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Enhancing Temporal Logic Falsification with
Specification Transformation and Valued Booleans

Johan Lidén Eddeland, Koen Claessen, Nicholas Smallbone, Zahra Ramezani, Sajed Miremadi, and Knut Akesson

Abstract—Cyber-Physical Systems (CPSs) are systems with
both physical and software components, for example cars and
industrial robots. Since these systems exhibit both discrete and
continuous dynamics, they are complex and it is thus difficult to
verify that they behave as expected. Falsification of temporal logic
properties is an approach to find counterexamples to CPSs by
means of simulation. In this paper, we propose two additions to
enhance the capability of falsification and make it more viable in
a large-scale industrial setting. The first addition is a framework
for transforming specifications from a signal-based model into
Signal Temporal Logic. The second addition is the use of Valued
Booleans and an additive robust semantics in the falsification
process. We evaluate the performance of the additive robust
semantics on a set of benchmark models, and we can see that
which semantics are preferable depend both on the model and
on the specification.

Index Terms—Simulation, test generation, testing, embedded
systems

I. INTRODUCTION

SSURING the quality of Cyber-Physical Systems (CPSs)

is an important task that is growing more and more
complex. Industrial-size systems with both discrete and con-
tinuous dynamics, i.e. hybrid systems, require durable methods
for design automation [1], as well as validation methods that
are beyond the current capabilities of e.g. model-checking [2].
Since the general problem of finding the set of reachable states
for this kind of systems is undecidable [3], we instead resort
to testing the systems. For testing and/or monitoring of CPSs,
there are many possible approaches (see [4] for a survey)
— in this work, we consider falsification of temporal logic
specifications. Falsification can be done for CPSs both with
the actual hardware, or as in the case of this paper, where the
hardware is being simulated.

Falsification of temporal logic specifications for CPSs is a
method which attempts to find counterexamples to properties
of systems by optimization over robustness of the specifica-
tion. Here, robustness is a measure of distance to violation of
the specification. The falsification framework has been shown
to be useful for several different applications [5], [6], and it
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can still be modified in many different ways. For example,
one can consider different optimization algorithms to search
for the counterexample (e.g. ant colony optimization [7] or
functional gradient descent [8]).

Falsification requires use of a formal specification, typically
written in Metric Interval Temporal Logic (MITL) [9] or
Signal Temporal Logic (STL) [10] (or some variant thereof).
However, since these formal logics are not currently well
established in industry, it can be difficult to apply falsification
when there is no appropriate specification available to test
against.

In an attempt to tackle this problem, we present a framework
for transforming requirements modelled in a causal, signal-
based language (e.g. Simulink [11]) into specifications in STL.
This allows expert test engineers to model executable require-
ments using a tool they are familiar with, while also making
falsification possible for the models under development.

As an additional measure to enhance the falsification pro-
cess for industrial-size problems, we apply an alternative
robust semantics to be used in the falsification problem.
Specifically, we use the additive semantics presented for the
logical framework Valued Booleans [12]. We evaluate the
performance of additive semantics for several specifications
and see in which cases they are preferable to the “standard”
semantics of STL robustness.

A. Related work

The main focus of this paper is to adapt the framework of
falsification to work better in certain industrial applications.
The tools Breach [13] and S-TaLiRo [6] are used to perform
falsification with STL and MTL, respectively. Both of these
tools are based on the idea of a robustness measure for tem-
poral logic specifications [14]. Apart from falsification, recent
research has also focused on mining of temporal properties
for CPSs [15], which can make it easier to understand what
proper specifications could be, given simulations of a system.

When it comes to improvements of the falsification process
itself, previous work has defined a modified version of STL
[16], and there has been discussion showing the need for
similar modifications in industrial applications [17]. The main
point has been to improve the robustness information from
temporal operators by averaging the robustness inside the
timed intervals in question.

Several works [18] [19] have designed methods for faster
falsification of a specific sub-class of specifications, namely
request-response specifications. Recently, an extension to fal-
sification has been proposed where meta-parameters of falsifi-
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cation, e.g. the number of control points, are variable and put
into an outer optimization problem [20].

Valued Booleans [12] is a recently-proposed logic that
captures both the truth value of properties, as well as how
severely the properties are falsified. In this paper, we use
a version of Valued Booleans to enhance the capabilities of
falsification.

B. Contributions
The main contributions of this work are:

i) transformation of causal signal-based requirements into
STL specifications;
ii) application of Valued Boolean additive semantics to the
falsification process;
iii) evaluation of additive semantics for falsification of bench-
mark requirements.

The rest of the paper is organized as follows: in Section
II, STL and the falsification problem are defined. The latter is
used to evaluate different robust semantics later on. In Section
III, we define a framework for translating causal signal-based
specifications into STL. Section IV details the logic of Valued
Booleans, with two kinds of robust semantics. Section V
compares the two robust semantics in falsification for a set
of benchmark models, and in Section VI our conclusions are
presented.

II. SIGNAL TEMPORAL LOGIC AND FALSIFICATION

The specification language STL is widely used for falsifica-
tion of CPSs. We omit the definition of the robust semantics of
STL, as it is almost identical to the max semantics of VBools,
which we define in Section IV-A. For details on STL, we refer
the reader to other works [21].

A. Discrete-time signals

Throughout this paper, we discuss specifications defined for
signals and signal values. The semantics of VBools is in terms
of discrete-time signals, and for the sake of consistency we
also define STL this way, even though it is usually defined
in terms of continuous-time signals [22]. The main point of
doing this is to make it clear how temporal operators can be
defined in terms of conjunction, but generalizing to continuous
time is possible [23] [14].

Definition 1: A discrete-time signal is a function z[k] from
a finite subset of I C Z to R, where k& € I. The set I labels the
time instants of the signals, and the signal takes on continuous
values at each of those time instants.

B. Signal Temporal Logic
The grammar of STL formulas is defined as
pr=z<r|z<r|lz>r|z>r|z=r
pu=p|pl @AY | Oy | ¢ Uan¥,

where 4 is a predicate, and ¢ and 1) are STL formulas. We
define ¢ V¢ as (= A =), and O 0 as (O 57¢).

Similarly to [24], we define the validity of a formula ¢ with
respect to the discrete-time signal x at time instant k as

(z, k) = p < p(zlk])

(z, k) = —p & (k) E

(z, k) E oAy & (z,k) EeA(zk) =

(z, k) EeVY & (k) EeV(zk) Ev

(z,k) | O & VK €[k+a,k+b), (2, k) =
(z,k) = Qe & K elk+ak+b),(z,k)Ee
(x,k) = Uapy < k' e k+ak+b (x,K)E

AVE" € [k, k), (z, k") E ¢

We will provide an example of STL specification for clarity.
The first example is a benchmark specification from [25],
informally stated as “During all simulation times, the engine
speed w and the vehicle speed v never reach w and 7,
respectively.” The corresponding STL formula is

M =0((w < @) A (v < D).

47 contains two operators: [J and A. The modal depth
of a formula is the deepest nesting of temporal operators (i.e.

0,0, U) in it. For ¢4'7, the modal depth is 1.

C. Falsification

Temporal logic falsification is an approach to finding coun-
terexamples to models of CPSs, given a specification in
temporal logic. The problem of generating a test case for the
CPS is treated as an optimization problem, where one attempts
to minimize the robustness of the STL specification, given an
input parametrization of the system. Figure 1 illustrates the
main falsification procedure used in this paper (with the use
of the tool Breach), which we have adapted to use VBools
instead of STL robust semantics.

The Generator takes the input parametrization to generate
an input to the system under test. The Simulator generates a
simulation trace, which is used together with the specification
 to evaluate VBool robustness for the simulation. The VBool
robustness is evaluated to see whether the specification is fal-
sified or not. If it is not falsified, new parameters are sampled
and the process is repeated. The Parameter Optimizer is a
global optimizer which attempts to find new input parameters
that are closer to falsifying the specification, i.e., parameters
that lead to a lower VBool robustness.

In this work, we investigate two modifications to the fal-
sification procedure. In Section III, we introduce a trans-
formation of signal-based requirements into STL (with a
specification transformer) as a means of allowing falsification
to be performed by testers who are not used to temporal logic
specifications. In Section IV, the logic of VBools is introduced
which allows the tester to control the objective function used
in the falsification optimization problem.

III. SIGNAL-BASED SPECIFICATIONS

As has been noted before [26], writing specifications in
temporal logic is not trivial. Approaches that have been used
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Fig. 1: A flowchart describing a slightly modified version of the optimization-based falsification procedure of Breach. In this
paper we deal with defining a specification transformer, as well as considering alternative robustness functions (the two shaded

nodes).

to solve this problem are creating tools that make it easier
to write specifications [27], automatically detecting faulty
specifications [28], and defining template specifications to
make it easier for testers to formulate their requirements
formally [29]. In this paper, we instead allow test engineers to
write specifications in a formalism they already know, namely
a causal signal-based framework (in our case using Simulink
[11]). The main idea behind a signal-based safety specification
is to directly take signals from the simulated system, then
using different operators (blocks) to give an output signal
that at each simulated time instant is either 1 (specification
is fulfilled) or O (specification is not fulfilled). The advantage
of this is that a test can easily be automatically executed and
evaluated at the same time as the system itself is simulated.

By using a signal-based specification, we exploit the fact
that the test engineers are experts at expressing specifications
in, for example, Simulink. The drawback is that a signal-based
specification does not compute robustness values, and so can
not be directly used for falsification. To solve this problem,
we automatically translate signal-based specifications into STL
formulas to be used by Breach.

A. STL specifications in a signal-based framework

As an example, we wish to show an implementation of a
version of gb‘f‘T from [25], which is defined as

M = O(w < @). (1)

It should be noted that since a specification implemented in
Simulink must be causal, temporal operators that look forward
in time cannot be explicitly modeled. However, a specification
model with a similar meaning to ¢{'7 (with @ = 4500) is
presented in Figure 2.

Assume that the specification is evaluated on a simulation
trace with a finite set of sampled data points K. The interpre-
tation of the signal req at sample k € K is then

T if w[k'] < 4500,VE € K N[0, k]
reqlk] = ;
1 otherwise,

2

while the Boolean evaluation of the STL formula ¢f'7 at
time k can be informally expressed as

‘always'
omega <
AND °
4500 - »( 1 )
Relational . o
omega_bar  Operator Logical
Operator1
1
z
Unit Delay

Fig. 2: A simple example of a specification expressed in
Simulink. The natural language interpretation is “During all
simulation times t € [0,T), the engine speed w never reaches
w”. For the implementation to be correct, the initial condition
of the Unit Delay block must be non-zero.

3)

AT T if w[k'] < 4500,VK € KNk, k+T)]
o1 [k] = { .
L otherwise.

As can be easily seen, reg(k) is not equal to the Boolean
evaluation of ¢fi7 (k) for all k, but req(T) = ¢77(0).
This is the only thing that is needed to achieve equivalence
between the Boolean interpretation of a causal signal-based
requirement and its STL equivalent, since the STL formula
will be evaluated for time 0, and the signal-based specification
will be evaluated at the final simulation time.

B. Signal-based specifications expressed in STL

The goal is to be able to take any signal-based specification,
and then transform it into an STL formula so that it can be used
for falsification. Ideally, each signal in the signal-based model
would be assigned an STL formula, but since the semantics of
a signal-based framework are not typically equivalent to the
semantics of STL, they have different levels of expressivity.

In this section, a Signal is a variable that has defined
values over time, and it can be a scalar or a vector. A Signal
corresponds to a signal in a causal model. A Formula is a
special case of a Signal, namely a Signal that always has a
Boolean value (i.e. it is either true or false).
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Fig. 3: An example of a requirement with a conditional
statement, implemented with the use of a Simulink Switch
block.

To model signals whose behaviour varies depending on the
value of a Boolean expression, we define the types FormulaT-
able and SignalTable as

FormulaTable = P(Formula x Formula) 4)
SignalTable = P(Formula x Signal), %)

where P denotes the powerset operation. A FormulaTable
or SignalTable consists of a set of entries, where each entry is
a pair of a precondition, expressed as an STL formula, and
a consequent, which is the value taken by the formula or
signal when the precondition is true. The disjunction of all
preconditions for any FormulaTable or SignalTable must be
T.!

Figure 3 shows a Simulink encoding of the natural language
requirement “The engine speed w should always be below
5000 RPM. Additionally, if we are in third gear or lower, the
speed v should be below 50 km/h; otherwise, the speed should
be below 200 km/h.” The Switch block assigns a value to its
output signal according to the rule:

if gear < 3 then

subl = 50
else

subl = 200
end if

The signal subl is translated into a SignalTable, shown
in Table I. The signals sub2 and phi are translated into
FormulaTables, seen in Tables II and III respectively. Since
there are two conditions, the SignalTables and FormulaTables
have two entries. The SignalTable for subl has two entries
because it is the output of a Switch block; the FormulaTables
for sub2 and pht have two entries because the FormulaTable
for the output of a block has an entry for each possible
combination of preconditions from the block’s inputs.

As can be seen, when transforming an block from a signal-
based model to a FormulaTable or SignalTable, the operator
of the block is applied to each consequent of the table. An
algorithm transformBlock describing how this is done for

'In particular, if a FormulaTable or SignalTable only has one entry, the
precondition in that entry must be T.

TABLE I: The SignalTable for the signal subl in the Example
in Figure 3.

’ Precondition ‘ Consequent ‘

gear < 3 50
—(gear < 3) 200

TABLE 1II: The FormulaTable for the signal sub2 in the
Example in Figure 3.

’ Precondition ‘ Consequent ‘

v < 50
v < 200

gear < 3
—(gear < 3)

TABLE III: The FormulaTable for the output phi in the
Example in Figure 3.

’ Precondition ‘ Consequent ‘
gear < 3 (w < 5000) A (v < 50)
—(gear < 3) | (w < 5000) A (v < 200)

1: function TRANSFORMBLOCK(in1, in2, operator)
2 outputTable < newT able({precond, conseq))

3 for each (prereql,conseql) € inl do

4 for each (prereq2,conseq2) € in2 do

5: newPrereq < (prereql A prereq?2)

6 newConseq < operator(conseql, conseq?2)
7 newEntry < (newPrereq, newConseq)

8 append(outputTable, new Entry)

9 end for

10: end for

11: end function

Fig. 4: An algorithm transformBlock for transforming the
STL formula for a binary operator (block).

a binary operator’ is shown in Figure 4. The effect of the
algorithm is to construct the table:

{(prereql A prereq2, operator(conseql, conseq2))
| (prereql, conseql) € inl, (prereq2, conseq2) € in2}.

The number of entries « in the table that is produced from a
block with K inputs uq, us,...,ux will be Hszlauk, where
0w, 1s the number of entries in the table of input uy.

An important difference between signal-based specifications
and STL specifications is due to conditional blocks. The
archetypical conditional block is the Switch block, which takes
three inputs and lets the output be either the first or the third
input, depending on a user-defined condition on the second
input. The output table of a Switch block has @ = ag (a1 +a3)
entries; an algorithm for determining the output table is shown
in Figure 5.

To translate a FormulaTable into an STL formula, one can
consider the “STL semantics” for a Simulink switch (with

2 A unary operator is a simplification of the algorithm presented. An n-ary
operator, for example A, is implemented pairwise (meaning that a A b A ¢ is
transformed to (a A b) A ¢, which is possible due to associativity of both max
and additive semantics).
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1: function TRANSFORMSWITCH(in1,in2,in3)

2 outputTable <+ newTable({precond, conseq))

3 for each (prereq2, conseq2) € in2 do

4 for each (prereql, conseql) € inl do

5: newPrereq <

6 ((prereq2 A conseq2) A prereql)

7 newConseq + conseql

8 newEntry < (newPrereq, newConseq)
9: append(outputTable, new Entry)

10: end for

11: for each (prereq3,conseq3) € in3 do

12: newPrereq <

13: ((prereq2 A —(conseq2)) A prereg3)

14: newConseq < conseq3

15: newEntry < (newPrereq, newConseq)
16: append(outputTable, new Entry)

17: end for

18: end for

19: end function

Fig. 5: An algorithm trans formSwitch for transforming the
STL formula for a Switch block.

inputs x1, T2, x3) as either
(xa Ax1) V (—(x2) A 3) 6)

(fEQ = 1'1)/\(_|((L'2) = 1’3). (7)

Note that these two expressions are logically equivalent, but
they do not necessarily yield the same robustness value.

C. Recursive loops in specifications

To transform a signal-based specification into STL, we
perform a backwards depth-first search from the output of
the specification, assigning a FormulaTable or SignalTable to
each signal in the specification. For simple specifications, the
search algorithm discussed will terminate and assign an STL
formula to the signal leading to the outport of the specification.
However, any kind of temporal behaviour in a specification is
typically implemented as a recursive loop, which leads to the
basic search algorithm not terminating — something that needs
to be taken care of when transforming the STL formula.

1) Handling recursive loops, approach 1: If the length
of the simulation is known and finite, we can transform a
recursive loop into a formula that explicitly computes its value
in terms of the values at all earlier time steps. For the example
presented in Figure 2, this corresponds to the final output

k

N w(F) < ). (8)

k’=0

req(k) =

However, this results in large and potentially unreadable
STL formulas as soon as there is some recursion involved,
even for simple specifications. For example, given a simulation
time in [0,10] and a fixed simulation step time of 0.01,
requirement (8) results in an STL specification with 1001 A-
connectives, and more than 31000 characters when written

.
sig1
i
omega_bar
sig2 Relational sig3
omega_bar Operator
axND
sig7
. Logical Outt
N sigé
Y sig4 Operator
<
-v bar
= sigh Relational
Vv_bar Operator1

Fig. 6: An implementation of the STL specification (w < @) A
(v < ©), which is interpreted as "The engine speed w and the
vehicle speed v never reach w and v, respectively”.

in Breach syntax. Even though the robustness values for
the formula will still be the same as for the STL formula
¢ = Ojo,10)(w(t) < @), we typically want something that is
as readable as possible.

2) Handling recursive loops, approach 2: 1f it is a goal to
keep the automatically transformed STL formulas as short as
possible, we use femplates of combinations of different tem-
poral operators that are implemented as their own subsystems
in the model. This is in a way very similar to ST-Lib [29],
but instead of defining templates that can be used to build
specifications from the ground up directly in STL, we define
templates in Simulink that are associated to predefined STL
formulas.

For the example in Figure 2, one such template could be the
L] operator, which in practice would be a subsystem replacing
the blocks in the shaded area.

3) Handling recursive loops, approach 3: A final possi-
bility is to treat a recursive loop as a black box rather than
translating it to STL. To do this, we treat the output of the
delay block® as a signal in the specification, i.e. consider
anything before the delay block to be part of the model.
The value of the signal is computed by the model, and the
STL specification simply refers to the signal. This approach
is useful when we want to avoid the inefficient encoding of
approach 1 and the recursive loop does not correspond to a
predefined template. It is also needed when a block applies a
general function to its input, in which case the function output
cannot be explicitly defined as a formula, but by treating the
function as part of the system we are still able to translate the
specification to STL.

An extended example of this can be shown by considering
the signal-based specification in Figure 6. The specification
itself is part of ¢47 [25]. Some different ways to interpret
this specification, based on which of the given signals are
considered as part of the model (logged signals), are shown
in Table IV.

The advantage of this approach is that we can be certain
to translate any signal-based specification to STL, while the
disadvantage is that the generated STL specification might be
less suited to falsification than had we translated the recursive
loops to STL. For example, the specification (w < @) A (v <
¥) (for the Automatic Transmission benchmark) has many
possible robustness values since the signals w and v have

3Note that a delay block must be present in the loop, otherwise it would
be an algebraic loop.
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TABLE IV: Some Possible Interpretations of Specification in
Figure 6

’ Logged signals ‘ STL Formula ‘

(w< @) A (v<D)

sigl (sigl < @) A (v < D)

sig2 (w < sig2) A (v < D)
sigl, sigd (sigl < omiega) A (sigd < D)

sig3 —(sig3 = 0) A (v < D)

sigh (w < @) A —(sig6 = 0)
sig3, sigb —(sig3 = 0) A —(sigb = 0)

sig7 —(sig7 = 0)

many different potential values. However, the specification
—(sig7 = 0) (which has exactly the same Boolean truth
value) only has two possible robustness values. This makes
falsification harder, since the optimization solver will not see
how close the specification came to failing.

D. When semantics do not match

For the specification transformation framework presented
in this paper, there is a difference between logical formulas
and signals. However, in a signal-based setting there is not,
so it is possible for a block to get the wrong type of input.
For example, consider the expected inputs and outputs of the
following blocks:

A : FormulaTable x FormulaTable — FormulaTable
< : SignalTable x SignalTable — FormulaTable
+ : SignalTable x SignalTable — SignalTable

There are two cases for unexpected input types: either a
SignalTable is provided when a FormulaTable should be, or a
FormulaTable is provided when a SignalTable should be.

1) SignalTable provided instead of FormulaTable: This can
occur if, for example, we apply the A operator to two real-
valued signals x and y. Simulink (and MATLAB) semantics
interpret the Boolean evaluation of these signals as being false
if they are equal to zero, and true otherwise. This means
that we can transform a SignalTable to a FormulaTable by
comparing equality of the SignalTable’s consequent to zero,
and then applying the — operator. This is accomplished by the
S2F function:

S2F : SignalTable — FormulaTable
S2F ({precond, conseq)) = (precond, —(conseq = 0))

2) FormulaTable provided instead of SignalTable: This can
occur if, for example, we try to add (using the + operator)
two predicates, such as z > 0 and y < 10. The meaning
of this is clear when interpreted as signals according to the
Simulink semantics: the output of the + operator will have
value O (when both predicates are false), 1 (when exactly one
of the predicates are true), or 2 (when both predicates are
true). However, in STL we cannot define a formula by adding
logical formulas together.

In this case, if the sum is later used as a formula by
comparing it to zero (i.e. the signal expression to be evaluated

is ((z > 0)+ (y < 10)) = 0), then an equivalent STL formula
would be =((z > 0) V (y < 10)). However, it is not clear how
to generalize this observation, so instead we consider anything
before the block in question (here, the + operator) to be a
black box, and the output of the block is treated as a signal,
using the same method described in Section III-C3.

IV. VALUED BOOLEANS

Valued Booleans (VBools) [12] is a logical framework in
which the tester can customize how robustness is computed
by choosing between several possible semantics for each
connective. The semantics that are currently available are a
max semantics (which is essentially the same as STL) and an
additive semantics.

A VBool is formally defined as a pair of a Boolean value
and a robustness value. The robustness is a non-negative
number, which may be infinite:

V=B x R

Note the difference between VBools and STL. In STL,
there is no explicit Boolean value, but the robustness may
be negative, and negative robustness represents falsehood. For
VBools, the Boolean value is explicit and robustness may not
be negative.

The VBool comparison operator <,, is defined as:

<, :RxR—=V

< (Toy—az) if z<y
xr =

=vY (L,z —y) otherwise.

T and L denote true and false, respectively. The other
comparison operators are defined in terms of <,, except for
=, which is defined as

T =Y = {(T’K)

if =y

(L, K) otherwise,

where K is an arbitrary constant. Truth values and negation
are defined as
Ty =(T,00)
1, =(L,00)
=, (b, z) = (—b, x).

The rest of the operators are defined in two different ways.
One is called max semantics and the other additive semantics.

A. Max semantics

The max and operator is defined as

(T, 2) Amaw (T,y) = (T, min(z,y))
(J-7x) Amaz (Tvy) = (J_,.’L')
(T, 2) Amaz (L,y) = (L,y)
(L, ) Amaz (L,yy) = (L, maz(x,y)).

The first clause models the idea that in order to falsify x Ay,
it is enough to falsify whichever of x and y has the lowest
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robustness. If we are in the second clause, then x A y is false,
and in order to make it true, we must make x true; the third
clause is similar. The final clause is dual to the first clause: in
order to make x Ay true we must make both z and y true, and
the robustness is determined by whichever of  and y seems
to be hardest to make true, i.e., has the highest robustness as
a false VBool.

The max or operator is defined in terms of the max and
operator: (by, ) Vimaz (by; ¥) = 7w (70 (e, ) Amaz = (by, ¥)).

The timed max always operator (over the interval [a, b]) is
also defined in terms of the max and operator as

b
Dmaw,[a,b]@ = /\max @[k}a

k=a

where ¢ is a finite sequence of VBools defined for all the
discrete time instants in [a, b].

The timed max eventually-operator is defined as
Omaz,[a,8)® = ~(Omaz,a,p)(To)). Finally, for completeness
we also define the max until-operator as

® umam,[a,b] 1/)

b b—1
= \/mrw: <¢ Amaz /\mar L)O[k/]>> :

k=a

It can be seen that the max semantics for VBool are almost
equivalent to the robust semantics of STL, with the only
difference being that VBools distinguish between “true with
robustness 0 and “false with robustness 0”7, while STL does
not.

B. Additive semantics

The additive and-operator is defined as

As with the max semantics, the additive semantics for A is
based on the observation that in order to falsify = A y, it is
enough to falsify either x or y. The first clause is inspired by
the formula for parallel resistance; the formula 1/(1/z+1/y)
gives a robustness which is less than the maximum of x and y.
It roughly models the idea that although we need only falsify
one of x and y, we do not know which one of them can be
falsified. The second and third clauses are the same as in the
max semantics. By using addition in the fourth clause rather
than max, we model the idea that in order to make x Ay true,
we need to make both x and y true, not just whichever of
them has the highest robustness.

The additive or-operator is defined as (by,x) V4 (by,y) =
(7w (bg, ) A —u(by,y)), and the timed additive always-
operator (over the time interval [a,b]) is defined (similar to
the max case) as

b
Uy fab)p = /\+(<P[k‘}#/5t),

k=a

where ¢ is a finite sequence of VBools defined for the time
instants in [a,b], 6t is the simulation step time for the time
point in question, and #’ is defined as

(Lo)#k=(L,z-k)
(T,2)# k= (T,z/k).

The use of #' makes the robustness independent of the sim-
ulation time step, and means that the robustness of [, [, 3¢,
if ¢ is false over the interval [a, b], is equal to the integral of
the robustness of ¢ over [a, b].

The timed additive eventually-operator is defined as
Ot a1 = (04 a1 (7)) -

The additive until-operator is defined as

o Uy [ap) ¥
b b—1
=V, | @E#t) A | A, (oK)
k=a k'=a

Implication is defined slightly differently than in classical
logic:

¢ =y = (oF#k) V.

Here k is an arbitrary constant, and # scales the robustness
of its argument:

(Lyx)#k=(L,x-k)
(T, 2)#k=(T,x - k).

By scaling the left-hand side of the implication, we encourage
the parameter optimizer to make the left-hand side true before
trying to falsify the right-hand side.

C. Properties for reasoning about Valued Booleans

Most Valued Boolean connectives have two possible se-
mantics, and the tester must choose one of the semantics
for each connective in the specification. The max semantics
corresponds closely to the existing robust semantics of STL,
but the additive semantics is entirely different. This section
compares the two semantics of Valued Booleans and describes
the different properties they have which explain why a tester
might choose to use one or the other.

The ultimate goal of a robust semantics is to guide the
falsification in the right direction. Therefore, when a change
in the input to the system brings a formula closer to being
falsified, the robustness of the formula should go down. This
is the property we ideally want from a robust semantics. It is
not always achievable in reality (because we can never be sure
if we are really moving closer to a counterexample or not),
but the more often it holds, the better. We are particularly
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interested in two special cases of this property, monotonicity
and sensitivity:

e A formula* is monotonic if, when the robustness of
some atomic subformula decreases (leaving the others un-
changed), the robustness of the formula does not increase.
A nonmonotonic formula is disastrous for falsification as
the parameter optimizer will, moving from a test case to
a strictly better one, observe the better test case as being
worse instead. All VBool formulas are monotonic.

o A formula is sensitive if changing the robustness of some
atomic subformula (leaving the others unchanged) causes
a change in the robustness of the formula. This captures
the idea that if the output of the system changes then the
robustness of the formula should usually change.
Sensitivity is vital for falsification because measuring
changes in robustness is how the parameter optimizer
explores the input space. (For falsification it is only
important that frue formulas be sensitive, however.) If
moving from a test case to a strictly better test case
does not affect robustness, then the parameter optimizer
will not know when it has found a better test case.
The traditional semantics of Boolean logic is completely
insensitive, which is why a robust semantics is needed
for falsification.

Unfortunately, the max semantics is not sensitive: only
one parameter of p/ g is taken into account for any given
test case. For example, if p A q is true, then the semantics
is only sensitive to changes in whichever of p and ¢ has
the lowest robustness.

The additive semantics is sensitive for many true formu-
las. For example, p A g is fully sensitive when p and
q are both true. This means that, when falsifying the
conjunction of several formulas, the parameter optimizer
is able to observe changes in the robustness of any of
the subformulas. However, the formula p V ¢ is not fully
sensitive when exactly one of its arguments is true.

Figure 7 illustrates why sensitivity is important to falsifi-
cation. Suppose that the formula to be falsified is [l¢, and
that this formula happened to be true in the current test case.
Figure 7(a) illustrates how the robustness of ¢ varies with time
in this hypothetical test case. Recall that (¢ is computed by
sampling ¢ at each time step and taking the conjunction of
each sample, up to a constant factor depending on ét. In this
case, the robustness dips from 3 to 1 at about ¢ = 48s, and in
both semantics, the robustness of [¢ will be lower compared
to if the robustness had been a constant 3.

Now suppose that the optimizer modifies the test case and
observes the output seen in Figure 7(b). It seems that this test
case is closer to failing than Figure 7(a), because there is an
extra dip in robustness. Therefore, we would like the optimiser
to prefer (b) to (a), and for this to happen the robustness
of [J¢p must be lower under (b) than (a). Under the additive
semantics, this is indeed the case, because of sensitivity. Under
the max semantics, however, Figures 7(a) and (b) give the
same robustness for [1¢, as the minimum robustness is the

4For simplicity we assume that formulas are in negation normal form, i.e.,
negation only occurs as part of an atomic formula.

same in both cases. Thus the optimiser is not able to see that
moving from Figure 7(a) to 7(b) is a good idea. Because the
max semantics is not sensitive, the parameter optimizer is only
able to notice changes in the minimum value of ¢.

It is not always the case that additive semantics is better than
max semantics. Suppose instead that the optimizer observes
the result in Figure 7(c). This test case appears much closer
to failing than Figure 7(a): the minimum is very close to
0. However, the additive semantics will assign Figure 7(c) a
higher robustness than Figure 7(a), because the initial segment
of the test case has a higher robustness and continues for a
long time, which cancels out the lower minimum. The max
semantics considers 7(c) to have lower robustness than 7(a),
as we might hope.

This problem only occurs because the robustness of the
initial segment of the test case is quite large. Figure 7(d)
shows a less extreme variant. Both the additive and the max
semantics judge this test case as having lower robustness than
Figure 7(a). This is because, if we take two true VBools (T, )
and (T,y), their conjunction under the additive semantics is
(T,z) where z = 1/(1/x + 1/y). Now we can observe that
if z < y, then % > %, SO z = 1/(% + %) ~ . That is,
when taking the conjunction of a set of formulas, formulas
that have a low robustness have a disproportionate effect on
the result. In particular, in the formula [y, a small decrease
in the minimum value cancels out quite a large increase in the
maximum value.

Figure 8 illustrates the robustness of p Ay ¢ and p Apaq G-
The z-axis gives the robustness of p and the y-axis gives the
robustness of ¢; negative values here stand for false VBools.
The graph illustrates the robustness of p A ¢ using isolines,
which connect points that have equal robustness. Where an
isoline is vertical or horizontal, the connective is insensitive:
only changes in a particular argument have an effect on
robustness. We see in the upper-right quadrant that when p and
q have very different robustnesses, p A ¢ assigns much more
importance to the lower robustness (it starts to approximate
the max semantics), but that it always remains sensitive. This
weighting is a deliberate feature of the additive semantics: a
subformula with low robustness is likely to be a better target
for optimization than a subformula with high robustness, as it
it more likely to be easily falsifiable.

Apart from monotonicity and sensitivity, there are several
more commonplace properties that we would like our se-
mantics to have. The most essential is soundness: a Valued
Boolean formula (e.g. pAy (v ¢V—+r)) and the corresponding
Boolean formula (in this case, p A (—¢ V r) should always
evaluate to the same Boolean result; the only difference is
that the Valued Boolean also computes a robustness. All of the
connectives we have defined are easily seen to be sound, since
the Boolean part of each definition uses the corresponding
Boolean connective. Therefore, the choice of semantics only
affects the optimization process, not the truth or falsehood of
the property.

We would also like the usual laws of Boolean logic to hold:
connectives should be associative, commutative, idempotent,
have an identity element, have a zero element, and obey the
usual distributivity and negation laws. As mentioned above,
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(a) An example of a signal defining a property ¢. Robustness is lowest
at about 48 seconds.

robustness of ¢
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(c) This trace is similar to figure (a), but the robustness in the initial
part of the trace is even higher. The “+” semantics assigns this trace a
higher robustness than figure (a), even though it appears much closer
to being falsified.

robustness of ¢

0 ! ! ! ! !
0 10 20 30 40 50 60

time (s)
(b) In this trace, the property comes close to being falsified twice, at
20 seconds and 48 seconds. The “max” semantics assigns this trace the

same robustness as for figure (a), even though it is strictly worse. The
“+” semantics assigns it a lower robustness.

robustness of ¢
S
S

0 Il Il Il Il Il
0 10 20 30 40 50 60

time (s)
(d) In this trace, the property comes very close to being falsified at
48 seconds, but is more robustly true the rest of the time. The “max”

semantics assigns this trace a lower robustness than figure (a). The “+”
semantics also assigns it a slightly lower robustness.

Fig. 7: Four graphs showing the value of a hypothetical property ¢ over time. The different definitions of robustness assign a

different robustness to [l¢.

these laws all hold if one ignores the computed robustness,
but we would like robustness to respect these laws too. These
properties are important because we do not want the robustness
of a formula to depend on, for example, how conjunctions are
bracketed or what order they are written in, and we do not
want the tester to have to think about what arrangement of
brackets is most suitable.

The max semantics obeys all laws of Boolean logic, except
for the 1aws P Vinaz —op = T and p Apar —wp = L. The
infinitely-robust truth values T, and 1, act as identity and
zero elements in the usual way.

The additive connectives satisfy fewer laws than the max
semantics. They are associative, commutative, have T, and L,
as identity and zero elements, and respect de Morgan’s laws.
They do not satisfy idempotence or distributivity. [dempotence
fails because, for example, p A4 p is a Valued Boolean whose
robustness is either twice that of p (if p is false) or half that
of p (if p is true). Distributivity fails for a similar reason,
because expanding p Ay (g V4 r) duplicates p, increasing its
influence on the robustness computation. We are not aware
of a semantics that combines associativity, commutativity,
idempotence and sensitivity; we conjecture that these four

5 5
0 0
-5 -5
-10 AN -10
10 -5 0 5 10 -0 -5 0 5 10

(a) The robustness of = Ay y. (b) The robustness of * Amaz Y-

Fig. 8: Isobar plots of the robustness of the two semantics of
A. Here, negative robustnesses represent false VBools.

properties are incompatible.’

To summarise, both max and additive semantics satisfy
many Boolean properties, but max satisfies more; in return
for giving up some properties, the additive semantics gains
sensitivity, which is useful for falsification. In an additive

50ne could for example recover idempotence by multiplying or dividing
by 2 in the definition of A4, but this would destroy associativity.
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conjunction, the parameter optimizer is able to see when any
of the conjuncts’ robustness decreases, which is not the case
for the max semantics. A final observation is that the additive
semantics for conjunction assigns greater weight to less robust
conjuncts, which means that when a conjunct is close to being
falsified it can be reduced even if this causes the robustness
of other conjuncts to increase markedly.

V. RESULTS AND DISCUSSION

To show the performance of using additive semantics for
STL during falsification (compared to max semantics), we per-
form falsification with additive semantics for four examples.
The results are presented in a set of tables, and the layout of
each table is the same. The results are shown in Sections V-A
- V-D.

The rows of the tables show which specification is attempted
to be falsified, which parameters or specific settings are used,
and also which semantics are used. We use the max and
additive semantics defined earlier in the paper, but we also
include a third constant semantics. The robustness value for
a constant semantics is equal to 100 if the specification is
true, and -100 if the specification is not true. This constant
semantics is used as a baseline to verify whether max and
additive semantics yield better results than purely random
testing®.

For each parameter setting, the “Succ” column shows how
many times the specification was actually falsified, and the
“Iter” column shows the average number of iterations used
by the optimization solver in each falsification attempt (the
maximum is set to 1000). The “Iter/Succ” column shows
the average number of iterations for the falsification attempts
that were successful. The optimization solver used in these
examples is a Simulated Annealing solver [30].

A. Automatic Transmission Benchmark

The model takes as input the throttle and brake of a vehicle,
and simulates the automatic transmission system (for details,
see [25]). The model has been used in several other works
[15], [16], and in this work we perform falsification with the
Breach toolbox. The outputs of the system are the vehicle
speed (v), the engine speed (w), and the gear.

The model is simulated with a fixed-step setting (automatic
step size), using the MATLAB solver ode5 (Dormand-Prince).

1) Falsification parameters: The throttle is generated using
7 control points distributed evenly in time, interpolated using
the MATLAB interpolation setting pchip. Each control point
has a value in the range [0, 100]. The brake input is interpolated
similarly but only using 3 control points, each in the range
[0, 500].

The specifications to falsify are shown in Table V. Speci-
fications (1—¢g¢ are taken from [16]. Note, however, that we
do not modify the specifications to improve the falsification
capability of our additive semantics.

OWe have also implemented a random semantics, where the robustness at
each sample is a uniform random number, but with correct sign (for STL
robustness). Falsification for random semantics performs worse than max,
additive and constant semantics for all the examples in this paper.

TABLE V: Specifications to Falsify for the Automatic Trans-
mission Benchmark.

’ Specification ‘ Formula ‘

1 Oj0.7(w > 2000)

Y2 DO[O’T] (w <3500 V w > 4500)

¥3 Do, 11 (~(gear == 4))

P4 O(Oo, 1) (gear == 3))

©5 Niz1,.. 4 O((=(gear == i) A (o, (gear == 1)
= (O, 7+ (gear == i)))

©6 Opo, (v < 85) V O(w > 4500)

P1 (Opo,119ear == 1) A (O[2,4g9ear == 2)

ANOs,719ear == 3) A (Ojg 1099ear == 3)
A(0p2,15)9ear == 2)

8 Ulo,20] ((gear == 4 A throttle > 45

Athrottle < 50) — w < @)

The comparison between max semantics and additive se-
mantics for each specification is shown in Table VI.

B. Abstract Fuel Control Benchmark

The model is an Abstract Fuel Control system implemented
in Simulink, and it has been proposed as a benchmark for
temporal logic falsification [31]. The inputs to the model are
the input throttle 6 (in degrees) and the engine speed w. The
outputs of interest are the Air/Fuel ratio A and the controller
mode (either closed-loop or open-loop). The reference value
Ares is equal to 14.7 for the specifications we are considering.

The model is simulated with a variable-step setting using
the MATLAB solver odel5s (stiff/NDF).

1) Falsification parameters: The engine speed is constant
and allowed to be in the range [900, 1100]. The throttle angle
is generated as a pulse signal with a base value of 8.9, a
delay of 3, a period in the range [10, 30] and amplitude in the
range [0.161]. Thus, the throttle angle always has a value in
the range [8.9,69.9], always switching back and forth between
two values at different times of each simulation. We always
simulate the system for 40 seconds.

The specifications to falsify are shown in Table VII. The
specifications are variations of Req. (26) and (27) in [31],
using n = 1.

The results for the Abstract Fuel Control benchmark are
shown in Table VIIIL.

C. Third Order A — ¥ Modulator

The third order A — X modulator is used as a technique for
analog to digital conversion. The model is described in detail
in [32] and has previously been used for falsification bench-
mark purposes [30], [20]. The model has one input U, three
states 1, T2, T3, and three initial conditions ¢ pinit ginit,

The model is simulated with a fixed-step setting (automatic
step size), using the MATLAB solver discrete (no continuous
states).

1) Falsification parameters and specification: The input U
is constant during the whole simulation, and the allowed values
are in different sets for different scenarios (see Table X for
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TABLE VI: Results for the automatic transmission benchmark.

Specification ~ Semantics Parameters
T =20 T =30 T =40
Succ Tter Iter/Succ Succ Tter Iter/Succ Succ Tter ITter/Succ
Max 20 103.1 103.1 19 209.1 167.5 14 500.6 286.6
©1 Additive 20 80.3 80.3 20 133.2 133.2 20 215.1 215.1
Constant 14 734.0 619.9 3 930.5 536.3 0 1000.0 -
T =10
Succ Tter Tter/Succ
Max 16 247.9 59.9
©2 Additive 20 172.1 172.1
Constant 20 277.3 277.3
T=4 T =45 T=5
Succ Tter Tter/Succ Succ Tter Tter/Succ Succ Tter Tter/Succ
Max 0 1000.0 - 9 796.4 547.6 17 467.8 373.9
©3 Additive 0 1000.0 - 10 736.0 472.0 17 532.9 450.4
Constant 0 1000.0 - 11 641.9 348.8 16 472.9 341.1
T=1 T=2
Succ Tter Tter/Succ Succ Tter Tter/Succ
Max 5 852.7 410.8 20 182.0 182.0
@4 Additive 6 795.2 317.3 20 90.6 90.6
Constant 1 998.4 967.0 20 160.0 160.0
T=038 T=1 T=2
Succ Iter ITter/Succ Succ Iter Iter/Succ Succ Iter Iter/Succ
Max 0 1000.0 - 12 754.4 590.7 20 60.1 60.1
©s5 Additive 0 1000.0 - 4 864.5 322.5 20 90.7 90.7
Constant 0 1000.0 - 13 704.6 545.5 20 64.7 64.7
T =10 T=12
Succ Iter Iter/Succ Succ Iter Iter/Succ
Max 9 731.4 403.0 20 153.5 153.5
©6 Additive 12 665.9 443.1 20 182.9 182.9
Constant 0 1000.0 - 4 899.1 495.5
Succ Iter Iter/Succ
Max 4 905.4 527.0
o7 Additive 15 493.3 3244
Constant 4 836.7 183.5
w = 3000 w = 3500
Succ Iter Iter/Succ Succ Tter ITter/Succ
Max 20 16.9 16.9 0 1000.0 -
©8 Additive 20 20.4 20.4 19 296.1 259.1
Constant 20 10.1 10.1 0 1000.0 -

TABLE VII: Specifications to Falsify for the Abstract Fuel
Control benchmark

’ Specification ‘ Formula ‘
X0 e
eFe D[11,40](|(,)\ij\ < tol)
Py FC Opr1,35 ((6() < 6(t + oA.01A) vV O(t) > 0(t +0.01))
— D[1’5](‘ /\T;:f‘ < tOl))

detailed scenarios). The initial conditions are all in the range
[—0.1,0.1]. The specifications to falsify are shown in Table IX
(note that =~ is equivalent to (5~ = Aps =) AP o).
The results for the modulator benchmark are shown in Table

X.

D. Static Switched System

The static switched system has no dynamics and is included
to show that both max and additive semantics can worsen
the performance of falsification, compared to falsifying with

Boolean semantics. The model is inspired by [33], and it has
two inputs (u1,us) € [0,1]? which are kept constant. The

output y(t) is assigned according to

—2(u1 +u2) — 5

if w; > thresh, Vi

2((u1 4+ 1)* + (ug + 1)?)  otherwise.

The specification to falsify is ©°° = C(y > 0). In other
words, the falsification problem consists of finding a scenario
where both inputs have a value above thresh. This is difficult
since the gradient of the robustness (for max and additive)
with respect to the input parameters will point away from the
area where the specification is falsified. The results for the
static switched system are shown in Table XI.

E. Transforming Volvo requirements to STL

We have successfully implemented the framework presented
in this paper for transforming causal signal-based specifica-
tions into STL. We have transformed the requirements for two
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TABLE VIII: Results for the Abstract Fuel Control benchmark.

Specification ~ Semantics Parameters
tol = 0.16 tol = 0.17 tol = 0.18
Succ Iter Iter/Succ Succ Tter Iter/Succ Succ Iter ITter/Succ
Max 20 313.2 313.2 9 758.6 463.7 3 934.1 560.7
ap‘l“FC Additive 19 589.2 567.6 7 837.8 536.6 2 962.0 620.0
Constant 14 564.4 377.7 2 967.8 678.0 1 971.1 423.0
tol = 0.16 tol = 0.17 tol = 0.18
Succ Tter Tter/Succ Succ Tter Iter/Succ Succ Tter Tter/Succ
Max 20 319.4 319.4 7 786.6 390.4 2 954.8 548.0
g F e Additive 19 | 5455 521.6 2 942.8 428.0 2 962.5 625.5
Constant 12 680.8 468.0 3 937.8 585.0 3 929.1 527.7

TABLE IX: Specifications to Falsify for the Third Order A—X
Modulator

’ Specification ‘ Formula ‘
pi 7 | O(AL(-1<@nm <)
pp " O(-1<z1 Az <1)
w5 > O(-1<aa Azp < 1)
PRE O(-1<z3Az3 <1)

industrial models at Volvo Car Corporation, which model the
electric machine of an electric vehicle, as well as the battery
for an electric vehicle. The models contain 19846 and 18294
blocks, respectively’.

In total, there are 58 transformed requirements for the first
model and 36 transformed requirements for the second model.
The transformation of requirements into STL specifications
have enabled the use of temporal logic falsification for both
models. Falsification is now being run continuously for both
models, in order to catch software defects during development.
Statistics for the transformed STL formulas are shown in Table
XII.

F. Discussion

For the specifications shown in this paper, we can see that
no specific semantics perform better than the other two for
all models. For several specifications, the constant semantics
performs just as well as one or other of the robust semantics.

It is clear from the tables that sometimes max semantics
are preferable, and sometimes additive semantics are prefer-
able. For example, for specifications ¢, 2, @7, @s additive
semantics clearly perform better, while for specifications
05, 06, PFC 4 FC max semantics clearly perform better.
The static switched system was also introduced to show that
the constant semantics (i.e. random testing) can be better than
max or additive semantics. It is clear that ©°° is easier to
falsify for the constant semantics than for the other semantics.

Whether a specific semantics outperforms the others de-
pends not only on the specification, but also on the system
that is being falsified.

1) Preferable semantics for different specifications: The
intuitive explanation for why additive semantics can be better
in some cases is that it takes into account all the different
subformulas of A and V formulas (and by extension also

TThe block counts include blocks in referenced models.

the temporal operators). In a conjunction, if only the highest
robustness value decreases in between simulations, it iS not
certain that the max semantics will capture the change, but it
will affect the total additive robustness. On the other hand, if
one robustness increases while the other robustness decreases,
the additive semantics robustness may not be affected, while
the max semantics robustness will.

An example of when it is preferable to notice changes in all
clauses of a conjunction is ¢7. Here, each clause is not difficult
to falsify individually, but to be able to falsify them all at
once it helps a great deal to include more detailed robustness
information about each clause. As such, having conjunctions
with many clauses in a specification can indicate that additive
semantics would be preferable for that (sub)-specification.

2) Preferable semantics for different systems: For some
system behaviour, it can be non-beneficial to consider changes
in all parts of a conjunction. An example of this is the third
order A — ¥ modulator. The results in Table X indicate that
cpffz is by far the easiest sub-specification of golA*E to falsify.
Including more detailed robustness information about the other
sub-specifications (@A*E and LpgA*Z) makes the robustness
information from ¢ ~> (diluted in a sense, meaning that
changing from max to additive semantics will not increase
falsification capability.

VI. CONCLUSIONS

We have presented two additions to potentially increase the
capability of falsification of temporal logic specification for
Cyber-Physical Systems.

The first addition is a specification transformation frame-
work, which takes requirements modeled in a causal signal-
based frameworks and transforms them into Signal Temporal
Logic (STL) formulas. The framework has been implemented
for the specifications in two industrial-sized models at Volvo
Car Corporation, and it has enabled the use of falsification for
both of the models. The specification transformation outputs
a specification where we also have information about which
preconditions should be fulfilled for different parts of the
specification to be evaluated for given signal values and a
given time.

The second addition is the introduction of additive seman-
tics in the falsification process. Considering the established
robust semantics of STL formulas as the max semantics, the
difference for additive semantics is that the robustness of
each clause in a conjunction can affect the total robustness
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TABLE X: Results for the Third Order A — ¥ modulator.

Specification ~ Semantics Parameters
U € [-0.35,0.35] U € [—0.40,0.40] U € [-0.45,0.45]
Succ Iter Iter/Succ Succ Tter Iter/Succ Succ Iter Iter/Succ
Max 12 799.7 666.2 19 281.6 243.7 20 144.3 144.3
@f_z Additive 20 296.8 296.8 20 335.1 335.1 12 730.8 551.3
Constant 20 205.5 205.5 17 513.3 427.4 4 875.0 374.8
U € [-0.35,—0.35]
Succ Tter Iter/Succ
Max 0 1000.0 -
oo E Additive 0 | 1000.0 -
Constant 0 1000.0 -
U € [-0.35,—0.35]
Succ Iter Iter/Succ
Max 0 1000.0 -
e Additive | 0 | 1000.0 -
Constant 0 1000.0 -
U € [-0.35,—0.35]
Succ Tter Iter/Succ
Max 13 627.0 426.2
= Additive | 12 | 7395 | 5659
Constant 5 872.6 490.4
TABLE XI: Results for the Static Switched System
Specification ~ Semantics Parameters
thresh = 0.7 thresh = 0.8 thresh = 0.9
Succ Iter Iter/Succ Succ Tter Iter/Succ Succ Iter Iter/Succ
Max 15 566.3 421.7 10 741.1 482.2 3 937.7 584.7
@S5 Additive 16 518.4 397.9 7 861.3 603.7 3 943.3 622.0
Constant 20 118.3 118.3 20 136.1 136.1 20 373.4 373.4
TABLE XII: Statistics of STL Formulas for the two Volvo models
Model Number of operators Depth Modal depth
Min | Mean | Max Min | Mean | Max Min | Mean | Max
Electric machine 1 61.1 336 7.65 15 1 2.02 4
Battery 2 335 171 7.95 16 1 2.08 4

of the conjunction, even if only one of the clause’s robustness
changes. Disjunction and temporal operators are defined in
terms of conjunction for the additive semantics.

To indicate the usability of additive semantics for falsifica-
tion, we have compared them to max semantics as well as con-
stant semantics (essentially only Boolean information and no
robustness) for several different models and specifications. The
models we show results for are both well-known benchmark
models, as well as a simple non-dynamic model to prove that
all three choices of semantics can be the most viable. Previous
work on falsification has overlooked the need to compare
against the constant semantics as a baseline; our evaluation
made it clear that for some specifications, falsification had no
benefit over random testing. We encourage other researchers
to include a baseline comparison in their future work.

Which of the three semantics performs best depends both
on the specification and the model. In a black-box setting,
it is thus very difficult to decide which semantics to use for
which operator in the specification to get the best results for
falsification.

A. Future work

We have so far defined two semantics for Valued Booleans.
There are most likely many more, each with their own trade-
offs; we plan to explore these. Also, since the best choice
of semantics can be different for each connective in a given
specification, we would like to both

o formulate principles that can guide a tester in choosing a
suitable semantics for each operator in a given specifica-
tion, and

« analyze both the model and the specification to reason
about which semantics would be best for falsification (i.e.
grey-box or white-box testing).

Finally, it would be interesting to look at falsification
which includes the extra information that we get from the
specification transformation presented in this paper — namely,
the information about all the preconditions that need to be
fulfilled for different parts of the specification to be evaluated.
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