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HIGHLIGHTS

Iodide-mediated Li-O2 cells can

reversibly cycle via LiOH with low

overpotential

Electrolyte additives can increase

the redox potential of the I�/I3
�

couple

At sufficiently high I�/I3
� redox

potentials, OER from LiOH

becomes favorable
Li-air batteries have attracted significant attention due to their very high energy

density, comparable to that of fossil fuels. For their development, a stable

discharge product that can be reversibly decomposed during charge needs to be

developed. LiOH is a promising candidate, but questions concerning the

reversibility of the charge process have been raised. Here, we report for the first

time Li-O2 cells that can reversibly cycle via LiOH by using water and an ionic liquid

as additives in the electrolyte.
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Toward Reversible and Moisture-Tolerant
Aprotic Lithium-Air Batteries

Israel Temprano,1 Tao Liu,1,4 Enrico Petrucco,2 James H.J. Ellison,1 Gunwoo Kim,1 Erlendur Jónsson,1,3

and Clare P. Grey1,5,*
Context & Scale

Li-air batteries have attracted

significant attention as a strategy

to develop affordable and

sustainable electrical storage with

higher energy density than current

lithium-ion batteries, having

theoretical energy densities that

rival those of fossil fuels and, in

their simplest form, avoiding the

use of resource-limited transition

metal oxides. The formation of

LiOH as discharge product is a

promising route to bypass some
SUMMARY

The development of moisture-tolerant, LiOH-based non-aqueous Li-
O2 batteries is a promising route to bypass the inherent limitations
caused by the instability of their typical discharge products, LiO2

and Li2O2. The use of the I�/I3
� redox couple to mediate the LiOH-

based oxygen reduction and oxidation reactions has proven chal-
lenging due to the multiple reaction paths induced by the
oxidation of I� on cell charging. In this work, we introduce an ionic
liquid to a glyme-based electrolyte containing LiI and water and
demonstrate a reversible LiOH-based Li-O2 battery cycling that op-
erates via a 4 e�/O2 process with a low charging overpotential
(below 3.5 V versus Li/Li+). The addition of the ionic liquid increases
the oxidizing power of I3

�, shifting the charging mechanism from
IO�/IO3

� formation to O2 evolution.

of the most acute challenges this

very young technology faces.

However, one critical challenge is

to charge the battery reversibly,

evolving oxygen gas at low

overpotentials. While previous

studies have indicated that the I�/
I3
� redox couple may not have

sufficient thermodynamic drive for

the oxygen evolution reaction,

here we demonstrate that

additives in the electrolyte (ionic

liquid and water) can increase the

I�/I3
� equilibrium redox potential

sufficiently to enable a reversible

charge process at low

overpotentials.
INTRODUCTION

In light of recent commitments from several European countries to ban the sale of

internal combustion engine vehicles in the coming decades,1,2 the race to develop

electrical storage strategies beyond the capabilities of lithium-ion batteries is inten-

sifying considerably. Among the many different options, Li-air batteries have at-

tracted significant attention due to their comparable energy density to fossil fuels.3

Non-aqueous Li-air batteries (LABs) are generally composed of a lithium-metal

anode, an organic-based lithium-ion conducting liquid electrolyte, and a porous,

typically carbon-based, cathode. During discharge, O2 is reduced at the cathode

(the oxygen reduction reaction, ORR), which then combines with lithium ions in so-

lution, forming insoluble discharge products that fill up the porous structure of the

carbon electrode. The discharge product is oxidized during charge, with O2 being

released back to the atmosphere (the oxygen evolution reaction, OER).4

Despite its potential, several fundamental challenges remain to be overcome to

allow the successful development of a practical non-aqueous LAB.4–8 Among these

challenges, the instability of the typical discharge products (LiO2 and Li2O2) in the

presence of moisture and CO2 represents a fundamental stumbling block.9,10

Recently, it has been shown that lithium hydroxide (LiOH) can be formed as a

discharge product in moisture-tolerant LABs with a high capacity and low charge

overpotential using either LiI as a redox mediator or Ru as a catalyst in a wet organic

electrolyte.11–13 However, it is widely believed that LiOH is not reversible due to (1)

the half-cell potential of the LiOH OER under standard state (aqueous) conditions

being higher than that of the Li2O2 OER, given the higher thermodynamic stability

of the former; (2) the detection on charge of oxidation products such as
Joule 4, 2501–2520, November 18, 2020 ª 2020 Elsevier Inc. 2501
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IO3
�,12,14,15 and DMSO2,

13 which originate from the redox mediator and the sol-

vents, respectively; and (3) little or no oxygen evolution being observed in gas anal-

ysis experiments.14 These observations have given rise to doubts as to whether the

iodide/triiodide (I�/I3
�) redox system is capable of sustaining reversible ORR/OER

chemistry via LiOH formation and decomposition.14–17

The electrochemical behavior of the iodide/triiodide redox system has been extensively

reported in the literature, and it is by now well established that the (I�/I3
�) redox poten-

tial is solvent dependent12,18–20: the oxidizing power of I3
� can be readily tailored by

means of adjusting the physicochemical parameters of the electrolyte (dielectric con-

stant, ionic strength, Gutmann acceptor/donor numbers, etc.). Ionic liquids (ILs) have

been shown to alter the solvation/coordination environments of this redox system,

again substantially affecting the (I�/I3
�) redox potential,18 while still allowing high ionic

conductivity and reducing solvent volatility.21–28 However, the high viscosity of ILs,

which reduces the O2 diffusion coefficients, and the low O2 solubility are disadvanta-

geous for LAB performance.29 The presence of water has been shown to enhance the

solution-transfer of discharge products and redox mediators,12,30–33 reducing the

charge overpotential and therefore the level of parasitic reactions, as well as fundamen-

tally affecting the activity of the (I�/I3
�) redox system during discharge.11,14,34 Thus, the

combination of LiI as redoxmediator with water and an ionic liquid is a potentially good

strategy for efficiently tailoring the electrolyte properties in Li-O2 batteries.

In this work, we report a step forward toward the realization of a viable moisture-

tolerant LAB, by reversibly cycling LiOH with low charging overpotentials in cells

with LiI as a redox mediator and H2O and 1-butyl-1-methyl-pyrrolidinum-bis(trifluor-

omethanesulfonyl)imide (Pyr14TFSI) as additives in a low-volatility electrolyte.

Pyr14TFSI is one of the most widely studied ILs in relation to Li-O2 batteries, showing

high stability toward superoxide species and a relatively high Li+ diffusion coeffi-

cient.24,28,29,31,35–37 We find that the inclusion of Pyr14TFSI is crucial for the revers-

ibility of the electrochemical formation/decomposition of LiOH as demonstrated

by the observation of a 4 e�/O2 OER using operando online electrochemical mass

spectrometry (OEMS). OER from LiOH decomposition is further confirmed by

OEMS experiments with (electrochemically) preloaded electrodes, as well as iso-

topic labeling. The suppression of the side reactions to form oxygenated iodine spe-

cies (IO�, IO3
�), which trap the oxygen during charge, is also observed, and the

mechanistic considerations of the oxygen evolution versus iodate formation are dis-

cussed in the context of the thermodynamic driving forces for both reactions. The

effects of the IL and water with respect to the activity of iodine are also investigated

through molecular dynamic (MD) simulations.
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RESULTS AND DISCUSSION

A 4 e�/O2 Oxygen Evolution Reaction

Li-O2 cells were constructed with a lithium-metal anode, an anolyte consisting of 300

mM LiTFSI in tetraethylene glycol dimethyl ether (G4), a lithium-ion conducting glass

ceramic (LICGC-Ohara AG010) separating the two electrolytes, a catholyte contain-

ing 700 mM LiTFSI, 50 mM LiI, 900 mM Pyr14TFSI, and 5,000 ppm H2O in G4, and a

mesoporous carbon black cathode (Ensaco-P150). The LICGC serves to prevent

redox shuttling (I�/I3
�) and reaction of catholyte additives with the Li anode, since

redox mediator shuttling is a possible source of ‘‘artificial’’ capacity, the oxidized

species such as I3
� being reduced at the anode and then migrating back to the cath-

ode to be reoxidized.14 These cells were evaluated with operando OEMS by capac-

ity-limiting galvanostatic cycling, in order to keep the levels of water within limits
2502 Joule 4, 2501–2520, November 18, 2020
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Figure 1. 4 e�/O2 Formation and Removal of LiOH in Water and IL-Containing Cells

(A, B, G, H) Galvanostatic profiles and (C, D, I, J) online mass spectrometry analysis of O2, and (E, F, K, L) H2, CO, and CO2 (m/z = 32, 2, 28, 44,

respectively) from batteries with electrolytes comprising of 700 mM LiTFSI, 50 mM LiI, and 5,000 ppm H2O in G4 with 900 mM Pyr14TFSI (left) and without

Pyr14TFSI (right) cycled at a current of 50 mA/cm2.
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known for promoting LiOH formation during the ORR (between 1,500 and 5,000

ppm).11 Figure 1 (system description in Figure S1A) shows the electrochemical pro-

file (Figures 1A and 1B) and gas evolution rate of O2 (m/z = 32; Figures 1C and 1D),

H2, CO, and CO2 (m/z = 2, 28, 44; Figures 1E and 1F) for the discharge and charge of

this cell (Figures 1G–1M show similar results for a cell without Pyr14TFSI for compar-

ison). The electrochemical discharge profile (Figure 1A) shows a sustained single

discharge plateau at 2.6 V (versus Li/Li+). The discharge produces a constant con-

sumption rate of O2 of �0.51 nmol/s (Figure 1C), corresponding to a 4 e�/O2 stoi-

chiometry, with no significant evolution of gases indicative of parasitic reactions (Fig-

ure 1E). The total measured O2 consumption is 18.5 mmol, which corresponds to a

99.1% faradic efficiency.

The charge profile shows an initial rapid increase in potential from 3.1 to 3.3 V followed

by a relatively flat process at approximately 3.4 V (Figure 1B). Notably, oxygen evolution

is clearly observed to occur from the beginning of charge, stabilizing at around a rate

corresponding to a 4 e�/O2 stoichiometry (Figure 1D). A total of 18.4 mmols of O2 is

evolved during charge, corresponding to 99.5% of the amount consumed in the

discharge (i.e., a 99.5% faradic efficiency), with no significant signs of parasitic reactions

as signaled by a lack of evolution of H2, CO, or CO2 (Figure 1F). The OER can be

observed for several cycles (Figure S5) with a relatively high faradic efficiency (>80%

for 7 cycles).

By comparison, in the absence of Pyr14TFSI, only very small amounts of O2

(1.5 mmols corresponding to �8.4% faradic efficiency) (Figure 1K) are detected
Joule 4, 2501–2520, November 18, 2020 2503
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Figure 2. Operando and Ex Situ Characterization of the LiOH Formation during ORR

(A) X-ray diffractograms at different stages of capacity-limited cycling (pristine, red; discharged,

gray; fully charged, green) as represented in the electrochemical profile.

(B) Quantification of LiOH present in the electrode by acid/base titration at different stages of

capacity-limited cycling.

(C) Operando pressure-monitoring experiment during discharge.

(D and E) SEM characterization (at two different magnifications) of electrodes at the end of

discharge (D) and end of charge (E) (scale bars shown in white).

Relevant reflections due to LiOH and PTFE binder are indicated by gray triangles and blue dots,

respectively, in (A). All cells were cycled at 50 mA/cm2.
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during charge to 3.5 V. A steep increase in potential above 3.6 V at the end of charge

is also observed, which is accompanied by a significant evolution of CO2 (andO2 and

CO to lesser extent), suggesting electrode/electrolyte degradation (Figure 1M).
Analysis of the ORR Products

Analysis of the cathode after discharge with X-ray diffraction (XRD) (Figure 2A, gray

trace) is dominated by patterns corresponding to crystalline LiOH, as revealed by

quantitative analysis of the diffraction pattern (Figure S2). All reflections associated

with LiOH are absent in the diffractogram of the fully charged electrodes, confirming

the removal of the crystalline discharge product (Figure 2A, green trace). Quantifica-

tion of the amount of LiOH present in the electrode was performed by acid titration

at various stages of the discharge (1/4,
1/2,

3/4, and full discharge) and the charge (1/4,
1/2,

3/4, and full charge) processes. Figure 2B shows an increasing amount of LiOH de-

tected in the electrode as the ORR progresses (red bars),which matches the ex-

pected value for a 1 e�/LiOH mechanism (4 e�/O2) at all stages of discharge. The

presence of Li2O2 as an alternative discharge product was also tested by iodometry
2504 Joule 4, 2501–2520, November 18, 2020
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titration (Figure S3); no peroxide was detected, in agreement with the XRD analysis.

A similar trend can be observed during different stages of the OER (Figure 2B, green

bars), indicating that LiOH is being removed according to the same 1 e�/LiOH stoi-

chiometry. Operando pressure monitoring during discharge (Figure 2C) confirms a

4 e�/O2 stoichiometry during ORR for cells with 900 mM Pyr14TFSI and 5,000 ppm

of water, as expected for the formation of LiOH. These results suggest that galvano-

static cycling of this cell occurs through the formation and removal of LiOH, and not

through Li2O2 chemistry under the experimental conditions shown in Figure 1

(Figure S6).

Scanning electron microscopy (SEM) images of electrodes during the first discharge

are shown in Figure 2D. The electrodes extracted from capacity-limited cells (2 mAh)

discharged cells contain typical ‘‘flower-like’’ LiOH crystals of up to 7 mm in size,

similar to those previously reported in cells containing LiI and water.12 The absence

of these crystalline structures in the SEM images of fully recharged electrodes (Fig-

ure 2E) confirms the removal of the discharge product during charge without the

precipitation of large quantities of by-products from parasitic reactions. The con-

sumption/regeneration of water, consistent with the reversible formation/decompo-

sition of LiOH through the mechanism presented in Reaction 1, was also observed

(Figure S7).

In order to evaluate the mechanistic implications of the observed stoichiometry

during the OER in Figure 1, further OEMS experiments were performed with an

electrochemically preloaded electrode with Li2O2 (Figure 3, left); the electrode

was produced by discharging a cell using 300 mM LiTFSI in G4 as the electrolyte

(i.e., with no LiI or additives). The cell was subsequently disassembled in the glove

box, and the electrode was washed 3 times with ethylene glycol dimethyl ether

(G1) and dried under vacuum for 30 min. This electrode was then loaded in a

two-compartment cell with the same catholyte used for the cells shown in Figure 1

(i.e., 700 mM LiTFSI, 50 mM LiI, 900 mM Pyr14TFSI, and 5,000 ppm H2O in G4). In

this case, the OER showed an approximately 2 e�/O2 stoichiometry (Figure 3C),

consistent with the oxidation of Li2O2. After initially reaching an evolution rate cor-

responding to 2 e�/O2, a noticeable dip in the oxygen evolution is seen (Fig-

ure 3C). This effect has been previously attributed to a transition from the delithia-

tion of Li-deficient (Li2-xO2) species to stoichiometric Li2O2 on Li2O2 particles.38–40

Preloading was similarly performed using the IL-free conditions previously shown

to produce LiOH electrochemically:11 an electrolyte comprising 700 mM LiTFSI,

50 mM LiI, and 5,000 ppm H2O in G4 was discharged. Switching to the IL-contain-

ing electrolyte resulted in 4e�/O2, OER on charge (Figure S12).

Since earlier 17O-ssNMR measurements have reported that both O2 and H2O

contribute to the oxygen atoms in the LiOH formed via a LiI-catalyzed electrochem-

ical reaction in G1,11 a further OEMS experiment was performed using 17O-enriched

H2O (Figure 3, right) and Pyr14TFSI. A m/z = 32mass spectrometer signal (Figure 3D,

blue) dominates the response on charge, which is due to 16O-16O. A signal is seen at

m/z = 33 (Figure 3D, magenta), which corresponds to 17O-16O. The signal at m/z =

34 (Figure 3D, orange) corresponds to either 17O-17O or 18O-16O. Since the signal

intensity of the m/z = 33 and 34 signals are similar in magnitude, this indicates

that the m/z = 33 signal is not due to the 17O in O2 gas, since the natural abundance

of 17O and 18O are 0.04% and 0.2%, respectively. The low enrichment of the H2
17O

resulted in a relatively low Li17OH concentration, as observed by 17O ssNMR (Fig-

ure S13). This explains the relatively low intensity of the m/z = 33 signal (from
16O-17O) compared with the m/z = 32 signal (from 16O-16O).
Joule 4, 2501–2520, November 18, 2020 2505



G
as

 e
vo

lu
tio

n 
ra

te
 (n

m
ol

/s
)

E
 (V

)

time (h)

0

0.7

1.4

0

0.2

0.4

3.0
3.2
3.4
3.6
3.8
4.0

0 2 4 6 8 100 2 4 6 8 10

m/z=32
m/z=33 x100
m/z=34 x100

G
as

 e
vo

lu
tio

n 
ra

te
 (n

m
ol

/s
)

E
 (V

)

0

0.7

1.4

0

0.2

0.4

3.0
3.2
3.4
3.6
3.8
4.0

H2

CO2

CO

O2

4 e /O- 2

2 e /O- 2

4 e /O- 2

2 e /O- 2

Li2O2 O-enriched LiOH17

time (h)

A

C

E F

D

B

Figure 3. Operando Gas Analysis of Preloaded Electrodes and Isotopic Exchange during OER

(A and B) Galvanostatic profiles (top) and (C and D) online mass spectrometry analysis of O2 (m/z =

32) and (E and F) H2, CO, and CO2 (m/z = 2, 28, 44) evolution during charge of electrochemically

preloaded electrodes with Li2O2 (left) and of a Li-O2 cell discharged using 17O-enriched H2O in the

electrolyte containing G4 and Pyr14TFSI at 70 mA/cm2.
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Pathways to LiOH Removal

Themechanisms for LiOH formation in the ORR reaction have been discussed exten-

sively elsewhere,11,15,34 and thus we focus here on the OER reaction during charge

(verification of the ORRmechanism is shown in Figure S14). Two questions arise from

theOEMS data (Figure 1). First, what is the role played by Pyr14TFSI in the promotion

of oxygen evolution? Second, what is the mechanism for LiOH decomposition/

removal in the absence of the ionic liquid when there is no O2 evolution?

The OER, during the charge of a LiOH-based Li-O2 battery, can be described overall

by:
4 Li+(sol) + 4 OH�
(sol) % 2 H2O(sol) + O2(sol) + 4 Li(s).
 (Reaction 1)

However, this reaction operates via a two-stage catalytic mechanism in which I� is

first oxidized to I3
� (the I�/I3

� couple, here referenced to the Li anode [the Li/Li+

couple]),
2 Li+(sol) + 3 I�(sol) % I3
�
(sol) + 2 Li(s),
 (Reaction 2)

and, subsequently, LiOH is oxidized to O2 by I3
�with the regeneration of I� (OH�/

O2 chemical reaction):
4 OH�
(sol) + 2 I3

�
(sol) % 6 I�(sol) + 2 H2O(sol) + O2(sol).
 (Reaction 3)
2506 Joule 4, 2501–2520, November 18, 2020
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The (I�/I3
�) redox potential at standard (aqueous) conditions (E�

versus Li/Li
+) corre-

sponds to 3.5761 V,18,41 which is sufficiently large to drive oxygen evolution.

However, the reversibility of iodide-mediated aprotic Li-O2 batteries, cycling

through LiOH, has been a much-discussed subject due to the difficulty of per-

forming the OER process at low overpotentials (below 3.5 V).14–17,19 Alternative

reaction pathways have therefore been proposed in the literature to explain

the LiOH removal upon charging in LiI- and organic-electrolyte-containing cells

with added water. The detection of IO3
� in the electrolyte of charged cells,

alongside the lack of O2 evolution in OEMS experiments, has suggested that

IO3
� is the dominant product rather than O2 at 3.5 V or below, in ether-based

electrolytes. The IO3
� formation has been proposed to form either through the

oxidation of I� to I2
2 I� % I2 + 2 e�
 (Reaction 4)

and its subsequent chemical reaction with LiOH14,15:
3 I2 + 6 OH� % IO3
� + 5 I� + 3 H2O
 (Reaction 5)

or via oxidation by I3
� to form IO� and the subsequent disproportionation of IO�

into IO3
� and I�18,42:
6 OH� + 3 I3
� % 8 I� + 3 H2O + IO3

�.
 (Reaction 6)

In this study, cells containing Pyr14TFSI show clear evidence for a 4 e�/O2 OER (Re-

action 1) commencing at �3.2 V (Figures 1A–1F). This oxygen evolution is absent in

cells without the IL (Figures 1G–1M), even when charging at comparable potentials

(below 3.5 V for �75% of charge).

Characterization of the electrolyte after charge was performed in order to estab-

lish the products formed following LiOH removal in cells with and without IL and

thus investigate the difference in mechanism during the OER. UV spectra of ali-

quots of the electrolyte of charged cells with and without Pyr14TFSI (Figure 4A)

show the presence of features at 295 and 354 nm, corresponding to the pres-

ence of I3
�; no feature corresponding to I2 (at 520 nm) is seen in either case

(insert in Figure 4A). The electrolyte of cells without Pyr14TFSI (Figure 4A, red

trace) show the presence of extra features at 228 and 465 nm, assigned to

IO3
� and IO�, respectively; these are absent in cells cycled with the IL (Figure 4A,

blue trace). The presence of I3
� in both samples indicates that this is the main

product of I� oxidation and therefore suggests that this is the species respon-

sible for oxidizing LiOH, rather than I2. The lack of O2 evolution observed in

OER data of cells without Pyr14TFSI can therefore be explained by the formation

of oxidized iodine species (IO� and IO3
�), the oxygen effectively being trapped

in the solution, as previously reported for similar electrolytes.14–16

The capability of I3
� to oxidize LiOH during the OER was subsequently tested. A so-

lution of I3
� was injected into a mixture of electrolyte containing 700 mM LiTFSI,

50 mM LiI, 900 mM Pyr14TFSI, and 5,000 ppm H2O in G4, and commercial LiOH pow-

der. The subsequent gas evolution was measured by mass spectrometry (Figure 4B).

Gas evolution from the LiOH powder, at m/z = 32, can be directly observed as soon as

the I3
� solution is injected, confirming the evolution of O2 from this mixture and

demonstrating that I3
� is capable of oxidizing LiOH in this electrolyte; very little O2

evolution is observed in the absence of Pyr14TFSI.
Joule 4, 2501–2520, November 18, 2020 2507
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(A) UV spectra of catholytes collected after galvanostatic discharge and charge of cells containing 700 mM

LiTFSI, 50 mM LiI, and 5,000 ppm H2O (red trace) and with 900 mM Pyr14TFSI (blue trace) in G4.

(B) Online mass spectrometry test of the reaction of I3
� with LiOH. A 50 mM I3

� solution is injected into a

vessel containing LiOH powder immersed in electrolyte with 700 mM LiTFSI, 50 mM LiI, 900 mM Pyr14TFSI,

and 5,000 ppm H2O in G4 (blue trace) and 700 mM LiTFSI, 50 mM LiI, and 5,000 ppm H2O in G4 (red trace).

The gas evolution of the ensuing reaction was recorded with amass spectrometer (m/z = 32, corresponding

toO2 evolution is displayed). A blank spectrumwas collectedby injecting the I3
� solution into the electrolyte

containing 700 mM LiTFSI, 50 mM LiI, 900 mM Pyr14TFSI, and 5,000 ppm H2O in G4 in the absence of LiOH

(green trace). Argon was used as the carrier gas.
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In order to assess the thermodynamic consistency of this reaction pathway, and

whether the I�/I3
� couple provides a sufficient driving force for the OER, the Gibbs

free energy of the OER (DOERG) was estimated according to Reaction 1:

DOERG= 2DfG
� ðH2OÞ+DfG

� ðO2Þ+ 4DfG
� ðLiÞ � 4DfG

� ðOH�Þ
� 4DfG

� ðLi+ Þ+ 2DsolGðH2OÞ+DsolGðO2Þ � 4DsolGðOH�Þ � 4DsolGðLi+ Þ
(Equation 1)

The DOERG can then be written as the combination of Reactions 2 and 3 (the (I�/I3
�)

redox pair, and the OH�/O2 chemical reaction, respectively), giving the Gibbs free

energy

DOERG= 2DrG
�
I�
�
I�3
�
+DrGðOH�/O2Þ; (Equation 2)

where DrGðI� =I�3 Þ is the Gibbs free energy of the I�/I3
� redox couple, defined as

DrG
�
I�
�
I�3
�
=DfG

��
I�3
�
+ 2DfG

� ðLiÞ � 2DfG
� ðLi+ Þ � 3DfG

� ðI�Þ+DsolG
�
I�3
�� 2DsolGðLi+ Þ

� 3DsolGðI�Þ;
(Equation 3)

and DrGðOH� /O2Þ is the Gibbs free energy of the OH�/O2 chemical reaction,

defined as

DrGðOH�/O2Þ= 6DfG
� ðI�Þ+ 2DfG

� ðH2OÞ+DfG
� ðO2Þ � 4DfG

� ðOH�Þ
� 2DfG

��
I�3
�
+ 6DsolGðI�Þ+ 2DsolGðH2OÞ+DsolGðO2Þ � 4DsolGðOH�Þ � 2DsolG

�
I�3
�
:

(Equation 4)

DOERG depends on the Gibbs free energy of formation of H2O (DfG
� ðH2OÞ), O2

(DfG
� ðO2Þ), Li (DfG

� ðLiÞ), OH� (DfGðOH�Þ), and Li+ (DfG
� ðLi+ Þ) at standard condi-

tions, and their Gibbs free energy of solvation, (DsolGðH2OÞ, DsolGðO2Þ, DsolGðLiÞ,
DsolGðOH�Þ, and DsolGðLi+ Þ), which are solvent specific. DfG

� ðH2OÞ and DfG
� ðO2Þ

are tabulated values,41 whereas, by definition, DfG
� ðLiÞ = 0. Using the Nernst
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equation for the I�/I3
� redox couple, and assuming that the dissolved oxygen

(O2(sol)) is at equilibrium with oxygen gas (O2(g)) at a pressure (PO2
) and that the ox-

ygen can be treated as an ideal gas over the range of temperature concerned (see

Supplemental Information), the above expression can be written as:

DrGðOH�/O2Þ= 2DfG
� ðH2OÞ

� 4DfG
� ðLiOHÞ+ 2nFE

�
I�
�
I�3
�
+ 2DsolGðH2OÞ+ kTln

�
PO2

P
�

�
: (Equation 5)

This expression indicates that three key variables dictate the driving force for the

OER: the redox equilibrium potential of the I�/I3
� couple (EðI� =I�3 Þ), the water activ-

ity (DsolGðH2OÞ), and the oxygen partial pressure ðPO2
Þ. The redox potential of the

iodide/triiodide redox system is solvent dependent,18–20 the couple varying by

over 0.5 V,18 whereas variations in the solvent activity and gas partial pressure are

of smaller magnitude (estimated to be �0.17 and �0.08 eV, respectively; Table

S2). The variability in the values of the EðI� =I�3 Þ is strongly influenced by stabilizing

(donor-acceptor) interactions of I� species in solution,18,20 since DrGðI� =I�3 Þ is pro-
portional to the difference in DsolG of I� and I3

�:

DrG
�
I�
�
I�3
�
f DsolG

�
I�3
�� 3DsolGðI�Þ (Equation 6)

The OEMS results presented in Figures 1, 3, and 4 suggest that the addition of

Pyr14TFSI (alongside small amounts of water) is capable of increasing the oxidizing

power of I3
� and/or reducing the couple of the OER sufficiently so that it can occur

below 3.5 V.We now turn to identify and rationalize the effect of the additives (water,

IL) on the redox equilibrium potential of the I�/I3
� couple.

Modification of the I�/I3
� Redox Potential

Effect of the Additives on the Coordination of I� and on the OER. It has recently

been shown that water and ILs are among the media in which EðI� =I�3 Þ has the high-

est values, due to the very strong coordination of I� by these solvent molecules:18

water molecules, for example, solvating I� ions via hydrogen-halogen bonds within

the I� first solvation shell. In order to investigate the effect of the additives used here,

we have explored potential correlations between the 1H-NMR chemical shift of the

water peak and the I�/I3
� redox potential (Figure 5). The addition of 5,000 ppm of

water to an electrolyte with no IL (700 mM LiTFSI, 50 mM LiI in G4) increases

EðI� =I�3 Þ by only �0.01 V (Figure 5D). 1H-NMR spectra of the same electrolyte with

increasing amounts of water (Figure 5F) are consistent with prior work:11 at low water

concentrations, a peak is observed at high frequencies, consistent with strong

H2O:I� interactions. The chemical shift is slightly lower than that of bulk water, as

this effect is less significant than the shift arising from H-bonding interactions be-

tween water molecules. As the water concentration increases for a fixed LiI content,

the peak shifts from 4.45 to 4.35 ppm again indicating weaker H2O:I� interactions. In

previous work,11 the trend was then seen to reverse at higher water concentrations of

>5% H2O (and 50 mM LiI) due to the strong hydrogen bonding interactions in be-

tween molecules in water clusters, resulting in a shift toward the position of bulk

water.

The progressive addition of Pyr14TFSI to the electrolyte containing 5,000 ppm of wa-

ter (700 mM LiTFSI, 50 mM LiI in G4) shows a similar trend in the 1H-NMR spectra

(Figures 5A, 5B, and S16), with the water peak shifting downfield even further

from 4.35 to 4.1 ppm on addition of 900 mM Pyr14TFSI, suggesting either reduced

H2O:I� interactions and/or reduced H2OH-bonding. In both scenarios, this indicates

an increased ‘‘solvation’’ of the water and I� by the IL. This increase in Pyr14TFSI con-

centration also has a large associated increase in the I�/I3
� redox potential, from
Joule 4, 2501–2520, November 18, 2020 2509
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Figure 5. Correlation between Water Chemical Shift and I�/I3
� Equilibrium Redox Potential

(A and B) Effect of Pyr14TFSI concentration (0 – 900 mM) on (A) galvanostatic charge-discharge

curves, and (B) solution 1H-NMR of 700 mM LiTFSI, 50 mM LiI, and 5,000 ppm H2O in G4 electrolyte.

(C and D) Effect of water concentration (0 versus 5,000 ppm) on galvanostatic charge-discharge

curves of electrolytes with (C) 900 mM and (D) 0 mM Pyr14TFSI.

(E and F) Solution 1H-NMR of electrolytes with increasing amounts of water with (E) 900 mM and (F)

0 mM Pyr14TFSI.

(G–J) MD coordination number (CN) plots of the I� center of mass to (G) H2O, (H) Li+, (I) G4, and (J)

Pyr14
+ as a function of distance for 5,000 ppm H2O in 700 mM LiTFSI, 50 mM LiI, in G4 electrolyte

with increasing amounts of Pyr14TFSI (0–1,350 mM).

(K–N) Evolution of the I� CN in the first coordination shell to (K) H2O, (L) Li+, (M) G4, and (N) Pyr14
+

(measured at 0.5 nm for H2O, Li+, and G4 and at 0.7 nm for Pyr14
+) as a function of [H2O] in

electrolytes with 0 mM Pyr14TFSI (yellow lines) and 900 mM Pyr14TFSI (red lines). All galvanostatic

cycling was performed at 50 mA/cm2 under argon in cells containing a LICGC. 300 mM LiTFSI in G4

was used as the anolyte.
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3.07 to 3.24 V (�0.17 V), consistent with the strong interaction between I� and Pyr14
+

(also shown in CV data in Figure S15). The largest value of EðI� =I�3 Þ is observed when

Pyr14TFSI is present, the effect on the I�/I3
� coupling of adding Pyr14

+ being stron-

ger than the addition of 5,000 ppmof water as shown in Figures 5C and 5D. A smaller

shift in the 1H resonance is observed upon increasing water concentration (between

2,000 and 5,000 ppm) in the presence of Pyr14TFSI (Dd =�0.03 ppm; Figure 5E) than
2510 Joule 4, 2501–2520, November 18, 2020
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in its absence (Dd = �0.08 ppm; Figure 5F), which is indicative of weaker water-I� in-

teractions in the presence of the IL. This reduced water-I� interaction and the higher

measured EðI� =I�3 Þ suggest that the Pyr14
+ cation may be a stronger coordinating

agent for I� ions than water under the conditions used here. The larger 1H shifts of

the water peak observed in pure Pyr14TFSI, compared to the mixtures shown in Fig-

ure 5 (Figure S17), is in agreement with a synergistic coordination effect of both wa-

ter and Pyr14TFSI toward I�. This is in agreement with the hard and soft acids and ba-

ses (HSAB) concept,42 since the introduction of the Pyr14
+ cation, a softer Lewis base

than Li+ and H+ (the other cations present in the electrolyte), would be expected to

have a strong impact on the coordination of I�, which is a soft Lewis acid.

In order to investigate the effects of the additives on the coordination of I�, MD simu-

lations were performed. Figures 5G–5L show the average coordination number (CN)

of I� to different species as a function of distance. The increase in Pyr14TFSI concentra-

tion reduces the contributions in the first I� coordination shell from H2O (Figure 5G), Li+

(Figure 5H), and G4 (Figure 5K), while the contribution from Pyr14
+ increases (Figure 5L).

The MD results are consistent with the 1H-NMR results, the increase in the H2O mole-

cules in the first coordination shell of I� with increasing water concentration (Figure 5M)

correlating with the shift of the water 1H-NMR peak to lower values in both the absence

(Figure 5F) and the presence of the IL (Figure 5E). The smaller chemical shift of the
1H-NMR water peak observed in the presence of Pyr14TFSI is correlated with a smaller

increase of H2Omolecules in the first coordination shell of I� (Figure 5M). This effect has

further implications on the coordination of I� by Li+ and G4: the number of I�-Li+ (Fig-

ure 5H) and G4-I� (Figure 5K) interactions in the first coordination shell of I� decreases

with increasingwater content (up to 5,000 ppm) in the absence of IL. However, the pres-

ence of IL (900 mM) reverses this effect, and both Li+ (Figure 5H) and G4 (Figure 5K) are

on average increasingly present in the first coordination shell of I� with increasing water

content. This indicates a fundamentally different contribution of the IL to the solvation of

I� compared to water and corroborates the complex interplay between the two addi-

tives used in the electrolyte capable of undergoing OER during LiOH oxidation

(Figure 1).

The disruptive insertion of Pyr14
+ ions into the first coordination shell of I� can be

clearly visualized in snapshots of the final state of the simulations of electrolytes

with increasing Pyr14TFSI concentrations shown in Figures 6A–6D. The comparative

levels of coordination of Li+, H2O, G4, and Pyr14
+ ions, evaluated as a function of the

concentration of Pyr14TFSI (Figure 6E), indicate a strong Pyr14
+-I� interaction, to

levels comparable to that of Li+ and H2O at [Pyr14TFSI] = 900 mM, in agreement

with previous MD studies.16,18 This complex interplay is also reflected on the

mobility of I� ions (their mean squared displacement) in the electrolyte (Figure 6F).

In the absence of IL, I�mobility is not strongly affected by increasing amounts of wa-

ter (solid lines) up to 10,000 ppm. The presence of 900 mM of Pyr14TFSI in neat elec-

trolytes reduces I� ion mobility compared to the electrolyte with no IL (light blue

traces). However, the presence of Pyr14TFSI has the effect of substantially increasing

I� ion mobility with increasing water content up to 5,000 ppm. At higher water con-

tent, the mobility is reduced to some extent due to the onset of water clusters for-

mation.11 The electrolyte mixture used in the cell reported in Figure 1 (900 mM

Pyr14TFSI and 5,000 ppm of water) has similar average amounts of Li+, G4, and

Pyr14
+ in the first coordination shell of I� (Figure 6E), and it has the highest measured

I� mobility (Figure 6F).

Thermodynamic Analysis of the Effect of Additives. The measurements of the I�/
I3
� redox potential shown in Figure 5A allow us to estimate the effect of the additives
Joule 4, 2501–2520, November 18, 2020 2511
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Figure 6. MD Simulations of Electrolytes with Varying Levels of Additives; Implications for the

Thermodynamic Drive for the OER

(A–D) Snapshots of the final state of the simulations of electrolytes containing 700 mM LiTFSI,

50 mM LiI, and 5,000 ppm H2O in G4 with (A) 0 mM, (B) 450 mM, (C) 900 mM, and (D) 1,200 mM

Pyr14TFSI showing I� (magenta), Li+ (blue), H2O (red/white), and Pyr14
+ (sticks). G4 molecules are

omitted for clarity.

(E) Plot of the evolution of the CN in the first coordination shell of I� to H2O, Li+, G4, and Pyr14
+ with

increasing Pyr14TFSI concentration in electrolytes containing 5,000 ppm H2O.

(F) Mean square displacement of I� ions in electrolytes with 0 mM Pyr14TFSI (solid lines) and 900 mM

Pyr14TFSI (dashed lines) with increasing water concentration.

(G) Effect of the various E(I�/I3
�) couples measured for different Pyr14TFSI concentrations (shown in

Figure 5A) on the thermodynamic driving force for the OER, assuming 5,000 ppm (end of charge,

blue) and 1,500 ppm of water (beginning of charge, orange). The error bars are calculated based on

the assumptions made in the calculations (see Supplemental Information).

(H) Free-energy diagram for the proposed mechanisms involving the iodide-mediated LiOH oxidation (O2

evolution [left], IO� and IO3
� formation [right], relative to I3

� formation in G4 [blue], G4 + 900mMPyr14TFSI

[green], and H2O [red]). The Gibbs free-energy values were calculated for the electrolytes containing 700

mMLiTFSI, 50mMLiI, and5,000ppmH2O inG4with 0mMand 900mMPyr14TFSI (E(I
�/I3

�) = 3.07 V and 3.24

V, respectively; Figure 5A) and in standard conditions. All electrochemical reactions are scaled to 6 e� so as

to compare the free energies of the various reactions.
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used in this work on the thermodynamic drive of theOER using Equation 5. Figure 6G

shows an estimation of DrGðOH� /O2Þ as a function of the I�/I3
� redox potential in

electrolyte mixtures with increasing Pyr14TFSI concentration for two levels of H2O

concentration (1,500 ppm [orange] and 5,000 ppm [blue], representing the theoret-

ical levels at the beginning and end of the charge, respectively). The calculation of
2512 Joule 4, 2501–2520, November 18, 2020
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the thermodynamic drive of the OER has been scaled up to 6e� (instead of the 4e�

process described above) in order to allow direct comparison with the formation of

IO� and IO3
� (Figure 6H). It can be seen that only at a I�/I3

� redox potential above

�3.24 V does the OER becomes thermodynamically favorable, with DrGðOH� /O2Þ
z� 0:03 eV ðG0:24Þ for [Pyr14TFSI] = 900 mM at 5,000 ppm H2O and z �
0:15 eV ðG0:24Þ at 1,500 ppm H2O (see Supplemental Information for details).

These values are very close to, or below, zero at equilibrium conditions, within the

error margins arising from the assumptions made in the calculations and the mea-

surement limitations, and thus this process is energetically feasible considering

the experimental conditions (see Tables S1–S4 and Figure S22). It is of course impor-

tant to note that during the charge the cell is working under non-equilibrium condi-

tions, where the [I3
�] is higher and [I�] lower than under equilibrium conditions,

providing an additional driving the force for the OER. The high values of EðI� =I�3 Þ
observed in the electrolytes containing Pyr14TFSI and water can therefore provide

a rationale for the observation of O2 evolution during the charge process shown in

Figures 1A–1F.

OER versus IO3
� Formation

Our results (Figure 1) indicate that there is a very fine balance between the production of

LiIO3 and O2, which we now discuss. The ability of I3
� to oxidize LiOH to form LiIO3 (via

Reactions 5 and 6) has been found to be dependent on the Gutmann acceptor number

(AN) of the solvent used, with I3
� in N,N-dimethylacetamide (DMA), dimethyl sulfoxide

(DMSO), and 1-methylimidazole (Me-Im) being capable of oxidizing LiOH (for AN >

13.6), but I3
� inG1,G4, andpyridinebeingunable to.19 In the absenceofwater, a LiI-con-

taining electrolyte in diethylene glycol dimethyl ether (G2) requires potentials above the

I3
�/I2 to remove LiOH from preloaded electrodes,19 whereas the formation of IO3

� was

reported ina LiOH-saturatedG1-basedelectrolyte containingwater (3wt%).11,43Electro-

chemically, several groupshave reported the formation of IO�/IO3
�during the chargeof

LiOH-based Li-O2 cells in glyme electrolytes containing water and iodide,12,14,15,43

whereas in the absence of water, a charging plateau above the I3
�/I2 redox transition

was reportedly required in G219 (Figure S21). Our studies clearly show that the addition

of small quantities of water increases the I3
� oxidative power and that it can oxidize LiOH

under these conditions: during galvanostatic charge of cells with 50 mM LiI and 5,000

ppm H2O in G4 (Figures 1G–1M), the charge process is observed to commence below

the I3
�/I2 transition (fromas lowas 3.2 V). Thedetectionof IO� and IO3

� in theUVspectra

(Figure 4A) is therefore consistent with LiOH removal via Reactions 5 and 6.

It has recently been argued that LiIO3 is the thermodynamic product, rather than O2,

on oxidation of Li2O2 by I3
�, even though O2 evolution is seen. The reported lack of

LiIO3 formation was ascribed in this study to the slow kinetics of O-O dissociation

needed to form IO� (and subsequently LiIO3), even in solvents with low Gutmann

AN, such as G4, where the decomposition of Li2O2 is very slow.
19 The authors simi-

larly argued that the most thermodynamically favorable route for the oxidation of

LiOH occurs through the formation of LiIO3 (Reactions 5 and 6) rather than the for-

mation of O2 (Reaction 2). Our results motivate the same question as raised previ-

ously for O2 evolution from Li2O2 in the presence of LiI: the presence of Pyr14TFSI

increases the oxidizing power of I3
� so that it can promote O2 evolution, but why

does it also disfavor the IO3
� formation mechanism?

We now consider the thermodynamic driving force to form lithium iodate (IO3
�)

in basic media via an analogous analysis to the LiOH oxidation, through the

I�-mediated OER described above. Starting with the following reaction (full deriva-

tion is found in the Supplemental Information):
Joule 4, 2501–2520, November 18, 2020 2513



ll
Article
6 Li+(sol) + 6 OH�
(sol) + I�(sol) % 3 H2O(sol) + IO3

�
(sol) + 6 Li(s).
 (Reaction 7)

This reaction is in fact redox mediated via the following two-stage catalytic mecha-

nism in which I� is first oxidized to I3
� (I�/I3

� couple, Gibbs free energy: DrGðI� =I�3 Þ;
Reaction 2). Subsequently, LiOH reacts chemically with I3

� to form IO� and H2O

(Gibbs free energy: DrGðOH� /IO�Þ):
2 OH�
(sol) + I3

�
(sol) % I�(sol) + H2O(sol) + IO�

(sol).
 (Reaction 8)

Finally, IO� disproportionates to form IO3
� and I� (Gibbs free energy:

DrGðIO� /IO�
3 Þ):
3 IO�
(sol) % 2 I�(sol) + IO3

�
(sol).
 (Reaction 9)

The Gibbs free energy of IO3
� formation (DrGðOH� /IO�

3 Þ) can therefore be

calculated from the combination of the Gibbs free energy of these three

reactions:

DrG
�
OH�/IO�

3

�
= 3DrG

0�I��I�3 �+DrGðOH�/IO�Þ+DrG
�
IO�/IO�

3

�
: (Equation 7)

The key step in the IO�/IO3
� route during charge is the reaction of I3

� and OH� to

form IO� (Reaction 8), as this reversible process is directly in competition with the

OER. While the formation of IO3
� is thermodynamically downhill with respect to

IO�, the proposed mechanisms require the formation of IO� as an initial step. As

previously discussed, the solvation of I� strongly influences the I�/I3
� redox poten-

tial, and therefore also DrGðOH� /IO�Þ. However, the (formally) I+ ion in I3
� is

consumed to create IO�, generating only two I� ions (Reaction 8), as opposed to

three I� ions in the OER reaction (Reaction 3). The effect of this difference, and

whether this is sufficient to create a thermodynamic driving force for IO� over O2

because of it, can be assessed by examining the overall reaction to form IO� (Reac-

tion 8 + Reaction 2).
2 Li+(sol) + 2 OH�
(sol) + I�(sol) % 2 Li(s) + H2O(sol) + IO�

(sol),
 (Reaction 10)

which competes with the formation of O2 via the OER given in Reaction 1. The

competition between these two reactions is described via the following equilibrium:
3 I�(sol) + 3/2 O2 (sol) % 3 IO�
(sol).
 (Reaction 11)

The Gibbs free energy for this process can be calculated:

DrGðOH�/IO�Þ � 3

2
DrGðOH�/O2Þ= 0:40+ 3DsolGðIO�Þ � 3DsolGðI�Þ

� 3

2
kTln

�
PO2

P
�

�
: (Equation 8)

This indicates that, under standard conditions (implying Dsol terms are 0), the ther-

modynamic drive for the OER versus IO� formation is +0.40 eV (as 3DfGðIO�Þ�
3DfGðI�Þ = +0.40 eV from Equation 8; see Supplemental Information).41 However,

the thermodynamic drive is solvent dependent due to differences in solvation en-

ergies of I�, IO�, and O2 (Equation 8). If the value of DsolGðO2Þ is assumed to be

unchanging in the various electrolytes under consideration, then the thermody-

namic balance between the formation of IO� and O2 (DrGðOH� /IO�Þ�
DrGðOH� /O2Þ) hinges entirely upon the difference in the Gibbs free energy of

solvation of I� and IO� in different electrolytes ðDsolGðIO�Þ � DsolGðI�Þ).
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To obtain an understanding of the magnitude of the solvation energy terms, density

functional theory (DFT) calculations with implicit solvation were performed (see Sup-

plemental Information). The calculated difference in the Gibbs free energy of solva-

tion of I� and IO� ð3DsolGðIO�Þ � 3DsolGðI�Þ) is +0.22 eV in G4 and +0.15 eV in

pure Pyr14TFSI, making DrGðOH� /IO�Þ� 3
2DrGðOH� /O2Þ +0.63 eV and +0.55

eV in G4 and pure Pyr14TFSI, respectively; i.e., the formation of IO� is thermodynam-

ically unfavorable in comparison to the OER regardless of the presence or absence

of IL.

A similar thermodynamic analysis of the formation of IO3
� can be performed (see

Supplemental Information):

DrG
�
OH�/IO�

3

�� 3

2
DrGðOH�/O2Þ= � 0:79+Dsol G

�
IO�

3

�� DsolGðI�Þ

� 3

2
kTln

�
PO2

P
�

�
:

(Equation 9)

The formation of IO3
� is more thermodynamically favorable than the OER under

standard conditions (�0.79 eV),41 and the thermodynamic balance between the for-

mation of IO3
� and O2 in different electrolytes again depends on ðDsolGðIO�

3 Þ �
DsolGðI�ÞÞ. DFT calculations similarly show that the solvation of IO3

� in G4 and

Pyr14TFSI is less favorable than that in water by amounts very similar to those found

for IO� and I� (DsolG
�
IO�

3

�
=+0.44 and +0.28 eV, respectively). This results in the dif-

ference in driving force for the formation of IO3
� over O2 (Equation 9) being reduced

to�0.627 eV and�0.557 eV in G4 and pure Pyr14TFSI, respectively; i.e., IO3
� forma-

tion is always favored over the OER in all solvents.

Figure 6H shows free energy diagrams comparing the thermodynamic drive to form

O2 (Equation 5) versus IO
� (Equation 8) and IO3

� (Equation 9) in electrolytes with and

without IL, and in standard conditions. The value of E(I�/I3
�) used for the calculations

is the one measured for the electrolytes containing 700 mM LiTFSI, 50 mM LiI, and

5,000 ppm H2O in G4 with 0 mM and 900 mM Pyr14TFSI (E(I
�/I3

�) = 3.07 V and

3.24 V, respectively; Figure 5A), while the solvation energy terms were calculated

for implicit solvents (in pure G4, Pyr14TFSI, and water, respectively). The overall ther-

modynamic analysis indicates that the introduction of Pyr14TFSI (Figure 6H) to G4

has two effects: (1) oxidation of OH� by I3
� becomes thermodynamically favorable

(DrGðOH� /O2Þ < 0); (2) IO� formation is never favorable versus the OER, while

IO3
� is always more thermodynamically favorable. This suggests that the kinetics

associated with IO3
� formation must also play a role in the observed switch from

IO�/IO3
� formation to OER during charge. Given that the formation of IO3

� is the

thermodynamic product, and that it requires 3 equivalents of IO� (Reaction 9), the

rate at which this intermediate is formed is of paramount importance. Our results

indicate that in water-containing glyme electrolytes, while the conversion to IO� is

still thermodynamically unfavorable, it occurs because there is no alternative

competing OER reaction; its formation is likely driven by the driving force for IO3
�

formation. The introduction of Pyr14TFSI changes this equilibrium as the OER is

now favorable. While IO3
� remains the thermodynamic product, the kinetics of its

formation involving the reaction of three IO� molecules are unfavorable, which we

suggest is key here. The kinetics of iodine redox reactions have been an intensely

debated subject on its own for decades, with important ramifications to many

fields,44 which lies well outside of the scope of this article. It is, however, well under-

stood that kinetically, iodine redox reactions are heavily dependent on the media.

For instance, the iodine disproportionation reaction in aqueous media is greatly
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reduced (by up to two orders of magnitude) at high pHs, at which the reaction be-

comes first order with respect to [IO�].44,45

Our MD and 1H-NMR results confirm that the introduction of the (soft Lewis base)

Pyr14
+ cation to the electrolyte has a strong impact on the coordination of the

(soft Lewis acid) I�, replacing H2O, Li+, and G4 to some extent in the environment

of I� (Figure 6E), in agreement with previous studies.18,20 This suggests that the

fast kinetics, of the IO� formation in water-containing electrolytes, are disturbed

by the introduction of Pyr14TFSI due to efficient donor-acceptor interactions.

Furthermore, as the MSD plot (Figure 6F) shows, there is a synergistic interaction be-

tween water and the Pyr14
+ cation on the mobility of I�, which could also play a ki-

netic role during the charge process.

Conclusions

LiI-mediated cells in the presence of water and the ionic liquid Pyr14TFSI produce

reversible 4 e�/O2 ORR and OER at 2.6 V and 3.2–3.5 V, respectively, during capac-

ity-limiting galvanostatic cycling as monitored in operando OEMS experiments. A

combination of ex situ characterization methods confirm that these reactions occur

through the formation/decomposition of LiOH. OEMS experiments with Li2O2 pre-

loaded electrodes show that the electrolyte mixture is also capable of efficiently de-

composing Li2O2 through a 2 e�/O2 during OER. The presence of Pyr14TFSI in-

creases the I�/I3
� redox potential, shifting the mechanism of the LiOH OER from

the irreversible production of IO�/IO3
� to the evolution of O2. This shift in redox po-

tential can be explained by a change in the solvation conditions of I� in the presence

of both water and the IL. Our NMR and MD results indicate that the combination of

an IL and water in aprotic electrolytes is an effective strategy for tailoring the electro-

lyte properties and reaction mechanisms in redox-mediated Li-O2 batteries. This

study reopens the possibility of using LiOH as a viable, and water-resistant,

discharge product in Li-air batteries. Further studies will be needed to understand

all the intricate mechanistic details of this chemistry, as well as to improve the overall

performance of the cell, especially with regard to rate and long-term reversibility.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to

and will be fulfilled by the Lead Contact, Clare P. Grey (cpg27@cam.ac.uk).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The solvation parameters used for implicit solvation DFT calculations are presented

in the Supplemental Information.

Materials Preparation

Carbon electrodes were prepared by kneading a slurry made from 75 wt% carbon

black (Ensaco P150, Imerys) and 25% PTFE binder (Aldrich, 60% water solution) in

ethanol until a homogeneous film was obtained. Free-standing discs were cut

from this film, annealed at 120�C in vacuo for 12 h, and transferred to the glovebox

without exposure to air. The areal loading of the carbon electrode is �1–2 mg/cm2.

Tetraethylene glycol dimethyl ether (G4, Aldrich, 99%) was refluxed with sodium

metal under Ar for 3 days prior to fractional distillation in vacuo. The final water
2516 Joule 4, 2501–2520, November 18, 2020
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content was measured by Karl Fischer titration (Metrohm) at <10 ppm and then

stored over 4 Å molecular sieves. Lithium bis(trifluoromethyl)sulfonylimide (LiTFSI,

3M) and LiI (Aldrich, 99.9%) were dried in vacuo at 160�C and 200�C, respectively
for 12 h before being used to prepare the electrolyte. 1-butyl-1-methyl-pyrrolidi-

nium-bis-(trifluoromethanesulfonyl)-imide (Pyr14TFSI, Solvionic 99.9%; H2O %

0.002%) was used as purchased. All materials were stored and handled in an Ar glo-

vebox with <0.1 ppm O2 and <0.1 ppm H2O.

Electrochemical Methods

All Li-O2 cells were assembled inside an Ar-filled glovebox on bored-through stain-

less steel Swagelok unions by staking a Li disc (PI-KEM, 99.99%), 1 piece of pressed

borosilicate glass fiber separator (Whatman) wetted with 300 mM LiTFSI / G4 (ano-

lyte), a disk of lithium-ion-conducting glass ceramic (LICGC; Ohara), 1 piece of

pressed borosilicate glass fiber separator wetted with the active catholyte (90 mL

in 1/2" and 210 mL in 1" cells, respectively), and Ensaco P150 cathode. Stainless steel

mesh (Advent) was used as a current collector. Electrochemical tests were performed

on either a Biologic SP-300 or an Ivium Vertex potentiostat/galvanostat. Due to the

significant overpotential induced by the use of a LICGC disk, the resistance of the

cell was measured by impedance spectroscopy. Ohm’s Law was then applied to

obtain the Ohmic overpotential (Figure S20), which was then subtracted in the

load curves. Galvanostatic cycling was limited to a current of 50 mA/cm2 due to ki-

netic limitations of the very viscous electrolyte (Figures S9–S11, S18, and S19). A

newly designed OEMS system was developed for this work, and it is described in

detail in the Supplemental Information (Figure S1A). The cell design consists in a

Swagelok-type cell with inlet and outlet tubes welded to the top plunger and cap-

ped with self-sealing quick-connects (Beswick Engineering) to isolate the cell from

the atmosphere between assembly in the glovebox and connection to the OEMS

system. Galvanostatic discharge and charge were carried out under 20% O2 and

0% O2 in Ar, respectively. A newly designed pressure-monitoring cell assembly

was also developed for this work and is described in detail in the Supplemental In-

formation (Figure S1B). A pressure transducer was connected to a Swagelok-type

cell and sealed in the glovebox. The cell assembly was then pumped down and sub-

sequently filled up with pure O2. The total internal volume of the setup was

measured independently for each test using a reference volume, and the measured

change in pressure was then converted to number of moles of gas consumed using

the ideal gas law.

Characterization Methods

Characterization of electrodes after electrochemical tests was performed by first dis-

assembling the cell inside the glovebox, rinsing the cathode twice in G1, then drying

them in vacuo at room temperature. Powder X-ray diffraction measurements were

performed with the electrode placed in an air-tight sample holder in a Panalytical

Empyrean diffractometer, in reflection mode with Cu Ka1 radiation (l = 1.5406 Å).

Ultraviolet spectra were acquired on samples in an air-tight quartz cuvette in a Per-

kinElmer (LAMBDA TM 25/35) spectrometer. G4 was used for dilutions, and pristine

electrolyte was used as reference. Scanning electron microscopy was obtained in a

TescanMIRA3microscope (5 keV; 7 pA) with samples transported from the glovebox

sealed in a Kammrath & Weiss transfer module. Solution 1H-NMR spectra were ac-

quired using an 11.7 T Bruker Avance III HD spectrometer with a single 30� (10.5

ms) flip angle pulse sequence - and with a recycle delay of 1 s. DMSO-d6 was used

as solvent. Titration experiments were performed following the method previously

reported by McCloskey et al.46 Cathodes were extracted from cells inside the glove-

box and placed in a sealed vial unwashed. 2 mL of ultrapure water (Millipore) was
Joule 4, 2501–2520, November 18, 2020 2517
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injected into the vial using a syringe, and then titration of the base was done with a

standardized 10 mM HCl solution, using phenolphthalein as end-point indicator

while vigorously stirring. The LiOH content is calculated based on this acid-base

titration. Subsequently, 1 mL of KI (2 wt %), 1 mL of H2SO4 (3.5 M), and 50 mL of a

molybdenum-based catalyst solution were added. The I2 generated from the reac-

tion of Li2O2, alongside the I3
� present in the unwashed electrodes, was then quickly

titrated using 0.01 N NaS2O3 solution using a starch indicator, in order to establish

the presence or absence of Li2O2 in the discharge product (Figure S4). Post mortem

measurement of water in electrolyte was measured in cells using Super P coated gas

diffusion layer electrodes. The separator in the cathode side was wetted with

0.25 mL of electrolyte (containing 900 mM of IL and 5,000 ppm of water). The cells

were then filled with O2 (after 2 pumping/filling cycles) and investigated after

resting, discharging, and charging to 2 mAh. Subsequently, the gas in the cells

was evacuated by pumping for 30 min before introducing the cells into the glovebox

for disassembly. The separator and electrode were then removed and stored in a vial

in which 0.5 mL of G4 was used to wash the electrolyte. 0.3 mL of washed electrolyte

was then collected and added to 34.4 mg LiTFSI to bring its concentration up to

700 mM (LiTFSI was added since its addition results in a shift of the water peak to

higher ppm and into a range that does not overlap with the G4 peaks; see Figure S8),

stirred for 2mins, and left to rest for 24 h. 1H-NMR of this solution was then collected,

and the spectra was normalized with respect to the peak corresponding to the CH2

groups of the IL.

Density Functional Theory Calculations

To obtain an understanding of the magnitude of the DsolGðÞ terms, DFT calculations

were performed. In each case, the B3LYP-D3/def2-TZVP level of theory was used.

The SMD solvation model47 was used for implicit solvation calculations. The built-

in parameters for water were used, while for G4 and Pyr14TFSI, parameters were

derived for the calculations (see Supplemental Information).

Molecular Dynamics Simulations

The simulation boxes were set up, using Packmol,48 to be congruent with the exper-

imental concentrations (700 mM LiTFSI, 50 mM LiI in G4, with 5,000 ppm of H2O as

starting point). Furthermore, water concentration was varied (0, 2,500, and 10,000

ppm of H2O) as well as the presence/absence of the IL. The role of the concentration

of the IL was also explored by varying the number of Pyr14TFSI molecules to be 0,

0.5, and 1.5 times the experimental concentration (0 mM, 450 mM, and

1,350mM). The full list of values is presented in the Supplemental Information (Table

S2). The time step in each simulation was 2 fs as the C-H bonds were fixed utilizing

LINCS. The forcefield used was OPLS-AA, with additional parameters for Pyr14TFSI

from CL&P.49 The SPC water model was used. Scaled charges (to 0.8) were also used

to speed up the simulation due to the inclusion of an IL in the system. The equilibra-

tion procedure was as follows: an initial starting run of 0.2 ns NVT (Nose-Hoover ther-

mostat set to 298 K and 1 ps) followed by two NPT runs, both 4 ns long (the first one

used the Berendsen barostat, set to 1 atm and 5 ps, and the second used the Parri-

nello-Rahman barostat). The two-step NPT procedure was used due a simulation

instability when the Parrinello-Rahman barostat was used directly. The production

runs were 10 ns NVT runs, storing output every 2,000 steps.

In each case, short-range cutoffs for non-bonded interactions were set to 1.2 nm.

Gromacs versions 2018.2 and 2018.3 were used.50 Analysis of the MD trajectories

were done using the Gromacs toolchain, e.g., gmx rdf and gmx msd. The coordina-

tion number plots were done using the center of mass of each molecule.
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SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.joule.

2020.09.021.
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