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Abstract

In recent years, the International Maritime Organization introduced a new set of rules
in order to try to reduce emissions of ships by improving their efficiency. To assess the
energy efficiency of a new ship, the regulations require to estimate the Energy Efficiency
Design Index (EEDI), which represent the amount of Carbon Dioxide produced per
mile in relation to the amount of cargo carried, and verify that it is smaller than a
prescribed value. For a proper evaluation of the EEDI, it is necessary to estimate the
added resistance in waves with high accuracy. There are different ways to evaluate added
resistance: empirical methods, adding a safety factor to the calm water resistance called
sea margin, numerical simulations and model test experiments. Nowadays, the most used
way during the design stage to do that is employing numerical simulations. Numerical
simulations are not only used for the estimation of added resistance, but also to predict
ship motions. If the motions are known at an early design stage, it is possible to modify
the design of a ship to minimize them in order to improve the performance of the ship
and to increase the safety and comfort of those who are on board.

The main objective of the PhD project is to evaluate added resistance and ship motions
in oblique waves. In the work presented in this thesis, an existing fully nonlinear unsteady
potential flow method is used to perform seakeeping numerical simulations in head and
beam sea. Since viscosity is disregarded in potential flow methods but it is still very
important for some cases, such as roll motion, viscous damping coefficients were added
into the equation of motions. For the last two papers, an unstructured adaptive grid
refinement, a nonlinear decomposition of the velocity potential, a formulation for the
acceleration potential and a Barnes-Hut algorithm were introduced in the code. The
method has been used to simulate roll motion in beam sea, parametric rolling, added
resistance and ship motions in head waves as well as ship-ship interaction in calm water.
Numerical results were compared with experiments and with other methods.

Overall, the method presented here proved to be able to handle the tested scenarios,
showing a good agreement between the simulations and the experiments. The work
summarized in this thesis contributed to a better understanding of the numerical method
used and helped to outline the next steps to be taken in order to achieve numerical
seakeeping simulations in 6 degrees of freedom in oblique waves.

Keywords: Fully Nonlinear Potential Flow, Seakeeping, Added Resistance, Ship Motions,
Boundary Element Method
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Part I

Extended Summary

1 Introduction

In this chapter the background and the objectives of the project will be given. An overview
of other numerical methods and their evolution in time will also be presented, as well as
a brief description of the method used.

1.1 Background

In order to satisfy the demands of goods across the planet, ship sizes and fleet have been
increasing steadily. These growing numbers, combined with an increased awareness toward
climate change and sustainable development, put new efforts on the design phase of a ship.
With the aim of reducing air pollution coming from the maritime industry, in recent years
the Marine Environment Protection Committee (MEPC) of the International Maritime
Organization (IMO) introduced a set of rules to evaluate and improve the energy efficiency
of newly built ships. The Energy Efficiency Design Index (EEDI) is the key point of these
rules and it represents the amount of Carbon Dioxide CO2 produced per mile in relation
to the amount of cargo carried on board. One of the purposes of the introduction of the
EEDI in the design phase was to put an end to the trend of installing oversized engines.
Historically, the resistance was evaluated in calm water and then, due to the fact that the
ship will sail in waves, the value was increased by 15− 30%. This sea margin was applied
to the power installed deriving from the calm water calculations, resulting in an increase
of approximately 15%. The attention now, thanks to the introduction of the EEDI, is
moving towards the evaluation of the resistance in an operative scenario more than in
calm water. For a new design, a limiting value is calculated based on the dimensions and
the type of ship and then the EEDI is evaluated for the new ship. In order to obtain a
reliable value, it is necessary to predict the installed power and thus the added resistance
in waves with high accuracy.

Another aspect which has been gaining more attention when designing a new ship is the
possibility to predict extreme ship motions with high accuracy. If a ship experiences big
amplitudes of the response in a sea state, two aspects can be in jeopardy: the performance,
intended as the ability to keep the operations going or the route chosen, and the safety
and comfort of the people on board. Among all motions, the most dangerous one is roll.
There are a number of reason for this: first of all, the restoring moment for roll motion is
considerably smaller compared to other motions. Furthermore, the damping is also small,
resulting in a pronounced peak of the response when the forcing term has a frequency
close to the natural one. To make things worse, the typical value of natural frequency of
roll motion of ships lies in the most energetic part of a generic sea spectrum. For these
reasons, even relatively small sea state can produce big amplitudes of roll motion. To
study and simulate roll motion is not a simple task either: the motion is characterized by

1



strong nonlinearities both in the restoring and in the damping terms and it is connected
to other dangerous phenomena, such as for example, parametric rolling, surf riding and
broaching.

It is clear then that during the design phase it is important to be able to predict with
high accuracy both the added resistance and the ship responses in a sea state. In this
way, if dangerous conditions can be identified during a design, the hull shape can be
optimized to reduce risks and increase safety and comfort. Furthermore, optimizing the
hull to reduce added resistance will reduce fuel consumption and pollution. There are
several ways to predict ship motions and added resistance during the design. The most
accurate way to do so is through model tests. The main downside of this approach is that
it is very expensive and time consuming and it is generally done only during an advanced
stage of the design process. The simplest approach to estimate added resistance and
ship motions is by mean of empirical approaches: systematic series, regression analysis
and analytical methods are widely used as starting point at the beginning of a design.
In between these two categories, we find numerical simulation methods. Numerical
simulations have been widely used ever since computers became available. The most
advanced and accurate methods used nowadays are based on Unsteady Raynolds-Averaged
Navier-Stokes equations (URANS). Although they can provide very accurate results, they
are not widely used during the design and in optimization processes since they require
a considerable computational effort. More common methods are the ones based on the
hypothesis of potential flow. Assuming that the fluid is incompressible, irrotational and
inviscid allows for a considerable simplification in the equations to be solved, reducing
the computational effort.

Potential flow methods have been used extensively and different levels of sophistication
can be found in literature, finding different applications. They are used both to predict
added resistance and ship motions, but while they work generally well for the first, care
must be taken for the latter. Although roll motion is indeed characterized by a small
damping, this value allows the response to be limited and then the ship not to capsize.
Unfortunately, the damping is mainly generated by viscous effects, as will be discussed
further in the following chapters. This means that when roll motion is simulated with a
potential flow method, viscosity must be somehow introduced. Generally, this is achieved
by introducing damping coefficients into the equations of motion. Furthermore, roll
damping plays a fundamental role not only in the prediction of roll motion in beam
sea, but also in the prediction of roll related phenomena, such as parametric rolling,
broaching and surf riding. Another issue that can arise when dealing with roll motion is
that nonlinearities can play an important part in the solution of the equations of motion.
Historically, potential flow methods have been including some levels of linearization and
only in recent years fully nonlinear potential flow methods started to be developed and
used.

In this thesis, investigations of the performance of two existing codes, SHIPFLOW
Motions 6 and SHIPFLOW Motions 7, are presented. In the papers appended here, the
two codes have been used to evaluate roll motion, parametric rolling, ship-ship interaction
in calm water and added resistance for a ship sailing in a seaway. The project is the
continuation of another Ph.D. project, presented in Kjellberg, 2013. Several aspects have
been modified from a numerical point of view but the mathematical modeling and the
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structure of the program are the same.

1.2 Literature Review

Several methods and techniques have been developed to predict added resistance with
potential flow methods. Among the most used ones, we can find far-field and near-field
approaches. The far-field method is based on considerations on energy flux through a
control surface and was initially introduced by Maruo, 1957 and modified in the following
years by himself and by Joosen, 1966. Gerritsma and Beukelman, 1972 introduced the
radiated energy approach to evaluate added resistance in head waves, following more or
less the method proposed by Maruo. Some years later, Salvesen, 1974 combined this
method with a strip theory method, which was capable of obtaining better results in
terms of prediction of ship motions, achieving better results for added resistance too. In
this way, it was possible to understand the importance of properly predict ship motions
to have a reliable value for added resistance.

Near-field methods obtain added resistance through a direct integration of the hy-
drodynamic pressure on the hull. This approach has been finding more success in the
last couple of decades, with the attention shifting towards time-domain potential flow
methods. The first near-field method was proposed by Faltinsen et al., 1980. Due to
some limitations of the method in the short waves range, an analytical correction was
proposed for those wave lengths. In more recent years, Joncquez et al., 2008 and Liu et al.,
2011 computed added resistance for several hulls using a number of 3D panel methods,
applying both the far-field and near-field approaches to compare results. Joncquez used a
3D time domain high order boundary element method with Neumann-Kelvin (NK) and
Double Body (DB) linearizations to compute the forces while Liu used a 3D frequency
domain panel method and a hybrid time domain Rankine source-Green function method.
Also Kim et al., 2012 computed added resistance using both approaches for several hull
forms, where a time domain Rankine panel method with NK and DB linearizations was
used. The comparison with experimental data showed that the near-field method gives
better results for long waves, while the far-field method is better suited for short waves.
Guha and Falzarano, 2015 used a three dimensional frequency domain Green function
panel method to evaluate the added resistance with a near-field approach for several hulls.
The results were compared with other numerical methods and with experimental results.

When simulating roll motion with a potential flow method, viscosity has to be intro-
duced to take into account roll damping, which is largely influenced by viscous effects.
The most common way to account for roll damping is to introduce damping coefficients
into the equation of roll motion. These models are polynomial expressions where the
damping coefficients are combined with roll angle velocity. More complex and accurate
formulations include also the angle dependency. An investigation on different models and
their influence on the solution can be found in Bass and Haddara, 1988. While damping
coefficients are generally assumed to be constant for a range of incoming wave frequencies
and wave steepness, Contento et al., 1996 proved that introducing a dependency on
these quantities allows to achieve better results. As far as the evaluation of the damping
coefficients is concerned, several methods are available in literature. A summary of some
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of the most used techniques up to today was presented in Himeno, 1981. The report
focuses on models which predict damping coefficients based on ship characteristics more
than operative conditions. Falzarano et al., 2015 as well summarized the most used models
to estimate damping coefficients and investigated which models are used by the most
common commercial seakeeping codes. There are also methods which evaluate damping
coefficients analysing model test results. ITTC, 2011 uses a polynomial representation of
peaks envelop of roll decay tests. Although this method is straightforward to implement,
it presents some limitations: to have an accurate evaluation a high number of peaks is
needed. This introduces errors due to measurements, since the roll angle gets smaller and
uncertainties get bigger, and due to reflection of waves from the boundaries which effect
the roll angle. Bass and Haddara, 1988 use a least square methods to find the best set of
damping and restoring coefficients which fit the experimental data. This technique uses a
time series of roll decay. Francescutto and Contento, 1999 use use a similar procedure,
which was extended to take into account RAOs for roll motion in beam sea.

Historically, the vast majority of potential flow methods introduced some linearizations
in the equations to be solved. This was done to further simplify the problem, since the
computational power was quite limited. For a number of applications though, linearizing
the problem did not introduced significant errors and the results obtained could be
considered reliable, especially if we keep in mind that the tools were the state of the
art. Furthermore, the margin for optimizing a design were quite significant. Thanks to
a growing computational power, in recent years a number of fully nonlinear potential
flow methods have started to be developed. In these methods, double model and free
surface linearizations are generally disregarded: the boundary conditions include also
nonlinear terms and the positions of the hull and of the free surface are updated at
each time step. Engsig-Karup et al., 2009 developed a fully nonlinear 3D potential flow
method to simulate water waves and Ducrozet et al., 2010 extended it for wave-wave
and wave-structure interaction in the case of a fixed circular cylinder. Mola et al., 2017
developed a fully nonlinear potential flow method adding a pressure patch in the stern
area and used it to evaluate the performances of different hulls in calm water.

1.3 Objectives

In the project summarized in this report, an unsteady fully nonlinear potential flow
method has been used to predict added resistance and ship motions for several hulls
in different conditions. The main objective of this project is to predict ship motions
and added resistance in oblique waves with high accuracy. To achieve that, we started
from simpler cases and different conditions had been analyzed separately. Roll decay was
simulated for a container ship and for a Series 60 hull, which was used to simulate roll
motion in beam sea as well. Parametric rolling was simulated for a container ship in head
and following waves for monochromatic and three components regular waves as well as
irregular waves. A ship-ship interaction study was carried out for two tankers replicating
a lightering operation. Finally, added resistance and ship motions were studied for the
KVLCC2 tanker in head waves.

The code used is a fully nonlinear potential flow method: the free surface boundary
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conditions are fully nonlinear, the position of the hull and of the free surface are updated
at each time step and the forces are evaluated on the instantaneous wetted surface. The
method aims at filling the gap between partially nonlinear potential flow codes, where
simplifications are made to keep the computational effort low at the expenses of the
accuracy of the results, and viscous solvers, where high accuracy is reached but the time
needed to run a simulation can be significant.

The main vision of Chalmers is ”Chalmers for a sustainable future”. With this vision,
Chalmers seeks to meet the needs for a ecological, social and economic sustainability. As
mentioned in Section 1.1, if extreme motions are experienced by the ship, the comfort
and safety of the people on board can be at risk. It is clear then that being able to
identify these possible situations and take action against them during a design phase,
will improve the working conditions of those who work on board. With reference to the
Sustainable Development Goals (SDGs), this project is linked to the SDG 8, decent work
and economic growth1. Furthermore, the code can be used to estimate added resistance
with high accuracy and can be used in an optimization process to modify the hull to
increase its efficiency, reduce fuel consumption and thus emissions. With this perspective,
the project can be linked to the SDG 13, climate action2.

1.4 The Method

The code is based on the work presented in Kjellberg et al., 2011, Kjellberg et al., 2012
and Kjellberg, 2013 and it has been extended during the project. The starting point is a
fully nonlinear unsteady potential flow method which uses a Mixed Eulerian-Lagrangian
(MEL) approach for the evolution in time. As it will be described more in the following
chapters, major changes have been implemented in the code between the first and last
two papers.

In the first two papers the method used a structured mesh resolution to discretize the
domain. Once the dimensions of the quadrilateral panels of the free surface and of the
hull were chosen, the number of panels remained fixed throughout the simulation. The
main advantage of this approach is that it is easy to implement. The main limitation,
on the other hand, is that if a fine mesh resolution is required on the free surface, an
unnecessarily high number of panels will be used. In fact, there are portions of the domain
where this resolution is not needed: far upstream and sideways the influence of the hull is
generally quite limited. For this reason, in the last two papers an unstructured mesh was
used. This mesh was combined with an adaptive grid refinement algorithm, where the
panels are divided into smaller ones in areas of interest and where a higher resolution
is needed to properly solve the hydrodynamics. Figure 1.1 shows a structured and an
unstructured mesh.

Another major change in the code is the decomposition of the velocity potential. In
the last two papers, the velocity potential is obtained as the sum of the potential of the
incoming waves and the potential due to the disturbance of the ship. Since the potential

1Promote sustained, inclusive and sustainable economic growth, full and productive employment and
decent work for all.

2Take urgent action to combat climate change and its impacts
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Figure 1.1: Comparison between structured and unstructured adaptive mesh.

of the incoming waves is known a priori, then it is enough to solve for the potential of the
disturbance. In this way, a considerable gain is obtained in terms of computational effort.

Another implementation which improved the code in terms of computational effort
is the introduction of a Barnes-Hut algorithm. With this algorithm, panels are grouped
together into nodes and when solving the system, all the panels belonging to one node are
treated as a single panel if they are far enough from a point of interest. In this way, the
computational effort of the simulations is reduced from an order of O(n2) to O(n log(n)).
The more panels are include in one node, the higher the gain in terms of computational
effort, at the expenses of the accuracy.

Last but not least, the final major modification to the code is related to how the
hydrodynamic pressure is evaluated. In the panel method, the pressure is obtained using
the unsteady Bernoulli equation. This equation presents a term which is the derivative
in time of the velocity potential. In the first two papers, this term is evaluated using a
backward difference scheme. This way of evaluating the pressure can result in unstable
solutions and crashes of the code, especially for flat sterns ships. To improve this aspect,
a formulation for the acceleration potential was introduced. With this method, a new
boundary element method for the time derivative of the velocity potential is introduced
and solved.

1.5 Summary of the Papers

In paper A roll decay for a post-panamax container ship and roll motion in beam sea for
a Series 60 hull were studied. In order to take into account viscous effects which are not
included into a potential flow method, two techniques to evaluate damping coefficients
were used. Damping coefficients are then included into the equations of motion. One
technique estimates these coefficients starting from the main dimension and inertial
characteristics of the ship, while the other obtains them through analysing experimental
data available. A general good agreement between simulations and experiments was found
for both cases.

In paper B, the SAFEDOR benchmark study presented in Papanikolaou and Spanos,
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2009 on parametric rolling was replicated. Both head and following waves were simulated
for a container ship and the numerical results were compared with experimental results
and with other codes which were used in the benchmark study. Damping coefficients were
included in the equations of motion using the same methods of the paper A.

For paper C, the new version of the code was used. In this paper an analysis of
ship-ship interaction in shallow water was performed. A benchmark study on lightering
operations was replicated and the numerical simulations were compared with experimental
results available and with results from viscous computations. Some discrepancies due to
an incorrect prediction of the forces were noted in the computations.

A thorough investigation of the grid resolution was carried out for a KVLCC2 hull
sailing in head waves at the design speed and is presented in paper D. The influence
of time step size was also investigated. Very good agreement with experimental results
carried out at SSPA Sweden AB was found, both in terms of ship motions and of added
resistance.
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2 Mathematical Model

In this chapter the mathematical model of the code is presented. The mathematical
model presented here is adopted for all papers, except for Sections 2.5 and 2.6, which are
implemented for papers C and D only.

2.1 Coordinate Systems

To describe the position and the orientation of the hull and the forces acting on it, three
coordinate systems are used. When describing a general free surface problem, an earth
fixed coordinate system is used. With the introduction of a floating body, two more
systems are introduced in order to facilitate the evaluation of forces and motions of the
body. One of these system is an inertial system associated with the position of the body
and the other one is a body-fixed reference system. The systems used are:

• (O, x, y, z): an earth-fixed right-handed coordinate system, with its origin at an
arbitrary point on the initial free surface with the z-axis pointing upward, perpen-
dicular to the horizontal plane representing the calm water condition. The free
surface evolution and the equations governing the flow are expressed in this system.

• (OB , xB , yB , zB): a body fixed coordinate system, with its origin at the center of
gravity of the ship, with the x-axis pointing toward the bow and the z-axis pointing
upward. This system is used to express the forces acting on the ship.

• (OI , xI , yI , zI): a body-fixed inertial coordinate system. This system is centered on
the vertical line passing through the center of gravity and placed on the waterplane.
It is only allowed to move on the horizontal plane and it is used to describe the
position of the body with respect to (O, x, y, z).

2.2 Boundary Value Problem

In order to simulate the flow around a hull sailing in a seaway, the Navier-Stokes equation
has to be solved. Since a direct solution of the Navier-Stokes equations is not possible,
simplifications must be introduced. If we assume that the fluid is homogeneous, inviscid,
incompressible and irrotational, there exists a scalar quantity referred to as velocity
potential φ, that describes the flow. The velocity potential is defined as:

∇φ = (
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z
) = (u, v, w) = u (2.1)

Substituting equation (2.1) into the continuity equation for incompressible fluids, we
obtain Laplace’s equation:

∇2φ = 0 (2.2)

This differential equation is considerably simpler than the Navier-Stokes equation, since
it is a linear partial derivative equation. It is possible to know the flow on the domain by
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solving Equation 2.2. In order to solve it, we are going to introduce boundary conditions
on the domain and in this way we define a Boundary Value Problem (BVP).

2.2.1 Free Surface Boundary Conditions

On the free surface, the Kinematic Boundary Condition (KBC) and Dynamic Boundary
Condition (DBC) are applied. Part of the nonlinearities present in the method are
introduced in the KBC and DBC.

Kinematic Boundary Condition

The kinematic boundary condition grants that there is no flow through the free surface,
meaning that a particle belonging to the free surface will always belong to it. Being
x = (x, y, z) the position of a fluid particle on the free surface in the (O, x, y, z) Cartesian
coordinate system, the fully nonlinear kinematic boundary conditions is:

Dx

Dt
= (

dx

dt
,
dy

dt
,
dz

dt
) = (u, v, z) = ∇φ (2.3)

D
Dt is the material derivative and is defined as:

D

Dt
=

∂

∂t
+∇φ · ∇ (2.4)

Dynamic Boundary Condition

The dynamic boundary condition does not allow for a jump on the pressure on the free
surface. This means that the hydrodynamic pressure on the free surface is equal to the
atmospheric pressure. It derives from the unsteady Bernoulli equation and is defined as:

Dφ

Dt
= −gz + 1

2
∇φ · ∇φ− pa

ρ
(2.5)

where g is the gravitational acceleration, ρ is the fluid density, pa is the atmospheric
pressure and D

Dt is the material derivative as defined in 2.4.

2.2.2 Body Boundary Conditions

Boundary conditions have to be applied on all the boundaries of the domain. Therefore
they will be imposed on the bottom and on the floating object too. Neumann-type
boundary conditions are applied on the instantaneous wetted body surface and on the
bottom of the domain, imposing no flow through such surfaces, i.e. impermeability
condition:

∇φ · n =
∂φ

∂n
= n · (u+ ω × r) (2.6)

where n is the normal to the surface pointing into the fluid domain, u and ω are the
translational and angular velocities and r is the distance between the surface and the
center of rotation.
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Following the same criteria, on the bottom an impermeability condition is applied as
well:

∇φ · n = 0 (2.7)

2.3 Unsteady Pressure and Forces

When solving the BVP defined in Section 2.2, the velocity potential and the velocities
will be known on the fluid domain and on the floating body, as it will be described in
Chapter 3. Once these quantities are known, the forces acting on the hull will be evaluated
integrating the pressure on the instantaneous wetted surface.

The total pressure on the hull is given by Bernoulli’s unsteady equation:

p = −ρ(∂φ
∂t

+
1

2
|∇φ|2 + gz) (2.8)

The time derivative of the velocity potential, which represents the unsteady term, can
be evaluated in several ways. In this project two methodologies have been followed. For
papers A and B, this quantity has been obtained using a finite difference second order
backward scheme. The advantage of using this technique is that it is straightforward to
implement. There are two major downsides: first of all, by doing so, the motion of the
body and the one of the fluid are decoupled. The second one is that instabilities in the
solution are introduced. To solve this problem, another approach has been followed for
papers C and D: a new BVP is introduced and by solving it the acceleration potential is
found. This method will be further explained in Section 2.5.

Once the pressure is known, the hydrodynamic forces acting on the body can then be
computed by integrating the pressure over the wetted hull surface:

F = −
∫∫
Sb

p�n dS, (2.9)

where F = (F1, F2, F3) and the moments according to

F = −
∫∫
Sb

p (r × n) dS, (2.10)

where F = (F4, F5, F6).
When a ship is sailing in a seaway, a number of forces acting on it arise: radiation

and diffraction forces, effects from forward speed and incident forces from the wave
system. This decomposition of the force into components is typically used in linear and
partial nonlinear methods. Although it is a simpler approach, it misses information, such
as nonlinear interaction effects. In a nonlinear approach all effects are accounted for
integrating the unsteady pressure over the hull to obtain the forces instead.
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2.4 Rigid Body Motions

Once the forces are evaluated for the floating body, it is possible to obtain the motions.
Ship motions are evaluated in the body fixed coordinate system (OB , xB , yB , zB), where
the forces are evaluated.

Velocities in the body fixed coordinate system are here defined by the vectors u =
(u, v, w) and ω = (p, q, r), where u represent translational velocities and ω represent
angular velocities. In the inertial coordiante system, velocities are defined by the vectors
U = (ẋ, ẏ, ż) and Ω = (ϕ̇, θ̇, ψ̇), where U represent translational velocities and Ω represent
angular velocities.

The transformation from the body fixed coordinate system into the inertial coordinate
system is achieved through the transformation matrices:

L =

⎡⎣cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ

⎤⎦ (2.11)

B =

⎡⎣1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ

⎤⎦ (2.12)

where c, s and t stand for cosine, sine and tangent respectively, so that

U = [L]u (2.13)

Ω = [B]ω (2.14)

Their inverse forms are used for transformation from the inertial coordinate system
into the body fixed coordinate system:

u = [L]−1U (2.15)

ω = [B]−1Ω (2.16)

The equation of motion represent the equilibrium between the inertial, gravitational
and hydrodynamic forces. With m being the mass of the body and Iij being the mass
moments of inertia, F = (F1, F2, F3, F4, F5, F6) being hydrodynamic forces and moments
and Fg = (Fg1, Fg2, Fg3) being gravitational forces, the equation of motion for a rigid
body can be expressed as:

F1 + Fg1 = m
(
u̇+ qw − rw

)
F2 + Fg2 = m

(
v̇ + ru− pw

)
F3 + Fg3 = m

(
ẇ + pv − qu

)
F4 = Ixxṗ+ Ixy q̇ + Ixz ṙ + (Izz − Iyy)qr − Ixyrp+ Izxpq + Iyz(q

2 − r2)

F5 = Iyxṗ+ Iyy q̇ + Iyz ṙ + (Ixx − Izz)rp− Iyzpq + Ixyqr + Izx(r
2 − p2)

F6 = Izxṗ+ Izy q̇ + Izz ṙ + (Iyy − Ixx)pq − Izxrq + Iyzrp+ Ixy(p
2 − q2)

(2.17)
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2.4.1 Roll Motion

Roll motion plays a fundamental role when assessing the seakeeping capabilities of a ship,
since it can easily lead to extreme motions and dangerous situations. Roll motion is
characterized by small restoring moment and by an even smaller damping ability. The
consequence of this is that even in moderate sea states there can be big roll motion
amplitudes, especially when the frequency of the incoming waves is close to the roll
natural frequency of the hull. In literature different ways of modelling roll motion can
be found, based on the level of approximation introduced. For sake of simplicity, let us
focus here on the 1 Degree Of Freedom (DOF) equation of motion, meaning that we
will disregard the coupling terms. In the following we will refer to the roll angle as ϕ.
Considering the 1 DOF equation for roll, we have:

Ixxϕ̈ = −
∫∫

Sb

p
(
r× n

) · i dS (2.18)

where ϕ̈ is the roll acceleration and i is the vector representing the x -axis in the body-fixed
coordinate system i = (1, 0, 0).

Equation 2.18 can be simplified if we apply the superposition principle. Although
we might include nonlinear functions for some terms, we are still supposing that all the
components are independent from one another, linearizing in fact the system. Splitting
Equation 2.18 into single components results in:

Ixxϕ̈ = −Maddϕ̈−B(ϕ̇)− C(ϕ) +M(t) (2.19)

where Madd is the added mass, B(ϕ̇) is a function for the damping, C(ϕ) is a function the
restoring term and M(t) is the forcing term. The damping and restoring terms can be
further simplified, assuming a linear function for them. This would be the most simplified
formulation for the roll motion. The main problem with it, related to the highly nonlinear
behaviour of restoring and damping, is that it assumes the amplitudes of the motion to
be small, introducing a considerable error.

With the method used in this project, forces are evaluated on the instantaneous
wetted surface. This means that all terms except the damping are implicitly evaluated in
Equation 2.18. The damping term is not accounted for since it is mainly due to viscous
effects and we are working under the hypothesis of potential flow, hence supposing the
fluid to be inviscid. The energy dissipation indeed is mostly affected by friction and
vortices creation, while the wave making component is limited: the extreme case of a
cylinder rolling in calm water will not produce any waves. Numerical simulations of roll
motion using potential flow methods have to account for viscous damping. The most
common way to do it, is to introduce damping coefficients in the equation of roll motion.
Supposing a general nonlinear function for the damping term, Equation 2.18 becomes:

Ixxϕ̈ = −
∫∫

Sb

p
(
r× n

) · i dS −B(ϕ̇) (2.20)
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2.5 Acceleration potential

The evaluation of the time derivative of the velocity potential can lead to instability
and formally decouples the motion of the body from the one of the fluid. One way of
getting around this is to directly calculate ∂φ

∂t from its boundary conditions. In the work
presented here the method presented by Kang and Gong, 1990 has been used for papers
C and D, after major changes had been included in the code.

This method is based on a modal decomposition of the rigid body acceleration
components, which implies the solution of n+ 1 additional BVP where n is the number
of degrees of freedom of the rigid body. This means that a new BVP has to be solved for
each degree of freedom, where the unknown is the acceleration potential. A downside of
this method is that the computational effort will increase. Another inconvenient is that
the free surface boundary conditions have to be expressed in the body-fixed coordinate
system, introducing some numerical error, as reported in Bandick and Beck, 2010.

2.6 Nonlinear decomposition

To increase the efficiency of the computations, a nonlinear decomposition of the solution,
as described by Ducrozet et al., 2010, has been introduced in the method. This approach
has been used in papers C and D. The free surface elevation ζ and the velocity potential φ
are decomposed into an incident and a scattered part, where the incident terms describe
the undisturbed incident wave field and the scattered terms describe any disturbance to
the incident wave field:

ζ = ζI + ζS

φ = φI + φS , �x ∈ D
(2.21)

In practice this means that for a computation with no incident wave field, i.e. calm
water, the incident wave elevation (ζI) and the incident velocity potential (φI) are zero
and the total solution is represented fully by the scattered part. In the presence of an
incident wave field, ζS and φS contain the disturbance by the hull and the effects of the
interactions between this disturbance and the incident wave field.

The decomposition results in a new formulation of the free surface boundary conditions:

Dx

Dt
= ∇ (

φI + φS
)

(2.22)

Dφ

Dt
= −gz + 1

2
∇ (

φI + φS
) · ∇ (

φI + φS
)− pa

ρ
(2.23)

Since the incident wave field is a solution to the Laplace problem, the Laplace problem
for the scattered solution becomes:

∇2φS = 0, x ∈ D

φS = φS , x ∈ Sf

∇(φI + φS) · n = n · (v + ω × r) , x ∈ Sb

(2.24)
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Note that the free surface boundary conditions (2.22) and (2.23) have to be evaluated
at the total surface elevation ζ = ζI + ζS . This means that the incident part of the
potential φI has to be evaluated at a position other than the surface elevation of the
undisturbed incident wave ζI . Also note that the free surface evolution tracking in time is
done for the total solution (scattered plus incident) in order not to loose nonlinear effects.

The pressure can finally be calculated in two different ways, where the scattered part

is either evaluated by means of backward-differences
∂φS

D

∂t or based on the acceleration

potential
∂φS

P

∂t :

pD = −ρ
(
∂φI

∂t
+
∂φSD
∂t

+
1

2
|∇φ|2 + gz

)
. (2.25)

pP = −ρ
(
∂φI

∂t
+
∂φSP
∂t

+
1

2
|∇φ|2 + gz

)
. (2.26)
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3 Numerical Method

In this chapter the description of how the mathematical model has been implemented in
the code is presented. As mentioned already, there are some major changes between the
first two papers and the last two, especially when it comes to the mesh of the free surface.
In this chapter the numerical scheme will be presented and the differences between the
two versions of the code will be highlighted.

3.1 Boundary Element Method

The BVP described in Section 2.2 is solved using a Boundary Element Method (BEM).
This code used for this work is a boundary element method and is based on Hess and
Smith, 1967. The domain is discretized by means of flat quadrilateral panels with an
unknown constant strength source distribution. To obtain the source strength σ, the
Green’s function is used. Given two points P and Q on the domain, the Green’s function
is defined as:

G =
1

4πr(P,Q)
(3.1)

where

r(P,Q) =
√
(xP − xQ)2 + (yP − yQ)2 + (zP − zQ)2 (3.2)

If there are only sources on the boundary of the domain, the velocity potential at a point
P becomes, using Green’s theorem:

φ(P ) = − 1

α

∫∫
S

[
G
∂φ(Q)

∂n

]
dS (3.3)

where S is the boundary of the domain, n is the normal direction of the panel, α is the
solid angle and G is the Green’s function and represents the potential of a source of
unitary strength. The solid angle α is equal to 1 if P is inside the domain and 1

2 if P
belongs to the boundary. Substituting the Green’s function into Equation 3.3, we get
then the velocity potential for a point P in the fluid domain:

φ(P ) = − 1

α

∫∫
S

[
1

r(P,Q)
σ(Q)

]
dS (3.4)

To solve the velocity potential on the domain, we need to know the strength of the
sources placed on the computational domain. Looking at the boundary conditions defined
in Chapter 2, we can identify two conditions: one where the velocity potential is know,
which is the free surface, and one where the normal derivative of the potential is given at
each time step, corresponding to the body. We can then define two equations that will be
used to solve the BVP:

− 1

α

∫∫
S

1

r(P,Q)
σ(Q) dS = φbc(P ) for P ∈ SD (3.5)
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and

− 1

α

∫∫
S

∂

∂n

(
1

r(P,Q)

)
σ(Q) dS =

∂φbc(P )

∂n
for P ∈ SN (3.6)

where
σ an unknown source strength,
φbc the given velocity potential at P ,
∂φbc

∂n the given normal velocity at P ,
SD a surface on which φbc is given,

SN a surface on which ∂φbc

∂n is given.
In this way a linear system can be set up and by solving it, the source strength will be

known. Once the source are known, it is possible to obtain the potential on those panels
where the normal derivative was known and vice versa.

3.2 Free Surface Evolution

In the current method, the time dependency is introduced by the fully nonlinear boundary
conditions on the free surface. The evolution in time of the free surface is obtain with a
mixed Eulerian-Lagrangian (MEL) approach, introduced by Longuet-Higgins and Cokelet,
1976. Markers are associated at each panel and they are used to track the evolution in
time of the free surface and the velocity potential. With this methodology, each step is
divided into two sub-steps:

1. Eulerian step: the BVP is solved by means of the BEM. At the end of this step the
velocity potential and velocity at the markers are calculated.

2. Lagrangian step: the free surface boundary conditions defined in Equations 2.3 and
2.5 are integrated in time and the position of the markers is updated.

Once the Lagrangian step is finished, a new free surface mesh is generated. Depending
on whether a structured or unstructured mesh is used, a different procedure will be
adopted. Both methods though interpolate the position of the markers to obtain the
surface elevation. By enforcing a single-valued free surface, thin-plate splines can be
used for this purpose. In addition, the boundary conditions for the next Eularian step
are evaluated by interpolating the velocity potential of the markers. To obtain the
evolution in time of the free surface, an integration scheme is introduced. A fourth order
Runge-Kutta is used for the first four time steps of the simulation, while a fourth order
Adams-Bashforth-Moulton method is used for the rest.

3.3 Free Surface Mesh Generation

The code presented here uses an automatic free surface mesh generation. The mesh
generator, which is embedded in the code, re-evaluates the free surface at the end of each
Lagrangian step while the body is meshed before the first time step only. This is necessary
since the code is fully nonlinear and thus forces and velocities have to be evaluated on
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Figure 3.1: Mesh resolution for KVLCC2.

the instantaneous positions. The domain is discretized with quadrilateral panels and two
different approaches can be used: structured and unstructured mesh generation.

3.3.1 Structured Mesh Generation

In papers A and B a structured mesh is used to discretize the fluid domain. This approach
is based on the work of Janson, 1997. The panels can be stretched in the longitudinal and
transverse directions but their shape remains the same during the course of a simulation.
Each panel has an associated marker which is used to trace the changes of the panel and
to define its position during the interpolation for advancing in time. The positions of the
markers are used to create the free surface by mean of splines in tension passing through
the markers: when the integration in time is performed and the boundary conditions are
updated for the free surface on the position of the markers, the mesh has to be updated
accordingly. In order to do that, the position of several markers is used to obtain the new
shape of the free surface.

3.3.2 Unstructured Mesh Generation

To increase efficiency and accuracy of the computations, an adaptive mesh refinement
has been introduced and it is used for papers C and D. The adaptive mesh refinement
is applied on the free surface, while on the hull the panelization is kept constant during
a simulation. An initial refinement is applied on the hull too, in areas where a higher
resolution might be needed, based on local curvature. Furthermore, a refined band on
panels is added around the waterline and on the bow and stern, to facilitate solving the
flow in critical areas. An example of the refinement around the stern for a KVLCC2 can
be seen in Figure 3.1.

On the free surface, an adaptive refinement scheme is used at each time step if a
criterion is met. Every time a criterion is met for a panel, this is split recursively into
four sub-panels. The user specifies a maximum level of refinement which represents the
maximum number of subdivisions a panel can go through. There are two criteria that
trigger the refinement: one is connected with the intersection between the free surface and
the hull and the second one is is based on the curvature of the free surface. Regardless of
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Figure 3.2: Detail of the intersection between free surface and the hull.

the criterion though, there will never be two neighboring panels with more than one level
difference between the two in order to guarantee a smooth mesh.

On the intersection between the free surface and the hull, the panels have the maximum
level of refinement. Moving away from the hull, the levels are linearly decreased by one
unit. The influence of the hull on the mesh can easily be seen on an initial time step
for a calm water case, Figure 3.3a. Special care must be taken for the panels on the
intersection between the hull and the free surface: when a panel is split into its four
sub-panels due the presence of the hull, one of these can end up being completely inside
the hull. This sub-panel will then be discarded and the refinement will continue on those
cut by the intersection between free surface and the hull. Since the domain is discretized
by quadrilateral panels, at the end of this process there will still be gaps between the free
surface and the hull, even for the maximum level of refinement. To get rid of these gaps,
the hanging nodes of the panels closest to the hull are stretched until the waterline. A
comparison between a case with and without the snapping of the panels can be seen in
Figure 3.2.

As far as the criterion on the curvature is concerned, the refinement is triggered if the
curvature between two control points in the vertical plane exceeds a fixed value. In this
way, it is possible to have a coarse representation of the incoming waves and have a finer
mesh on the waves generated by the hull. A comparison between the initial time step
with the hull at rest and the final one with the generated waves for a KVLCC2 in calm
water can be seen in Figure 3.3. Since the method is fully nonlinear, it means that the
boundary conditions have to be applied on the exact free surface location. To satisfy this
requirement, the mesh generator and consequentially the refinement scheme are called at
each sub-time step of the Adam-Bashforth-Moulton method.
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(a) Initial time step (b) Final time step

Figure 3.3: Comparison between initial and final mesh with the adaptive mesh refinement.

3.4 Damping zone

Since the numerical domain has a limited extension for computational reason, domain
boundaries are introduced. In order to avoid unwanted reflection from the domain
boundaries, a damping zone is introduced. In order to achieve that, the damping zone
makes sure that the solutions from the inner and outer domain match at the intersection.
The velocity potential on the outer domain known a priori and it represents the incoming
waves. Due to the presence of a body in the inner domain, the velocity potential will be
different. The purpose of the damping zone is to phase out this difference introducing a
damping term in the free surface boundary conditions. The modified boundary conditions
are:

D�x

Dt
= ∇φ− ν�udamp

Dφ

Dt
= −gz + 1

2
∇φ · ∇φ− pa

ρ
− νφdamp

(3.7)

where ν is a damping factor based on a quadratic function of the generalised space variable
s:

ν(s) =

{
0 for s ≤ s0

μω
(
s−s0
λ

)2
for s > s0

(3.8)

with s0 being the beginning of the damping zone, μ is a tuning factor related to the depth
and ω and λ represent the frequency and the length of the waves to be dampened. If
there are irregular waves, the frequency and length of the longest one are used. Since
the damping is only applied to the difference between the inner and outer potential and
velocity, we have:

�udamp = �uouter − �uinner

φdamp = φouter − φinner.
(3.9)

Note that the damping zone not only dampens out the potential due to the presence
of the hull, but it helps in reducing numerical errors: while the difference between the
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Figure 3.4: Visual representation of Barnes-Hut grouping.

inner and outer solution is mainly due to the disturbance of the hull, there could also be
numerical effects related to discretization.

3.5 Barnes-Hut algorithm

In order to further decrease the computational effort, a Barnes-Hut algorithm, initially
presented by Barnes and Hut, 1986, is implemented. Thanks to this algorithm, the
computational effort needed to solve BVP is decreased from O(n2) to O(n log(n)). With
this algorithm, panels are grouped together in nodes based on the distance of an area of
interest. A visual representation of the grouping can be seen in Figure 3.4. When the BVP
is solved, the panels belonging to one node are treated as a single panel. Furthermore, the
further away the node is from the point of interest, the smaller the influence of the node
on it. Grouping more panels into a single node will result in a faster computation at the
expenses of the accuracy. This can be controlled by the user, specifying the ratio between
the dimensions of a node, i. e. how many panels it contains, and the distance at which
the influence of the node fades away. The Barnes-Hut algorithm was initially introduced
to deal with astrophysics simulations, where the influence of gravity decrease with 1

r2 .
Since the influence of the velocity potential varies with a 1

r function, some problems in
accuracy can arise. To deal with this problem, a multipole expansion method is adopted.

3.6 Roll Damping Coefficients

In Section 2.4.1, the importance of introducing damping coefficients to account for viscosity
when dealing with roll motion was presented. In this section different models for the
damping coefficients and how to evaluate them will be presented. There are several ways
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to represent the roll damping coefficients that are going to be used in the roll equation.
The most common ones are, as can be found in Himeno, 1981:

B(ϕ̇) = Blϕ̇+Bqϕ̇
2 +Bcϕ̇

3

B(ϕ̇) = Blϕ̇+Bqϕ̇
2

B(ϕ̇) = Blϕ̇+Bcϕ̇
3

(3.10)

More complex and accurate models include a dependency on the roll angle as well but they
have not been considered in the current project. Historically, the quadratic formulation
for roll damping has been used. Ever since the 80s, the cubic formulation started to gain
more popularity because it was easier to solve numerically and analytically, as reported
by Bass and Haddara, 1988.

After a damping model is chosen, the damping coefficients have to be evaluated. It is
important to point out that usually, once the coefficients are evaluated, they are used
for different kind of simulations and different kind of conditions. Although this might
be the only approach available, the use of constant coefficients can introduce an error in
simulating roll motion. An intensive campaign of simulations and results analysis on the
importance of not using constant damping coefficients can be found in Contento et al.,
1996. In the paper, different models including a dependence on the wave frequency and
wave steepness are used showing better agreement with experimental data.

There are several techniques available to evaluate damping coefficients and in the
following sections two methods that have been used for this project will be discussed.
The methods available in literature to estimate damping coefficients can be divided in
two categories: the methods belonging to the first group estimate the coefficients using
geometrical and inertial characteristics of the ship being studied and they are generally
based on regression analysis. These methods are widely used for numerical simulations
since they allow to predict the coefficients without much information on the conditions
which will be tested beforehand. There also are a number of methods which evaluate
damping coefficients starting from model tests. The use of these methods to obtain the
damping coefficients for numerical simulations find a limited applicability in a design phase,
since they require model test results. On the other hand, they provide more accurate
predictions since they analyse and they tune the coefficients on a specific condition: forced
roll motion, roll decay or RAOs in frequency domain.

For the study presented here, a formulation proposed by Watanabe and Inoue (W-I),
presented by Himeno, 1981 and simplified later on by De Kat Beck et al., 1989, was
chosen as a method belonging to the first group. A Parameter Identification Technique
was chosen for the second group and it will be described in the following sections.

3.6.1 Watanabe and Inoue

This very simple formulation was chosen to estimate the coefficients if no information
from model tests is available. This method allows for the prediction of the quadratic term
of Equation 3.10 starting from geometrical and inertial characteristics of the ship. There
is also a linear term in the model but it is supposed to take into account the potential
part of the damping, hence it is not evaluated since it is implicitly obtained by the code.
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The main advantage of this method is that it is very simple to obtain a first guess for the
damping coefficients. On the other hand, the accuracy of this prediction is not always
high, especially when the ship studied is close to the limits of validity of the regression
analysis. The proposed formula is:

Bq = h
[
1.42

CBT

L
+ 2

ABKσ0
L2

+ 0.01
]
f(Fn,Λ) (3.11)

where:

h =

[(
KG− T/2

B

)3

+

(
T

B

)2
L

4B
+

cB

64T

]
ρ∇B2180

4π3CB

c � 1.994C2
WP − 0.1926CWP

f(Fn,Λ) = 1 + 0.8
1− exp−10Fn

Λ2

(3.12)

and σ0 and Abk represent respectively the efficiency and the area of the bilge keels, where
the efficiency can be obtained from a diagram as a function of the aspect ratio. L, B, T
are the length, beam and draft of the ship, ∇ is the volume, CB and CWP are the block
and the waterplane coefficients respectively, KG is the vertical position of the center of
gravity and ρ is the density of the fluid.

3.6.2 Parameter Identification Technique

This technique obtains damping coefficients starting from model test results. It can either
use time series of roll decay or frequency domain responses of roll motion, although it
could be modified to include more scenarios and coupling with other motions. Similar
techniques can be found in literature, the one used here was presented in Francescutto
and Contento, 1999. In order to obtain the coefficients from the experimental results, the
starting point is to chose an equation for roll motion expressed as sum of components,
such as Equation 2.19. When the input is a time series of roll decay the model selected is:

Ixxϕ̈ = −Maddϕ̈− (Blϕ̇+Bcϕ̇
3)− (Clϕ+ Ccϕ

3) (3.13)

When the input is a RAO of roll motion instead, the damping model selected is purely
linear. Once the model is chosen and given some input values ϕ from model tests, Equation
3.13 is numerically solved using a first guess for the parameters Bl, Bc, Cl, Cc. The PIT
systematically vary p, a set of parameters including the ones just listed, in order to
minimize the square error:

χ2(p) =

Ndata∑
i=1

(
ϕ(i)− ϕ̂(i,p)

)2
(3.14)

In this way it is possible to find the best set of parameters p that gives the best fit
between the input values ϕ and the numerically evaluated values ϕ̂(p). An example of
the result of the fitted curve is shown in Figure 3.5.
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Figure 3.5: Example of a fitted curve on the input values for a roll decay analysis using
the parameter identification technique

It is clear that this method will provide more accurate results in terms of evaluation
of damping coefficient, compared to the one proposed by Watanabe and Inoue, since they
will be tailored for each ship and each condition tested. On the other hand though, the
main downside of this method is that the experimental results have to be available before
running the simulation. Nevertheless, a good agreement with experimental data can be
reached using this technique.
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4 Results

In this chapter the results obtained with the potential flow method will be presented,
divided into sections summarizing the four papers appended.

4.1 Summary of Paper A

In this paper, the fully nonlinear potential flow method was used to simulate roll motion.
More specifically, the method was applied to two cases: roll decay for the Duisburg Test
Case (DTC), a post-panamax container ship, and roll motion in regular beam waves for a
Series 60 hull. Numerical simulations were compared to experimental results; a thorough
description of the experimental setup can be found in el Moctar et al., 2011 for the DTC
and in Bulian and Francescutto, 2013 for the Series 60.

In order to assess the quality of the simulated roll decay, the natural frequency and the
equivalent linear roll damping are compared between the simulations and the experimental
results. To compare the natural frequency we started from the time series of roll decay.
The frequency is obtained from the time between two consecutive peaks of the same sign
of the decay curve and is computed against the average value of the roll of those two
peaks. In this way it is possible to obtain the variation of the natural frequency with the
roll amplitude. A visual representation of the procedure is presented in Figure 4.1. To
evaluate the equivalent linear damping we started from the linearized solution of the roll
decay motion:

ϕ(t) = ϕ0e
−μeqt cos(ω0t) (4.1)

where ϕ0 is the initial heeling angle, μeq is the equivalent linear damping and ω0 is the
natural frequency of roll motion. Similarly to what done for the frequency, we obtained
the variation of the damping with the roll amplitude fitting the exponential curve passing
through two consecutive peaks and plotting it against the mean roll amplitude between
such peaks.
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Figure 4.1: Evaluation of natural frequency and equivalent linear damping.
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(a) Initial heeling angle of 9◦.
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(b) Initial heeling angle of 15◦.

Figure 4.2: Time series of roll decay for the DTC.

4.1.1 Roll Decay

Numerical simulations of roll decay were performed for the DTC for two initial heeling
angles, ϕ0 = 9◦ and ϕ0 = 15◦. Both formulations to obtain the damping coefficients were
used. After a comparison with experimental data, a linear term expressed as a percentage
of the critical damping was added to W-I formulation. Since the roll decay curves from
the experiments were available it was possible to use also the PIT to obtain the damping
coefficient. With this formulation a linear plus cubic model for the damping coefficients
was selected. Two different sets of values were obtained using the PIT, one for each
initial heeling angle. In Figure 4.2 it is possible to see the roll decay time series of the
simulations and of the experiments for both initial heeling angles.

In order to have a better term of comparison and to assess the quality of the simulations,
the procedure explained at the beginning of this section is applied to obtain the variation
of natural frequency and equivalent roll damping with the roll amplitude. The comparison
can be seen in Figure 4.3. As can be seen, there is generally a good agreement between
the simulations and the experiments. Since the damping mainly affects the amplitude
of the roll decay, a good agreement was expected for the frequency, regardless of the
method used to obtain the damping coefficients. In fact, the frequency is mostly affected
by the restoring term and this is connected to the instantaneous wetted surface, which is
properly evaluated by the method. Regarding the equivalent linear damping, there is a
better agreement for the simulations were the PIT was used than for the ones using the
W-I formulation. This was expected too since the coefficients obtained using the PIT are
specifically suited for each condition.

4.1.2 Beam Sea

After roll decay, roll motion in beam sea was simulated. The ship used is a Series 60 hull
with Cb = 0.8. The ship was simulated with incoming waves of different frequencies and
with a constant wave steepness of sw = 0.01. Experimental results for the response in
beam sea were provided, as well as the backbone curve. The backbone curve represents
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(c) Frequency variation with an initial heel-
ing angle of 9◦.
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Figure 4.3: Equivalent linear damping and frequency variation.
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Figure 4.4: Comparison of roll frequency for the S60.

the variation of the natural frequency with roll amplitude and it was used to verify that
the simulations were able to evaluate the roll natural frequency properly. In order to
verify this, roll decay simulations were performed and the result, in terms of natural
frequency, can be seen in Figure 4.4. Both formulations to obtain the damping coefficients
were used. Initially for the beam sea as well a linear term expressed as a percentage of the
critical damping was added for the W-I formulation. Since only beam sea experimental
results were available, the coefficients from the PIT were obtained analyzing the response
in frequency domain. The model chosen for this is a purely linear one.

In Figure 4.5 it is possible to see the RAOs of roll motion in beam sea. As expected,
the results obtained using the PIT match considerably better the experimental results.
Not only the points in the RAO but also the backbone curve is in better agreement when
the PIT is used. In Figure 4.6 the RAO is presented for the simulations not including the
linear term in the W-I formulation. There is an improvement in the results but the PIT
proved to perform better in the evaluation of the damping coefficients.

4.1.3 Conclusions

In paper A roll decay and roll motion in beam sea were simulated using the two techniques
presented in Section 3.6 to obtain the damping coefficients. As far as roll decay is
concerned, a general good agreement was found regardless of the method used to obtain
the coefficients, although a better match with experimental results is achieved with the
PIT. For beam sea instead, a good agreement can be achieved only if a proper method is
used to get the coefficients: the W-I formulation did not give satisfactory results. This
could be related to various reasons. First of all, roll decay is a much simpler phenomenon
compared to beam sea. Furthermore, the W-I method is based on a regression analysis
and could therefore be too simplistic for some cases. In paper A, it was possible to show
that if a proper formulation for the damping coefficients is used, it is possible to achieve
satisfactory results.
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(a) Beam sea response with W-I formulation.
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Figure 4.5: Beam sea results with constant wave steepness sw = 1/100.
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Figure 4.6: S60 beam sea response using only the quadratic term of W-I formulation.
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4.2 Summary of Paper B

In this paper, the potential flow method was used to replicate SAFEDOR, an EU
benchmark study aimed at assessing the capabilities of existing numerical methods to
evaluate parametric rolling. In the benchmark, presented in Papanikolaou and Spanos,
2009, numerical simulations were compared with model test results for a container ship
sailing in head and following waves. Two different loading conditions were investigated
and model tests were carried out for monochromatic, three components and irregular
waves. The benchmark had two main goals: the first was to assess the capabilities of the
tested codes to capture the occurrence of parametric rolling. The second was to compare
the simulated roll amplitudes with the ones from model tests, i. e. the quality of the
simulations. In paper B the benchmark was replicated using the potential flow method
and both formulations to obtain the damping coefficients were used.

Given the diversity of the incoming waves, different responses were expected. In order
to make the comparison of the different methods possible, a single value of the response
had to be taken. In the case of a reached steady state of the response, which is typically
the case for monochromatic waves, the mean value of the amplitude of the stationary
response was taken. A typical response for monochromatic waves can be seen in Figure
4.7a. For three components and for irregular waves a steady state of the response was
not achieved and typical responses can be seen in Figures 4.7b and 4.7c respectively.
Therefore for the comparison the average value of the amplitude of the roll motion was
used, excluding the transient part where the motion was still developing.

In order to verify whether the methods were able to predict the occurrence of parametric
rolling, regardless of the amplitude of the motion predicted, a success rate was introduced
in the study. To define the success rate, a critical roll amplitude is used to compare
simulations with experiments. Four values of critical roll amplitude are used: ϕcr =
0.5◦, 1.0◦, 1.5◦, 2.0◦. An i− th event is classified as successful when the simulated ϕi and
experimental ϕi values of the roll motion are the same with respect of the critical value.
The success rate over the n cases is defined as:

P =
1

n

n∑
i=1

qi (4.2)

where:

qi =

{
1 if (ϕi − ϕcr)(ϕi − ϕcr) ≥ 0

0 if (ϕi − ϕcr)(ϕi − ϕcr) < 0
(4.3)

To assess the quality of the predicted amplitude, standard deviation σ and correlation
coefficient r were used in the benchmark. Being ϕ̂i = ϕi − ϕi the difference between
the simulated and experimental results for the i − th case and ϕ̂m the average of the
differences in the response between simulations and experiments for all conditions,σ and
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(a) Response with monochromatic waves.
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(b) Response with three components waves.

0 500 1,000 1,500 2,000
−20

−10

0

10

20

t, [s]

R
o

ll
A

m
p

li
tu

d
e,

[d
eg

]

(c) Response with irregular waves.

Figure 4.7: Different responses of parametric rolling.
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Figure 4.8: Roll decay for the case with GM = 1.38m.

r are evaluate as:

σ =

√∑n
i=1(ϕ̂i − ϕ̂m)2

n− 1
(4.4)

r =
cov(ϕ,ϕ)

σϕσϕ
(4.5)

4.2.1 Numerical Simulations

For the benchmark, semi-captive model tests of a container ship were carried out in
different wave systems. A total number of 22 cases were tested with different heading
angle χ and can be seen in Table 4.1. Irregular waves were obtained using a JONSWAP
spectrum with an overshoot parameter γ = 3.3. Cases 1 and 12 are roll decay tests and
they were used to tune the inertia characteristics and the damping coefficients. The only
difference between the two loading conditions is the vertical position of the center of gravity.
For the numerical simulations presented here, only Case 1 was available. Therefore, the
damping coefficients using the PIT were available only for the first loading condition,
which was used for cases 01÷ 11. On the other hand, the W-I formulation was used for
all cases. In Figure 4.8 the roll decay simulations are compared with experiment for case
1. As can be seen, a good agreement is reached between computations and experiments,
especially in terms of frequency. The simulation using the coefficients obtained with the
PIT matches well the amplitudes too.

In Figures 4.9 and 4.10, the amplitudes of the parametric roll for each case are shown
and compared with the experimental results. As mentioned earlier, for the cases 12÷ 22
only the damping coefficients obtained using the W-I method were used. Since it is
not easy to evaluate the quality of the simulations based purely on these two figures,
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Table 4.1: Experiments conditions

ID GM χ Fn H1 T1 H2 T2 H3 T3 Description
01 1.38 - 0.00 - - - - - - Roll Decay
02 1.38 180◦ 0.08 3.6 10.63 - - - - 1 Harmonic
03 1.38 180◦ 0.08 5.7 10.63 - - - - 1 Harmonic
04 1.38 180◦ 0.12 3.6 10.63 - - - - 1 Harmonic
05 1.38 180◦ 0.12 5.7 10.63 - - - - 1 Harmonic
06 1.38 180◦ 0.12 2.4 10.63 2.4 9.66 2.4 11.55 3 Harmonics
07 1.38 180◦ 0.12 4.0 10.63 1.0 9.66 1.0 11.55 3 Harmonics
08 1.38 180◦ 0.12 5.0 10.63 - - - - Irregular
09 1.38 160◦ 0.12 3.6 10.63 - - - - 1 Harmonic
10 1.38 160◦ 0.12 5.7 10.63 - - - - 1 Harmonic
11 1.38 160◦ 0.12 4.0 10.63 1.0 9.66 1.0 11.55 3 Harmonics
12 1.00 - 0.00 - - - - - - Roll Decay
13 1.00 0◦ 0.08 3.6 8.00 - - - - 1 Harmonic
14 1.00 0◦ 0.08 6.0 8.00 - - - - 1 Harmonic
15 1.00 0◦ 0.04 3.6 8.00 - - - - 1 Harmonic
16 1.00 0◦ 0.04 6.0 8.00 - - - - 1 Harmonic
17 1.00 0◦ 0.04 2.4 8.00 2.4 7.11 2.4 8.89 3 Harmonics
18 1.00 0◦ 0.08 2.4 8.00 2.4 7.11 2.4 8.89 3 Harmonics
19 1.00 0◦ 0.08 5.0 8.00 - - - - Irregular
20 1.00 180◦ 0.08 5.0 12.12 - - - - 1 Harmonic
21 1.00 180◦ 0.12 5.0 12.12 - - - - 1 Harmonic
22 1.00 180◦ 0.08 4.0 12.12 1.0 10.77 1.0 13.47 3 Harmonics
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Figure 4.9: Mean roll amplitudes for the cases with GM = 1.38m.

Table 4.2: Correlation coefficient and standard deviation.

σ r
PIT tests 2÷ 11 4.64◦ 0.74
W-I tests 2÷ 11 4.71◦ 0.74
W-I tests 13÷ 22 6.63◦ 0.67
W-I tests 2÷ 22 6.13◦ 0.62
Overall 10.5◦ 0.37
Best Performing 6.4◦ 0.64

the success rate and the standard deviation were evaluated. In Table 4.2 the standard
deviation and correlation coefficient are presented and compared with the values from the
benchmark. As can be seen, a good agreement with experimental results is achieved. In
the benchmark, the mean values of standard deviation and correlation coefficient for all
methods were calculated as well as the values for the four best performing ones. They
are both presented in the table. As can be seen, the simulated parametric roll is aligned
with the best performing methods. In Table 4.3 the success rate of the simulations is
compared with the ones from the benchmark. The success rate from the simulation is
also aligned with the best performing methods from the benchmark.

4.2.2 Conclusions

In the paper, numerical simulations of parametric roll were compared with a benchmark
study were different numerical methods were evaluated. To compare the current method
with the results presented in the benchmark success rate, standard deviation and cor-
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Figure 4.10: Mean roll amplitudes for the cases with GM = 1.0m.

Table 4.3: Success rate as a function of the critical rolling angle.

P |xcr=0.5◦ P |xcr=1.0◦ P |xcr1.5◦ P |xcr=2.0◦ Pm

PIT tests 2÷ 11 1.0 1.0 0.7 0.7 0.85
W-I tests 2÷ 11 1.0 1.0 0.7 0.7 0.85
W-I tests 13÷ 22 0.7 0.8 0.8 0.8 0.78
W-I tests 2÷ 22 0.85 0.9 0.75 0.75 0.81
Overall na na na na 0.62
Best Performing na na na na 0.78
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relation coefficient were used. The success rate represents the accuracy of a method to
successfully predict the occurrence of the parametric roll. Based on the cases tested, we
can expect a correct prediction eight times out of ten. Furthermore, the success rate was
also obtained separately for the two loading conditions, showing similar results. This
suggests that the accuracy of the prediction does not depend on the loading condition.
Not only, the success rate is the same regardless of the technique used to obtain the
damping coefficients, where both formulations were used.

As far as the quality of the predicted amplitude is concerned, standard deviation
and correlation coefficient show a good agreement between the simulations and the
experimental results. The quality of the simulations is again aligned with the best
performing methods from the benchmark. The difference between σ and r for the tests
2÷11 and 13÷22 is related to a significance difference in amplitude in the test number 21,
as can be seen in Figure 4.10, where no roll motion was measured in the experiments and
the simulated condition has an amplitude around φ ∼= 19◦. However, the ratio between
encounter and natural roll frequencies is ωe/ωφ = 2.13. One of the conditions that triggers
parametric rolling is that such ratio has to be in the range of ωe/ωφ

∼= 2/n with n integer.
It can be said then that this case lays on the edge of possible parametric rolling. From a
design point of view though, the current method is on the safe side since it would show a
possible danger situation when conditions are on the borderline.
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4.3 Summary of Paper C

In this paper, the numerical method is used to replicate a benchmark case of lightering
operation in confined waters. A lightering operation consists of transferring cargo to one
ship to another while the two are sailing close to each other at the same speed. Once
the transferring is complete, the service ship, the one which received the cargo, overtakes
the other. When the two ships are sailing close to each other, there are hydrodynamic
interactions which lead to unbalanced pressures between starboard and portside. This
unbalance can lead to attraction forces which can cause a collision. In the paper, forces
and moments are compared with captive model tests results available in Lataire et al.,
2009. Results were also compared with numerical simulations obtained using SHIPFLOW
viscous solver and presented in Zou and Larsson, 2013.

In the simulations a Ship To Be Lightered (STBL) and a Service Ship (SS) sail at
the same speed and at different transversal positions. The ships are tested at various
combinations of drafts and water depth as well as various speeds. The midship sections
of the two ships are aligned in all cases tested here. The STBL is a model scale of the
KVLCC2 and the SS is an Aframax tanker. Both ships were equipped with rudder and
propeller during the experiments but in the numerical simulations presented here, rudder
and propeller are not taken into consideration and the ships are towed at the prescribed
speed. A description of the conditions is presented in Table 4.4. In the table, d is the
water depth and δy is the distance between the ships sides.

Forces and moments are measured in each ship’s coordinate system. The quantities
measured are: longitudinal force X, lateral force Y and yaw moment N . Since the
potential flow does not take into account viscosity, frictional resistance is taken into
account using the ITTC ’57 line.

4.3.1 Numerical Results

The time series of the forces and moments have to be processed before comparing the
results with the experimental values. The time series for case B can be seen in Figure
4.11. A Double Exponential Smoothing (DES) is applied on the time series of the forces

Table 4.4: Main parameters of benchmark cases.

- A B C
TSTBL [m] 12.825 12.825 12.825
TSS [m] 7.5 15.0 15.0
d [m] 17.250 20.250 36.625
v [kn] 6.0 5.0 4.0
δy [m] 50.0 50.0 4.0
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and moments: {
FDES,t = αFt + (1− α)FDES,t−1

F d
DES,t = αFDES,t + (1− α)F d

DES,t−1

(4.6)

where Ft is the value of the force at the time t, FDES,t the value of the the first exponential
smoothing, F d

DES,t the double smoothing and α is the smoothing factor. As can be seen
from Figure 4.11, a smoothing technique was necessary to evaluate the attraction forces
and the yaw moments.

The comparison of the forces and moments evaluated is presented in Figure 4.12,
where SFLM stands for SHIPFLOW MOTIONS, SFLR for SHIPFLOW Ranse solver
and EFD for experimental results. A good agreement is reached for the attraction forces,
while the forces along the x−axis have different behaviours depending of the hull: the
forces for the Aframax tanker are properly evaluated while there are some discrepancies
for the KVLCC2. There are some limitations in the methods used that must be pointed
out: the potential flow does not include viscous resistance. To account for this, the
frictional resistance evaluate using the ITTC ’57 line is implemented. The formulation
does not include the form factor. On the other hand, the viscous solver uses a double
model, i.e. symmetry-plane at the free surface. In addition to this, the wave resistance
is very small compared to the viscous part for all the cases since the Froude numbers
are in the range Fn = 0.037÷ 0.055. Furthermore, for such low Froude numbers, a high
number of waves is expected to be generated by the hull. The grid resolution required to
capture all the waves is too high. Among all the results, the ones which seem to be the
hardest to evaluate properly are the yaw moments. The most extreme case is visible for
the Aframax tanker, where an opposite sign is obtained with the potential flow compared
to experiments and simulations with the viscous solver. A wrong sign is obtained for case
A for the KVLCC2 as well, although the same issue was experienced with the viscous
solver. There are two possible causes that can lead to this error. First of all, the pressure
recovery at the stern can be considerably higher with a potential flow solver than with a
viscous solver because of no separation. The net force and moment resulting from this
will be different in magnitude. Furthermore, the center of the resultant force will be
shifted from the one obtained with a viscous solver and a difference in the sign of the
moment could arise. Second of all, since these cases are asymmetrical, there will be a
circulation acting on the hull, resulting in a lift force. The circulation is not captured by
a potential flow using only sources distribution on the panels. The same problem was
faced and discussed in other papers where potential flow methods were used to evaluate
the yaw moment, see for instance Yuan and Yeung, 2018.

4.3.2 Conclusions

In the paper, a lightering operation was replicated. Forces and moments were compared
with both experimental results and with values obtained with viscous computations. As
shown in the previous section, forces are captured fairly well, both in magnitude and
in direction. Particularly good agreement is reached for the attraction force deriving
from the hydrodynamic interaction. There are some issues for the evaluation of the
longitudinal forces though, since with such a low speed a correct prediction of the wave
resistance can be a source of uncertainties with a potential flow code. Increasing further
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Figure 4.11: Time series of the forces and moments for case B.
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Figure 4.12: Comparison between forces and moments.
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the grid resolution of the free surface between the hulls and downstream, could partially
solve this issue. It must be stressed again that for these cases the viscous resistance
is the predominant component, so it is not possible to achieve a perfect match with
experimental results using a potential flow method. As far as the evaluation of the
moments is concerned, further investigation is needed. Because of the higher pressure in
the stern obtained with potential flow, an error will be introduced. Modeling of the lift
forces would help to account for the effects from crossflow and circulation.
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4.4 Summary of Paper D

In this paper numerical simulations of added resistance in head waves of the KVLCC2
hull were carried out and compared with experimental results. A correct estimation of
added resistance during a design phase has becoming more and more important. The
International Maritime Organization (IMO) has introduced new rules to address energy
efficiency in the shipping industry in order to reduce CO2 emissions. One of the most
important aspects of these new rules is the evaluation of the Energy Efficiency Design
Index (EEDI), which represents the carbon dioxide produced per ship’s capacity mile. To
obtain a reliable value of the EEDI, it is important to estimate the added resistance of
the ship in the actual operation scenario.

Before comparing the numerical results with the experimental data and other methods
available in literature, a grid dependency study was performed. The influence of different
timestep sizes was also investigated. The numerical domain is fixed for all different grids
tested and is set equal to 3Lpp upstream and 3Lpp downstream from the centerplane
of the ship and for 2Lpp sideways. The incoming waves range from λ = 0.4 · Lpp to
λ = 1.4 · Lpp. The wave steepness is set according the one used in the experiments and
is equal to sw = 1/50 for λ ≤ 0.9 and sw = 1/100 for 0.9 < λ ≤ 1.4. The length of the
simulations is set in order to achieve a convergence in the forces and is kept equal between
the different conditions. The number of encounter periods goes from a maximum of 100
for λ = 0.4 · Lpp to a minimum of 44 for λ = 1.4 · Lpp.

4.4.1 Grid Dependency

A grid dependency study had been carried out to find the best compromise between
accuracy and computational time. This study focused on the mesh resolution on the free
surface. The mesh on the hull is fixed and kept constant between all the different cases
tested. As mentioned in Section 3.3.2, the mesh on the hull has a higher resolution along
the waterline and on areas where there is a high curvature and flare. The total number of
panels used to discretize the hull is approximately 5.3k.

Both criteria that trigger the refinement for the free surface were analyzed separately,
in order to find their impact on the solution. In Table 4.5, all the different cases tested is
presented. For group a, cases 1, 2 and 3, the same maximum level of refinement is kept
on the intersection between the free surface and the hull and on the curvature of the free
surface. For group b, cases 4, 5 and 6, only the maximum level on the curvature is varied.
In this way it is possible to study how the resolution of the generated waves affects the
solution, since the mesh around the hull does not vary. For group c, cases 7, 8 and 9, the
initial base grid is changed. For the other cases the level zero refinement corresponded
to 36 panels along the x -axis and 12 along the y-axis. For these last set of simulations
the base grid is changed in order to have the area of the initial panels half and double
compared to other cases. Note that cases 3, 6 and 8 are the same. In the table it is also
possible to see the initial and final number of panels on the free surface in calm water and
the number of panel along the waterline (WL). The number of panels per fundamental
wave length are also reported in the table, both along the waterline and on a longitudinal
wave cut at y = 0.15 · Lpp.
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Table 4.5: Levels

Levels Panels Calm Water Panels per wave
ID WL Curv. Initial Final WL @ WL @ y = 0.15Lpp

a
1 4 4 580 1100 50 6.4 10.7
2 5 5 715 2700 95 12.1 20.2
3 6 6 1255 5900 190 24.2 29.1

b
4 6 4 1255 1760 190 24.2 11.2
5 6 5 1255 3200 190 24.2 20.7
6 6 6 1255 5900 190 24.2 29.1

c
7 6 6 745 3750 135 17.2 26.2
8 6 6 1255 5900 190 24.2 29.1
9 6 6 1680 8000 270 34.4 32.5

(a) Wave length λ = 0.6 · Lpp (b) Wave length λ = 1.0 · Lpp (c) Wave length λ = 1.2 · Lpp

Figure 4.13: Variation of added resistance coefficient for the different cases for three wave
lengths.

In order to compare the different grid resolutions, the different grid were tested with
incoming waves. To find a convergence, added resistance coefficient and nondimensional
heave and pitch were compared for three wave lengths: λ = (0.6, 1.0, 1.2) · Lpp. The
results are presented in Figures 4.13, 4.14 and 4.15 respectively. As can be observed, the
variations for the motions are quite limited, while there are bigger discrepancies for the
added resistance. The bigger discrepancies can be observed for cases 1, 2 and 4 where
there are not enough panels around the waterline to properly evaluate the forces acting
on the hull.

Another important aspect in the selection was to compare the different computational
time needed for the simulations. The computations were run on 4 cores on an Intel
i7-7700K CPU @ 4.20 GHz and the time needed for the all the cases are reported in
Table 4.6 for two wave lengths. In the table the computational time per wave encounter
is also presented. This value represents an average: it is obtained dividing the total
computational time with the number of encounter periods. Since case 4 was run on
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(a) Wave length λ = 0.6 · Lpp (b) Wave length λ = 1.0 · Lpp (c) Wave length λ = 1.2 · Lpp

Figure 4.14: Variation of heave for the different cases for three wave lengths.

(a) Wave length λ = 0.6 · Lpp (b) Wave length λ = 1.0 · Lpp (c) Wave length λ = 1.2 · Lpp

Figure 4.15: Variation of pitch for the different cases for three wave lengths.
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Table 4.6: Computational time for different cases

λ = 0.6 λ = 1.2
ID T T per Te T T per Te

a
1 6h35’ 5.2’ 6h50’ 8.4’
2 14h 11.1’ 14h30’ 17.8’
3 37h20’ 29.5’ 41h 50.2’

b
4 na na na na
5 19h15’ 15.2’ 19h15’ 23.6’
6 37h20’ 29.5’ 41h 50.2’

c
7 20h20’ 16.1 20h50’ 25.5’
8 37h20’ 29.5’ 41h 50.2’
9 68h 38.2’ 94h 101.6’

another machine, it is not reported in the table.
Comparing the results from the forces with the ones from the computational time,

we could see that the best cases were the IDs 5 and 7. Increasing the mesh resolution
further from these cases, resulted in a very high computational demand. To chose between
cases 5 and 7, we looked at contour plots and at the longitudinal wave cut, shown in
the appended paper, and compared them with case 8, which represent a finer resolution.
While the forces are very similar for both cases 5 and 7, the wave system is slightly better
captured by case 7 and the wave cut is closer to the one obtained from case 8. For these
reasons, we decided to use case 7 to compare the results with the experiments.

4.4.2 Time Step Dependency

Before proceeding to the comparison with experiments and other methods, it was observed
that a further investigation was needed for short waves. To assess the problem, the
influence of the time step size on the solution was investigated. During the simulations,
the time step size is based on the period of the fundamental wave generated by the ship,
with wave length λ = 2πFn2L. For the grid comparison the time step was set in order to
have 30 time steps per fundamental wave period. For this investigation, three more values
were chosen: 15, 45 and 60 steps. Varying the number of time steps per fundamental
wave period will affect the number of time steps per encounter period, as can be seen
in Table 4.7. The added resistance coefficient for the four different cases can be seen in
Figure 4.16.

As can be seen from Figure 4.16 there is a clear convergence increasing the number
of time steps. As reported in Seo et al., 2014, in short waves nonlinearities play an
important role in the evaluation of added resistance. Since the code used here assumes
fully nonlinear boundary conditions and the forces are obtained from the direct integration
of the nonlinear pressure on the hull surface, the discrepancies in the short waves range
could be mainly due to an insufficient number of time steps for these cases, as can be seen
in Table 4.7. The case selected for the comparison with experiments and other methods
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Table 4.7: Number of time steps per encounter period for the different cases.

time steps per Te
λ/L N steps 15 N steps 30 N steps 45 N steps 60
0.4 18 35 53 71
0.5 21 41 62 82
0.6 23 47 70 93
0.7 26 51 77 103
0.8 28 56 84 112
0.9 30 60 91 121
1.0 32 65 97 129
1.1 34 69 103 137
1.2 36 73 109 145
1.3 38 76 114 152
1.4 40 80 120 160

Figure 4.16: Added resistance coefficient for different number of time steps per fundamental
wave.
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Figure 4.17: Non-dimensional heave for case 7.

is the one with 45 time steps per fundamental wave period.

4.4.3 Results

In Figures 4.17 and 4.18 the comparison for heave and pitch is shown. Simulated heave
and pitch match extremely well the experimental data in the small waves range. For
longer waves, a very good agreement can still be seen although heave and pitch are slightly
overpredicted.

In Figure 4.19 it is possible to see the comparison between the simulated added
resistance coefficient from the current fully nonlinear potential flow and the ones obtained
with model tests and from other simulations available in literature. The other methods
used for comparison are: a linear potential flow presented in Hizir et al., 2019, a partially
nonlinear potential flow method and an Euler method presented in Seo et al., 2014 and an
URANS method presented in Sadat-Hosseini et al., 2013. As can be seen, except for the
linear potential flow method, there is a general good agreement between the current work
and the other computations and the model test results, especially for waves longer than
λ = 1.0 · Lpp. For short waves, there is a higher scatter in the results. Since the forces in
waves are closer in value to the one obtained in calm water, even a small difference will
results in a bigger discrepancy in the added resistance coefficient. It must be pointed out
also that the wave steepness for the present method was the same as in the experiments
(sw = 1/50 for λ ≤ 0.9 and sw = 1/100 for 0.9 < λ ≤ 1.4), while the steepness for the
other methods was sw = 1/60 for the linear potential flow, sw = 1/40 for the partially
nonlinear potential flow and Euler method and sw = 1/53 for the URANS method.
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Figure 4.18: Non-dimensional pitch for case 7.

Figure 4.19: Added resistance coefficient for case 7.

47



4.4.4 Conclusions

The numerical results for heave and pitch match very well with the experimental data
for all wave lengths. The added resistance coefficient was compared with experimental
results and with other numerical methods, including linear potential, partially nonlinear
potential flow, Euler method and URANS, and a general good agreement is found. For
shorter waves there is a bigger discrepancy but the added resistance is still comparable
to experimental results and to other methods. For this range, even a small deviation in
the estimation of the force could lead to bigger differences in terms of added resistance
coefficient. Furthermore, different numerical methods used different waves steepness, as
presented in Section 4.4.3, making it hard to compare the results. It is not possible to
conclude from this comparison that any method is significantly superior to the others for
the KVLCC2 case.

When looking at the total computational time, it must be kept in mind that several
encounter periods are simulated: they range between 44 for the case λ = 1.4 · Lpp up to
100 for the shortest waves. Some improvements for the computational time are presented
in Chapter 6.
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5 Conclusions

In this report, a summary of the work conducted so far within the PhD project ”Added
resistance and ship motions in oblique waves” has been presented. As discussed in Section
1.1, it is important to predict with high accuracy how a ship will react in a seaway in
order to maximize its efficiency, safety and comfort. For the numerical simulations, a fully
nonlinear unsteady potential flow method was used. Since the aim of the project is to
evaluate added resistance and ship motions for a ship sailing in a generic sea state, the
first steps consisted in limiting the number of variables and to simulate simpler conditions.

The first two papers appended focused on the prediction of roll motion using a
potential flow method. Potential flow methods discard viscosity, but viscous effects can
have a central role in the behaviour of roll motion. In order to account for these effects,
damping coefficients were added to the equation of roll motion. In general, a good
agreement between simulations and experimental results was found for roll decay, both
for damping coefficients obtained from a Watanabe-Inoue method based on regression
analysis and from a Parameter Identification Technique, where the coefficients are based
on roll decay experiments for the hull to be computed. When it came to the prediction
of roll motion in beam sea though, consistently better results were obtained using the
Parameter Identification Technique for the damping coefficients, which is capable of
predicting the damping coefficients with higher accuracy. For the parametric rolling,
similar results were obtained with both methods for the damping coefficients, but the
PIT proved again to allow a closer representation of the experiments. The results of the
simulations were compared with those of other methods used to predict parametric rolling
within an EU benchmark study: the code presented here proved to be in the range of the
best performing ones.

For papers C and D major modifications were included in the code, such as the
introduction of acceleration potential, an unstructured grid refinement and a nonlinear
decomposition of the velocity potential. Simulations of ship motions and added resistance
in head waves for the KVLCC2 and ship-ship interaction were carried out. The evaluation
of the motions and added resistance for the KVLCC2 showed very good agreement between
the simulations and experiments and other numerical methods. The simulations of the
ship-ship interaction on the other hand, failed to correctly capture yaw moments and side
forces. This could be due to several reasons. The cases tested were characterized by low
speed and the predominant component of the longitudinal force is mainly viscous, making
the potential flow method less suited than other methods. The error in the prediction of
the moments can be related to the absence of circulation and separation in the potential
flow, leading to an erroneous moment lever arm.

With few exceptions, the method investigated in this thesis has proven to be able
to handle the tested scenarios, giving satisfactory results in terms of prediction of ship
motions and added resistance in head waves. The introduction of an unstructured adaptive
mesh allows for a more efficient discretization of the free surface, with finer resolution
around the hull and at parts with large curvature and a coarser grid further away. This
approach grants higher accuracy in critical areas, such as the vicinity of the hull, resulting
in a better resolution of the flow field and increased computational efficiency. Higher
computational efficiency is also enhanced by the introduction of a Banres-Hut algorithm to
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the boundary element method. The next steps in order to achieve numerical simulations
in oblique waves will be described in Chapter 6.
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6 Future Work

In order to extend the capabilities of the method to evaluate ship motions and added
resistance in oblique waves, some modifications will be made to the code. When there
is an angle of attack between the ship and the incident wave direction, viscous effects
start to become more important. To better handle this, a formulation which allows to
account for the lift, or circulation around the hull, has to be introduced. Furthermore,
introducing circulation might help in reducing the error that arose in Paper C, where this
was believed to be the major cause for the failure to correctly predict the moment and
side forces. As a first step, simple models will be included in the code, based on simplified
theories and empirical formulations. After this, to model the lift in a more precise way,
vortices or dipoles will be introduced.

With the aim of simulating free sailing in oblique waves, rudder and propeller force
models will have to be introduced. The same approach used for the hull generated lift will
be adopted: simpler models will initially be used, where they represent external forces
acting on specific points on the body. These forces are added to the equations of motion.
With this approach it is possible to easily include any type of force as long as it can be
modeled in a meaningful manner. For example, forces deriving from sails and Flettner
rotors can be included.

Furthermore, some improvements can be achieved in terms of computational efficiency.
One way to improve the computational efficiency is to replace the current method for the
acceleration potential, where one Laplace problem is solved for each degree of freedom. For
6 degrees of freedom there are more efficient ways to compute the acceleration potential,
see Tanizawa, 1995.
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