
n=0

∫ ∞
max(∆)

dE E
[
Den +Dhn

][
fL(E)− fR(E)

]
. (4.42)

The Fermi functions fα(E) here determine the quasiparticle occupations in su-
perconducting contacts, α ≡ L,R. The transmission probability of channel n
consists of electron-like and hole-like quasiparticles contributions that are equal
due to particle-hole symmetry (Den = Dhn). The transmission probability Den is
a sum of transmission probabilities of electron-like and hole-like quasiparticles
to the electron-like channels, Den = Deen +Dehn . These transmission probabilities
are calculated using scattering matrices for NS and different regimes of SNS
junctions in the next sections. These transmission probabilities in superconduc-
tors are energy-dependent, and the dependence of heat currents and transport
properties to parameters such as the superconducting phase is through these
transmissions.

In order to attain the linear response heat conductances in a superconduc-
tor, we use Eq. (4.26) as in normal metal and substitute that into Eq. (4.42).
Employing this we obtain

κS(T ) = 1
2h

N∑
n=0

1
kBT 2

∫ ∞
∆
dE

E2

cosh2(E/(2kBT )
)Den. (4.43)
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Here, we also made use of the particle-hole symmetry which means that the
transmission probabilities of electron-like (Den) and hole-like (Dhn) quasiparticles
are equal.

The next quantity we will consider to study in the continuation of paper IV
(this is not part of paper IV currently) is the heat current noise in a supercon-
ducting lead. Following the same approach we used for normal metal, we obtain
the zero frequency heat current noise in a superconductor as

SJαβ = 1
h

∑
α′,β′

∑
n′m′

∫ ∞
max(∆)

dE E2 Tr[An
′m′

α′β′ (α;E)Am
′n′

β′α′ (β;E)]

×{fα′(E)[1− fβ′(E)] + fβ′(E)[1− fα′(E)]}, (4.44)

where An′m′

α′β′ (α;E) is given by Eq. (4.17).

4.4 Transmission probabilities for specific devices
In this section, we review the transmission functions of nanostructures for which
we study the thermoelectric performance in papers II and III. As we saw in the
previous sections, to study the transport properties using scattering theory, the
transmission probability of the nanostructure is needed. These nanostructures
include a single level quantum dot, a rectangular barrier, a quantum spin Hall
system where backscattering is induced by a magnetic moment, and a quantum
point contact.

4.4.1 Transmission probability for a single level system with
Lorentzian shape

In chapter 3, we introduced quantum dot as an artificially made system where
electrons are confined and occupy discrete levels. To keep the levels discrete,
the quantum dot states should be well isolated by the surrounding gates [74].
Here we assume that this condition is fulfilled. To use the scattering matrix
for a quantum dot, we use the results of a formalism that relates the scattering
matrix of the dot to its effective Hamiltonian, as suggested in [78, 112, 113].
This relation is given as

S(E) = 1− 2πiW † 1
E −Heff

W, (4.45)

where Heff = Hdot − iπWW †. The dot’s Hamiltonian is Hdot and Γ = 2πWW †

is called the width matrix with W being the coupling of reservoir modes to dot
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Figure 4.2: Transmission probability for a quantum dot, as defined in Eq. (4.47)
with ΓL = ΓR = Γ/2.

states. Considering two single mode reservoirs L and R coupled to a single state
dot, we have W = (wL, wR) which gives

S(E) =
(

1 0
0 1

)
− 2πi
E − E0 + i

2(ΓL + ΓR)

(
w∗LwL w∗LwR
w∗RwL w∗RwR

)
. (4.46)

Having the scattering matrix we know that the probability of going from reser-
voir α to β is Dαβ(E) = |Sα,β(E)|2. Since there is only a single mode, the
transmission function will be the same as this probability. Substituting Eq.
(4.46) into Dαβ(E) we obtain the transmission probability of the single-level
quantum dot from right to left reservoir as

DLor
LR (E) = ΓLΓR

(E − E0)2 + 1
4(ΓL + ΓR)2 , (4.47)

where as mentioned Γα = 2π|wα|2 with α = L,R, with Γα/~ being the tunneling
rate. We see that this transmission has a Lorentzian dependence on energy, see
Fig. (4.2).

4.4.2 Transmission probability for a rectangular barrier
Another transmission we address here is the one resulting from a rectangular
barrier potential. Consider a one-dimensional potential barrier of height V and
spatial extension LV , given by

V (x) =
{
V for 0 ≤ x ≤ LV
0 for |x| ≥ LV

(4.48)
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Figure 4.3: Transmission probability for the rectangular barrier, as defined in Eq.
(4.49).

For energies E < V , an incident particle to the barrier from one side, can be
either reflected or transmitted. Writing Schrödinger equation for the incident
wave from left and solving the boundary conditions for the wave functions, we
attain the reflection and transmission amplitudes. The result is

DRB(E) = 1
1 + V 2

4E|E−V |sin
2(kLV )

, (4.49)

where k =
√

2m|E − V |/~2. This transmission function exponentially decays
with the barrier width, and outside the barrier, it oscillates. These oscillations
resemble the peak-shaped transmission of a quantum dot. We will see similar be-
havior in the QSH transmission in the next section. At E = V the transmission
probability is

DRB(E = V ) = 1
1 + 2mL2

V V/~2 . (4.50)

4.4.3 Transmission probability for a quantum point contact
As we stated in chapter 3, a QPC is a constriction created by gate voltages in
a nanostructure. Many transport channels arrive at the point contact, and only
a finite number of them are transmitted. Particles arriving at the point contact
are hence reflected or transmitted. When the constriction of QPC is induced
electrostatically, one can consider a smooth pattern for the narrowest point, as
suggested in [114]: a saddle point function can approximate the potential in the
plane of two-dimensional electron gas (x− y plane)

V (x, y) = V0 −
1
2mω

2
xx

2 + 1
2mω

2
yy

2, (4.51)

where x is the longitudinal direction along the QPC between two reservoirs, and
y is the transverse direction. V0 is the potential at the saddle, and ωx and ωy
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Figure 4.4: Transmission probability for the QPC device, as defined in Eq. (4.53).

are the angular frequencies. Solutions of energies for the transverse direction are
the same as a quantum harmonic oscillator,

En = V0 + ~ωy
(
n+ 1

2

)
. (4.52)

Here, n indicates the number of channels. The transmission probability of the
above-stated potential is found to be

DQPC(E) =
∑
n

1
1 + e(−E+En)/γ . (4.53)

Plotting this transmission function for a single channel with n = 0 gives a step-
like plot, Fig. (4.4) where γ = ~ωx/2π indicates the smoothness of the step.
When ωx → 0 and therefore γ → 0, the point contact is very long and the trans-
mission simplifies to the sharp step that is described by th Heaviside function
Dstep(E) = ∑

n Θ(E − En).

4.4.4 Transmission probability for a quantum spin Hall system
In this section, we consider a quantum spin Hall (QSH) device, which is the
main focus of paper II. As mentioned in paper II, we assume QSH edge states
coupled to a magnetic domain with length L, see Fig. (4.5), as suggested in [26].
The following Hamiltonian models such a system

H =
∫
dxΨ†(x)[(−i~vF∂x)σz + JM(x) · σ̂]Ψ(x), (4.54)

where Ψ(x) = (ψ+,↑, ψ−,↓)T indicate chiral right (+) and left (-) moving particles
with spins up and down. J is the magnetic exchange interaction of magnetic
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Figure 4.5: Left: QSH device with a magnetic island. Right: transmission proba-
bility for the QSH device, as defined in Eq. (4.56).

moment and spin of particles and σ̂ = (σx, σy, σz) are the Pauli matrices. The
magnetic moment of the island is represented by the function M(x) = Θ(L −
x)Θ(x)m with the magnetic moment unit m = (m⊥ cosφ,m⊥ sinφ,m‖) where
m⊥ and m‖ are the perpendicular and parallel components to the spin-orbit
interaction.
Far away from the magnetic moment, the edge states propagate freely and are
eventually injected or absorbed by electrodes. In the scattering region of the
magnetic coupling, a backscattering at the same edge is enabled by spin flips.
For this scattering region, as suggested in [96], an evolution operator between
the channels in the same edge can be written as

Û(L) = exp
(
i
ε‖
~vF

L
)
[σx cosλ− iλ̂

λ
· σ̂ sin λ], (4.55)

where λ̂ = (iε⊥ sinφ,−iε⊥ cosφ, ε)L/~vF with ε⊥(‖) = Jm⊥(‖). Using Û one can
calculate the transmission function as the inverse of the matrix Û . The result
for a single magnetic domain is

DQSH(ε) = |ε2
⊥ − ε2|

|ε2
⊥ − ε2| cos2(rl) + ε2 sin2(rl) , (4.56)

with l = L/L⊥, L⊥ = ~vF/ε⊥ and r =
√

(ε/ε⊥)2 − 1. The behavior of the trans-
mission probability in Eq. (4.56) is shown in Fig. (4.5) for different lengths of
the magnetic island. As we see there are similarities to the quantum dot and
QPC transmissions due to the oscillations and the step-like behavior. Despite
the similarities to the transmission of rectangular barrier, due to the quadratic
dispersion of the free electronic quasiparticles in the rectangular barrier above
the band bottom, the transmission of rectangular barrier has only a single step
at positive energies.
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4.5 Scattering matrix for composed systems

4.5.1 Scattering matrix for an SNS junction
In paper I, we study heat transport in a superconductor-normal metal-superconductor
(SNS) junction. Here, we explain the construction of the scattering matrix of
this junction. The model we consider for the junction consists of a normal region
containing a generic barrier or a disordered part between two superconducting
regions SL and SR. This model is illustrated in figure (4.6).

The construction of the scattering matrix of the SNS junction is explained in
details in the Licentiate thesis [111]. There, the BdG equation is used together
with wave function matching to obtain the scattering matrix. The considered
model is valid in superconductor clean limit where the quasiparticle mean free
path l is large compared to the superconducting coherence length ξ (l � ξ).
For a Josephson junction shown in figure (4.6) containing a disordered normal
region the scattering matrix has the following structure

SSNS = U−1(1−M)−1(1−M †)SNU. (4.57)

This matrix is written in terms of the normal scattering matrix, SN. Here,
we consider a multi-channel case. Having the normal scattering matrix, we
can study the properties of the whole SNS junction. In the derivation of this
scattering matrix, we used the trick from Ref. [115] that is, we considered a
generic barrier in the middle of the normal part. The matrices in the formula
(4.57) are defined as follows

U ≡
[
ν 0
0 ν∗

]
, ν ≡

 eiϕL/2

cosαL
0

0 eiϕR/2

cosαR

 , (4.58)

The matrix U is a unitary matrix and contains the terms that vanish when
calculating transmission probabilities using the scattering matrix. The phases
of matrix U disappear due to the multiplication of the unitary matrix by its
inverse. Therefore, this matrix U does not affect the final transmissions related
to transport properties. Calculating the transmission probabilities from SSNS
shows that the phase dependence of them is due to Andreev reflection. It enters
the scattering matrix via rA that is defined as follows

M ≡ SN

[
0 rA
r∗A 0

]
, rA ≡

[
sinαLe

iϕL 0
0 sinαRe

iϕR

]
. (4.59)

Here rA contains the terms which are the results of Andreev scattering, where
we defined sinαL(R) = vL(R)/uL(R), uL(R) =

√
∆L(R)/2Eearcosh(E/∆L(R))/2 and
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Figure 4.6: Sketch of an SNS junction across which a temperature as well as a
phase difference occurs. The normal part of the junction has length L and supports
N scattering channels. We consider the normal region to be disordered.

vL(R) =
√

∆L(R)/2Ee−arcosh(E/∆L(R))/2. The temperature dependent gaps of the
left and right superconducting leads are ∆L(R).

From the scattering matrix (4.57), we obtain the transmission probability
through the SNS junction needed for the calculation of heat transport quanti-
ties, namely heat current and heat conductance introduced earlier in the present
chapter. The full transmission probability is a sum over transmissions of N
transport channels, Dn. We are interested in this summation since in paper I,
we study the average of transport quantities over many channels. The trans-
mission probabilities into the electron-like quasiparticle channel are the sum of
transmissions from electron- and hole-like quasiparticles, Deen + Dehn . They are
given by

Den(E) = 2DnξLξR
DnξLξR + (2−Dn)(E2 −∆L∆R cosϕ)

((2−Dn)ξLξR +Dn(E2 −∆L∆R cosϕ))2 , (4.60)

where ξL(R) =
√
E2 −∆2

L(R) is the quasiparticle energy in the contact L(R). The
phase difference between left and right superconductors is ϕ = ϕL − ϕR. Heat
currents we study in superconducting junctions in paper I depend on this phase
difference. This transmission is important since it is the general transmission
which is valid for the case of different superconducting gaps ∆L 6= ∆R, and it
supports different limits ofDn, including arbitrarily strong normal transmissions.

When the temperature difference of the two superconductors in Fig. (4.6) is
small, the temperature dependence of the energy gap of the two leads will be
equal, ∆L = ∆R = ∆. The transmission probability in this case is

Den = (E2 −∆2)
(E2 − E2

b )
[Dn(E2 −∆2 cosϕ)−D2

n∆2 sin2(ϕ/2)]. (4.61)

Here, Eb = ∆
√

1−Dn sin2(ϕ/2) is the Andreev bound state energy. Multi-
ple Andreev reflections lead to the formation of sub-gap states, called Andreev
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Figure 4.7: Phase and transmission dependence of the Andreev bound state energy.
The temperature is T/Tcrit = 0.2 and ∆0 is the superconducting energy gap at zero
temperature.

bound states, with energies below the superconducting gap. These states influ-
ence the transmissions above the gap. In Fig. (4.7) dependence of this energy
on the transmission Dn and phase is shown at the temperature T/Tcrit = 0.2. It
is visible from the plots that the bound state energy has significant temperature
and phase dependence, which influences the heat conductance. This influence is
missing in the weak coupling regime where Dn is small.
In the case when there is no phase difference between superconducting leads,

ϕ = 0, as well as the case of zero gap function, ∆ = 0, we obtain the transmis-
sion (4.61) which is equal to the normal transmission, Den = Dn.

4.5.2 Scattering matrix for a complex system(ring structure)
In paper IV, we study a setup as a heat circulator which consists of a three-
terminal junction with normal or superconducting contacts and a central scatter-
ing region. The minimal model described in Refs. [40, 116] motivates the model
of our system. In this model, the central scatterer is a non-superconducting,
ring-shaped device through which a magnetic flux passes. Here, we review the
construction of the scattering matrix of this setup.

As suggested and proved in Ref. [74], scattering matrix of a general multi-
terminal structure with a central scatterer connected to all terminals is given by

S = r + t′s0(1− r′s0)−1t, (4.62)

with s0 being the scattering matrix of the central region. Considering a three-
terminal structure with the three contacts coupled to the central ring to be
superconducting, we obtain the reflection and transmission matrices, rα (r′α)
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Figure 4.8: Schematic of a three-terminal setup with superconducting contacts, and
penetrated by a magnetic flux Φ.

and tα (t′α), using BdG equations and wave function matching in a normal-
superconductor interface, as stated in the previous section for SNS junction.
The results are

r =
[

0 reh
rhe 0

]
, r′ =

[
0 r′eh
r′he 0

]
,

t =
[
tee 0
0 thh

]
, t′ =

[
t′ee 0
0 t′hh

]
, (4.63)

where the 3×3 reflection and transmission matrices in a normal-superconductor
interface are

reh = rhe = diag
(−vα
uα

)
,

r′eh = (r′he)∗ = diag
(vα
uα
eiϕα

)
,

tee = (t′ee)∗ = (thh)∗ = t′hh = diag
(√u2

α − v2
α

uα
eiϕα/2

)
. (4.64)

In the previous section uα and vα were introduced. Here, ϕα indicates the su-
perconducting phase.

An approach suggested in Refs. [112, 116] can be used to derive the scattering
matrix of the central region from the Hamiltonian of the system. This is similar
to the approach in section (4.4.1), where one can obtain the scattering matrix
by solving the Scrödinger equation and relating the incoming and outgoing am-
plitudes to the scattering region. Following this, the scattering matrix can be
written as

s0 =
(
1− iW2~v

)−1(
1 + i

W

2~v

)
, (4.65)
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whereW contains the coupling terms between sites in the scattering region and
has the form

W =


U1 t12e

−iα/3 t13e
iα/3

t12e
iα/3 U2 t23e

−iα/3

t13e
−iα/3 t23e

iα/3 U3

 . (4.66)

The effect of the magnetic flux, Φ enters the coupling matrix as 2πα = Φ/Φ0
with the flux quantum being Φ0 = h/e.

With the elements we have now, we obtain the full scattering matrix of a three-
terminal junction with superconducting leads and a central scattering region

S = r + t′SN(1− r′SN)−1t, (4.67)

where the scattering matrix of the central region in electron and hole space is

SN =
[
s0(E) 0

0 s0(−E)†
]
. (4.68)





5 Exploiting specific characteristics
of mesoscopic devices to control
heat

The focus of this chapter is describing the specific quantum and confinement
effects that we use to control and exploit heat. In paper II, energy filtering bar-
riers are used to perform thermoelectric cooling. Paper III takes advantage of
a nonequilibrium distribution as a novel resource to achieve cooling or produce
power in a multi-terminal setup. Finally, in papers I and IV, the phase-coherent
control of heat transport in hybrid structures of normal- and superconductors
is investigated. All the papers provide analyses of the operation of experimen-
tally accessible devices. This chapter aims to give an overview of the previous
research and experiments exploiting these or similar features and their relevance
to our work in the appended papers.

5.1 Thermoelectric cooling
In paper II, we use thermoelectric properties to perform cooling in a mesoscopic
conductor based on a quantum spin Hall (QSH) device. We are particularly con-
cerned with devices with energy-dependent transmission probabilities. In order
to get a non-vanishing thermoelectric effect, an energy-dependent transmission
probability is needed. This is shown in the following formula that a voltage
gradient leads to a nonzero heat current with an energy-dependent transmission
D(E)

J = e

h

∫ ∞
0
dE (E − µ)

(
−∂f
∂E

)
D(E)∆V. (5.1)

In this context, two classes of devices that often play a role are based on quan-
tum point contacts (QPCs) and quantum dots (QDs). The transmissions of
these systems serve as energy filters for the transfer of carriers in a specific win-
dow of energy.

QPC is the first nanostructure for which thermoelectric effects were observed
experimentally [117]. It has a step-type transmission that can be used as a

51
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Figure 5.1: (a) Sketch of a barrier (QPC) acting as an energy filter to perform
cooling using a potential bias. Figure is taken from [121]. (b) Sketch of a QD-based
heat engine with a single energy level. The QD is coupled to hot and cold reservoirs.
An electron traverses the QD energy level and converts part of its heat into useful
work. By applying a higher voltage to the cold reservoir and tuning the energy level
of the QD, the setup can act as a refrigerator, transferring heat out of the cold
reservoir. Figure is taken from [122].

heat engine to generate power [23, 24, 118], but more relevant here in this
thesis, as a refrigerator, meaning it can be used to transfer heat out of a cold
reservoir by using a potential bias, Fig. (5.1). Particularly for QPCs, enhanced
thermoelectric cooling has been experimentally proven [119]. QPC is favorable
for large output powers and sizable efficiencies of a given output power [120].

Another type of energy filtering is given by QDs. QDs are good models to
study thermoelectric effects [123–126]. There have been recent experimental
investigations on thermoelectric properties of QDs [122, 127], and particularly
thermoelectric cooling in QDs [128]. The energy levels of a QD are tunable via
external gates. A peculiar feature of QDs is the narrow energy window that
its transmission probability provides. This makes the charge current passing
through it and, therefore, the electrical power to be small. Since the peaked-
shape transmission of a QD, described in chapter 4, provides a precise filtering
of energy, ideal efficiencies that are close to Carnot efficiency can, in principle,
be reached in a QD refrigerator in the linear-response regime [129–131]. This
high efficiency is because of the small absorbed power required for the cooling
process that is a result of the distinct energy filtering of QD. Achieving high
efficiencies results in promising applications of QDs for cooling. However, due
to the small width of the energy level, QD devices can typically not produce
considerable output power

Unlike the straight forward energy filtering model of QPC and QD, a quantum
spin Hall (QSH) device with a magnetic island, as described in chapter 4 provides
more complex features in its energy-dependent transmission. The performance
of setups based on the QSH device has been studied, working as a quantum heat
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engine and a refrigerator [132, 133]. These operations have been studied mainly
in the linear response regime. The linear response regime works for small tem-
perature and voltage differences. In a recent work, thermoelectric properties are
studied in the QSH device, in which QSH edge states are coupled to a nanomag-
net [26]. In chapter 4 the transmission probability of this QSH device containing
a magnetic island is described. This transmission shows rapid oscillations with
energy resulting from the backscattering of edge states from the magnetic island.

As shown in chapter 4, the QSH transmission shows energy filtering properties
that in different limits are similar to the ones in QPC and QD transmissions.
This motivates the analysis of the thermoelectric performance of the compli-
cated energy filtering in the QSH transmission by taking advantage of these
similarities in different limits. In paper II we use these similarities to analyze
the thermoelectric cooling performance of the QSH device with a magnetic is-
land. We provide analyses of the operation of the device beyond linear response
regimes.

It is worth noting that due to the quantum effects, there is an upper limit to
the heat energy that can be transferred and the power that can be produced in
mesoscopic devices. Here, in the next section, we discuss these limits.

5.1.1 Pendry’s quantum bound
Quantum mechanics imposes bounds on quantities such as the power produced
and heat current transferred in mesoscopic systems. These bounds were first
derived by Pendry [134] using Landauer scattering theory. For the rate of heat
flow, there is an upper bound on the heat flowing out of a reservoir with a
temperature T through a quantum system. This bound is attained when all the
particles arriving at the quantum system in each mode transmit through the
barrier. This quantum bound is [24, 135]

Jqb = π2Nk2
B

6h T 2, (5.2)

where N is the number of modes. This quantum bound has been experimentally
observed in QPCs and quantum Hall edge-states [136, 137]. It is shown in [135]
that the upper bound on the cooling power of any refrigerator is half of the
Pendry quantum bound for heat current, Jqb/2. Our results in paper II obeys
this bound on cooling power.

The quantum bound also applies to the power produced in heat engines. In
Refs. [24, 135, 138], considering maximums of heat flow and efficiency, which is
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Figure 5.2: (a) Sketch of a working system into which an input flow is injected.
Figure is taken from [31]. (b) Schematic of a three-terminal device with one hot
reservoir (red) that can exchange electrons (green) with a quantum dot (yellow
disc). The working system is the other two reservoirs (L and R, blue) that are
at a lower temperature. The hot reservoir transfers heat to the working system via
Coulomb interaction (yellow wave) between electrons in quantum dots. Figure is
taken from [140]. (c) Sketch of the sample that is used to detect a nonequilibrium
distribution. The brighter color shows the metallic gates and the edge channels are
shown by solid white lines. White dashed lines show the partly transmission of edge
channels across the QPC and QD. The QPC is used to drive the edge channels
out-of-equilibrium. The left and right insets show nonequilibrium and equilibrium
electron distributions respectively. Figure is taken from [141]

the Carnot efficiency, an upper bound for the generated power in heat engines is
found. This bound that we here call Whitney power, in a system with hot and
cold baths with temperatures Thot and Tcold is

Pw = A0π
2k2

B
h

(Thot − Tcold)2, (5.3)

where A0 ' 0.0321. The bound on power has also been tested in a recent exper-
iment [139]. We use both the quantum bound on heat flow and Whitney power
in paper III.



55

5.2 Nonequilibrium resource
Generally, a thermodynamic system exploits a resource in order to perform a
certain process. This input is usually a flow of energy, heat, work, or power from
a source that can be separated from the working system, panel (a) of Fig. (5.2).
This can be thought of as a multi-terminal device with one terminal injecting a
resource to the rest of the device that acts as the working system. A schematic
of an example for an electronic three-terminal device based on quantum dots is
shown in panel (b) of Fig.(5.2), where a hot bath transfers heat into the working
system via Coulomb interaction [140]. The bath considered in this example is
in thermal equilibrium. However, the input to the working system can be from
a non-thermal bath that is not in thermal equilibrium [142–144].

Typically, the scales in nanostructures are much smaller than the thermaliza-
tion length of electrons. This means that electrons can have a far from equilib-
rium distribution, and the impact of this distribution should be considered in
describing nanoscale systems. The nonequilibrium distribution can be produced
in various experimental configurations. One of these experiments was employed
in a multi-terminal setup containing normal and superconductors [145]. This
setup is based on SNS Josephson junctions with extra leads connecting the
normal part to a sizeable normal reservoir. This experiment is performed in
the diffusive limit where the electron mean free path is much shorter than the
sample length and the phase coherence length. In this experiment, the two su-
perconductors are kept at the same potential. A nonequilibrium distribution is
produced by applying different potentials to the normal reservoir to make the
electronic distribution deviate from equilibrium. Shortly after this, in another
experiment, distributions out of equilibrium have been experimentally detected
for edge channels [141]; see panel (c) of Fig. (5.2). In this experiment, the
resulting distribution is measured from a tunnel current through a quantum
dot placed at a short distance from the QPC. Such distributions that are out
of equilibrium can be used as inputs to a working system. In this case, it is
shown that even in the absence of heat or power flow into the working system,
it is possible to produce power or perform cooling by exploiting the nonequilib-
rium distribution [31]. In the same line as this work, in paper III, we propose
a multi-terminal setup in a quantum Hall system and investigate the influence
of a nonequilibrium distribution as a resource, in addition to power or energy
flows, on the operation of a working system.
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Figure 5.3: (a) Scheme of a temperature biased SQUID made of two identical
superconductors S1 and S2. Temperature T1 is kept fixed, while the temperature
T2 < T1 is influenced by the heat flow across the junctions. RJ is the normal
state resistance of each junction and Q̇SQUID(Φ) is the heat current flowing from the
hotter to the colder superconductor. (b) Flux modulation of the drain temperature
Tdrain ≡ T2 of the superconductor S2 in the structure shown in (a). Figures are taken
from [36]. (c) Phase-biasing a Josephson junction by means of a three-junction
SQUID. Figure is taken from [146].

5.3 Phase-dependent heat transport
The superconducting phase provides a new parameter that can be used to con-
trol and regulate heat transport in superconducting devices. This leads to the
development of phase-coherent caloritronics. It was predicted theoretically in
1965 that heat currents through Josephson junctions depend on the relative
phase difference between the superconductors [32]. This dependence is shown in
the tunneling regime as

J = 1
h

N∑
n=0

∫ ∞
0
dE EDn

(
E2 −∆L∆R cosϕ√
E2 −∆2

L

√
E2 −∆2

R

)[
fL(E)− fR(E)

]
, (5.4)

where we see the dependence of heat current (J) on phase (ϕ) is through the
transmission probability. This shows by controlling this phase, the heat current
can be controlled.

For the first time, the phase-dependence of the quasiparticle heat currents
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in superconductors was proved in an experiment for heat transport across a
Josephson junction [36]. Josephson junctions form the basis of an extensively
used device, the superconducting quantum interference device (SQUID) [98] that
is also used in this first experimental realization. In panels (a) and (b) of Fig.
(5.3) a schematic sketch of the setup and the results of this realization are shown.
The basic ingredient of the experiment is a SQUID, which allows for a modula-
tion of the superconducting phase-difference via an applied magnetic flux. One
of the SQUID segments is heated to a fixed temperature T1. The quasiparticle
heat flow across the junction results in a measurable temperature change on the
other side of the junction, T2. Due to the phase-dependence of the heat current,
the resulting temperature change is phase-dependent. This can be seen in panel
(b) of Fig. (5.3). Subsequently, the phase-dependent control of heat currents has
been the basis for a number of experimental proposals [37]. In these experiments,
by biasing different phases in similar setups as stated above, the amount of heat
flowing in different directions can be controlled, resulting in the experimental
design of a heat diode and different configurations of thermal transistors, which
might operate as a thermal switch or as an amplifier/modulator [37]. These de-
signs are based on a three-junction SQUID, shown in panel (c) of Fig. (5.3), in
which a magnetic flux is used to apply a phase bias. These structures offer the
thermal counterparts of electronic devices that can be used in thermal circuits
and phase-coherent caloritronics.

More complicated structures such as multi-terminal devices are also of inter-
est in phase-coherent caloritronics. In these devices, several superconducting
phase differences provide a larger number of parameters to control heat. One
example is three-terminal Josephson junction that can be used to realize heat
circulators [40].
With the motivation arising from these studies, in paper I, we identify how the

properties of hybrid superconducting junctions can influence the phase-coherent
heat transport. We consider a disordered diffusive junction and analyze its
impact on the phase-dependency of different heat transport quantities. Fur-
thermore, in paper IV, we consider a three-terminal device with normal or su-
perconducting contacts and analyze the influence of phase and magnetic field
penetrating the setup on its performance as a heat circulator.





6 Overview of the appended papers
This chapter summarizes the motivation, approach, and findings of papers I-IV
that constitute the research of this thesis. It should be noted that in all papers
we use the Landauer-Büttiker scattering theory, as introduced in chapter 4, for
our analyses.

6.1 Paper I
This paper provides an analysis of heat transport in superconducting and normal-
metal hybrid structures. We considered the following systems: A Josephson
junction, namely a superconductor-normal conductor-superconductor (SNS) across
which a temperature- and a phase bias is applied. Also the gaps can be different.
Furthermore, we study an NS junction, which corresponds to the previous case
where one of the superconducting contacts has a vanishing gap. We analyze
the linear-response heat conductance. The specific question we address here is
how the properties of the disorder in the junction influence the phase- and gap-
dependence of the heat conductance in SNS and NS hybrid junctions.

We analyze the heat transport in the SNS junction, in the single and multi-
channel regimes. Following the approach in Ref. [147], we wrote the scattering
matrix of the whole SNS junction in terms of the transmission eigenvalues Dn of
the normal-conducting disordered region. This approach is beneficial since we
can directly employ the statistical distribution of the disordered normal region’s
transmission eigenvalues to get a channel-average of the full SNS structure’s heat
conductance. For this, we use the Dorokhov distribution that is a previously ob-
tained distribution function for disordered junctions from random-matrix theory.
The obtained scattering matrix serves for the analysis of both types of struc-
tures, SNS and NS, which we are interested in. In the remainder of the paper,
we use the obtained matrix to calculate the linear response heat conductance.

First, we consider a single-channel junction, showing that the heat conduc-
tance can, depending on gap ratio and phase differences, be larger than the heat
conductance in normal conducting junctions.
In contrast, the disordered region of the junction, which we consider here, is

characterized by a large number of transport channels. Therefore, we consider
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Figure 6.1: (a) The average heat conductance that is gap-ratio and phase inde-
pendent. (b) Weak localization correction to the heat conductance at equal super-
conducting gaps at different phase differences. (c) Heat conductance fluctuations at
equal superconducting gaps at different phase differences. The horizontal blue lines
in panels (b) and (c) correspond to ϕ = 0. Figures are taken from the results of
paper I [148].

the channel-averaged heat conductance, which is independent of the supercon-
ducting phases and gap ratio and only governed by temperature compared to
the largest of the superconducting gaps in the structure, see panel (a) of Fig.
(6.1).

Most importantly, we could identify an up-to-date unknown, non-trivial de-
pendence of different quantities on the superconducting phase in SNS junctions.
Namely, we find that in the weak localization correction to the average heat
conductance, that is independent of the number of transport channels, the de-
pendence on the superconducting phase difference is restored, panel (b) of Fig.
(6.1).

Besides, our study addresses the heat conductance fluctuations. Importantly,
our results show the persistence of the effects of phase difference and gap on
this quantity, see panel (c) of Fig. (6.1). Regardless of the elaborated phase
and gap dependence in heat conductance fluctuations, our results show that
the heat conductance fluctuations have a close to universal behavior, similar to
the well-known charge conductance fluctuations (fluctuations are of order unity
compared to the (heat) conductance average). These fluctuations are indepen-
dent of the junction length.

6.2 Paper II
The main goal of this work is to investigate a device in the quantum spin Hall
(QSH) regime as a thermoelectric refrigerator. We analyze the cooling perfor-
mance of such a device in a two-terminal setup both in the linear and in the
nonlinear operation regimes with respect to temperature and voltage gradients.
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The QSH device has a complex energy-dependent transmission which moti-
vates the analysis of this setup as a thermoelectric cooling device. A vital feature
of this transmission probability is that it has an energy gap with smooth bound-
aries. This results in similarities with a QPC device with a smooth step-like
transmission. Another important feature of the QSH transmission are oscilla-
tions outside the gap, which are similar to resonance features in the transmission
of quantum dots. These similarities motivate us to study the cooling perfor-
mance of the QSH device by first investigating the cooling performance of a
QPC and a quantum dot device and then use our results to analyze the QSH re-
frigerator. The results of this study are hence useful for different realistic devices.

We theoretically analyze the cooling power, namely the heat current flowing
out of the cold reservoir. Besides the cooling power, the efficiency of the re-
frigerator known as the coefficient of performance is an important quantity to
characterize the performance of the refrigerator, which we address in this paper.
We present both analytical results for the step-like and resonant transmissions
as well as a broad numerical analysis.

Indeed, analyzing the cooling performance of the QSH device, in different pa-
rameter ranges, we observe features similar to QPC and quantum dot devices
with step-type and Lorentzian transmissions respectively, see Fig. (6.2). The
results lead to the conclusion that the QSH device is comparable to a quantum
dot device in low temperature regimes, panel (d) of Fig. (6.2). For higher tem-
perature regimes, the QSH device’s performance demonstrates a resemblance to
the QPC model with high cooling power, panel (f) of Fig. (6.2).

Based on these observations, we identify optimal parameters for the device
performance. As a starting point, we have discussed the range of parameters
(electrochemical potential and temperature of the cold reservoir) for which cool-
ing in a device with simplified well-shaped transmission, and hence similarly in
a QSH device, is possible. From the result of cooling power for the well-shaped
transmission, we showed that the electrochemical potential of the cold reservoir
should probably be in the vicinity of one of the edges of the well, so that the
evacuation of excitations from the cold contact exceeds the flow of excitation in
the opposite direction. This is an essential requirement for optimizing cooling
power.

At each edge of the well, the transmission has a step-like behavior. We inves-
tigate the influence of the smoothness of this step on the cooling performance.
Our results show that for a sharp step, the maximum cooling power is achieved
when the cold reservoir’s electrochemical potential is at the edge of transmission
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Figure 6.2: Cooling power of (a)-(c) a conductor described by a Lorentzian trans-
mission function, (d)-(f) a QSH device, and (g)-(i) a conductor described by a step-
type transmission function. Figures are taken from paper II [149].

function. We also identify the ideal point of cooling power for a smooth trans-
mission. The results then provide the regions where substantial values for both
cooling power and COP are achieved.

To address the influence of oscillations in the transmission of the QSH device,
we discuss the cooling performance of a quantum dot device. In this limit, we
find small cooling power, but high efficiencies that can be reached in the linear
response regime.

The analysis of optimizations helps us to figure out in which parameter regimes
the step-type or the Lorentzian transmissions play role. The key findings emerg-
ing from optimizations show that the cooling power can reach the quantum
bound when the transmission is in the step position, and to get the maximum
values of cooling power in low temperatures, we require small potential biases
(linear regime). Besides, analyses of optimization for peaked transmission con-
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firm available cooling for a broad range of parameters (such as voltage biases) in
different regimes, leading to a double peak shape of cooling power. Regarding
the efficiency, maximum COP happens in smaller voltage biases compared to
the cooling power.

As shown in Fig. (6.2), in the QSH device, for higher temperatures, the domi-
nating features of the cooling power is comparable to the step-type transmission
of QPC model. In these temperature regimes, larger potential biases are required
to achieve optimal cooling power (nonlinear regime). This shows the importance
of the study in the nonlinear regime.

6.3 Paper III
This paper investigates the thermodynamic operation of a device exploiting a
nonequilibrium distribution as a resource. The surprising feature in this device is
that it can perform a thermodynamic process without absorbing heat or power.
This feature is hence comparable to a demon! This is investigated in a previous
study [31]. In this study, the device was called N-demon, with N indicating
nonequilibrium. Here, we add crucial insights to the performance of this device,
namely the influence of a nonequilibrium resource on the device’s performance
in the presence of heat flow to the working substance.

The setup we studied contains four terminals, of which two terminals (termi-
nals 3 and 4 in Fig. (6.3)) are used to create the nonequilibrium in the resource
region. This choice was employed because it makes controlling the nonequilib-
rium flow easier in experiment, and also, the calculation of entropy production in
the resource region that we use in the paper is straightforward. Note, however,
that any type of nonequilibrium distribution would be suitable. We choose a
setup exposed to a perpendicular magnetic field (quantum Hall regime), where
the charge and energy transport occur along chiral edge states. We use scat-
terers in both resource and working substance, next to terminals 4 and 1, as
indicated in the Fig. (6.3)), for which we consider a QPC or a quantum dot.

We analyze the setup performing in analogy to different machines, including a
heat engine to produce power, a standard refrigerator, and an absorption refrig-
erator that does cooling by heating. We investigate these machines’ performance
by analyzing the produced power in the heat engine, the cooling power of refrig-
erators, and, importantly, appropriate efficiencies.

We start by analyzing the plots of the produced power and heat currents
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Figure 6.3: Injection of a nonequilibrium distribution into a working substance
via quantum Hall edge states. The working substance includes terminals 1 and 2,
and the nonequilibrium resource region includes terminals 3 and 4, and there is an
interface between these two regions. Each of the regions contains a scattering region
(white areas) with transmissions τws, τneq and τint. The figure is taken from paper
III [150].

flowing out of the resource region and the working substance. We specifically
investigate how efficiencies behave in the three thermodynamic devices; heat
engines, standard refrigerators, and absorption refrigerators. We first consider
the conventional efficiency, which is a dimensionless ratio of the device’s desired
output (produced power in heat engine and cooling power in refrigerators) to the
energy or heat currents from the resource region. Knowing from the laws of ther-
modynamics, the upper bound of these efficiencies are Carnot limits. Comparing
the efficiencies to this limit, our results show that the conventional efficiencies
exceed the Carnot limits. In addition to this, the conventional efficiencies di-
verge when there is zero energy or power flow from the resource region into the
working substance. This shows that defining efficiencies here is tricky. The key
point is that the influence of the nonequilibrium distribution is totally ignored
in the definition of the conventional efficiencies.

Furthermore, we investigate another quantity that is based on entropy. It com-
pares the entropy reduction in the working substance to the demon’s entropy
production, giving a good insight into the entropy balance in the system. This
is called the entropy coefficient in the paper. When the flow of heat and power
from the resource region is zero, this coefficient is always positive. However, this
measure does not involve the produced power, therefore it is not a good measure
of the full performance of the device.

As a well-behaved efficiency that considers both demonic and conventional
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thermodynamic operations, and characterizes the device properly, we propose
an efficiency based on the free energy of the nonequilibrium resource. This
efficiency has upper bounds given by the laws of thermodynamics. This effi-
ciency is adequate to describe the performance of the considered device since
it includes all resources consumed for the device’s performance. Our findings
highlight that the free energy efficiencies are positive for the whole region of pos-
itive power produced or cooling power and give the desired information for the
devices’ characterization. We use this free energy efficiency further to describe
the device’s behavior as a heat engine with different combinations of QPC and
quantum dot for scatterers considered in the setup.

Finally, in order to prove that it is the nonequilibrium resource that is the
reason for the observed demonic effects, we show the suppression of the demonic
action under the destruction of nonequilibrium distribution by thermalizing via
a voltage and temperature probe.

6.4 Paper IV
In paper I, we saw the important impact of disorder for coherent heat transport.
Here, we analyze realistic device conditions with parameters varying from sam-
ple to sample for a more complex device, namely a heat circulator. For this, in
paper IV, we consider a three-terminal device with normal- or superconducting
terminals, performing as a heat-current circulator.

A heat circulator is a device that provides a tunable control on heat flows
and circulates heat in a preferred direction. In the considered setup in paper
IV, the heat circulation can be controlled by imposing a superconducting phase
bias between the terminals and more relevant here, by tuning a magnetic flux
penetrating the junction area. We start analyzing the device’s operation by
addressing the comparison of heat circulation in devices with normal and su-
perconducting contacts. First, an ideal ring-structure containing three sites is
considered, and then a detailed study on conductors deviating from the ideal
ring-structure with more than three sites is conducted. An important conse-
quence of this is that the enclosed magnetic flux varies with each trajectory that
a particle can follow between the contacts.

Starting from the ideal setup, our results demonstrate that in the ideal ring-
structure configuration, under some circumstances, the heat circulation in a de-
vice with normal conducting contacts is more effective than the superconducting
counterpart. We find that even for the parameters where the superconducting
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circulator has a better performance than the normal one, the conductance in
the normal setup is typically larger. It is worth noting that unlike in a previous
study on a similar heat circulator [40], we here consider self-consistently the
temperature-dependence of the superconducting gap.

Furthermore, we calculate the ensemble average of heat circulation over sys-
tem parameters including on-site energies and hopping amplitudes between the
sites, and also the variance of the heat circulation. For the ideal ring-structure
model, we find that the circulation parameter does not fluctuate much around
its ensemble-average. Our results reveal a reduction of just 15 percent of the
circulation under random variation of system parameters. For more complicated
non-ideal setups, we found that they are much more sensitive to fluctuations of
the mentioned system parameters. However, for these structures high circula-
tion can be achieved by properly tuning parameters.

In addition to this, we address structures for which the trajectory of particles
in the scattering region is fully chaotic. Even though here the average circula-
tion is fully suppressed, specific realizations still do good circulation for fixed
parameters.



7 Summary
The study of heat transport and thermal effects in mesoscopic systems is the
main focus of this thesis and its appended papers. We have shown how size
confinement and quantum effects influence the transport of heat in mesoscopic
scales.

Our specific interest has been the control and exploitation of heat transport
by three specific properties of quantum systems: phase-coherence in supercon-
ducting junctions, energy filtering resulting from quantum confinement, and
nonequilibrium distribution of resource contacts. We have studied how these
properties can be exploited to control heat. We have analyzed and discussed
heat transport in setups containing nanoscale elements and systems such as
quantum Hall and quantum spin Hall edge states, quantum point contact and
quantum dot, and superconducting hybrid junctions. These nanostructures and
their properties were introduced in chapter 3. In order to analyze the heat
transport in the considered systems, we have used the scattering theory that is
introduced in chapter 4. Furthermore, in chapter 5 we reviewed some previous
theoretical and experimental works on detection of the influence of mentioned
effects on mesoscopic systems containing the nanoscale elements introduced in
chapter 3.

This chapter summarizes the main contributions of this thesis to the topic
of heat control. In paper I, we have specifically investigated phase-coherent
heat transport in a Josephson junction containing a normal disordered scatter-
ing region between two superconductors. We analyze the behavior of thermal
properties such as the linear-response heat conductance and, in particular the
influence, which the junction properties have on heat transport. We find the
average heat conductance over a large number of transport channels in the dis-
order junction using the previously obtained distribution functions for disordered
junctions from random-matrix theory. Interestingly, this average turns out to be
independent of the superconducting phase and differences between gaps. In addi-
tion, we address the weak localization correction to the heat conductance and the
heat conductance fluctuations. Unlike the average of heat conductance, here, we
identify an up-to-date unknown dependence on the superconducting phase and
gap differences in SNS junctions. Importantly, we find these heat conductance
fluctuations have a similarly universal behavior as the well-known charge con-
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ductance fluctuations. This study motivated the investigation of phase-coherent
heat transport in multi-terminal devices, which is the focus of paper IV.

In paper II, we studied thermoelectric cooling, which can be realized using
the energy-filtering properties of a size-confined quantum conductor. The main
device of interest is a quantum spin Hall conductor in which energy-dependent
backscattering is induced by a magnetic island. Our predictions are based on a
detailed analysis of fundamental device elements such as QPCs and QDs, sepa-
rately showing the features occurring in the complex QSH transmission. These
transmission probabilities have also been discussed in chapter 4. We have ana-
lyzed in detail the cooling power and coefficient of performance of the studied
device in both linear and nonlinear regimes. Furthermore, we have presented
experimentally accessible ranges of physically related parameters for which the
cooling performance is optimum. The contributions made in this paper should
be of wide interest to experimentalists exploring thermoelectric heat transport
in systems with energy-filtering barriers.

The scope of paper III is the use of nonequilibrium effects for heat control and
power production. We have considered a multi-terminal device where part of it
acts as a nonequilibrium resource that drives the rest of the system, which takes
the role of a working substance. A significant feature of this setup is that for the
working substance to produce power or perform cooling, no heat flow from the
resource region is required. We have presented a detailed analysis of the system’s
thermodynamic operation, including output powers and efficiencies of the device
with different implementations. We observed that conventional efficiencies do
not characterize the influence of the nonequilibrium resource. Therefore we in-
vestigated efficiencies based on free energies that reveal the key characteristics
arising from the nonequilibrium resource.

Coming back to the phase-coherent heat transport in paper IV, we study a
three-terminal setup containing normal- or superconducting contacts realizing
a heat circulator. The device is penetrated by a magnetic flux. Exploiting the
magnetic field as well as the superconducting phase to control heat circulation
has been discussed in this paper. While superconducting devices have an addi-
tional tunability due to the phase, we find that normal conducting devices have
typically a better performance as circulators. In addition to an ideal three-site
ring structure, we analyze experimentally relevant non-ideal devices with more
sites. Consequently, in these non-ideal rings the enclosed flux varies. We investi-
gate the impacts of fluctuating hopping between the sites and on-site energies on
heat circulation. As an extreme case of this, we analyze a chaotic cavity. While
all more complex devices can act as circulators, we show that the detrimental
effects of fluctuating parameters increase with the device complexity.
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7.1 Outlook
To conclude, we briefly discuss possible future directions of research arising from
this work.

In the context of heat control, another relevant quantity to study is higher-
order correlation functions and noise for which we have already started the first
analyses. As a further step in our research, it would be interesting to compute
the heat current noise (the second-order correlation function between heat cur-
rents) to investigate how these fluctuations are affected by quantum effects in
the systems we studied.

This noise study is of interest in all three contexts that we have addressed. In
phase-coherent caloritronics further studies on heat current noise [151] might be
addressed in future studies. In thermoelectric devices, heat noise is relevant to
characterize the performance. In systems with nonequilibrium resource, noise
allows to further analyze the underlying mechanisms [152].

In the context of the work of this thesis, which is the study of electronic heat
transport, one can also analyze the phononic heat transport. Phononic heat
transport, in particular in applications related to cooling, is expected to be of
relevance. Also here, it can be important to compare the order of magnitude
of effects calculated in this thesis to effects of phonon scatterings and electron-
phonon interactions in heat transport.
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Appendix A

Absorption refrigerator
In Fig. (6) of paper III, the operation of an absorption refrigerator is shown
for when terminal 1 of the working substance is considered as the cold terminal.
Here we see what happens if we consider terminal 2 (the second terminal of the
two in the working substance) as the cold terminal and try to cool it. The results
for the cooling power Jabs

c = −J2 are shown in panels (a) and (c) of Fig. (A.1).
Both cases where the nonequilibrium distribution is created by a potential bias,
µ3 6= µ4 (left column), or by a temperature bias, T3 6= T4 (right column) are
shown. Similar to the results shown in Fig. (6) of paper III, the COP and the
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Figure A.1: Absorption refrigerator in the absence of charge currents from the
resource region, I3 + I4 = I1 + I2 ≡ 0, and for µ1 = µ2 = 0 and T2 = T0. We take
Ews = 0 and fix Eneq by the condition of vanishing charge currents. In panels (a)
and (b), we fix T3 = T4 = 1.2T0 as well as µ4/(kBT0) = −0.45. In panels (c) and
(d) we fix T3 = 0.9T0 and T4 = 1.2T0 as well as µ4 = µ3. At the full red line the
additional condition IE

3 + IE
4 = IE

1 + IE
2 ≡ 0 is fullfilled. The black dashed line

indicates where the cooling power is zero.
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Carnot bound are defined as COPabs = Jc
−IE3 −IE4

and COPCarnot = 1−Tamb/Thot
Tamb/Tcold−1

where Thot = TP. Here we have chosen to fix T2 = T0. We see a red region in
the upper left part of panels (b) and (d) in Fig. (A.1). These regions show a
real absorption refrigerator for which the cold terminal becomes colder. In the
blue region of the same panels, we cool down contact 2 (the cold terminal), but
heat up contact 1 in the working substance. In this region the resource has the
ambient temperature. Then below the blue region, where there is another red
region in the plot, both COPabs and COPCarnot become negative and this makes
the ration positive.
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