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Abstract:We analyze a second-order in space, first-order in time accurate finite difference method for a spa-
tially periodic convection-diffusion problem. This method is a time stepping method based on the first-order
Lie splitting of the spatially semidiscrete solution. In each time step, on an interval of length k, of this solu-
tion, themethod uses the backward Eulermethod for the diffusion part, and then applies a stabilized explicit
forward Euler approximation on m ≥ 1 intervals of length k

m for the convection part. With h the mesh width
in space, this results in an error bound of the form C0h2 + Cmk for appropriately smooth solutions, where
Cm ≤ C󸀠 + C󸀠󸀠

m . This work complements the earlier study [V. Thomée and A. S. Vasudeva Murthy, An explicit-
implicit splitting method for a convection-diffusion problem, Comput. Methods Appl. Math. 19 (2019), no. 2,
283–293] based on the second-order Strang splitting.
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1 Introduction
In this paper, we shall consider the numerical solution by finite differences and splitting of the convection-
diffusion equation

∂U
∂t
= ∇ ⋅ (a∇U) + b ⋅ ∇U + F in Ω, for t ≥ 0, with U(0) = V, (1.1)

in the cube Ω = (0, 2π)d, with d = 1, 2, 3, under periodic boundary conditions. With x = (x1, . . . , xd), we
assume that the positive definite d × dmatrix a = a(x) = (aij(x)) and the vector b = b(x) = (b1(x), . . . , bd(x))
as well as the forcing term F = F(x, t) and the initial data V = V(x) are periodic and smooth.

Equation (1.1) is a special case of the initial-value problem for the operator equation
dU
dt
= −AU +BU + F for t ≥ 0, with U(0) = V, (1.2)

whereA andB represent different physical processes, in our case diffusion and convection, respectively, or

AU = −∇ ⋅ (a∇U) and BU = b ⋅ ∇U. (1.3)

The solution of (1.2) may be formally expressed as

U(t) = E(t)V +
t

∫
0

E(t − y)F(y) dy, where E(t) = e−t(A−B) for t ≥ 0.
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To discretize (1.2) in time, let k be a time step, and set tn = nk. We then have

U(tn) = E(k)U(tn−1) +
tn

∫
tn−1 E(tn − y)F(y) dy for n ≥ 1.

We may then find an approximate solution Ŭn ≈ U(tn), n ≥ 1, by approximating the integrand by its value
at tn, or Ŭn = E(k)Ŭn−1 + kFn, where Fn = F(tn) for n ≥ 1, with Ŭ0 = V.

In the next step, we shall approximate E(k) = e−k(A−B) by splitting A −B into A and −B, and replace
E(k) by using the Lie splitting

Ek = ekBe−kA ≈ E(k) = e−k(A−B) (1.4)

so that the time discrete solution Un, n ≥ 1, is defined by

Un = EkUn−1 + kFn , where Fn = F(tn) for n ≥ 1, with U0 = V. (1.5)

Applying Ek thus involves solving the parabolic equation Ut = −AU and the hyperbolic equation Ut = BU on
(tn−1, tn); see e.g. Hundsdorfer and Verwer [5], Descombes [1] and references therein. The two exponential
factors of Ek may then be further approximated by rational functions of A and B, respectively, such as the
backward or forward Euler approximations.

We note that if A and B commute, which holds for (1.1) when a and b are independent of x, then
e−k(A−B) = ekBe−kA so that the error in (1.4) is zero.WhenA andB do not commute, then formally, by Taylor
expansion, ekBe−kA − e−k(A−B) = O(k2). Under the appropriate assumptions, this will lead to an O(k) error
bound in (1.5) for tn bounded.

Another possible approximation of E(k) is the Strang splitting E(k) ≈ Ek = e
1
2 kBe−kAe 1

2 kB for which the
symmetry gives local accuracy of order O(k3), resulting in an error estimate in (1.5) of order O(k2) for tn
bounded, cf. [8]. In [9], a finite differencemethod based on the Strang splitting was analyzed for the homoge-
neous case of (1.1). The present paper using the less accurate Lie splittingmay be thought of as a complement
to [9]. It is intended toprovidebackground for futurework onmore general problems, considering for instance
maximum-norm estimates, reaction-diffusion equations, problems with nonsmooth data and also the com-
bination of splitting with the finite element method. As a first step, the case of nonhomogeneous equations
is included here.

Error estimates for time splittings may be found in [2–4, 6] and references therein. For an extensive list
of related work, see MacNamara and Strang [7].

In the method that we study in this paper, we begin by discretizing (1.1) in the spatial variables. We let
h = 2π

M , where M is a positive integer, and define a corresponding uniform mesh

Ωh = {x = xω = hω = h(ω1, . . . , ωd), ωl = 1, 2, . . . ,M, l = 1, . . . , d}. (1.6)

We denote by Ph the M-periodic vectors u with elements uω, corresponding to the mesh points xω, and with
uω+Mel = uω, l = 1, . . . , d, where el is the unit vector in the xl direction. Note that we use capital letters for
functions in Ω and lowercase letters for vectors in Ph. We consider now the second-order spatially discrete,
continuous in time, finite difference ODE system for u(t) ∈ Ph,

du
dt
= −Au + Bu + f for t ≥ 0, with u(0) = v, (1.7)

where theMd ×Md matrices A and B corresponding to the differential operatorsA andB in (1.3) are defined
by

Au = −
d
∑
i,j=1

∂̄j( ́aij∂iu) and Bu =
d
∑
j=1

1
2bj(∂j + ∂̄j)u. (1.8)

Here ∂j and ∂̄j are forward and backward finite difference quotients in the direction of xj,

́aij(xω) = aij(xω +
1
2hei),

and v and f the restrictions of V and F to Ωh. It is then to (1.7) that we will apply the Lie splitting.
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The solution of (1.7), the spatially semidiscrete solution, is

u(t) = E(t)v +
t

∫
0

E(t − y)f(y) dy, where E(t) = e−t(A−B),

and we shall see that the error in this approximation is of order O(h2), under the appropriate regularity
assumptions.

For the time discretization of (1.7), an obvious first choicewould be the backward Eulermethod, defining
the discrete solution ̆un at tn by

̆un = ̆Ek ̆un−1 + kf n , n ≥ 1, with ̆u0 = v, where ̆Ek = (I + kA − kB)−1. (1.9)

The basis of the method we study here, however, will be the splitting method analogous to (1.4), (1.5),
defined by

un = Ekun−1 + kf n for n ≥ 1, with u0 = v,
where Ek = ekBe−kA ≈ E(k) = e−k(A−B).

(1.10)

Similarly to the continuous problem, when A and B commute, Ek = E(k).
For a practical numericalmethod,we thenneed to approximate the two exponential factors in Ek by ratio-

nal functions. For the approximationof e−kA,we shall use theunconditionally stable backwardEuler operator
Qk = (I + kA)−1 ≈ e−kA for k > 0. To approximate ekB, we would like to use the forward Euler method, or
ekB ≈ I + kB. For stability reasons,we shall need to add an artificial viscosity term, sowe set Lu = −∑dj=1 ∂̄j∂ju
and define Hk = I + kB − γk2L for k

h ≤ ρ0, where the positive constants γ and ρ0 will be defined later.
In order to increase the limit ρ0 for the mesh ratio, and to increase the accuracy of the approximation in

the hyperbolic part, one may replace the operator Hk by Hm
km , with km = k

m for some positive integer m, and
the stability requirement will then be reduced to k

h ≤ mρ0. This means that the approximate solution of the
hyperbolic part of Ek is obtained in m steps of length km = k

m .
We consider thus the time discrete solution at time tn = nk, defined by

ũnm = Ẽm,k ũn−1m + kf n , with f n = f(tn) for n ≥ 1, ũ0m = v,
where Ẽm,k = Hm

kmQk , with k ≤ mρ0h.
(1.11)

This method, which we will refer to as our fully discrete method, thus replaces at each time step the back-
ward Euler solution of our nonsymmetric problem (1.7) by a backward Euler approximation of a symmetric
parabolic problem, followed by an explicit finite difference solution of a hyperbolic problem.

After the introduction of notation and some preliminary observations in Section 2, the spatially semidis-
crete problem (1.7), (1.8), the backward Euler method (1.9) and the corresponding basic time splitting
method (1.10) will be analyzed in Section 3, where we will show O(h2) and O(h2 + k) error bounds for these
methods, respectively. The analysis of the fully discrete method (1.11) will be carried out in Section 4, using
discrete Sobolev norms. The time discretization error can be divided into an O(k) part associated with the
parabolic part of the equation and an O( km ) term for the hyperbolic part. In Section 5, we illustrate our
theoretical results with computations for examples with one and two spatial dimensions.

2 Notation and Preliminaries
With Ωh as in (1.6), we introduce the discrete inner product and norm

(v, w)h = hd ∑
xω∈Ωh

vωwω and ‖v‖h = (v, v)
1
2
h for v, w ∈ Ph .

Further, for x ∈ Ωh, we set

∂ju(x) =
u(x + hej) − u(x)

h
and ∂αu = ∂α11 . . . ∂αdd u for α = (α1, . . . , αd),



772 | A.K. Pani, V. Thomée and A. S. Vasudeva Murthy, First-Order Explicit-Implicit Splitting Method

and define the discrete Sobolev inner product and norm, with |α| = α1 + ⋅ ⋅ ⋅ + αd, by

(v, w)h,s = ∑
|α|≤s
(∂αv, ∂αw)h , ‖v‖h,s = (v, v)

1
2
h,s for s ≥ 0.

We shall also use
∂̄ju(x) =

u(x) − u(x − hej)
h

.

For a domain G ⊂ Rd, we define the norm on the Sobolev space Hs(G) by

‖U‖s,G = ( ∑
|α|≤s
‖DαU‖2L2(G))

1
2
, Dα = (

∂
∂x1
)
α1
⋅ ⋅ ⋅ (

∂
∂xd
)
αd
.

For U periodic, we write ‖U‖s for its norm on Hs = Hs(Ω). We note that, defining Uh to be the restriction of U
to the mesh Ωh, i.e., by (Uh)ω = U(xω), we have

‖Uh‖h,s ≤ C‖U‖s for s > d2 . (2.1)

In fact, let
Qs(x) = {y = (y1, . . . , yd) : |yl − xl| ≤ sh, l = 1, . . . , d}.

Then, for |α| = s, ℓ(U) = (∂αUh)ω is a bounded linear functional onℂ(Qs(xω)), and therefore, by the Sobolev
embedding theorem, if s > d

2 , also onH
s(Qs(xω)), which vanishes for polynomials of degree ≤ s − 1. A simple

argument using the Bramble–Hilbert lemma therefore shows

|(∂αUh)ω| ≤ Ch−
d
2 ‖U‖s,Q(xω). (2.2)

Hence |Uh|h,s ≤ C‖U‖s, where |v|2h,s = ∑|α|=s‖∂
αv‖2h. Since ‖Uh‖h,s ≤ C(‖Uh‖h + |Uh|h,s), this shows (2.1). In

particular, ‖Uh‖h,2 ≤ C‖U‖2 for d = 1, 2, 3; it is our need for this inequality which is the reason for our restric-
tion on d in (1.1).

Consider now the matrices A and B in (1.8), and note that, for |α| ≤ s,

‖∂αAu − A∂αu‖h ≤ C‖u‖h,s+1 and ‖∂αBu − B∂αu‖h ≤ C‖u‖h,s . (2.3)

In fact, ∂αA and A∂α are linear combinations of difference quotients of orders ≤ s + 2, and in the difference,
the highest-order terms cancel so that the orders are ≤ s + 1, which shows the first inequality. The second
inequality is shown analogously. Further, with C independent of h,

‖Au‖h,s ≤ C‖u‖h,s+2 and ‖Bu‖h,s ≤ C‖u‖h,s+1. (2.4)

The matrix A is positive semidefinite, with

‖v‖2h,1 ≤ C((Av, v)h + ‖v‖
2
h) and ‖v‖2h,2 ≤ C(‖Av‖

2
h + ‖v‖

2
h). (2.5)

Since the terms in AUh are symmetric difference quotients of U at the mesh points xω, and the terms in
(AU)h are the corresponding derivatives of U at xω, we find, similarly to (2.2),

|(AUh)(xω) − (AU)(xω)| ≤ Ch2−
d
2 ‖U‖4,Q1(xω), (2.6)

and similarly for B,
|(BUh)(xω) − (BU)(xω)| ≤ Ch2−

d
2 ‖U‖3,Q1(xω), (2.7)

expressing, in particular, that (1.7) is a second-order approximation of (1.1).
For B = (bω,χ), we have

bω,χ =
{
{
{

± 1
2h bj(xω) if χ = ω ± ej , j = 1, . . . , d,

0 for other χ,
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and that then bω+ej ,ω = − 1
2h bj(xω+ej ). We may write

B = B0 + B1, with B0 =
1
2 (B − B

T), B1 =
1
2 (B + B

T).

Here B0 is skew-symmetric and B1 symmetric, with

‖B1v‖h ≤ β1‖v‖h , where β1 =
1
2

d
∑
j=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∂bj
∂xj

󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℂ
.

In fact, for d = 1, with l = ω1, we have bl,l±1 = ±12
b(xl)
h , and hence

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
2 (bl,l+1 + bl+1,l)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
1
4
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
b(xl+1) − b(xl)

h
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
1
4 ‖b
󸀠‖ℂ

so that ‖B1v‖h ≤ 1
2 ‖b
󸀠‖ℂ‖v‖h. The case d > 1 is treated analogously.

We note that (B0v, v) = 0 for all v so that

|(Bv, v)h| = |(B1v, v)h| ≤ β1‖v‖2h for all v ∈ Ph . (2.8)

We shall also use

‖Bv‖2h ≤ β̃(Lv, v)h for all v ∈ Ph , with β̃ =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

d
∑
j=1

b2j
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℂ
, (2.9)

In fact, since (Bv)ω = 1
2 (∑

d
j=1 bj(∂j + ∂̄j)v)ω, we find

(Bv)2ω ≤
1
4

d
∑
j=1

bj(xω)2
d
∑
j=1
((∂j + ∂̄j)vω)2 ≤

1
2 β̃

d
∑
j=1
((∂jvω)2 + (∂jvω−ej )2).

Thus ‖Bv‖2h ≤ β̃∑
d
j=1‖∂jv‖2h = β̃(Lv, v)h.

3 The Semidiscrete Problem, the Backward Euler Method
and the Basic Splitting

We begin with the straightforward standard error analysis of the spatially semidiscrete problem (1.7), which
we include for completeness.Wefirst show stability and a smoothingproperty of the solution operator of (1.7)
for f = 0, in discrete Sobolev norms.

Lemma 3.1. Let E(t) = et(B−A). Then, for any s ≥ 0 and T > 0, we have, with C = CT,s independent of h,

‖E(t)v‖h,s ≤ Ct−
j
2 ‖v‖h,s−j for j = 0, . . . , s, 0 < t ≤ T. (3.1)

Proof. Let s ≥ 0, and let |α| = s. From (1.7), we find, for u(t) = E(t)v,

(∂αut , ∂αu)h + (∂αAu, ∂αu)h = (∂αBu, ∂αu)h .

Hence, by (2.3) and (2.8),
1
2
d
dt
‖∂αu‖2h + (A∂

αu, ∂αu)h + ‖∂αu‖2h ≤ C‖u‖h,s+1‖u‖h,s .

Using (2.5) and summing over |α| ≤ s, we find, with c > 0,
d
dt
‖u‖2h,s + 2c‖u‖

2
h,s+1 ≤ C‖u‖h,s+1‖u‖h,s ≤ c‖u‖

2
h,s+1 + C‖u‖

2
h,s ,

or, by Gronwall’s lemma, with C = CT,s,

‖u(t)‖2h,s +
t

∫
0

‖u(y)‖2h,s+1 dy ≤ C‖v‖
2
h,s for t ≤ T, (3.2)

from which, in particular, (3.1) with j = 0 follows.
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Similarly, we have, for s ≥ 1,

‖ut‖2h,s−1 + (Au, ut)h,s−1 = (Bu, ut)h,s−1 ≤ C‖u‖
2
h,s + ‖ut‖

2
h,s−1,

and hence
d
dt
(t(Au, u)h,s−1) = (Au, u)h,s−1 + 2t(Au, ut)h,s−1 ≤ C‖u‖2h,s for t ≤ T,

or, by (3.2),

t(Au, u)h,s−1 ≤ C
t

∫
0

‖u(y)‖2h,s dy ≤ C‖v‖
2
h,s−1. (3.3)

By (2.3) and (2.5), we have, for |α| ≤ s − 1,

c‖∂αu‖2h,1 ≤ (A∂
αu, ∂αu)h + ‖∂αu‖2h ≤ (∂

αAu, ∂αu)h + C‖u‖h,s ‖u‖h,s−1.

By summation over |α| ≤ s − 1, this shows

‖u‖2h,s ≤ C(Au, u)h,s−1 + C‖u‖h,s , ‖u‖h,s−1,

and hence, after kicking ‖u‖h,s back to the left, and using (3.3),

t‖u‖2h,s ≤ Ct(Au, u)h,s−1 + Ct‖u‖
2
h,s−1 ≤ C‖v‖

2
h,s−1 for t ≤ T,

i.e., (3.1) for j = 1. For j > 1, (3.1) now follows from E(t)v = E( tj )
jv.

Note that the special case of E(t) = e−tA is included for B = 0.
As a consequence of Lemma 3.1, we have the following second-order error estimate for the spatially

semidiscrete solution u(t) of (1.7).

Theorem 3.1. For the solution u of (1.7), with v = Vh, f(t) = Fh(t) and U(t) the exact solution of (1.1), we have,
for any ε > 0,

‖u(t) − Uh(t)‖h ≤ Cε,Th2(‖V‖2+ε +
t

∫
0

‖F(σ)‖2+ε dσ) for t ≤ T. (3.4)

Proof. Setting ω = u − Uh, we find

ωt = −Aω + Bω + ρ in Ωh , for t > 0, with ω(0) = 0,

where ρ = ((AU)h − AUh) − ((BU)h − BUh). Here, by (2.6) and (2.7), ‖ρ(t)‖h ≤ Ch2‖U(t)‖4, and hence, since
E(t) is bounded by Lemma 3.1,

‖ω(t)‖h =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

t

∫
0

E(t − y)ρ(y) dy
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩h
≤ CTh2

t

∫
0

‖U(y)‖4 dy for t ≤ T. (3.5)

For the homogeneous equation, we recall the smoothing estimate

‖U(y)‖4 = ‖E(y)V‖4 ≤ Cεy−1+
ε
2 ‖V‖2+ε for 0 < y ≤ T. (3.6)

In the present context, this may be shown for ε = 0 and 1 in the same way as in Lemma 3.1, and for ε ∈ (0, 1)
by interpolation. This estimate implies (3.4) when F = 0, by (3.5). To complete the proof of (3.4), we need
to use linearity and add the estimate for the solution of the nonhomogeneous equation with V = 0, which is
U(y) = ∫y0 E(y − σ)F(σ) dσ. Using (3.6), we find

‖U(y)‖4 ≤ Cε
y

∫
0

(y − σ)−1+
ε
2 ‖F(σ)‖2+ε dσ.

Hence (3.4) follows from
t

∫
0

‖U(y)‖4 dy ≤ Cεε−1
t

∫
0

(t − σ)
ε
2 ‖F(σ)‖2+ε dσ ≤ Cε,T

t

∫
0

‖F(σ)‖2+ε dσ.
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We now turn to the backward Euler method (1.9), the analysis of which will be the basis for the analysis of
our splitting method (1.11). We begin with stability.

Lemma 3.2. We have ‖ ̆Enkv‖h ≤ e
2β1T‖v‖h, for tn ≤ T and k ≤ 1

2β1 .

Proof. For ̆u1 = ̆Ekv, we have (I + kA − kB) ̆u1 = v, and hence

‖ ̆u1‖2h + k(A ̆u
1, ̆u1)h = k(B ̆u1, ̆u1)h + (v, ̆u1)h ≤ kβ1‖ ̆u1‖2h + ‖v‖h‖ ̆u

1‖h

so that ‖ ̆u1‖h ≤ kβ1‖ ̆u1‖h + ‖v‖h or ‖ ̆Ekv‖h ≤ (1 − kβ1)−1‖v‖h ≤ e2β1k‖v‖h for k ≤ 1
2β1 , from which the result

follows.

Lemma 3.3. We have ‖ ̆Ekv − E(k)v‖h ≤ Ckj‖v‖h,2j for j = 1, 2.

Proof. Setting G(y) = (I + yA − yB)−1 − ey(B−A) and noting that G(0) = G󸀠(0) = 0, we obtain by Taylor’s for-
mula

‖ ̆Ekv − E(k)v‖h = ‖G(k)v‖h = ‖(G(k) − G(0) − kG󸀠(0))v‖h ≤
1
2 k

2 sup
y≤k
‖G󸀠󸀠(y)v‖h .

Here, for y ≤ k, using (2.3) and Lemmas 3.1 and 3.2, with M = A − B,

‖G󸀠󸀠(y)v‖h ≤ 2‖(I + yM)−3M2v‖h + ‖e−yMM2v‖h ≤ C‖v‖h,4,

which shows our claim for j = 2. Similarly, for j = 1, the result follows from

‖G(k)v‖h ≤ k sup
y≤k
‖G󸀠(y)v‖h ≤ Ck‖v‖h,2.

We can now prove the following error estimate for the time discretization of the homogeneous equation.

Lemma 3.4. With v = Vh, we have, for any ε > 0,

‖ ̆Enkv − E(tn)v‖h ≤ Cε,Tk‖V‖2+ε for tn ≤ T.

Proof. We write

̆Enkv − E(tn)v =
n−1
∑
j=0

̆En−1−jk ( ̆Ek − E(k))E(tj)v.

Using Lemmas 3.2 and 3.3, we obtain, for tn ≤ T,

‖ ̆Enkv − E(tn)v‖h ≤ Ck‖v‖h,2 + Ck
2
n−1
∑
j=1
‖E(tj)v‖h,4.

By Lemma 3.1 and (2.1), we have ‖E(t)v‖h,4 ≤ Ct−j‖Vh‖h,4−2j ≤ Ct−j‖V‖4−2j for j = 0, 1, and hence, by inter-
polation between H2 and H4,

‖E(t)v‖h,4 ≤ Cε t−1+
ε
2 ‖V‖2+ε for ε > 0, t > 0.

Therefore,

‖ ̆Enkv − E(tn)v‖h ≤ Cεk(1 + k
n−1
∑
j=1

t−1+
ε
2

j )‖V‖2+ε ≤ Cε,Tk‖V‖2+ε .

We now show the corresponding error estimate for the nonhomogeneous equation with vanishing initial
values.

Lemma 3.5. For the backward Euler solution (1.9) and the solution of (1.7), with v = 0, we have, for any ε > 0,

‖ ̆un − u(tn)‖h ≤ Cε,Tk
tn

∫
0

(‖F(σ)‖2+ε + ‖F󸀠(σ)‖ℂ) dσ for tn ≤ T.
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Proof. With Ij = (tj−1, tj), we may write the error en = ̆un − u(tn) as

en = k
n
∑
j=1

̆En−jk f j −
tn

∫
0

E(tn − y)f(y) dy

= k
n
∑
j=1
( ̆En−jk − E(tn−j))f

j +
n
∑
j=1
(kE(tn−j)f j − ∫

Ij

E(tn − y)f(y) dy) = J󸀠 + J󸀠󸀠.

In J󸀠, we write

kf j = ∫
Ij

f(y) dy + ∫
Ij

tj

∫
y

f 󸀠(σ) dσ dy.

Hence J󸀠 = J󸀠1 + J
󸀠
2, where, using Lemma 3.4, for tn ≤ T,

‖J󸀠1‖h ≤
n
∑
j=1
∫
Ij

‖( ̆En−jk − E(tn−j))f(y)‖h dy ≤ Cε,Tk
tn

∫
0

‖F(y)‖2+ε dy.

Further, since ̆En−jk − E(tn−j) is bounded for tn ≤ T,

‖J󸀠2‖h ≤ CT
n
∑
j=1
∫
Ij

tj

∫
s

‖F󸀠h(σ)‖h dσ ds ≤ CTk
tn

∫
0

‖F󸀠(σ)‖ℂ dσ.

Similarly, J󸀠󸀠 = ∑nj=1 J󸀠󸀠j , where

J󸀠󸀠j = ∫
Ij

(E(tn−j)f j − E(tn − y)f(y)) dy

= ∫
Ij

tj

∫
s

d
dσ
(E(tn − σ)f(σ)) dσ ds

= ∫
Ij

tj

∫
y

E(tn − σ)((A − B)f(σ) + f 󸀠(σ)) dσ dy.

Thus, again using (2.1),

‖J󸀠󸀠j ‖h ≤ CTk∫
Ij

(‖f(σ)‖h,2 + ‖f 󸀠(σ)‖h) dσ ≤ CTk∫
Ij

(‖F(σ)‖2 + ‖F󸀠(σ)‖ℂ) dσ,

and thus

‖J󸀠󸀠‖h ≤
n
∑
j=1
‖J󸀠󸀠j ‖h ≤ CTk

tn

∫
0

(‖F(σ)‖2 + ‖F󸀠(σ)‖ℂ) dσ for tn ≤ T.

Since ‖en‖h ≤ ‖J󸀠1‖h + ‖J
󸀠
2‖h + ‖J󸀠󸀠‖h, this completes the proof.

Together, Theorem3.1 and Lemmas 3.4 and 3.5 show the following complete error estimate for the backward
Euler method.

Theorem 3.2. Let ̆un be the solution of (1.9) and U(tn) the exact solution of (1.1) at t = tn. Then, for any ε > 0
and tn ≤ T,

‖ ̆un − Uh(tn)‖h ≤ Cε,T(h2 + k)(‖V‖2+ε +
tn

∫
0

(‖F(σ)‖2+ε + ‖F󸀠(σ)‖ℂ) dσ).

We now turn to our basic splitting method. For small t, we shall need a stability estimate for the hyperbolic
part of Ek = ekBe−kA.
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Lemma 3.6. For any s ≥ 0, there is a constant ̄βs ≥ β1, with ̄β0 = β1, such that

‖etBv‖h,s ≤ e
̄βs t‖v‖h,s for t ≥ 0. (3.7)

Also, with ⦀v⦀2h = ‖Av‖
2
h + ‖v‖

2
h and κ > 0,

⦀etBv⦀h ≤ eκt⦀v⦀h for t ≥ 0. (3.8)

Proof. Let s ≥ 0, and let |α| ≤ s. Then, for w(t) = etBv, using (2.3),

(∂αwt , ∂αw)h = (∂αBw, ∂αw)h ≤ (B∂αw, ∂αw)h + C‖w‖2h,s .

By (2.8) and summation, we conclude that
d
dt
‖w‖2h,s ≤ (2β1 + C)‖w‖

2
h,s , (3.9)

which shows (3.7). For s = 0, this holds with C = 0, and hence ̄β0 = β1.
Using ‖(AB − BA)w‖h ≤ C‖w‖h,2, cf. (2.3), (2.4) and (2.8), we have

(Awt , Aw)h = (ABw, Aw)h ≤ (BAw, Aw)h + C‖w‖2h,2 ≤ C‖w‖
2
h,2 ≤ C⦀w⦀

2
h .

Using also (3.9) with s = 0, we find, by addition, d
dt⦀w⦀

2
h ≤ 2κ⦀w⦀

2
h, with κ > 0, which shows (3.8).

In particular, this implies the stability of the basic time stepping operator.

Lemma 3.7. We have
‖Enkv‖h ≤ e

β1T‖v‖h for tn ≤ T. (3.10)

Proof. Since obviously ‖e−kAv‖h ≤ ‖v‖h for all v ∈ Ph and k ≥ 0, we have, by (3.7) with s = 0,

‖Ekv‖h = ‖ekBe−kAv‖h ≤ eβ1k‖e−kAv‖h ≤ eβ1k‖v‖h ,

which implies (3.10).

We now show the following local-in-time error estimate for Ek.

Lemma 3.8. We have ‖Ekv − E(k)v‖h ≤ Ckj‖v‖h,2j for j = 1, 2.

Proof. The proof is analogous to that of Lemma 3.3, now with G(y) = eyBe−yA − ey(B−A), in which case,

‖G󸀠󸀠(y)v‖h ≤ ∑
i1+i2=2
‖eyBBi1Ai2e−yAv‖h + ‖(B − A)2ey(B−A)v‖h ≤ C‖v‖h,4.

We now show the following error estimate for the basic splitting method.

Theorem 3.3. Let un be the solution of (1.10) and U(tn) the exact solution of (1.1) at t = tn. Then, for any ε > 0
and tn ≤ T,

‖un − Uh(tn)‖h ≤ Cε,T(h2 + k)(‖V‖2+ε +
tn

∫
0

(‖F(σ)‖2+ε + ‖F󸀠(σ)‖ℂ) dσ).

Proof. The proof is analogous to that of Theorem 3.2 for the backward Euler method. For the homogeneous
equation, we obtain, using Lemma 3.8 instead of Lemma 3.3, for any ε > 0,

‖Enkv − E(tn)v‖h ≤ Cε,Tk‖V‖2+ε for tn ≤ T. (3.11)

Using this then shows, as in Lemma 3.5, for v = 0,

‖un − u(tn)‖h ≤ Cε,Tk
tn

∫
0

(‖F(σ)‖2+ε + ‖F󸀠(σ)‖ℂ) dσ for tn ≤ T. (3.12)

The proof is now completed by Theorem 3.1.

We note that, when A and B commute, the error in (3.11) vanishes, and thus the term in k‖V‖2+ε in Theo-
rem 3.3 may be removed. However, as is easily checked, (3.12) remains unchanged.
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4 The Fully Discrete Splitting Method
We now turn to our proposed time stepping operator Ẽm,k = Hm

kmQk defined in (1.11) and begin with the
following stability result.

Lemma 4.1. Let β1 and β̃ be as in (2.8) and (2.9), and let γ > β̃. Then

‖Hkv‖h ≤ (1 + β1k)‖v‖h if k
h
≤ ρ0, where ρ20 =

γ − β̃
4dγ2

. (4.1)

Further, with m ≥ 1, we have

‖Ẽnm,kv‖h ≤ e
β1T‖v‖h for k

h
≤ mρ0, tn ≤ T. (4.2)

Proof. We have

‖Hkv‖2h = ‖v + kBv − γk
2Lv‖2h = ‖v‖

2
h + 2k(Bv, v)h − 2γk

2(Lv, v)h + ‖kBv − γk2Lv‖2h .

We note that ‖Lv‖2h ≤ λmax(L)(Lv, v)h ≤ 4dh−2(Lv, v)h. We thus find

‖kBv − γk2Av‖2h ≤ 2k
2‖Bv‖2h + 2γ

2k4‖Lv‖2h ≤ 2k
2(β̃ + 4dγ2( kh)

2
)(Lv, v)h

≤ 2k2(β̃ + 4dγ2ρ20)(Lv, v)h = 2k
2γ(Lv, v)h .

Hence, using (2.8),

‖Hkv‖2h ≤ ‖v‖
2
h + 2k|(Bv, v)h| ≤ ‖v‖

2
h + 2β1k‖v‖

2
h ≤ (1 + β1k)

2‖v‖2h ,

which shows (4.1). Since ‖Qkv‖h ≤ ‖v‖h, we have

‖Ẽm,kv‖h = ‖Hm
kmQkv‖h ≤ (1 + β1

k
m)

m
‖Qkv‖h ≤ eβ1k‖v‖h .

Hence
‖Ẽnm,kv‖h ≤ e

nβ1k‖v‖h ≤ eβ1T‖v‖h for tn ≤ T,

which completes the proof of (4.2).

We note that the choice of γ which makes ρ0 as large as possible is γ = 2β̃, in which case ρ0 = 1/√16dβ̃.
We start the analysis of the time discretization error with the following lemma concerning the error in the

hyperbolic and parabolic parts of Ek, where we assume that α1, α2 and β2 satisfy

‖Ajv‖h ≤ αj‖v‖h,2j , j = 1, 2, and ‖B2v‖h ≤ β2‖v‖h,2 for all v ∈ Ph .

Lemma 4.2. With ρ0 as in Lemma 4.1 and ̄β2 as in (3.7), we have, with C0 = 1
2β2 + α1γ,

‖(ekB − Hm
km )v‖h ≤ C0e

̄β2km−1k2‖v‖h,2 for k
h
≤ mρ0. (4.3)

Further,
‖(e−kA − Qk)v‖h ≤ Cjkj‖v‖h,2j for j = 1, 2. (4.4)

Proof. By Taylor expansion and Lemma 3.6, we have

‖(ekB − Hk)v‖h ≤ ‖(ekB − I − kB)v‖h + γk2‖Av‖h ≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

k

∫
0

(k − y)eyBB2v dy
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩h
+ γk2‖Av‖h

≤
1
2 e

β1kk2‖B2v‖h + γk2‖Av‖h ≤ eβ1k(
1
2β2 + α1γ)k

2‖v‖h,2, (4.5)

which shows (4.3) for m = 1.
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To show (4.3) for m > 1, we write

Hm
km v − e

kBv =
m−1
∑
j=0

Hm−j−1
km (Hkm − ekmB)ejkmBv. (4.6)

By (4.5), we have
‖(ekmB − Hkm )v‖h ≤ C0eβ1km k2m‖v‖h,2 for k

h
≤ mρ0. (4.7)

Using (4.6), (4.1), (4.7) and (3.7), we conclude

‖Hm
km v − e

kBv‖h ≤
m−1
∑
j=0

e(m−1−j)kmβ1‖(ekmB − Hkm )ejkmBv‖h

≤ C0k2m
m−1
∑
j=0

e(m−j)kmβ1‖ejkmBv‖h,2

≤ C0emkm ̄β2mk2m‖v‖h,2 = C0e
̄β2km−1k2‖v‖h,2.

For (4.4), it is easily verified that 0 ≤ (1 + λ)−1 − e−λ ≤ cjλj for λ > 0, j = 1, 2, and hence, by eigenfunction
expansion,

‖Qkv − e−kAv‖h ≤ cjkj‖Ajv‖h ≤ cjαjkj‖v‖h,2j .

We continue the analysis by defining the one-step operator ̊Ek = ekBQk approximating only the factor e−kA in
the product Ek = ekBe−kA and leaving the factor ekB exact. We then define the corresponding solution of the
nonhomogeneous equation by

̊un = ̊Ek ̊un−1 + kf n for n ≥ 1. (4.8)

For the homogeneous equation, we write the error in the full discretization of the basic splitting method
after n steps as

Ẽnm,kv − E
n
kv = ( ̊E

n
kv − E

n
kv) + (Ẽ

n
m,kv − ̊E

n
kv). (4.9)

We note that the first term on the right is independent of m. We begin by estimating this term.

Lemma 4.3. Let ε > 0. Then, for v = Vh and tn ≤ T,

‖ ̊Enkv − E
n
kv‖h ≤ Cε,Tk‖V‖2+ε .

Proof. In view of (3.11) in the proof of Theorem 3.3, it suffices to show the same bound for ̊Enkv − E(tn)v.
Using Lemma 3.6, we have ‖ ̊Ekv‖h ≤ eβ1k‖Qhv‖h ≤ eβ1k‖v‖h so that ̊Ek is stable, and hence

‖ ̊Enkv − E(tn)v‖h ≤ e
β1 tn

n−1
∑
j=0
‖( ̊Ek − E(k))E(tj)v‖h .

Here, by Lemmas 3.6, 4.2 and 3.8,

‖ ̊Ekv − E(k)v‖h ≤ ‖ ̊Ekv − Ekv‖h + ‖Ekv − E(k)v‖h
≤ ‖ekB(Qk − e−kA)v‖h + Ckj‖v‖h,2j ≤ Ckj‖v‖h,2j , j = 1, 2.

Hence, as in Lemma 3.4, for tn ≤ T,

‖ ̊Enkv − E(tn)v‖h ≤ C(k‖v‖h,2 + k
2
n−1
∑
j=1
‖E(tj)v‖h,4) ≤ Cε,Tk‖V‖2+ε .

For the second term on the right in (4.9), we have the following lemma.

Lemma 4.4. With ρ0 and m as in Lemma 4.1, we have, with v = Vh,

‖Ẽnm,kv − ̊E
n
kv‖h ≤ CTkm

−1‖v‖h,2 ≤ CTkm−1‖V‖2 for tn ≤ T.
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Proof. By Lemma 4.2, we have

‖(Ẽm,k − ̊Ek)v‖h = ‖(Hm
km − e

kB)Qkv‖h ≤ Ck2m−1‖Qkv‖h,2 ≤ Ck2m−1‖v‖h,2,

where the last step follows since ‖ ⋅ ‖h,2 is equivalent to ⦀ ⋅ ⦀h, and hence

‖Qhv‖h,2 ≤ C⦀Qhv⦀h ≤ C⦀v⦀h ≤ C‖v‖h,2.

Since Ẽm,k is stable in ‖ ⋅ ‖h by Lemma 4.1, we find, for tn ≤ T,

‖Ẽnm,kv − ̊E
n
kv‖h ≤ e

β1 tn
n−1
∑
j=0
‖(Ẽm,k − ̊Ek) ̊E

j
kv‖h ≤ CT

n−1
∑
j=0

k2m−1‖ ̊Ejkv‖h,2.

Further, ̊Ek is stable in ‖ ⋅ ‖h,2 since, by Lemma 3.6,

⦀ ̊Ekv⦀h = ⦀ekBQkv⦀h ≤ eCk⦀Qkv⦀h ≤ eCk⦀v⦀h .

Hence, for tn ≤ T,
‖(Ẽnm,k − ̊E

n
k )v‖h ≤ CTnk

2m−1‖v‖h,2 ≤ CTkm−1‖V‖2.

The results corresponding to Lemmas 4.3 and 4.4 for the nonhomogeneous equation are the following.

Lemma 4.5. Let ̊un and un be defined by (4.8) and (1.10), respectively, with v = 0. Then, for ε > 0, we have

‖ ̊un − un‖h ≤ Cε,Tk
tn

∫
0

(‖F(σ)‖2+ε + ‖F󸀠(σ)‖ℂ) dσ for tn ≤ T.

Lemma 4.6. With ρ0 as in Lemma 4.1 and ε > 0, let ũnm and ̊un be defined by (1.11) and (4.8), respectively,
with v = 0. Then we have, for k

h ≤ mρ0,

‖ũnm − ̊un‖h ≤ CT
k
m

tn

∫
0

(‖F(σ)‖2 + ‖F󸀠(σ)‖ℂ) dσ for tn ≤ T.

The proofs are analogous to that of Lemma3.5, using Lemmas 4.3 and 4.4 instead of Lemma3.4, respectively.
Using Theorem 3.1 and Lemmas 4.3–4.6, we can now state our main result.

Theorem 4.1. Let ũnm be the solution of (1.11) and U(tn) that of (1.1) at t = tn. Then, with ρ0 as in Lemma 4.1
and ε > 0, we have, for tn ≤ T,

‖ũnm − Uh(tn)‖h ≤ (Cε,Th2 + (C󸀠ε,Tm
−1 + C󸀠󸀠ε,T)k)(‖V‖2+ε +

tn

∫
0

(‖F(σ)‖2+ε + ‖F󸀠(σ)‖ℂ) dσ).

5 Numerical Illustrations
In this section, we present some numerical computations to illustrate our error estimates. We begin with the
one-dimensional version of (1.1),

Ut = (aUx)x + bUx + F for x ∈ (0, 2π), t > 0,

with a(x) = 1 + 1
2 cos x, b(x) = 1 +

1
2 sin x, and consider first the inhomogeneous term

F(x, t) = Ut − aUxx − (ax + b)Ux

with U(x, t) = sin(x − t) + 1
2 cos 2(x + t) thus giving V(x) = sin x + 1

2 cos 2x. For the above choice of b, we
obtain β1 = 1

2 ‖b
󸀠‖ℂ = 1

4 and ̃β = ‖b
2‖ℂ = 2.25 giving γ = 4.5 and ρ0 = 1

6 ≈ 0.17. We take h = 2π
M , k = 1

N , with
N = M, which ensures k

h =
1
2π ≈ 0.159 < ρ0 thus satisfying the hypothesis of Theorem 4.1.
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M ‖u − Uh‖h ‖ ̆uN − Uh‖h ‖uN − Uh‖h ‖PN‖h ‖HN
1 ‖h ‖HN

4 ‖h ‖ũ
N
4 − Uh‖h

10 0.2061 0.4212 0.3379 0.0726 0.3082 0.0854 0.3626
20 0.0513 0.1718 0.1279 0.0389 0.1604 0.0425 0.1471
40 0.0128 0.0760 0.0545 0.0199 0.0825 0.0212 0.0660
80 0.0032 0.0355 0.0251 0.0101 0.0419 0.0106 0.0313

Table 1: Partial and complete errors for the first example (d = 1), with m = 4.

m ‖uN − Uh‖h ‖uN − u‖h ‖PN‖h ‖HN
m‖h ‖TNm‖h ‖ũNm − Uh‖h

1 0.0251 0.0232 0.0101 0.0419 0.03578 0.05055
2 " " " 0.0212 0.01605 0.03595
3 " " " 0.0142 0.01033 0.03255
4 " " " 0.0106 0.00824 0.03129
5 " " " 0.0085 0.00752 0.03071
8 " " " 0.0053 0.00751 0.03009
9 " " " 0.0047 0.00766 0.03001
10 " " " 0.0043 0.00781 0.02995
12 " " " 0.0036 0.00807 0.02988

Table 2: Partial and complete errors for the first example (d = 1), with m varying and M = 80.

The time stepping is carried out till tN = Nk = 1, and the errors are presented in Tables 1 and 2. The
first column of Table 1 contains the number M of spatial points, columns 2, 3 and 4 show bounds for the
semidiscrete error (Theorem 3.1), the error using the backward Euler method (BE) (Theorem 3.2), and the
basic splitting error (Theorem 3.3). We split the total remaining error in the time discretization error of the
inhomogeneous equation as

TNm = ũNm − uN = ( ̊uN − uN) + (ũNm − ̊uN) = PN + HN
m ,

where PN and HN
m may be thought of as the parabolic and hyperbolic parts of the total error TNm and are given

in columns 5 and 6. By Lemmas 4.3 and 4.5 for U appropriately smooth, ‖PN‖h ≤ C(U)k, independently ofm,
and by Lemmas 4.4 and 4.6, ‖HN

m‖h ≤ C(U) km . Columns 5 and 6 show that ‖PN‖h and ‖HN
1 ‖h are essentially

proportional to k. Table 2 then shows that, for M = 80, ‖HN
1 ‖h is essentially proportional to

1
m .

Wewant to discuss the choice ofm for our problem.We recall the constants C0 = 1
2β2 + α1γ and C2 = c2α2

in Lemma 4.2. By simple calculations using our definitions, we may now take α1 = √102 , α2 = 19
2 , β2 =

5
8 ,

c2 = 1
2 , and thus C0 ≈ 7.4 and C2 ≈ 4.7. Since C0 > C2, we have reason to believe that ‖HN

1 ‖h > ‖PN‖h, and
this is confirmed by Table 1. A reasonable approach is to choose m in such a way that the parabolic and
parabolic parts of the error balance. In our example, we have ‖H

N
1 ‖h
‖PN‖h
≈ 4.2 for M = 10, and since this ratio is

essentially independent of M, m = 4 would be a reasonable choice also for other M. This choice is used in
columns 7 and 8 of Table 1.

We recall that ‖HN
m‖h → 0 asm →∞. Hence ‖TNm‖h → ‖PN‖h asm →∞. We also observe that the sum of

the norms in columns 4 and 5 of Table 2 would be a pessimistic estimate of ‖TNm‖h in column 6. Furthermore,
this error decreases for smallm with a factor greater thanm and, in fact, goes below its limit value ‖PN‖h and
then starts to increase.

We next consider a case where the hyperbolic error is already smaller than the parabolic error for m = 1.
For this, we take a ≡ 4, b ≡ 1, U(x, t) = e−t sin(x + t) giving us V(x) = sin x, F = Ut − 4Uxx − Ux. The results
are presented in Table 3 with N = 2M. Here ‖HN

1 ‖h < ‖PN‖h, and thus m = 1 is a reasonable choice.
Finally, we consider the problem in two space dimensions for the nonhomogeneous equation

Ut = ∆U + b1Ux1 + b2Ux2 + F for x = (x1, x2) ∈ (0, 2π)2,

with b1(x) = 1 + 1
2 sin x1 cos x2, b2(x) = 1 +

1
2 cos x1 sin x2. We choose F and V to be such that the exact solu-

tion is U(x, t) = e−t sin(x1 + t) sin(x2 + t), which gives

F(x, t) = U(x, t) + (1 − b1(x))Ux1 (x, t) + (1 − b2(x))Ux2 (x, t) and V(x) = U(x, 0) = sin x1 sin x2.
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M ‖u − Uh‖h ‖ ̆uN − Uh‖h ‖uN − Uh‖h ‖PNv‖h ‖HN
1 v‖h ‖ũ

N
1 − Uh‖h

10 0.0311 0.1582 0.0761 0.0802 0.0494 0.1066
20 0.0076 0.0721 0.0305 0.0407 0.0225 0.0486
40 0.0019 0.0344 0.0134 0.0205 0.0108 0.0231
80 0.0005 0.0167 0.0062 0.0103 0.0053 0.0113

Table 3: Partial and complete errors for the second example (d = 1), with m = 1.

M ‖u − Uh‖h ‖ ̆uN − Uh‖h ‖uN − Uh‖h ‖PN‖h ‖HN
1 ‖h ‖HN

6 ‖h ‖ũ
N
6 − Uh‖h

10 0.0870 0.1953 0.1304 0.0696 0.3852 0.0770 0.1004
20 0.0216 0.0804 0.0565 0.0358 0.2044 0.0376 0.0320
40 0.0054 0.0358 0.0281 0.0181 0.1062 0.0186 0.0117
80 0.0013 0.0168 0.0161 0.0091 0.0542 0.0093 0.0049

Table 4: Partial and complete errors for the third example (d = 2), with m = 6.

In this case, we obtain ̃β = ‖b21 + b
2
2‖ℂ = 3.25. and γ = 2 ̃β = 6.5, thus

ρ0 =
1

(4 ⋅ 8 ⋅ 3.25) 12
≈ 0.098 > k

h
=

1
4π ≈ 0.080,

the condition needed for ρ0 as required by Theorem 4.1. Table 4 contains the corresponding results for the
same h, k,M andm as earlier, with N = 2M. The error behavior is similar to that in the one-dimensional cases
given above. It was found that the time taken for BE is larger forM = 80 in this case. This could be due to our
replacing an antisymmetric problem (1.9) with a symmetric version (1.11) thus making the linear algebra
efficient. We conclude that for two-dimensional case with large number of mesh points, our splitting method
is less time consuming and more accurate than the BE. The optimal choice for m for M = 80 is now found to
be m = 6, and the estimate by a calculation for M = 10 is m ≈ 5.5.
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