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We illustrate a step towards the construction of a power counting in energy–density–functional (EDF) 
theories, by analyzing the equations of state (EOSs) of both symmetric and neutron matter. Within the 
adopted strategy, next–to–leading order (NLO) EOSs are introduced which contain renormalized first–
order–type terms and an explicit second–order finite part. Employing as a guide the asymptotic behavior 
of the introduced renormalized parameters, we focus our analysis on two aspects: (i) With a minimum 
number of counterterms introduced at NLO, we show that each energy contribution entering in the EOS 
has a regular evolution with respect to the momentum cutoff (introduced in the adopted regularization 
procedure) and is found to converge to a cutoff–independent curve. The convergence features of each 
term are related to its Fermi–momentum dependence. (ii) We find that the asymptotic evolution of the 
second–order finite–part coefficients is a strong indication of a perturbative behavior, which in turns 
confirms that the adopted strategy is coherent with a possible underlying power counting in the chosen 
Skyrme–inspired EDF framework.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
EDF theories, developed over the last decades for the nuclear 
many–body problem, have been built in most cases on the ba-
sis of a phenomenological methodology. Differently than density–
functional theories (DFTs) [1–6], employed in chemistry and in 
solid state physics, they were not generated starting from found-
ing theorems, such as the Hohenberg-Kohn theorems in DFT [1,3]. 
In addition, they were not formulated within a well–defined gen-
eral theoretical scheme (for instance, within a low–density Fermi 
gas expansion [7–12] or within the Dyson many–body perturba-
tive expansion [12]) in such a way that, order by order, one could 
expect systematic and controlled improvements in the theoreti-
cal models. The need for a more fundamental methodology gave 
a push in the last years towards the design of functionals inspired 
by effective–field theories (EFTs) and/or benchmarked on ab–initio
models [13–30].

In particular, contrary to what happens in EFTs, a power–
counting scheme, providing a hierarchy of the interaction contri-
butions, is still missing in EDF theories, due to the lack of an 
a priori identification of a breakdown scale. The development of 
functionals based on a power counting would represent a crucial 
achievement in EDF, for example within the perspective of using 
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such functionals in sophisticated beyond–mean–field (BMF) mod-
els, where the leading order (LO) of the Dyson equation is over-
come [13].

EDF theories, based for example on Skyrme interactions [31–
33], are globally very successful in describing ground– and excited–
states phenomenology, as well as reactions, over the entire chart 
of nuclei. This success should imply that there must be an as-
sociated EFT with some defined power counting. However, one 
does not know a priori anything about such an EFT and the related 
power counting. To make some progress, one can assume a spe-
cific scheme based on a chosen starting point (for example guided 
by renormalizability and by the known properties of Skyrme in-
teractions) and check the obtained results to assess whether the 
assumed scheme is coherent with a possible underlying power 
counting. This is the strategy that we follow.

At densities of interest for finite nuclei, which define the range 
of validity of the scheme that we want to construct, we cannot 
employ an EFT treatment valid for dilute Fermi gases, for which an 
expansion parameter is known [34]. Guided by the fact that mean–
field (MF) theories are successful in EDF and that, on the other 
side, BMF theories are able to provide even better results than MF 
for many nuclear phenomena, we employ an order–by–order de-
velopment which is dictated by the many–body Dyson expansion. 
Such a development has specific leading and subleading Feynman 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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diagrams: LO corresponds to the MF approximation, NLO to the 
second–order approximation, and so on. We do not know what is 
our EFT expansion parameter, which is to be extracted afterwards 
(for example after a full power–counting analysis is done with a 
Lepage–like plot [35–37]). Unfortunately, due to the fact that there 
is no cutoff dependence at LO, we cannot assess its residual cutoff 
dependence. As a consequence, the breakdown scale, which can 
be indicated by the crossing point in a Lepage plot from two–
different–order curves, cannot be extracted at this stage. This will 
be performed once next–to–next–to–leading order (NNLO) contri-
butions will be also evaluated, by comparing NLO and NNLO re-
sults.

But this does not prevent us from starting an EFT procedure, 
based on the Dyson expansion. Guided by the requirement of 
renormalizability and choosing to work with a Skyrme–type inter-
action, we may identify more precisely our LO interaction, which is 
then chosen as the so–called t0 −t3 model. This choice is also justi-
fied by the fact that such a model represents the minimum form of 
the effective interaction necessary to produce an equilibrium point 
in symmetric matter at the MF level. One can thus imagine that 
many essential properties are already captured. The traditional ap-
proach for Skyrme effective interactions is then to include more 
terms such as gradient terms, so to improve the description of both 
matter and nuclei. However, from conventional EFT (such as chiral 
EFT), it is possible that those corrections should enter as sublead-
ing contributions. Thus, how do we improve EDF in a controlled 
manner?

In Ref. [38] we evaluated the second–order contribution based 
on the chosen LO effective interaction (t0 − t3 model) and were 
insured that results satisfy up to NLO the renormalizability con-
dition [39]. In the present work, with a more careful systematic 
optimization protocol of the low–energy constants, we have found 
a strong indication of a perturbative behavior: after renormaliza-
tion, the finite part obtained from second–order diagrams (which 
can be regarded as the true physical correction to LO) contributes 
much less than the LO to the EOS. This is a crucial result, since 
it is a confirmation that we are moving towards a reasonable di-
rection with the choice of such an LO interaction. If we had found 
that the NLO finite–part contribution was greater than the LO con-
tribution, we should have simply concluded that this choice had to 
be excluded, the whole scheme to establish EFT from EDF with the 
chosen LO effective interaction being not converging.

The perturbative behavior will be shown to be even more pro-
nounced in the low–density regime of matter, opening interesting 
perspectives for future applications to exotic nuclei with dilute sur-
faces and to neutron–star crusts [40,41]. The regime of validity of 
the proposed scheme should be intended to be the one typically 
covered by most EDF theories, that is from densities below the 
saturation of symmetric matter up to around two or three times 
the saturation density itself, where internal degrees of freedom of 
nucleons may still be safely disregarded. At the same time, as for 
many existing EDF models, the description of extremely low den-
sities is not the scope of the proposed scheme.

We do not claim to provide here the final solution to this open 
problem of defining a power counting within EDF theories, since 
the present study does not yet permit us to carry out uncertainty 
analyses and to associate errors to the chosen expansion trunca-
tion. Nevertheless, from the found perturbative behavior and under 
the assumption that the underlying breakdown scale is at least the 
Fermi momentum at twice the saturation density (the assumed 
range of validity of our theory), we can conclude that the proposed 
scheme is coherent with a possible underlying power counting.

An interaction V L O is introduced, given by the t0 − t3 part of a 
zero–range Skyrme interaction,

V L O = t0(1 + x0 Pσ ) + t3
(1 + x3 Pσ )ρα, (1)
6

2

where t0, t3, x0, x3, and α are parameters, ρ is the density, and 
Pσ = (1 + σ1σ2)/2 is the spin–exchange operator. Using natural 
units h̄ = c = 1, the associated LO EOSs are the mean–field (first–
order) EOSs for symmetric matter (SM) and neutron matter (NM),

E(LO)
S M

A
= 3k2

F

10m
+ t0

4π2
k3

F + t3,α

4π2
k3+3α

F (2)

and

E(LO)
N M

N
= 3k2

F

10m
+ t∗

0

12π2
k3

F + t∗
3,α

12π2
k3+3α

F , (3)

respectively, where t3,α = (2/(3π2))αt3/6, t∗
0 = t0(1 − x0), t∗

3,α =
(1/(3π2))αt∗

3/6, and t∗
3 = t3(1 − x3). The Fermi momentum kF is 

related to the density by the relation kF = (3π2ρ/2)1/3 [kF =(
3π2ρ

)1/3
] for SM [NM].

The NLO EOSs consist of the contributions obtained with the 
once–iterated LO interaction V L O [42,43] plus selected countert-
erms, used to absorb some of the ultraviolet divergences induced 
at second order by the zero–range LO interaction. The countert-
erms are associated to the so-called V N L O interaction, which is 
treated as a first–order contribution in the NLO EOS (Fig. 3 of 
Ref. [38]). Note that three divergences — each with a different 
power of kF — occur at second order, only two of them hav-
ing kF –dependencies already present in the MF EOS. Therefore, to 
ensure renormalizability, it is necessary to adopt at least one coun-
terterm at NLO to eliminate the divergence associated with the 
new kF dependence. In Ref. [38], the introduced parameters were 
adjusted to reproduce the benchmark EOS within three scenarios, 
which differ on the number of counterterms. However, without re-
quiring any constraints on the parameters (and given their large 
number), important fluctuations were found in their evolution as 
a function of the momentum cutoff � introduced in the regular-
ization procedure. Guided by the asymptotic behavior of the intro-
duced renormalized parameters and performing a finer adjustment 
procedure, we find here a quite regular evolution of the interaction 
parameters as a function of the cutoff. This allows us to study their 
cutoff dependence as well as that of the different contributions to 
the total energy.

We work within what was called scenario (c) in Ref. [38], which 
implies a minimal number of counterterms (one type), introduced 
to handle the second–order terms having a linear divergence with 
respect to � and a kF dependence of the type k3+6α

F . Such diver-
gent terms are regrouped with the counterterm and this contribu-
tion enters in the EOS with a renormalized parameter C� (C�∗) for 
SM (NM). The other second–order linear divergences, of the type 
k3

F and k3+3α
F , are absorbed in MF terms (Eqs. (2) and (3)), gen-

erating renormalized parameters t�
0 , t�∗

0 , t�
3,α , and t�∗

3,α . We limit 
ourselves to the scenario (c) also because, assuming an underly-
ing EFT–type expansion truncated at the order ( Q

�hi
)2 (Q and �hi

denoting, respectively, the nucleon momentum and the breakdown 
scale of the expansion [38]), the comparison among the three sce-
narios have indicated in Ref. [38] that their difference is likely to 
be non negligible only at higher order. The NLO EOSs for SM and 
NM are, respectively,
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where the cutoff � is put on the outgoing relative momentum 
�k′ = (�k′

1 − �k′
2)/2 (�k′

1(2) being the outgoing momentum of the nu-
cleons 1 (2)). The only explicitly appearing second–order terms are 
the last three terms of Eqs. (4) and (5), which are the second–
order finite parts. The expressions for the renormalized parameters 
and for the quantities F (2) are provided in Appendix A. One may 
notice that the second–order finite parts and the counterterm con-
tributions have higher powers of kF , compared to the renormalized 
(t�

0 , t�
3,α) model, if 0 < α < 1/3, which will be always the case 

in our adjustments. The rearrangement terms are included as in 
Ref. [38] (see Refs. [44,45]). In this work, the value m = 939 MeV 
is used and the benchmark curves on which the adjustments are 
carried out are the SM and NM SLy5 [46–48] mean–field EOSs. 
These are reasonable EOSs for both SM (reproducing the empiri-
cal saturation point) and NM (adjusted on a microscopic EOS). We 
stress that we could have chosen other benchmark EOSs. Any other 
choice of reasonable EOSs for both SM and NM would not change 
the generality of our discussion.

The adjustment of the parameters t0, t3, x0, x3, α, C� , and C�∗
is done on N = 11 points of the SLy5 SM and NM EOSs, using 
cutoff values ranging from 2 to 30 fm−1. The χ2 values to be 
minimized are computed as χ2 = 1/(N − 1) 

∑N
i (Ei − Ei,ref )

2/�E2
i , 

where Ei,ref are the reference values on the chosen benchmark 
curves, and �Ei are taken equal to 1% of the reference values. We 
choose not to perform at this stage a detailed uncertainty quantifi-
cation such as a Bayesian analysis [49–55], because our benchmark 
is chosen between (many) possible existing reasonable EOSs for 
matter. A more systematic uncertainty quantification will be car-
ried out when also finite nuclei will be treated.

Nevertheless, we report in Table 1 in Appendix B the χ2 values 
together with the adjusted parameters. We checked that their val-
ues are stable when varying from 9 to 13 the number of points and 
that some spurious correlations intrinsically existing among some 
parameters (for example between x3 and α) do not qualitatively 
affect our conclusions. In particular, one observes that α increases 
monotonically and tends to saturate to a value smaller than 1/3. 
The quality of the fit is instead slightly deteriorated when con-
straining α to a fixed value, which lies within its explored range 
of variation.

This aspect should deserve a deeper analysis. In EDF theories 
we are used to work with an adjustable parameter α in order to 
absorb in an effective way several effects, for instance A-body ef-
fects. However, from an EFT perspective, if an underlying expansion 
exists, α should not probably play the same role and should be a 
multiple of 1/3, coherently with a kF expansion. In this sense, we 
are not fully satisfied by the pragmatic choice that we adopt at 
this stage, that is keeping α as a free parameter. Maybe, future 
higher-order calculations at NNLO will give us additional hints for 
addressing this point more properly by using for α a fixed value.

In light of the performed adjustment procedure, we focus our 
analysis on two main aspects.

i) Each renormalized parameter (each contribution to the total 
energy) is found to have a convergent behavior when the cutoff 
increases.

ii) We address the issue of perturbativity, which is crucial in 
our framework to have an order–by–order convergent pattern.

Fig. 1 shows the trend of the renormalized parameters as a 
function of �. They show a regular evolution and a convergent 
behavior as a function of the cutoff. A similar pattern was ob-
served in the renormalization of pionless [56–64] and chiral EFT 
[65–68]. From Eqs. (A.1)-(A.4), such a convergent behavior means 
that, when � → ∞, �G , �H , �I , and �L must tend to a finite 
value. This implies that G , H , I , and L must behave asymptot-
ically as ∼ 1/� and that, when � → ∞, t0 and t3 must go to 
zero as 1/

√
�. Such a behavior of t3 in turn constrains P and R

(Eqs. (A.11) and (A.12) in Appendix A), which must behave asymp-
3

Fig. 1. Renormalized parameters as a function of the cutoff.

totically as ∼ 1/�: �P and �R go to a finite value when � → ∞. 
Finally, up to an uncertainty of the order (Q /�hi)

2, all the coeffi-
cients of the finite parts in Eqs. (A.13) and (A.14) are expected to 
be progressively suppressed as 1/� when the cutoff increases.

The convergent behavior of the renormalized parameters is in-
dicated by their small variation at large �: indeed, their values at 
� = 20 and 30 fm−1 differ by only 0.6, 0.4, 0.4, 0.1, 0.5, and 4.4% 
for t�

0 , t�
3,α , C� , t�∗

0 , t�∗
3,α , and C�∗ , respectively. The convergence 

features are however not the same for all the parameters. For SM 
(NM), variations smaller than 2 (6) % between two values of renor-
malized parameters may be found comparing the values at � = 4
and 10 fm−1 for t�

0 (t�∗
0 ). For t�

3,α (t�∗
3,α), this occurs between 10 

and 20 fm−1. For C� (C�∗), one needs to go to higher–cutoff re-
gions to reach such a flat behavior. This is a consequence of the 
relative importance of the energy contributions at different values 
of ρ . At the lowest densities, the most important interaction con-
tribution to the EOS is E0 (depending on k3

F ). The adjustment to 
obtain a �–independent EOS at all cutoff values (even the low-
est ones) in the lowest–density regions affects mostly t�

0 and t�∗
0

which are then constrained to get closer to a flat behavior start-
ing from small values of the cutoff (to guarantee that the adjusted 
curve at the lowest densities has the desired behavior at all cutoff 
values). By increasing the density, the relative importance in the 
EOS of the terms with increasing powers of kF becomes progres-
sively higher. This means that, to have a �–independent EOS, the 
corresponding parameters get progressively closer to their last val-
ues calculated here (corresponding to � = 30 fm−1) at increasing 
cutoff values.

As one may see in Fig. 1, the renormalized parameters related 
to the expansion seem to be quite comparable in the entire win-
dow of cutoff values shown in the figure. There is a factor of 
approximately 2 between t�

0 and t�
3,α and between t�∗

0 and t�∗
3,α . 

This is an indication of the naturalness of the coefficients, which 
should be preserved also for cutoff values near the (still unknown) 
breakdown scale owing to the found convergent behavior of the 
renormalized parameters with respect to the cutoff.

The convergent behavior may be seen in the energy contribu-
tions to the EOS, shown in Fig. 2 for SM (right panels) and NM (left 
panels), where these energy contributions are plotted as a function 
of the density for some selected values of the cutoff (see caption). 
The second–order finite part E(2)

f in panels (g) and (h) is the sum 

of the three contributions F (2)
1 , F (2)

2 , and F (2)
3 of Eqs. (4) and (5).

Fig. 3 shows the relative variations of the energy contributions 
(see caption) for both NM (left panels) and SM (right panels). One 
indeed observes similar relative variations compared to those al-
ready discussed for the corresponding renormalized parameters. 
We may also notice that the relative variation of the finite part 
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Fig. 2. (Color online.) Energy contributions (in MeV) to the NLO EOSs for NM (panels 
(a), (c), (e), and (g)) and SM (panels (b), (d), (f), and (h)). The values of � (in fm−1) 
are shown in the legend. E0, E3, and EC(C∗) represent, respectively, the second, the 
third, and the fourth terms of Eqs. (4) and (5). E(2)

f in panels (g) and (h) is the sum 
of the three contributions F (2)

1 , F (2)
2 , and F (2)

3 of Eqs. (4) and (5).

Fig. 3. (Color online.) Orange areas: absolute values of the difference between the 
energy contributions computed at � = 4 and 10 fm−1, divided by the energy con-
tribution calculated at � = 10 fm−1. Red areas: absolute values of the difference 
between the energy contributions computed at � = 10 and 20 fm−1, divided by 
the energy contribution calculated at � = 20 fm−1. Blue areas: absolute values of 
the difference between the energy contributions computed at � = 20 and 30 fm−1, 
divided by the energy contribution calculated at � = 30 fm−1. Panels (a), (c), (e), 
and (g) refer to NM whereas panels (b), (d), (f), and (h) refer to SM.

is still quite large between 20 and 30 fm−1. In all panels (except 
panels (a) and (b)) we observe a density dependence. This is due 
to the presence of α in the powers of kF of these contributions 
to the EOS: α increases monotonically as a function of the cut-
off. The range of variation of α can be ascribed to the fact that, 
when the cutoff increases, the counterterm contribution to the NM 
EOS must compensate, especially at the highest densities, the fact 
that the repulsive finite part (containing in principle the highest 
power of kF ) is progressively suppressed. Therefore, when the cut-
off is raised, the counterterm contribution has a kF –power in the 
EOS which correspondingly increases between 4 and 5. We remind 
that such a repulsive contribution is provided, in a MF NM EOS 
computed with a full Skyrme interaction, by the so–called gradient 
terms which produce a k5

F –contribution in the EOS. Similar effects 
generated by the gradient terms in a traditional MF calculation are 
then associated in our framework to the counterterm contribution. 
This also justifies why the Skyrme gradient terms (t1 and t2) are 
not necessary in our scheme for matter: their inclusion would lead 
to overconstrained parameters and we checked that the fit quality 
is not improved when they are taken into account. In future ap-
plications to finite nuclei up to NLO it will be possible to assess 
4

Fig. 4. (Color online.) EOSs for SM (a) and NM (c) (dotted lines) and the same quan-
tities computed without the finite second–order parts (solid lines). The cutoff values 
(in fm−1) are shown in the legend. Panels (b) and (d) show the evolution of the 
second–order finite parts as a function of the cutoff for SM at two values of the 
density, 0.05 (b) and 0.29 (d) fm−3.

whether the functional terms related to the counterterms are able 
also in that case to reproduce the effects usually generated by gra-
dient terms or if gradient terms have to be explicitly introduced.

Without gradient terms, our model has 5 parameters at LO (t0, 
t3, x0, x3, and α) and 7 parameters at NLO, with two additional co-
efficients. This is enough for describing SM and NM. At this stage, 
we have at NLO a lower number of parameters compared to a 
Skyrme functional applied to matter at the mean–field level (9 pa-
rameters without the spin–orbit coupling constant). The Skyrme 
parameters are 10 when finite nuclei are treated and it is known 
that, with this number of parameters, Skyrme functionals are very 
predictive over the entire chart of nuclei. This may indicate that, 
to have also in our model a comparable predictive power for nu-
clei, it will be inevitable to have a higher number of parameters. 
Such an aspect can be analyzed only when applications to nuclei 
are done. For example, we may then realize that either we have to 
include gradient terms at NLO (implying then an increased num-
ber of parameters at NLO) or we have to go up to the next order 
NNLO (with the appearance of new parameters coming from the 
additional counterterms).

As mentioned above, the finite terms are suppressed as the cut-
off increases. Although this is partially due to the particular choice 
of renormalization scheme, it is reassuring to observe the suppres-
sion of the sum of the second–order finite parts as presented in 
panels (g) and (h) of Fig. 2. This is a perturbative scheme (based 
on the Dyson expansion), one prerequisite being the smallness of 
the expansion parameter, which is directly reflected in the finite 
terms. The found behavior may incidentally also explain the well–
recognized global success of effective theories based on Skyrme 
functionals.

Such a trend may also be seen in Fig. 4, panels (a) and (c) 
for SM and NM, respectively, where the total EOSs (dotted lines, 
practically superposed at all cutoff values) are compared to the 
EOSs computed without the second–order finite parts (solid lines) 
for various values of the cutoff. Incidentally, we mention that the 
benchmark SLy5 EOSs are also superposed to the dotted curves, as 
one may easily expect by looking at the values of χ2 reported in 
Table 1. By increasing the cutoff, the solid curves get closer to the 
dotted ones. As an illustration, panels (b) and (d) show the evolu-
tion of the second–order finite parts as a function of the cutoff for 
SM at two values of the density, 0.05 (b) and 0.29 (d) fm−3 which 
are, respectively, lower and higher than the empirical saturation 
density of SM. One may observe that the finite part contribution 
to the total energy is less important at ρ = 0.05 fm−3 than at 
ρ = 0.29 fm−3. For example, the contribution at � = 30 fm−1 to 
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the total energy is equal to 0.64 (6.92) MeV at ρ = 0.05 (0.29) 
fm−3 (the total energy is equal to -8.97 (-8.55) MeV at ρ = 0.05
(0.29) fm−3). If the underlying EFT–type expansion is truncated at 
the order ( Q

�hi
)n , the above converged pattern is dominated by a 

residual cutoff–dependence of the order ( Q
�hi

)n+1 [36,37]. Our re-
sults show therefore that: (a) n ≥ 1; (b) the kF corresponding to 
ρ = 0.29 fm−3 is still smaller than �hi .

We have discussed the organizing scheme introduced in Ref. 
[38] by analyzing the NLO EOSs of SM and NM. Such NLO EOSs are 
composed by renormalized first–order terms and a second–order 
finite part. We have analyzed the convergence of the renormalized 
parameters to cutoff–independent values and the related conver-
gence of each energy contribution of the EOS. The convergence 
features with respect to the cutoff are found to be different for 
each renormalized parameter (and, consequently, for the associ-
ated energy contribution): the parameters (energy contributions) 
get closer to their last values (curves), corresponding to � = 30
fm−1, at cutoff values which depend on the power of kF involved 
in the corresponding EOS terms.

Finally, the asymptotic behavior of the parameters constrains 
the second–order finite parts to be progressively suppressed by in-
creasing the cutoff, both in SM and in NM. Such a perturbative be-
havior has been shown to be more pronounced at lower densities. 
By analyzing the perturbativity of the proposed scheme, we have 
validated it as an encouraging step forward towards the definition 
of a power counting in EDF theories. In the absence of perturba-
tivity we would have concluded that the proposed scheme is defi-
nitely not compatible with a possible underlying power counting.

This opens several perspectives. The establishment of a power 
counting in EDF theories would be a decisive achievement, espe-
cially crucial for models where the MF approximation is overcome. 
Furthermore, a scheme which is even more perturbative in dilute 
matter would be of particular interest when employed in specific 
scenarios such as exotic nuclei with diffuse surfaces or the crust 
of neutron stars, where densities lower than the saturation density 
are encountered.
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Appendix A. Renormalized parameters and second–order finite 
parts

The renormalized parameters are defined as:

t�
0 = t0 − m�

2
G, (A.1)
2π

Table 1
χ2 and adjusted parameters obtained from � = 2 to 30 fm−1.

� (fm−1) 2 4 6 8 10 12

t0 (fm2) -3.443 -2.593 -2.172 -1.906 -1.722 -1
t3 (fm2+3α ) 2.123 1.724 1.411 1.124 1.016 0.9
x0 0.566 0.564 0.556 0.554 0.547 0.5
x3 7.711 8.551 9.342 10.745 10.931 11
α 0.214 0.217 0.222 0.226 0.229 0.2
C� (fm2+6α ) 0.350 0.329 0.301 0.287 0.280 0.2
C�∗ (fm2+6α ) 0.442 1.270 1.681 1.923 2.077 2.1
χ2 0.029 0.027 0.038 0.048 0.059 0.0

5

t�
3,α = t3,α − m�

2π2
H, (A.2)

t�∗
0 = t∗

0 − m�

2π2
I, (A.3)

and

t�∗
3,α = t∗

3,α − m�

2π2
L, (A.4)

where

G = t2
0(1 + x2

0), (A.5)

H = t0t3,α [2 (1 + x0x3) + 3α̃] , (A.6)

I = (t∗
0)2, (A.7)

L = 2t∗
0t∗

3,α

(
1 + α̃

)
, (A.8)

with α̃ = α(3 + α)/8. The renormalized parameters related to the 
counterterms are

C� = V S M
N L O − m�

2π2
P (A.9)

and

C�∗ = V N M
N L O − m�

2π2
R, (A.10)

where V S M
N L O and V N M

N L O are the parameters characterizing the 
mean–field counterterm contribution to the EOS for SM and NM, 
respectively, and P and R are given by

P = (t3,α)2

[
x2

3 +
(

1 + 3

2
α̃

)2
]

(A.11)

and

R = (t∗
3,α)2(1 + α̃)2, (A.12)

respectively.
The expressions for the quantities F (2) in Eqs. (4) and (5) are

F (2)
S,1 = 3βG, F (2)

S,2 = 3βH, F (2)
S,3 = 3β P , (A.13)

F (2)
N,1 = β I, F (2)

N,2 = βL, F (2)
N,3 = βR, (A.14)

where

β = m(11 − 2ln2)

280π4
(A.15)

Appendix B. Adjusted parameters and χ2 values

The adjusted parameters and the χ2-values are reported on Ta-
ble 1 for different values of the cutoff.
14 16 18 20 25 30

.582 -1.473 -1.383 -1.310 -1.245 -1.120 -1.028
32 0.854 0.794 0.742 0.697 0.625 0.574
42 0.540 0.537 0.536 0.534 0.530 0.527

.080 11.378 11.584 11.805 12.029 12.144 12.153
33 0.235 0.237 0.238 0.240 0.242 0.243
77 0.272 0.266 0.264 0.262 0.258 0.263
70 2.251 2.304 2.357 2.389 2.447 2.498
68 0.076 0.085 0.090 0.098 0.110 0.117
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