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Abstract: We analyze a second-order in space, first-order in time accurate finite difference method for a spa-
tially periodic convection-diffusion problem. This method is a time stepping method based on the first-order
Lie splitting of the spatially semidiscrete solution. In each time step, on an interval of length k, of this solu-
tion, the method uses the backward Euler method for the diffusion part, and then applies a stabilized explicit
forward Euler approximation on m > 1 intervals of length % for the convection part. With h the mesh width
in space, this results in an error bound of the form Coh? + Cpk for appropriately smooth solutions, where
Cm<C+ % This work complements the earlier study [V. Thomée and A. S. Vasudeva Murthy, An explicit-
implicit splitting method for a convection-diffusion problem, Comput. Methods Appl. Math. 19 (2019), no. 2,
283-293] based on the second-order Strang splitting.
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1 Introduction

In this paper, we shall consider the numerical solution by finite differences and splitting of the convection-
diffusion equation

%—Itjzv-(aVU)+b-VU+F inQ, fort>0, withU()=1V, (1.1)
in the cube Q = (0, 2m)4, with d = 1, 2, 3, under periodic boundary conditions. With x = (x1, ..., Xq), we
assume that the positive definite d x d matrix a = a(x) = (a;;(x)) and the vector b = b(x) = (b1(x), ..., ba(x))

as well as the forcing term F = F(x, t) and the initial data V = V(x) are periodic and smooth.
Equation (1.1) is a special case of the initial-value problem for the operator equation

C;—[t]:—AU+BU+F fort >0, withU(0)=1V, (1.2)

where A and B represent different physical processes, in our case diffusion and convection, respectively, or
AU=-V-(aVU) and BU=b-VU. (1.3)

The solution of (1.2) may be formally expressed as

t
U(t) = &)V + J &(t-y)F(y)dy, where&(t)=e ™3 fort>o0.
0
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To discretize (1.2) in time, let k be a time step, and set t,, = nk. We then have

tn
U(ty) = E(k)U(tp-1) + J E(ty —y)F(y)dy forn=>1.

tn—l

We may then find an approximate solution U" = U(t,), n > 1, by approximating the integrand by its value
at tp, or UM = &(k)U"1 + kF", where F" = F(t,)) for n > 1, with U° = V.
In the next step, we shall approximate &(k) = e XA=B) by splitting A — B into A and —B, and replace
&(k) by using the Lie splitting
Ex=ePe M < g(k) = eKAD) (1.4)

so that the time discrete solution U™, n > 1, is defined by
U" =& UV + kF", where F" = F(t,) forn>1, withU°=V. (1.5)

Applying &y thus involves solving the parabolic equation U; = —AU and the hyperbolic equation U; = BU on
(tn-1, tn); see e.g. Hundsdorfer and Verwer [5], Descombes [1] and references therein. The two exponential
factors of &, may then be further approximated by rational functions of A and B, respectively, such as the
backward or forward Euler approximations.

We note that if A and B commute, which holds for (1.1) when a and b are independent of x, then
e KA=B) _ okB g=kA gq that the error in (1.4) is zero. When A and B do not commute, then formally, by Taylor
expansion, ekBe kA _ o~k(A-B) — 0(k2). Under the appropriate assumptions, this will lead to an O(k) error
bound in (1.5) for t, bounded.

Another possible approximation of € (k) is the Strang splitting & (k) ~ &; = e2kB ek ¢2kB for which the
symmetry gives local accuracy of order O(k?), resulting in an error estimate in (1.5) of order O(k?) for t,
bounded, cf. [8]. In [9], a finite difference method based on the Strang splitting was analyzed for the homoge-
neous case of (1.1). The present paper using the less accurate Lie splitting may be thought of as a complement
to[9]. Itisintended to provide background for future work on more general problems, considering for instance
maximum-norm estimates, reaction-diffusion equations, problems with nonsmooth data and also the com-
bination of splitting with the finite element method. As a first step, the case of nonhomogeneous equations
is included here.

Error estimates for time splittings may be found in [2-4, 6] and references therein. For an extensive list
of related work, see MacNamara and Strang [7].

In the method that we study in this paper, we begin by discretizing (1.1) in the spatial variables. We let
h = zﬁ”, where M is a positive integer, and define a corresponding uniform mesh

Qpn={x=xy=hw=hw,...,wq), w;=1,2,...,M,1=1,...,d}. (1.6)

We denote by P, the M-periodic vectors u with elements u,,, corresponding to the mesh points x,, and with
Ugp+Me, = Uy, L =1, ..., d, where e is the unit vector in the x; direction. Note that we use capital letters for
functions in Q and lowercase letters for vectors in P;. We consider now the second-order spatially discrete,
continuous in time, finite difference ODE system for u(t) € Py,

% =-Au+Bu+f fort>0, withu(0)=v, (1.7)

where the M4 x M4 matrices A and B corresponding to the differential operators A and B in (1.3) are defined
by

d d
Au=- Y 0j(d;ou) and Bus=) %b,-(a,- +0j)uU. (1.8)
j=1

i,j=1

Here 0;j and 0; are forward and backward finite difference quotients in the direction of x;,
. 1
aij(xy) = aij(Xw + §h€i>,

and v and f the restrictions of V and F to Qy. It is then to (1.7) that we will apply the Lie splitting.
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The solution of (1.7), the spatially semidiscrete solution, is
t
u(t) = E(t)v + jE(t —Yf(y)dy, where E(t) = e 4B,
0

and we shall see that the error in this approximation is of order O(h?), under the appropriate regularity
assumptions.

For the time discretization of (1.7), an obvious first choice would be the backward Euler method, defining
the discrete solution " at t,, by

W= E ™ + kf", n>1, withii®=v, whereEy=(+kA-kB)™. (1.9)

The basis of the method we study here, however, will be the splitting method analogous to (1.4), (1.5),
defined by
U= Eu™ t+ kf" forn>1, withu®=v,
where Ey = eBe * <~ E(k) = e KA4-B)

Similarly to the continuous problem, when A and B commute, Ej = E(k).

For a practical numerical method, we then need to approximate the two exponential factors in Ej by ratio-
nal functions. For the approximation of e %4, we shall use the unconditionally stable backward Euler operator
Qx = +kA)™ =~ e * for k > 0. To approximate ekB_ we would like to use the forward Euler method, or
e*B ~ I + kB. For stability reasons, we shall need to add an artificial viscosity term, sowe set Lu = — Zl‘-izl 5,- oju
and define Hy = I + kB — yk?*L for ’E( < po, where the positive constants y and p will be defined later.

In order to increase the limit p, for the mesh ratio, and to increase the accuracy of the approximation in
the hyperbolic part, one may replace the operator Hy by H ’"m, with k,, = ]E( for some positive integer m, and
the stability requirement will then be reduced to IE( < mpo. This means that the approximate solution of the
hyperbolic part of E is obtained in m steps of length ky, = %

We consider thus the time discrete solution at time t,, = nk, defined by

(1.10)

U = Ep st + kf",  with f" = f(t,) forn>1, ud=v,

— (1.11)
where Ep k = H,r{:n Qx, with k < mpoh.

This method, which we will refer to as our fully discrete method, thus replaces at each time step the back-
ward Euler solution of our nonsymmetric problem (1.7) by a backward Euler approximation of a symmetric
parabolic problem, followed by an explicit finite difference solution of a hyperbolic problem.

After the introduction of notation and some preliminary observations in Section 2, the spatially semidis-
crete problem (1.7), (1.8), the backward Euler method (1.9) and the corresponding basic time splitting
method (1.10) will be analyzed in Section 3, where we will show O(h?) and O(h? + k) error bounds for these
methods, respectively. The analysis of the fully discrete method (1.11) will be carried out in Section 4, using
discrete Sobolev norms. The time discretization error can be divided into an O(k) part associated with the
parabolic part of the equation and an 0(%) term for the hyperbolic part. In Section 5, we illustrate our
theoretical results with computations for examples with one and two spatial dimensions.

2 Notation and Preliminaries

With Qj, as in (1.6), we introduce the discrete inner product and norm

1
(v, W), = h® Y vowe and |vip=(,v); forv,w e Pp.
Xw€Qp

Further, for x € Qp, we set

u(x + hej) — u(x)

oju(x) = A

and 0% =07"...05"u fora=(ay,...,aq),
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and define the discrete Sobolev inner product and norm, with |a| = a; +--- + ag4, by

1
v, Wins = ) (0%, 0" W)n,  IVllns = (v, v), ; fors > 0.

|al<s

We shall also use
u(x) — u(x — hej)

h
For a domain G c RY, we define the norm on the Sobolev space H5(G) by

1
_ 2 2 _ 0 ay ) A4
W = (X ID°VE ) D= (50) - (50) -

|al<s

oju(x) =

For U periodic, we write ||U| s for its norm on H® = H5(Q). We note that, defining Uy, to be the restriction of U
to the mesh Qp, i.e., by (Up)y = U(xy), we have

d
[Unlln,s < CIlU|ls  for s > 5 (2.1)

In fact, let
QX)) ={y=W1,...»ya) s lyi-xil<sh, 1=1,...,d}.

Then, for |a| = s, £(U) = (0°Uy) is a bounded linear functional on C(Qs(x)), and therefore, by the Sobolev
embedding theorem, if s > %, also on H%(Qs(xy)), which vanishes for polynomials of degree < s — 1. A simple
argument using the Bramble-Hilbert lemma therefore shows

10%Un)wl < Ch™ % Ulls, gex, - 2.2)

Hence |Upln,s < C|Ulls, where |V|i,5 = Zlal:slla“vlli. Since [|Uplln,s < CUIUnlln + |Unln,s), this shows (2.1). In
particular, [|[Unlln,2 < Cl|U|; ford = 1, 2, 3; itis our need for this inequality which is the reason for our restric-
tionon din (1.1).

Consider now the matrices A and B in (1.8), and note that, for |a| < s,

l0“Au — Ado"ulln < Cllulln,s+1 and  [0“Bu — Bo“ulln < Cllullp,s. (2.3)

In fact, 0“A and A0“ are linear combinations of difference quotients of orders < s + 2, and in the difference,
the highest-order terms cancel so that the orders are < s + 1, which shows the first inequality. The second
inequality is shown analogously. Further, with C independent of h,

lAullp,s < Cllulln,s+2 and [|Bullp,s < Cllullp,s+1- (2.4)
The matrix A is positive semidefinite, with
||V||f,,1 < C((Av, v)p + IIVIIf,) and IIVIIﬁ,z < C(IIAVIIﬁ + IIVIIﬁ)- (2.5)

Since the terms in AU}y, are symmetric difference quotients of U at the mesh points x,, and the terms in
(AU)y, are the corresponding derivatives of U at x,,, we find, similarly to (2.2),

[(AUR) (X)) = (AU)(X)| < Ch? 2| Ull4, 0, (x> (2.6)

and similarly for B,
d
|(BUR) (Xo) — (BU)(Xw)| < Ch*2|[Ull3,, (x)s (2.7)

expressing, in particular, that (1.7) is a second-order approximation of (1.1).
For B = (by,y), we have

I t55bj(xy) ify=wzxej,j=1,...,d,
X 0 for other y,
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and that then by.e;,0 = — 55 bj(Xw+e;). We may write
1 1
B=Bo+B;, withBg= E(B -BT), B, = E(B +BT).
Here By is skew-symmetric and B; symmetric, with

ob; "
.

d

1
Bivin < Billvin, where By = = ||
1Bty = falvin,  wherepy = 5 3 [5

In fact, for d = 1, with [ = w;, we have by 141 = J_r% b(;l"), and hence
1 11b(x;41) — b(x 1
2 b + b = 1| PPN Ly
so that [|Byv|p < %||b'||c||V||h- The case d > 1 is treated analogously.
We note that (Bgv, v) = 0 for all v so that
[(Bv, V)i| = |(B1V, V)u| < Blllvllfl forallv € Py. (2.8)
We shall also use
d
IBvI; < B(Lv,v)p forallv e Py, withB=|% b7l , (2.9)
ji=1 " lc

In fact, since (Bv), = %(Zlil bj(9; + 0j)v),,, we find

1 d d B 1.4
(Bv)? < Z,Zl b;(xw)zjzzl((aj +0j)Ve)* < zﬁguajvw)z + (0jVar-e,)?).

Thus |Bvl? < B YL, 10;vl7 = BLV, V)n.

3 The Semidiscrete Problem, the Backward Euler Method
and the Basic Splitting
We begin with the straightforward standard error analysis of the spatially semidiscrete problem (1.7), which

we include for completeness. We first show stability and a smoothing property of the solution operator of (1.7)
for f = 0, in discrete Sobolev norms.

Lemma 3.1. Let E(t) = e/B~4). Then, for any s > 0 and T > 0, we have, with C = Cr,s independent of h,
IE(tVIns < Ct 2 Vins forj=0,...,s, O0<t<T. (.1)
Proof. Lets > 0, and let |a| = s. From (1.7), we find, for u(t) = E(t)v,
(0%u¢, 0"u)n + (0%Au, 0%u)y = (0“Bu, 0*u)p.
Hence, by (2.3) and (2.8),
1d
2 dt
Using (2.5) and summing over |a| < s, we find, with ¢ > 0,

2 2
lo%ully + (A0%u, 0“u)p + 0%ully, < Cllullp,s+1llulln,s-

d, .o 2 2 2
¢ Mlh,s + 2¢lullygpq < Clllin,sealiullns < clully g0 + Cllull g

or, by Gronwall’s lemma, with C = Cr,
t
lu(e)I2 ; + j||u(y)||ﬁ,s+1 dy<Clvl}, fort<T, (3.2)
0

from which, in particular, (3.1) with j = 0 follows.
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SlIIlllal‘ly, we have, f()l’ S 2> 1,
"ul” — (llu’u ) - (Bu’u ) -1 < C"u” "u ” 1°
h,s—1 t h,S 1 t h,S 1 h,s t h,s—

and hence d
E(t(Au, Wh,s-1) = (AU, Wp,s-1 + 2t(Au, Up)p,s-1 < CIIuIIi,S fort<T,

or, by (3.2),
t
(A, w1 < C M) g dy < CIVEE . (33)
0

By (2.3) and (2.5), we have, for |a| < s - 1,
cloully , < (A0%u, 0w + 0%ull; < (0*Au, 0*w)n + Cliulln,s lulln,s-1-
By summation over |a| < s — 1, this shows
lully ¢ < C(Au, wn,s-1 + Clluln,s, lulln,s-1,
and hence, after kicking ||ul|s,s back to the left, and using (3.3),
tlully ¢ < Ct(Au, w51 + Ctlully oy < Clvlly,_, fort<T,
i.e., (3.1) forj = 1. Forj > 1, (3.1) now follows from E(t)v = E(€)jv. O

)

Note that the special case of E(t) = e~ is included for B = 0.
As a consequence of Lemma 3.1, we have the following second-order error estimate for the spatially
semidiscrete solution u(t) of (1.7).

Theorem 3.1. For the solution u of (1.7), withv = Vy, f(t) = Fp(t) and U(t) the exact solution of (1.1), we have,
forany e > 0,

lu(t) = Un(O)lln < Ce,Th2<||V||Z+£ + J||F(0)||2+s dU) fort<T. (3.4)
0

Proof. Setting w = u — Up, we find
w¢=-Aw+Bw+p inQp, fort>0, withw(0)=0,

where p = ((AU)y — AUy) — ((BU)y — BUy). Here, by (2.6) and (2.7), lp(t)ln < Ch?|U(t)|l4, and hence, since
E(t) is bounded by Lemma 3.1,

t
lw(®ln = “jE(t —y)p(y) dy
0 h

t
< Crh? JIIU(y)||4 dy fort<T. (3.5)
0

For the homogeneous equation, we recall the smoothing estimate
IUD)s = 1€E@)Vll4 < Cey 2 (|Vllpye foro<ys<T. (3.6)

In the present context, this may be shown for € = 0 and 1 in the same way as in Lemma 3.1, and for € € (0, 1)
by interpolation. This estimate implies (3.4) when F = 0, by (3.5). To complete the proof of (3.4), we need
to use linearity and add the estimate for the solution of the nonhomogeneous equation with ¥V = 0, which is
Uly) = on &(y — 0)F(0) do. Using (3.6), we find

y
UGl < Ce j(y — 0) " F(0) e do.
0
Hence (3.4) follows from

t t t
j||U(y)||4 dy < Cee™ j(t — )5 IF()ase do < Corr j||F(o)||2+g do. O
0 0 0
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We now turn to the backward Euler method (1.9), the analysis of which will be the basis for the analysis of
our splitting method (1.11). We begin with stability.

Lemma 3.2. We have |E}v|, < e?PT|v]ly, for t, < T and k < ﬁ

Proof. For it = Ejv, we have (I + kA — kB)ii! = v, and hence

NI + k(A @)p = k(B @) + (v, ')n < kBt I + VIRl In

so that [|ii'|lx < kB1lli [l + [VIx or |Exvin < (1 = kB1) " vin < e2PrK||v||y, for k < 35, from which the result
follows. O
Lemma 3.3. We have |Exv - E(k)V|n < Ckillvllh,zjforj =1,2.

Proof. Setting G(y) = (I + yA — yB)™! — e¥8-4) and noting that G(0) = G'(0) = 0, we obtain by Taylor’s for-
mula

9 12 1 "
IExv = E(VIin = 1GU)viin = I(G(k) = G(0) - kG (0)vln < Ekz SUIkOIIG »vln-
y<

Here, for y < k, using (2.3) and Lemmas 3.1 and 3.2, with M = A - B,
IG" y)Viln < 21T + yM)>M*VIlp + e M?v|y < ClIViin,4,
which shows our claim for j = 2. Similarly, for j = 1, the result follows from

IG(k)Vin < ksuEHG,(Y)V"h < Ck[vn,2- O
y<

We can now prove the following error estimate for the time discretization of the homogeneous equation.

Lemma 3.4. Withv = Vy, we have, for any € > 0,
”EﬁV—E(trz)V”h < Ce, 7kl Vll24e  fort, <T.

Proof. We write

n-1 X
Elv-E(tnv =Y E;7(Ex - E(0)E(t)v.
j=0

Using Lemmas 3.2 and 3.3, we obtain, for t, < T,
. n-1
IExv — E(tn)Vin < Ckllvlin,2 + ck? z IECt)Vn,a.
j=1

By Lemma 3.1 and (2.1), we have |E(t)Vn,4 < Ct7||Vplln,4-25 < Ct7|Vll4-zj for j = 0, 1, and hence, by inter-
polation between H? and H*,

IE@VIIn4 < Cet 2| Vllpse fore >0, t>0.

Therefore,

n-1
- _1+£
IEXY = E(tn)VIin < Cgk<1 +ky t; " )II Vii2+e < Ce, 7kl Vil e O
j=1

We now show the corresponding error estimate for the nonhomogeneous equation with vanishing initial
values.

Lemma 3.5. For the backward Euler solution (1.9) and the solution of (1.7), with v = 0, we have, for any € > 0,

ty
18" ~ u(ta)ln < Ce,k J(||F(U)||2+e +IF (@)llc)do forty < T.
0
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Proof. With I; = (tj_1, t;), we may write the error e = ii" — u(t,) as
ty

e" =k Y P - | Bt - nfty) dy
j=1 0

— kY (B = Bt + Y (KEG)f - [ Bn =)0 dy) =1 +1".

j=1

4

-~
I
[

Ij

InJ', we write
]

kfl = jf(y) dy + j j (o) do dy.

i Ly
Hence J' = J| +J5, where, using Lemma 3.4, for t, < T,

tn

Wil < 3 [IEY = Bl dy < Cork [IFQ e dy:
j=1 I]. 0

Further, since E,'Z_j ~ E(ty-;) is bounded for t, < T,

n b tn
Uit < Cr Y. [ [IFy@lh dods < Crk [1F @)l do.
=15 0

Similarly, J" = Z}’zl J", where

1) = [Etapf - Bltw - y)fin) dy
I]
U]

- j j %(E(tn ~ 0)f(0)) do ds
L5
tj

- j jE(tn — 0)(A - B)f(0) + f(0)) do dy.

Ly

Thus, again using (2.1),

Wi'ln < Crk J("f(g)"h,z +1f'(0)ln) do < Crk I(IIF(G)IIz +[F'(0)lc) do,

Ij Ij
and thus
n ty
" ln < ZII];'IIh < CTkJ(”F(U)”Z +|F' (0)lc)do fort, <T.
j:1 0
Since [leln < 1T} 1n + 151k + 17" In, this completes the proof. O

Together, Theorem 3.1 and Lemmas 3.4 and 3.5 show the following complete error estimate for the backward
Euler method.

Theorem 3.2. Let ui" be the solution of (1.9) and U(ty) the exact solution of (1.1) at t = t,. Then, forany € > 0
andt, < T,

13" = Un(tn)n < Ce,r(h* + k)(||V||2+s + J(llF(0)||2+s +1F' (0)llc) dU)-
0

We now turn to our basic splitting method. For small ¢, we shall need a stability estimate for the hyperbolic
part of Ej = ekBe k4,
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Lemma 3.6. Forany s > 0, there is a constant s > B1, with Bo = B1, such that
le®Vins < ePstIviins fort=o. 3.7)
Also, with |IVII7 = [Av]? + |V} and k > O,
lle®vilx < e llvlln  fort=o0. (3.8)
Proof. Lets > 0, and let |a| < s. Then, for w(t) = e'Bv, using (2.3),
(0%w¢, 0“w)n = (9"Bw, 0“W)y < (BO*w, 3wy + Cllwllj, .

By (2.8) and summation, we conclude that

d
Ellwllﬁ,S < 2B1 + Olwl, 5, (3.9)
which shows (3.7). For s = 0, this holds with C = 0, and hence f, = .
Using [|(AB — BA)W|n < Cllw|n,2, cf. (2.3), (2.4) and (2.8), we have
(Aw, AW)p = (ABw, Aw)p < (BAw, Aw)p + Clwll; , < Clwl; , < Cliwllj.

Using also (3.9) with s = 0, we find, by addition, %Illwlllﬁ < 2«||wllz, with k > 0, which shows (3.8). O

In particular, this implies the stability of the basic time stepping operator.
Lemma 3.7. We have
IERVIR < e Tl fort, < T. (3.10)

—-kA

Proof. Since obviously [[e™**v|, < ||v|l, for all v € P, and k > 0, we have, by (3.7) with s = 0,

IExvin = le*Pe ™ vl < P klle ™ vin < e |vily,
which implies (3.10). O
We now show the following local-in-time error estimate for Ej.
Lemma 3.8. We have ||Exv — E(k)v|n < CK||V]lp,2j forj =1, 2.
Proof. The proof is analogous to that of Lemma 3.3, now with G(y) = e¥Be ¥4 — e¥(B-4) in which case,

IG" i< Y I1ePB AR e V] + (B - A)*e P Dyl < Cllviln,a. O
i1+i2=2

We now show the following error estimate for the basic splitting method.

Theorem 3.3. Let u™ be the solution of (1.10) and U(t,) the exact solution of (1.1) at t = t,. Then, forany € > 0

andt, < T,
tn

Iu™ = Un(tn)In < Ce,r(R* + k)<||V"2+£ + J(||F(0)||2+£ +IF'(0)lc) dO)-
0

Proof. The proof is analogous to that of Theorem 3.2 for the backward Euler method. For the homogeneous
equation, we obtain, using Lemma 3.8 instead of Lemma 3.3, for any € > 0,

IEXv = E(tn)VIin < Ce, kI Vl24e  for tn < T. (B.11)

Using this then shows, as in Lemma 3.5, for v = 0,
tn
lu" — u(ty)lln < Ce,TkJ(||F(U)||2+s +|F'(0)lc)do  fort, <T. (3.12)
0

The proof is now completed by Theorem 3.1. O

We note that, when A and B commute, the error in (3.11) vanishes, and thus the term in k||V||24¢ in Theo-
rem 3.3 may be removed. However, as is easily checked, (3.12) remains unchanged.
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4 The Fully Discrete Splitting Method

We now turn to our proposed time stepping operator Ey, x = H,’::n Qg defined in (1.11) and begin with the

following stability result.

Lemma 4.1. Let 1 and B be as in (2.8) and (2.9), and let y > B. Then

=

y -
4dy?”

IHkviin < (1 + Bk IVIn if% <po, wherepj =
Further, with m > 1, we have
IE oviln < P Tlvily for% <mpo, th < T.
Proof. We have
IHvIl = llv + kBv — yk*Lvll;, = Il + 2k(Bv, V), — 2yk*(Lv, v)p, + IkBv - yk*Lv;..
We note that |Lv|? < Amax(L)(LV, V), < 4dh™2(Lv, v),. We thus find
IKBY - yiC AV} < 2K2|BVIE + 2y*K*ILvIE < 2k%(B + 4dy2<%>2)(Lv, Vh
< 2k2(ﬁ + 4dy2p(2))(Lv, V)h = 2k2y(Lv, V).
Hence, using (2.8),
IHkvIl; < VI + 2KI(BY, Ial < VI + 281KV < (1 + Bk VI,
which shows (4.1). Since |Qxvlx < |viln, we have
_ M
NEm ivlin = IHP Qvlin < (1 +/315) IQivin < e[V,

Hence
NER (vin < e Xl < P TIv fort, <T,

which completes the proof of (4.2).

(4.1)

(4.2)

O

We note that the choice of y which makes pg as large as possible is y = 2, in which case po = 1/1/16dp.
We start the analysis of the time discretization error with the following lemma concerning the error in the

hyperbolic and parabolic parts of Ex, where we assume that a;, a, and 3, satisfy
IAVIn < ajlViln2j, j=1,2, and [B?viy < Balviln, forallve Pp.

Lemma 4.2. With po as in Lemma 4.1 and 8, as in (3.7), we have, with Co = 32 + a1y,

3 k
I(e*® — H in < CoeP*m™ i vin,z for - < mpo.

Further,
I(e™ 4 — Q)viin < Gk |IVlln,o;  forj=1,2.

Proof. By Taylor expansion and Lemma 3.6, we have

I(e*B — Hvln < (eXB — I — kB)VIly + yK2 [ AVl < + YK | Avin

k
J(k —y)eY8B%vdy
0

h

1
< SePHRIB VI + I 1AVIA < (52 + ary )R IvIh2,

N|

which shows (4.3) form = 1.

(4.3)

(4.4)

(4.5)
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To show (4.3) for m > 1, we write

m-1 . .
HY v-eBy = Y H'77(Hy, - e"nB)elfnby, (4.6)
j=0
By (4.5), we have
k
I(e*nB — Hy, Viln < CoePr*n k2 [Vllp,, for 5 < MPo. (4.7)

Using (4.6), (4.1), (4.7) and (3.7), we conclude

m-1
IHE v =Pyl < ) et mbryen? — Yl nBy|,
j=0
m-1 . .
< Cokpy Y, em Dby
j=0
< Coe™ P2 mic, IViln,> = CoeP*m I |Viln,».
For (4.4), itis easily verified that0 < (1 + 1) 1 — e < c,-/li forA > 0,j = 1, 2, and hence, by eigenfunction
expansion,
1Qkv - e vl < KAV < ¢k [VIn,o;. O
We continue the analysis by defining the one-step operator Ey = ek8 Q) approximating only the factor e %4 in
the product Ex = eBe~*4 and leaving the factor ek exact. We then define the corresponding solution of the

nonhomogeneous equation by
" = Ei™t 4 kf" forn > 1. (4.8)

For the homogeneous equation, we write the error in the full discretization of the basic splitting method
after n steps as
E',:Lkv—E,'jv = (v - EMv) + (E"m’kv—EI’Zv). (4.9)

We note that the first term on the right is independent of m. We begin by estimating this term.

Lemma 4.3. Lete > 0. Then, forv=Vyandt, < T,
IERv = Efviin < Ce, 7kl Va4

Proof. In view of (3.11) in the proof of Theorem 3.3, it suffices to show the same bound for EZV — E(ty)v.
Using Lemma 3.6, we have |Exvin < ePX|Qnviin < eP¥|v|, so that Ej is stable, and hence

n-1
IERV — E(ta)VIn < ePrin Z I(Ex — E(K)E(tj)VIln.
j=0
Here, by Lemmas 3.6, 4.2 and 3.8,
IExv = EGoviln < |Exv — Exviln + |Exv — E(OVIIn
< 1e*B(Qi - e )Vlln + CK [Viin,25 < CKIVIIR25, =1, 2.
Hence, as in Lemma 3.4, for t, < T,
B n-1
IERv — E(ty)Vin < C(k”V"h,Z + k2 Z IIE(l‘j)VIIh,4> < Ce, 7kl Vl24e. O
j=1
For the second term on the right in (4.9), we have the following lemma.

Lemma 4.4. With po and m as in Lemma 4.1, we have, with v = Vy,

NER v - ERviln < Crkm™|Vlln,2 < Crkm™ Y|V, for tn < T.
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Proof. By Lemma 4.2, we have
NEm,k = Ex)viln = I(H}. = ®)Quviin < CKPm™ M |Quviin,2 < CPm ™ [Vlin,2,
where the last step follows since | - ||n,> is equivalent to || - ||, and hence
1Qnvlin,2 < CllQRVIIR < CllVIlR < ClVIIn,2.

Since Ey, i is stable in || - ||, by Lemma 4.1, we find, for t,, < T,

n-1 n-1
T 5 ¢ T e VB 2 -1 pJ
IER, (v = Epvin < P Y [(Emi - EOEWVIn < Cr Y Km ™ Evin,2.
j=0 j=0

Further, Ey is stable in || - |,» since, by Lemma 3.6,
NExviln = e Quviln < e lQrviln < e IVIln.
Hence, fort, < T,
IED, i — EDVIn < Crnk®m ™ vlin 2 < Crkm Y| V] O
The results corresponding to Lemmas 4.3 and 4.4 for the nonhomogeneous equation are the following.

Lemma 4.5. Let u" and u™ be defined by (4.8) and (1.10), respectively, with v = 0. Then, for € > 0, we have
tn
" —u"lp < Cs,TkJ(”F(U)"2+£ +|F'(0)lc)do  fort, < T.
0
Lemma 4.6. With po as in Lemma 4.1 and € > 0, let i)}, and u™ be defined by (1.11) and (4.8), respectively,
with v = 0. Then we have, for IH( < mpo,

ty
- . k
it — 4"k < Cr J("F(U)”z +IF'(0)lc)da  forty <T.

The proofs are analogous to that of Lemma 3.5, using Lemmas 4.3 and 4.4 instead of Lemma 3.4, respectively.
Using Theorem 3.1 and Lemmas 4.3-4.6, we can now state our main result.

Theorem 4.1. Let u?, be the solution of (1.11) and U(ty) that of (1.1) at t = t,,. Then, with po as in Lemma 4.1
and € > 0, we have, for t, < T,

ty

Iy, — Un(tw)ln < (Ce,rh? +(Cppm™ + CQ’,T)k)(IIVIIm + J(||F(U)||2+£ +1F'(0)lc) d(f)-
0

5 Numerical Illustrations
In this section, we present some numerical computations to illustrate our error estimates. We begin with the
one-dimensional version of (1.1),
Ui = (aUy)x + bUy+ F forx € (0,2m), t >0,
with a(x) =1 + % cosx, b(x) =1+ % sin x, and consider first the inhomogeneous term
F(x,t) = Ut — aUyxy — (ax + b)Ux
with U(x, t) = sin(x - t) + %cos 2(x + t) thus giving V(x) = sinx + % cos 2x. For the above choice of b, we

obtain B1 = 1[|b’|lc = # and B = [|b?|lc = 2.25 giving y = 4.5and po = £ ~ 0.17. We take h = 27, k = %, with

N = M, which ensures % = ﬁ =~ 0.159 < po thus satisfying the hypothesis of Theorem 4.1.
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M u-Unlln  1d% - Unlln  1u¥ = Unlln 1PV IHYIe IHY IR 13 - Unlis
10 0.2061 0.4212 0.3379 0.0726 0.3082 0.0854 0.3626
20 0.0513 0.1718 0.1279 0.0389 0.1604 0.0425 0.1471
40 0.0128 0.0760 0.0545 0.0199 0.0825 0.0212 0.0660
80 0.0032 0.0355 0.0251 0.0101 0.0419 0.0106 0.0313

Table 1: Partial and complete errors for the first example (d = 1), with m = 4.

m  u¥ - Unly  u¥—uln 1P IHR A IToln 1@ - Unln
1 0.0251 0.0232  0.0101 0.0419 0.03578 0.05055
2 " " " 0.0212  0.01605 0.03595
3 " " " 0.0142 0.01033 0.03255
4 " " " 0.0106 0.00824 0.03129
5 " " " 0.0085 0.00752 0.03071
8 " " " 0.0053 0.00751 0.03009
9 " " " 0.0047 0.00766 0.03001
10 " " " 0.0043 0.00781 0.02995
12 " " " 0.0036 0.00807 0.02988

Table 2: Partial and complete errors for the first example (d = 1), with m varying and M = 80.

The time stepping is carried out till £y = Nk = 1, and the errors are presented in Tables 1 and 2. The
first column of Table 1 contains the number M of spatial points, columns 2, 3 and 4 show bounds for the
semidiscrete error (Theorem 3.1), the error using the backward Euler method (BE) (Theorem 3.2), and the
basic splitting error (Theorem 3.3). We split the total remaining error in the time discretization error of the
inhomogeneous equation as

Th =ty —u = N —u™) + @y, - ") = PV + HY,

where PN and HY may be thought of as the parabolic and hyperbolic parts of the total error TY and are given
in columns 5 and 6. By Lemmas 4.3 and 4.5 for U appropriately smooth, [P, < C(U)k, independently of m,
and by Lemmas 4.4 and 4.6, |HN |, < C (U)%. Columns 5 and 6 show that [|P¥||;, and ||H11V |» are essentially
proportional to k. Table 2 then shows that, for M = 80, ||H{V [l is essentially proportional to %

We want to discuss the choice of m for our problem. We recall the constants Cy = % B2 +ayyand C; = cra;
in Lemma 4.2. By simple calculations using our definitions, we may now take a; = @, ar = %, B = %,
cy = %, and thus Cy = 7.4 and C, = 4.7. Since Cy > C,, we have reason to believe that ||H11V||h > PN, and
this is confirmed by Table 1. A reasonable approach is to choo§ve m in such a way that the parabolic and
parabolic parts of the error balance. In our example, we have llllllg’lvllllz =~ 4.2 for M = 10, and since this ratio is
essentially independent of M, m = 4 would be a reasonable choice also for other M. This choice is used in
columns 7 and 8 of Table 1.

We recall that |HY||, — 0as m — co. Hence | TN |, — [|[PV||, as m — co. We also observe that the sum of
the norms in columns 4 and 5 of Table 2 would be a pessimistic estimate of | TX [, in column 6. Furthermore,
this error decreases for small m with a factor greater than m and, in fact, goes below its limit value |PV|; and
then starts to increase.

We next consider a case where the hyperbolic error is already smaller than the parabolic error for m = 1.
For this, we take a = 4, b = 1, U(x, t) = e {sin(x + t) giving us V(x) = sinx, F = U; — 4Uyy — Uy. The results
are presented in Table 3 with N = 2M. Here ||H11V In < IPNln, and thus m = 1 is a reasonable choice.

Finally, we consider the problem in two space dimensions for the nonhomogeneous equation

Ut = AU + b1 Uy, + byUy, + F for x = (x1, x2) € (0, 2m)?,

with b (x) =1 + % sinxq cos xz, bo(x) =1 + % €os x1 sin x,. We choose F and V to be such that the exact solu-
tionis U(x, t) = e~!sin(x; + t) sin(x, + t), which gives

Fo,t) =UX, 6) + (1 = b1(xX)Ux, (x, t) + (1 = b2(x)) Uy, (x, t) and V(x) = U(x, 0) = sinxy sinx,.
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. N N
M lu-Unlln NG - Upln  |u" = Unln  1PYVIn  IHYVIR @Y - Unlln

10 0.0311 0.1582 0.0761 0.0802 0.0494 0.1066
20 0.0076 0.0721 0.0305 0.0407 0.0225 0.0486
40 0.0019 0.0344 0.0134 0.0205 0.0108 0.0231
80 0.0005 0.0167 0.0062 0.0103 0.0053 0.0113

Table 3: Partial and complete errors for the second example (d = 1), with m = 1.

M lu-Unln 13 Unln 1" -Unln  1PYIn 1HYIn IHYIe 1T - Unln
10 0.0870 0.1953 0.1304 0.0696 0.3852 0.0770 0.1004
20 0.0216 0.0804 0.0565 0.0358 0.2044 0.0376 0.0320
40 0.0054 0.0358 0.0281 0.0181 0.1062 0.0186 0.0117
80 0.0013 0.0168 0.0161 0.0091 0.0542 0.0093 0.0049

Table 4: Partial and complete errors for the third example (d = 2), with m = 6.

In this case, we obtain f§ = [|b? + b3|lc = 3.25.and y = 2 = 6.5, thus

1 ko1
6= ———~0.098 >~ = — = 0.080,
(4-8-3.25)7 h 4n

the condition needed for p¢ as required by Theorem 4.1. Table 4 contains the corresponding results for the
same h, k, M and m as earlier, with N = 2M. The error behavior is similar to that in the one-dimensional cases
given above. It was found that the time taken for BE is larger for M = 80 in this case. This could be due to our
replacing an antisymmetric problem (1.9) with a symmetric version (1.11) thus making the linear algebra
efficient. We conclude that for two-dimensional case with large number of mesh points, our splitting method
is less time consuming and more accurate than the BE. The optimal choice for m for M = 80 is now found to
be m = 6, and the estimate by a calculation for M = 10is m =~ 5.5.
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