
Unified frameworks for high order Newton-Schulz and Richardson
iterations: a computationally efficient toolkit for convergence rate

Downloaded from: https://research.chalmers.se, 2025-06-18 01:31 UTC

Citation for the original published paper (version of record):
Stotsky, A. (2019). Unified frameworks for high order Newton-Schulz and Richardson iterations: a
computationally
efficient toolkit for convergence rate improvement. Journal of Applied Mathematics and Computing,
60(1-2): 605-623. http://dx.doi.org/10.1007/s12190-018-01229-8

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Journal of Applied Mathematics and Computing (2019) 60:605–623
https://doi.org/10.1007/s12190-018-01229-8

BRIEF REPORTS

Unified frameworks for high order Newton-Schulz and
Richardson iterations: a computationally efficient toolkit
for convergence rate improvement

Alexander Stotsky1

Received: 2 October 2018 / Published online: 1 January 2019
© Korean Society for Computational and Applied Mathematics 2019

Abstract
Convergence rate and robustness improvement together with reduction of computa-
tional complexity are required for solving the system of linear equations Aθ∗ = b in
many applications such as system identification, signal and image processing, network
analysis, machine learning and many others. Two unified frameworks (1) for conver-
gence rate improvement of high order Newton-Schulz matrix inversion algorithms
and (2) for combination of Richardson and iterative matrix inversion algorithms with
improved convergence rate for estimation of θ∗ are proposed. Recursive and com-
putationally efficient version of new algorithms is developed for implementation on
parallel computational units. In addition to unified description of the algorithms the
frameworks include explicit transient models of estimation errors and convergence
analysis. Simulation results confirm significant performance improvement of proposed
algorithms in comparison with existing methods.

Keywords Richardson iteration · Neumann series · High order Newton-Schulz
algorithm · Least squares estimation · Harmonic regressor · Strictly Diagonally
Dominant Matrix · Symmetric positive definite matrix · Ill-conditioned matrix ·
Polynomial preconditioning · Matrix power series factorization · Computationally
efficient matrix inversion algorithm · Simultaneous calculations

1 Introduction

Least squares method is widely used in system identification, signal processing, adap-
tive control and in many other areas [1]. For accurate solution many least squares
problems can be associated with estimation of the parameter vector θ∗, which satisfies
algebraic equation

B Alexander Stotsky
alexander.stotsky@telia.com

1 Chalmers Industriteknik, Chalmers Teknikpark, Sven Hultins gata 9, 412 58 Gothenburg, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12190-018-01229-8&domain=pdf

606 A. Stotsky

Aθ∗ = b (1)

where b is the vector, and A is SPD (Symmetric and Positive Definite) matrix, which
can often be presented in the form:

A =
w∑

i=1

ϕiϕ
T
i (2)

where ϕi is the regressor (for example harmonic regressor, [2–4]) andw is the window
size. Small window size which is often used (a) for detection of fast transients in time
series (time frequency) analysis, [5,6] (b) in regression analysis for small datasets, [1]
and (c) in many other cases implies ill-conditioning, [7] and even rank deficiency in
some cases of the matrix A.

Iterative methods for solving (1) are often preferable (especially for large-scale
systems) due to simplicity, better accuracy and robustness, less processor time and
memory space compared to direct methods, [8]. However, ill-conditioning of infor-
mation matrix implies very slow convergence of the recursive procedures for matrix
inversion, [9]. Moreover, limited computational capacity for on-board applications for
example, results in significant loss of accuracy and error accumulation in finite-digit
calculations, which in turn may result in numerical instability, [6].

Fast convergent, computationally efficient and robust (with respect to round-off,
truncation and accumulation errors) matrix inversion algorithms are required in many
time-critical applications. In particular, the problemof convergence rate and robustness
improvement for widely used high order Newton-Schulz iterative procedure, [10,11]
is especially relevant for ill-conditioned matrices, [12].

Convergence rate of Newton-Schulz algorithm can be improved by choosing higher
order. However, this requires too many additional calculations and results in loss of
accuracy due to error accumulation. A trade-off between convergence rate, computa-
tional complexity and robustness necessitates development of unified framework for
convergence rate improvement of high order Newton-Schulz algorithm. This unified
framework offers a number of solutions, where the trade-off between convergence rate
and computational complexity can be easily quantified, see Sects. 3.2 and 4.

Moreover, accuracy and robustness associated with minimization of the residual
error Aθk−1 − b, where θk is the estimate of θ∗ together with possibility of inclusion
of matrix inversion algorithm with computational parallelization, [13] is motivation to
look for combined solution, which involves Richardson iteration, [14] and improved
Newton-Schulz algorithm, [15,16], see Sect. 2.

This paper is organized as follows. General framework for Richardson iteration,
brief overview of the previous work and the problem statement for convergence rate
improvement is presented in the next Sect. 2. Unified framework for matrix inver-
sion algorithms (and their recursive computationally efficient parallel realization) and
Richardson parameter estimation algorithms with improved convergence rate are pre-
sented Sects. 3, 4 and 5 respectively as main contributions of this paper. Simulation
results,which confirm significant performance improvement of proposed algorithms in
comparison with existing methods are presented in Sect. 6. Some concluding remarks
and future directions are outlined in Sect. 7.

123

Unified frameworks for high order Newton-Schulz and Richardson... 607

2 Previous work, unification and problem statement

2.1 Unified framework for performance improvement of Richardson iteration

For estimation of the parameter vector θ∗ which satisfies (1) the following Richardson
iteration is considered:

θk = θk−1 −
⎧
⎨

⎩

q−1∑

d=0

Fd
k

⎫
⎬

⎭
︸ ︷︷ ︸
Neumann
Series

Gk︸︷︷︸
Gain
Matrix

(Aθk−1 − b)︸ ︷︷ ︸
Residual Error

(3)

Fk = I − Gk A, F0 = I − G0A (4)

ρ(F0) = ρ(I − G0A) < 1 (5)

θ0 = G0b (6)

where θk is the estimate of θ∗, Fk is the error matrix, I is the identity matrix, ρ is
the spectral radius which defines the convergence condition (5), q = 1, 2, 3, . . . is the
order of Neumann series, Gk is a gain matrix, and G0 is the preconditioner.

A general framework for modified Richardson iteration is associated with two

multiplicative terms
∑q−1

d=0
Fd
k and Gk introduced for convergence rate improve-

ment. Indeed, original Richardson algorithm (3) has a simple form with q = 1 and
Gk = I , Jacobi method is obtained with q = 1 and Gk , which is inverse diago-
nal of A (for Strictly Diagonally Dominant, SDD matrices), Gauss-Seidel method
involves upper and lower triangular parts of A, [17], and finally Dubois–Greenbaum–
Rodrigue method is associated with Gk = G0 and Fk = F0, where G0 is the
constant preconditioner, which satisfies (5), [15]. Notice that the convergence of the
methods described above is slow, and the iteration can be even unstable in some
cases, [17].

The convergence rate of the algorithm depends on the choice of the gain matrix
Gk only (when decoupling Neumann series via the choice of q = 1) and can be
improved via iterative preconditioning (dynamic preconditioning), [16]. The fastest
convergence, where θk = θ∗ is achieved for optimal gain matrixGk = A−1. Therefore
the gain matrix Gk can be associated with the iterative procedure which converges as
fast as possible to A−1, providing faster convergence compared to gradient methods,
[18,19].

Neumann series which uses the most recent values of the gain matrix is applied for
additional accuracy improvement of the estimate of A−1 and hence for convergence
rate improvement, [16]. Notice that error accumulation problem (the loss of accu-
racy in finite-digit calculations) associated with Neumann series requires low orders
q = 1, 2, [6] and therefore the potential of this term is limited. Therefore the design
of fast convergent recursive matrix inversion algorithm Gk is considered as a main
tool for convergence rate improvement of the Richardson iteration procedure in this
paper.

123

608 A. Stotsky

2.2 Existingmatrix inversion and parameter estimation algorithms

2.2.1 Splitting and preconditioning

Any positive definite and symmetric matrix A, whose inverse should be calculated can
be split as follows (see for example [17] and references therein):

A = S − D (7)

I − S−1A = S−1D (8)

ρ(I − S−1A) = ρ(S−1D) < 1 (9)

where the spectral radius ρ(·) defined in (9) is less than one for symmetric and positive
definite matrices A and S (where S−1 is the preconditioner), provided that 2S − A is
a positive definite matrix, [20,21].

For example, the matrix S can be chosen as a diagonal matrix, which contains the
diagonal elements of SDD (Strictly Diagonally Dominant) and positive definite matrix
A, [16]. For positive definite (not SDD) matrix A the simplest preconditioner can be
chosen as S−1 = I/α with α = ‖A‖∞/2+ ε, where ‖ · ‖∞ is the maximum row sum
matrix norm, and ε > 0 is a small positive number, [9].

Other types of preconditioning can be found in [17,22–25], see also references
therein.

Notice that the spectral radius (9) is too close to one for ill-conditioned matrix A,
which implies stability problem in the presence of error accumulation, [6]. Precondi-
tioning can be modified by choosing easy invertible matrix S, where ρ(S−1D) > 1
and applying stepwise calculations. Stepwise splitting method involves sequential
application of matrix inversion algorithm with larger stability margins for robustness
enhancement, [6]. In other words, the inversion procedure is divided into a number
of steps to avoid instability and increasing computational time. The computational
time of stepwise splitting method depends on the convergence rate of inversion algo-
rithm, that necessitates the development of fast convergent inversion algorithms,which
accelerate also Richardson iteration (3) for time-critical applications.

Existing matrix inversion and parameter estimation algorithms are described in the
next Sect. 2.2.2.

2.2.2 High order Newton-Schulz matrix inversion algorithm

Inverse of the matrix A can be estimated by Gk with the following the most general
and well known algorithm:

Gk =
⎧
⎨

⎩

p−1∑

d=0

Fd
k−1

⎫
⎬

⎭ Gk−1 (10)

where Fk is defined in (4) and p = 2, 3, . . . is the order of the algorithm, which has
the following error model

123

Unified frameworks for high order Newton-Schulz and Richardson... 609

Fk = (S−1D)p
k

(11)

and convergence condition (9) with the preconditioner G0 = S−1, k = 1, 2,
Algorithm (10) (presented in different forms) is knownas highorderNewton-Schulz

algorithm, [10,11,16] and hyperpower iterative matrix method, [26–29]. Notice that
Newton-Schulz algorithm, p = 2, [30,31] is used more often due to significant error
accumulation for higher orders, [10].

The vector of unknown parameters can be estimated via (10) as follows:

θk = Gkb (12)

θ̃k = (S−1D)p
k − 1θ̃0 (13)

where θk is the estimate of θ∗ defined in (12), and themodel for the parametermismatch
θ̃k = θk − θ∗, where θ0 = G0b is defined in (13).

Notice that the following error model for the parameter mismatch is valid for
Richardson iteration (3) with (10) and G0 = S−1, [16]:

θ̃k = (S−1D)

q (pk+1 − p)

(p − 1) θ̃0 (14)

Notice also that low orders, p = 2, 3 and q = 1, 2 of the algorithms are usually chosen
for prevention error accumulation [6,10] .

Comparison of two error models (13) and (14) with q = 1 shows that Richardson
iteration (3) with Gk defined in (10) converges faster than the algorithm (12). Simula-
tion results show that the difference in convergence rates is more pronounced for low
orders, p = 2, 3 .

Notice that the initial mismatch θ̃0 can be essentially reduced in recursive least
squares estimation for example, using information available in the previous steps,
[1,9] and by polynomial preconditioning, [18], described in the next Sect. 2.2.3.

2.2.3 Computationally efficient matrix inversion algorithm

Matrix inversion algorithmof order h = 1, 2, 3, . . .which requires onematrix addition
and one multiplication only in each step can be written as follows, [6]:

Gk = G0 + (S−1D)2hGk−1 =
⎧
⎨

⎩

k∑

j=0

(S−1D)2h j

⎫
⎬

⎭G0 (15)

with the error model:

Gk − A−1 = (S−1D)2hk
{
G0 − A−1} (16)

123

610 A. Stotsky

where the polynomial preconditioner

G0 =
⎧
⎨

⎩

h−1∑

j=0

(S−1D)2 j

⎫
⎬

⎭ {(S−1D) + I }S−1

= (I − (S−1D)2h)A−1 (17)

and (S−1D)2h are precalculated.Notice that the algorithm (15) is very computationally
efficient since the complexity depends on the order h in precalculations only.

Notice also that similar algorithms based on the approximate inverse chains and
fast matrix series expansion are described in [32] and [33] respectively.

Unfortunately, the algorithm (15) has significantly slower convergence compared
to algorithm (10), [5]. However, error accumulation problem is more pronounced
for algorithm (10), especially for higher orders, [6]. A unified framework for com-
bined algorithms which takes the advantages of both approaches and includes
high order Newton-Schulz algorithm and power series associated with (15) are
designed in the next Sect. 3 for convergence rate improvement and reduction of error
accumulation.

3 Matrix inversion algorithms with improved convergence rate

3.1 General power series expansion

The following relation holds for general power series in each step, k = 0, 1, . . .:

⎧
⎨

⎩

2hω−1∑

j=0

(S−1D) j

⎫
⎬

⎭ S−1 = (I − (S−1D)2hω)A−1 (18)

where ω = ω(k) = c0 + c1k + c2k2 + ... ≥ 1 is the polynomial, for example, and the
coefficients ci ≥ 0, i = 0, 1, 2, . . . are integers.

The simplest variant of this factorization is presented in (17), [6], where ω = 1
with c0 = 1 and ci = 0, i = 1, 2, Notice that higher orders of the poly-
nomial ω result in significant computational complexity of the algorithms based
on the factorization (18). Therefore the first order polynomial ω = (k + 1),
where c0 = c1 = 1 and ci = 0, i = 2, 3, . . . is considered further in this
paper.

Notice that (18) defines the model for power series expansion, which can easily
be presented in the recursive form with minimal number of calculations in each step
and computationally efficient low degree polynomial preconditioning (for example
preconditioning (17)), see Sect. 4.

123

Unified frameworks for high order Newton-Schulz and Richardson... 611

3.2 Unifiedmatrix inversion algorithms

The following unified algorithm:

Gk = T︸︷︷︸
Polynomial

Preconditioning

+ Γ︸︷︷︸
Convergence
Accelerator

{
n−1∑

d=0

Fd
k−1

}
Gk−1

︸ ︷︷ ︸
High Order Newton-Schulz

Iteration

(19)

Γ = I − T A (20)

Fk = I − Gk A, ρ(F0) = ρ(I − G0A) < 1 (21)

has the error model:
Fk = Γ Fn

k−1 (22)

where Γ is the gain matrix, which accelerates the convergence (ρ(Γ) < 1 for con-
vergence rate improvement) and the polynomial preconditioning T satisfies equation
(20).

Errormodel (22) is proved by evaluation of theNeumann series
∑n−1

d=0
Fd
k−1, taking

into account (20) together with multiplication of both sides of the Eq. (19) by A.
Different choices of the matrices Γ and T , which obey equation (20) result in the

following algorithms:

1. High order Newton-Schulz iteration (10):

Γ = I , T = 0, n = 2, 3, 4, . . . (23)

which can also be presented in the following form, [16]:

Γ = I − Gk−1A, T = Gk−1, n = 1, 2, 3, . . . (24)

2. High order algorithm with polynomial factorization (18) and ω = 1:

Γ = (S−1D)2h, T =
⎧
⎨

⎩

2h−1∑

j=0

(S−1D) j

⎫
⎬

⎭ S−1

ρ(S−1D) < 1, n = 1, 2, 3, . . . (25)

Notice that algorithm (19), (25) with n = 1 becomes the algorithm (15).
3. High order algorithm with polynomial factorization (18) and ω = (k + 1):

Γk = (S−1D)2h(k+1), Tk =
⎧
⎨

⎩

2h(k+1)−1∑

j=0

(S−1D) j

⎫
⎬

⎭ S−1

ρ(S−1D) < 1, n = 1, 2, 3, . . . (26)

123

612 A. Stotsky

4. High order algorithm with exponentiation:

Γk = (S−1D)m
k
, Tk =

⎧
⎪⎨

⎪⎩

mk − 1∑

j=0

(S−1D) j

⎫
⎪⎬

⎪⎭
S−1

ρ(S−1D) < 1, n,m = 1, 2, 3, . . . (27)

Notice that algorithm (19) with exponentiation gets the form Gk = S−1 +
(S−1D)Gk−1, [5,19], where (20) becomes (8) with n = m = 1.

5. Modification of the high order algorithm with recursive fast calculation of the
matrix series expansion proposed in [33]:

Γk = (S−1D)h2
k
, Tk =

⎧
⎨

⎩

h2k−1∑

j=0

(S−1D) j

⎫
⎬

⎭ S−1

ρ(S−1D) < 1, h = 1, 2, 3, . . . , n = 1 (28)

Notice that algorithm (19) covers both high order Newton-Schulz algorithm (10) and
high order algorithm (15) and provides unified framework for new algorithms with
improved performance. Known and new matrix inversion algorithms based on unified
framework (19) with error models are summarized in Table 1.

Notice also that the relation (20) can be seen as extended error model associated
with the error (21). The choice of Γ and T which satisfies the condition (20) and
involvesGk−1 should not contradict with the equations (19), (21). The framework (19)
covers mostly the case where T is power series expansion associated with (18), which
provides inaccurate estimate of A−1 and Γ quantifies this inaccuracy, accelerating the
convergence. Therefore the convergence analysis [similar to the cases (23)–(28), see
also Table 1] should be performed for each choice of Γ and T .

Comparison of the error models in Table 1 shows that the algorithm (19), (26) pro-
vides the best convergence rate with reasonable computational complexity compared
to other choices. This algorithm is considered in the next Sect. 3.3.

3.3 Fast matrix inversion algorithm

The algorithm (19), (26) can be presented in the following form:

Gk =
⎧
⎨

⎩

2h(k+1)−1∑

j=0

(S−1D) j

⎫
⎬

⎭ S−1

+(S−1D)2h(k+1)

{
n−1∑

d=0

Fd
k−1

}
Gk−1 (29)

123

Unified frameworks for high order Newton-Schulz and Richardson... 613

Table 1 A family of known and new matrix inversion algorithms

Unified matrix inversion algorithms and error models

N Gk = T + Γ

⎧
⎨

⎩

n−1∑

d=0

Fd
k−1

⎫
⎬

⎭Gk−1, Γ = I − T A, Fk = Γ Fn
k−1

Fk = I − Gk A, A = S − D, ρ(I − S−1A) = ρ(S−1D) < 1, Gk → A−1 as k → ∞
1 Γ = I , T = 0, G0 = S−1, Fk = Fn

k−1, Fk = (S−1D)n
k
, n = 2, 3, 4, . . .

2 Γ = (S−1D)2h , T =
⎧
⎨

⎩

2h−1∑

j=0

(S−1D) j

⎫
⎬

⎭ S−1, G0 =
⎧
⎨

⎩

h−1∑

j=0

(S−1D)2 j

⎫
⎬

⎭ {(S−1D) + I }S−1,

Fk = (S−1D)2h Fk−1

Fk = (S−1D)2h(k+1), h = 1, 2, 3, . . ., n = 1

3 Γ = (S−1D)2h , T =
⎧
⎨

⎩

2h−1∑

j=0

(S−1D) j

⎫
⎬

⎭ S−1, G0 =
⎧
⎨

⎩

h−1∑

j=0

(S−1D)2 j

⎫
⎬

⎭ {(S−1D) + I }S−1,

Fk = (S−1D)2h Fn
k−1

Fk = (S−1D)
2h

(nk+1 − 1)

(n − 1) , h = 1, 2, 3, . . ., n = 2, 3, 4, . . .

4 Γ = (S−1D)2h(k+1), T =
⎧
⎨

⎩

2h(k+1)−1∑

j=0

(S−1D) j

⎫
⎬

⎭ S−1,

G0 =
⎧
⎨

⎩

h−1∑

j=0

(S−1D)2 j

⎫
⎬

⎭ {(S−1D) + I }S−1

Fk = (S−1D)2h(k + 1)Fk−1, Fk = (S−1D)
2h{k (k + 3)

2
+ 1}

, h = 1, 2, 3, . . ., n = 1

5 Γ = (S−1D)2h(k+1), T =
⎧
⎨

⎩

2h(k+1)−1∑

j=0

(S−1D) j

⎫
⎬

⎭ S−1,

G0 =
⎧
⎨

⎩

h−1∑

j=0

(S−1D)2 j

⎫
⎬

⎭ {(S−1D) + I }S−1

Fk = (S−1D)2h(k + 1)Fn
k−1, Fk = (S−1D)

2h

{
nk+2 − n3 − (k − 1)(n − 1)

(n − 1)2
+ (n + 2)

}

h = 1, 2, 3, . . ., n = 2, 3, 4, . . .

6 Γ = (S−1D)m
k
, T =

⎧
⎪⎨

⎪⎩

mk − 1∑

j=0

(S−1D) j

⎫
⎪⎬

⎪⎭
S−1, G0 = S−1, Fk = (S−1D)m

k
Fnk−1

Fk = (S−1D)

(mk+1 − nk+1)

(m − n) , if m �= n, and Fk = (S−1D)(k + 1)nk , if m = n, where
n,m = 1, 2, 3, . . .

7 Γ = (S−1D)h2
k
, T =

⎧
⎨

⎩

h2k−1∑

j=0

(S−1D) j

⎫
⎬

⎭ S−1, G0 =
⎧
⎨

⎩

h−1∑

j=0

(S−1D) j

⎫
⎬

⎭ S−1

Fk = (S−1D)h2
k
Fk−1, Fk = (S−1D)h(2k+1 − 1), h = 1, 2, 3, . . ., n = 1

123

614 A. Stotsky

with the following error model (22):

Fk = (S−1D)2h(k + 1)Fn
k−1 (30)

where the error matrix Fk = I −Gk A, F0 = (S−1D)2h , h = 1, 2 . . . and n = 1, 2, . . .
are the orders, k = 1, 2, Polynomial preconditioner G0 is defined in (17).

The error model (30) can also be presented in the following form:

Fk = (S−1D)
2h

{
k

(k + 3)

2
+ 1

}

(31)

for n = 1, and in the following form:

Fk = (S−1D)
2h

{
nk+2 − n3 − (k − 1)(n − 1)

(n − 1)2
+ (n + 2)

}

(32)

for n > 1. Comparison of the error models (11) and (32) quantifies convergence
rate improvement associated with combined algorithm. The trade-off between con-
vergence rate improvement and computational complexity necessitates development
of recursive and computationally efficient version of the algorithm (29).

4 Recursive realization of the algorithm (29)

Algorithm (29) can be divided in two independent parts for simultaneous computa-

tions. The first part includes the following terms: Tk =
{∑2h(k+1)−1

j=0
(S−1D) j

}
S−1

and Γk = (S−1D)2h(k+1), and the second part is associated with Neumann series∑n−1

d=0
Fd
k−1.

4.1 Recursive calculations for part I

Suppose that the following series T0 = G0 =
{∑h−1

j=0
(S−1D)2 j

}
{(S−1D) + I }S−1

is precalculated recursively for h > 1 as follows:

f or i = 1 : (h − 1)

Ui = (S−1D)2 Ui−1 +U0

end (33)

whereU0 = {(S−1D) + I }S−1 andUh−1 = T0. The algorithm (33) requires h matrix
additions and multiplications only.

Then the following recursive algorithm reduces computational complexity of the
first part:

123

Unified frameworks for high order Newton-Schulz and Richardson... 615

Γk = (S−1D)2h Γk−1, Γ0 = (S−1D)2h = I − T0 A (34)

Tk = Tk−1 + Γk−1 T0 =
⎧
⎨

⎩

k∑

j=0

Γ
j
0

⎫
⎬

⎭ T0 (35)

where Γk in (34) is recursive realization of Γk = (S−1D)2h(k+1), and T0 is calculated
via (33). Equation (35) is the recursive realization of Tk and similar to (15) it requires
one matrix addition and one multiplication only in each step, k = 1, 2, 3,

Notice that Tk and Γk can also be calculated as follows:

Tk = T0 + Γ0 Tk−1 (36)

Γk = I − Tk A (37)

which is more robust in finite-digit calculations (in some cases) compared to (34),
(35).

Notice also that the computational complexity of the recursive realization Tk does
not depend on the order h, but requires order dependent precalculations, which are
also used as initial condition G0 in (17) and calculated only once.

Notice also that all the terms in Part I can be precalculated and memorized as a
function of step number, if the number of steps is predetermined. The desired number
of steps can be calculated using error models (31) and (32) with desired estimation
accuracy. Moreover, for reduction of error accumulation in main calculations the pre-
calculations can be performed with higher accuracy.

4.2 Recursive calculations for part II

Computational complexity of the second part can be reduced via recursive algorithm
as follows:

R0 = Cn−1
1 I + Cn−1

0 (Gk−1A)

f or i = 1 : (n − 2)

Ri = (Gk−1A) Ri−1 + Cn−1
i+1 I

end (38)

where n > 2 which corresponds to the following factorization of the Neumann series:

n−1∑

d=0

Fd
k−1 = Cn−1

n−1 + (Gk−1A) (Cn−1
n−2 I + (Gk−1A)

(Cn−1
n−3 I + (Gk−1A) (Cn−1

n−4 I + ... +
(Gk−1A) (Cn−1

1 I + Cn−1
0 (Gk−1A))

︸ ︷︷ ︸
= R0

))) (39)

123

616 A. Stotsky

Table 2 Neumann series factorization

Order n Neumann series factorization
n−1∑

d=0

Fd
k−1, Fk = I − (Gk−1A)

2 2I − (Gk−1A)

3 3I + (Gk−1A)(−3I + (Gk−1A))

4 4I + (Gk−1A)(−6I + (Gk−1A)(4I − (Gk−1A))

5 5I + (Gk−1A)(−10I + (Gk−1A)(10I + (Gk−1A)(−5I + (Gk−1A))

… . . .

n Cn−1
n−1 + (Gk−1A) (Cn−1

n−2 I + (Gk−1A) (Cn−1
n−3 I + (Gk−1A) (Cn−1

n−4 I + ... +
(Gk−1A) (Cn−1

1 I + Cn−1
0 (Gk−1A)))))

Cn−1
d = n!

d! (n − d)! (−1)n−d−1, d = 0, . . . , (n − 1)

where Cn−1
d = n!

d! (n − d)! (−1)n−d−1 are the coefficients, and d = 0, . . . , (n −
1), n = 2, 3, 4, Factorization (39) requires (n − 1) matrix multiplications and
additions of precalculated diagonal matrices in each step. Notice that addition of the
diagonal matrices is computationally simpler operation than addition of conventional
matrices.

The factorization of Neumann series (39) is presented in Table 2 for different
orders. Notice that the number of matrix multiplications can be reduced further for
some orders, see for example [11,26,28,34] and references therein.

4.3 Recursive realization of thematrix inversion algorithm (29)

Computationally efficient version of the matrix inversion algorithm (29) can be pre-
sented for simultaneous computations as follows:

Γk = (S−1D)2h Γk−1, Γ0 = (S−1D)2h (40)

Tk = Tk−1 + Γk−1 T0 (41)

f or i = 1 : (n − 2)

Ri = (Gk−1A) Ri−1 + Cn−1
i+1 I (42)

end

Gk = Tk︸︷︷︸
Power Series
Expansion

+ Γk︸︷︷︸
Gain Matrix

Ri Gk−1︸ ︷︷ ︸
Newton-Schulz

Iteration

(43)

with corresponding initial conditions. Recursive algorithm consists of two parts, (40),
(41) and (42) which can be calculated simultaneously, and the common part (43).

Notice that the factorization Tk =
{∑k

j=0
Γ

j
0

}
T0 in (43) is rapidly expanding

power series, and the gain matrix Γk = (S−1D)2h(k+1) determines the position (the
bias) of Newton-Schulz iteration Ri in the resulting power series.

123

Unified frameworks for high order Newton-Schulz and Richardson... 617

The orders h and n should not be high to prevent error accumulation, and h should
be chosen higher than (or equal to) n since the number of operations in (40), (41) does
not depend on h and error accumulation problem is more pronounced for Neumann
series [6,10].

Notice that computational complexity of recursive calculation of Neumann series∑n−1

d=0
Fd
k−1 is relatively low, especially for low orders. This series can be calculated

in different ways, depending on the order and the way realized in (42) requires (n−1),
(n ≥ 2) matrix multiplications and additions of the diagonal matrices in each step.
Therefore the recursive realization of (10) requires one additional multiplication.

The computational complexity and time of the algorithm (10) can be taken as the
reference for evaluation of the performance of the algorithm (40)–(43). Therefore
the additional computational complexity of the algorithm (40)–(43) compared to the
computational complexity of (10) is three matrix multiplications, two additions (inde-
pendent of the order) in each step andprecalculations.The computational time is almost
the same for both algorithms provided that two parts mentioned above are calculated
simultaneously. This increase in computational burden in the algorithm (40)–(43) is a
reasonable computational price for significant convergence rate improvement.

Notice that the recursive realizations can also be unified within the framework
(19)–(22). Unified recursive realizations of the algorithms 5–7 from the Table 1 are
presented in Table 3.

5 Combined Richardson iteration andmatrix inversion algorithms

Consider Richardson algorithm (3) with q = 1 for estimation of the parameter vector
θ∗, which satisfies algebraic equation (1). Then the following error models are valid
for the parameter mismatch θ̃k = θk − θ∗:

(1) for Gk which satisfies (15)

θ̃k = (S−1D)2h(k + 1)θ̃k−1 (44)

θ̃k = (S−1D)h k (k + 3)θ̃0 (45)

(2) for Gk which satisfies (29) with n = 1

θ̃k = (S−1D)
2h

{
k

(k + 3)

2
+ 1

}

θ̃k−1 (46)

θ̃k = (S−1D)
h

{
k(k + 1)(2k + 10)

6
+ 2k

}

θ̃0 (47)

(3) for Gk which satisfies (29) with n > 1

θ̃k = Fk θ̃k−1 (48)

123

618 A. Stotsky

Ta
bl
e
3

U
ni
fie
d
re
cu
rs
iv
e
re
al
iz
at
io
ns

of
m
at
ri
x
in
ve
rs
io
n
al
go
ri
th
m
s

U
ni
fie
d
m
at
ri
x
in
ve
rs
io
n
al
go
ri
th
m
s

U
ni
fie
d
re
cu
rs
iv
e
re
al
iz
at
io
ns

G
k

=
T k

+
Γ
k

{ ∑
n−

1

d
=0

F
d k−

1

}
G
k−

1
,

Γ
k

=
I

−
T k

A
G
k

=
T k

+
Γ
k
R
i
G
k−

1

R
i
is
ca
lc
ul
at
ed

in
(3
8)

T k
=

⎧ ⎨ ⎩

2h
(k

+1
)−

1
∑ j=

0

(S
−1

D
)
j⎫ ⎬ ⎭

S−
1
,Γ

k
=

(S
−1

D
)2
h
(k

+1
)

T 0
=

G
0

=
⎧ ⎨ ⎩

h
−1 ∑ j=
0(S

−1
D

)2
j⎫ ⎬ ⎭

{(S
−1

D
)
+

I}S
−1

is
ca
lc
ul
at
ed

in
(3
3)

h
=

1,
2,

3,
..

.,
n

=
1,
2,

3,
..

.
Γ
0

=
I

−
T 0

A

T k
=

T 0
+

Γ
0
T k

−1
Γ
k

=
I

−
T k

A

T k
=

⎧ ⎪ ⎨ ⎪ ⎩

m
k

−
1

∑ j=
0

(S
−1

D
)
j⎫ ⎪ ⎬ ⎪ ⎭

S−
1
,

Γ
k

=
(S

−1
D

)m
k

T 0
=

G
0

=
S−

1
,

Γ
0

=
I

−
T 0

A

n
=

1,
2,

3,
..

.,
m

=
1,
2,

3,
..

.
H
i
=

Γ
k−

1
(
H
i−

1
+

I)
,
fo
r
i
=

1,
..

.(
m

−
2)
,
H
0

=
Γ
k−

1
,
m

>
2

T k
=

T k
−1

+
H
i
T k

−1
Γ
k

=
I

−
T k

A

T k
=

⎧ ⎨ ⎩

h
2k

−1
∑ j=

0

(S
−1

D
)
j⎫ ⎬ ⎭

S−
1
,

Γ
k

=
(S

−1
D

)h
2k

T 0
=

G
0

=
⎧ ⎨ ⎩

h
−1 ∑ j=
0(S

−1
D

)
j⎫ ⎬ ⎭

S−
1
,

Γ
0

=
I

−
T 0

A

h
=

1,
2,

3,
..

.,
n

=
1

T k
=

T k
−1

+
Γ
k−

1
T k

−1
Γ
k

=
I

−
T k

A

123

Unified frameworks for high order Newton-Schulz and Richardson... 619

Table 4 A family of Richardson algorithms

Richardson iteration
θk = θk−1 − Gk (Aθk−1 − b), θ0 = G0 b, A θ∗ = b, θ̃k = θk − θ∗, A = S − D, ρ(S−1D) < 1,
θk → θ∗ as k → ∞
N Gain update algorithm Gk and error model

1 Gk = G0 + (S−1D)2hGk−1,G0 =
⎧
⎨

⎩

h−1∑

j=0

(S−1D)2 j

⎫
⎬

⎭ {(S−1D) + I }S−1,

θ̃k = (S−1D)2h(k + 1)θ̃k−1, θ̃k = (S−1D)h k (k + 3)θ̃0, h = 1, 2, 3, . . .

2 Gk =
⎧
⎨

⎩

2h(k+1)−1∑

j=0

(S−1D) j

⎫
⎬

⎭ S−1 + (S−1D)2h(k+1)Gk−1,

G0 =
⎧
⎨

⎩

h−1∑

j=0

(S−1D)2 j

⎫
⎬

⎭ {(S−1D) + I }S−1

θ̃k = (S−1D)
2h

{
k

(k + 3)

2
+ 1

}

θ̃k−1,

θ̃k = (S−1D)
h

{
k(k + 1)(2k + 10)

6
+ 2k

}

θ̃0, h = 1, 2, 3, . . .

3 Gk =
⎧
⎨

⎩

2h(k+1)−1∑

j=0

(S−1D) j

⎫
⎬

⎭ S−1 + (S−1D)2h(k+1)

⎧
⎨

⎩

n−1∑

d=0

Fd
k−1

⎫
⎬

⎭Gk−1,

Fk = I − Gk A

G0 =
⎧
⎨

⎩

h−1∑

j=0

(S−1D)2 j

⎫
⎬

⎭ {(S−1D) + I }S−1

θ̃k = (S−1D)

2h

{
nk+2 − n3 − (k − 1)(n − 1)

(n − 1)2
+ (n + 2)

}

θ̃k−1

θ̃k = (S−1D)

2h

{
nk+3 − n4

(n − 1)3
− (k − 1)

{
n3

(n − 1)2
+ k

2(n − 1)

}
+ k(n + 2)

}

θ̃0

n > 1, h = 1, 2, 3, . . .

where Fk is given in (32) and

θ̃k = (S−1D)2h γ θ̃0 (49)

where γ = nk+3 − n4

(n − 1)3
− (k − 1)

{
n3

(n − 1)2
+ k

2(n − 1)

}
+ k(n + 2) and k =

1, 2, 3,

The family of Richardson algorithms are summarized in Table 4 for selected matrix
inversion algorithms presented in Table 1.

123

620 A. Stotsky

2

2.5

3
12345678

0

0.2

0.4

0.6

0.8

1

STEP NUMBERORDER p and n

S
P

E
C

TR
A

L
R

A
D

IU
S

(a)

2
2.5

3

12345678

0

0.2

0.4

0.6

0.8

1

STEP NUMBER
ORDER p and n

S
P

E
C

TR
A

L
R

A
D

IU
S

(b)

Fig. 1 Subplots show the spectral radius ρ pk for algorithm (10) (plotted as white surface) and

ρ
2h

{
nk+2−n3−(k−1)(n−1)

(n−1)2
+(n+2)

}

for algorithm (32) (plotted as colored surface) as a function of orders
p and n (on the same axis) and step number k. The order h = 1 corresponds to Subplot a, and Subplot b
shows the spectral radius for h = 5. (Color figure online)

6 Performance of the algorithms and comparisons

6.1 Comparison of matrix inversion algorithms (10) and (15)

The convergence rate of two matrix inversion algorithms (10) and (15) is compared
via error models (11) and (16), where the former has the order pk , p = 2, 3 . . . and
the latter has the order 2hk, h = 1, 2, . . . (where the order is associated with the most
significant term in the power of the matrix (S−1D)). Algorithm (10) converges much
faster than algorithm (15). However, when these algorithms are applied in Richardsson
iteration (3),whichhas the integrationproperty the orders of convergence for parameter
mismatch pk+1/(p − 1) and hk2 [see (14) and (45)] become comparable, but the
method (10) is still faster especially for higher orders.

6.2 Comparison of matrix inversion algorithms (10) and (29)

The convergence rate of the algorithm (10) is compared to the convergence rate of the
algorithm (29) via error models (11) and (32) for the same spectral radius ρ (which is
close to one for ill-conditioned matrix A) as the function of step number k in Fig. 1a
for h = 1 and in Fig. 1b for h = 5. The Fig. 1 shows that proposed matrix inversion
algorithm (29) (plotted as colored surface) converges much faster than high order
Newton-Schulz algorithm (10) (plotted as white surface), especially for higher order
h, which essentially accelerates convergence.

Notice that the algorithm (29) has two orders n and h as parameters to be chosen,
whereas algorithm (10) has only one order p as a parameter.

6.3 Comparison of Richardson algorithms (3) with Gk (10) and (29) as functions of
four orders

Richardson iteration (3) with Gk defined in (10) has two orders q = 1, 2, . . . and
p = 2, 3, . . . as parameters. The same iteration with q = 1 and Gk defined in (29) has

123

Unified frameworks for high order Newton-Schulz and Richardson... 621

2
2.5

3 1
2

3
4

0.996

0.997

0.998

0.999

1

1.001

ORDER,q and hORDER,p and n

S
P

E
C

TR
A

L
R

A
D

IU
S

(a)

2

2.5

3 1
2

3
4

0

0.2

0.4

0.6

0.8

1

ORDER,q and hORDER,p and n

S
P

E
C

TR
A

L
R

A
D

IU
S

(b)

Fig. 2 Subplots show the spectral radius ρ
q (pk+1−p)

(p−1) for Richardson iteration (3) with Gk defined
in (10) (plotted as white surface) and the same iteration with q = 1 and Gk defined in (29) for

ρ
2h

{
nk+3−n4

(n−1)3
−(k−1)

{
n3

(n−1)2
+ k

2(n−1)

}
+k(n+2)

}

(plotted as colored surface) as a function of orders q and
h and p and n. Subplot a corresponds to k = 1 and Subplot b shows the spectral radius for k = 3. (Color
figure online)

also two orders h = 1, 2, . . ., which is the counterpart of q and n = 2, 3, . . ., which
is counterpart of p as parameters. Therefore convergence of the algorithms can be
compared via error models (14) and (49) as the function of orders for different steps.
The Fig. 2 shows that Richardson iteration (3) with q = 1 and Gk defined in (29)
(plotted as colored surface) converges much faster than algorithm (3) with Gk defined
in (10) (plotted as white surface), especially for larger number of steps k.

6.4 Integration property of Richardson iteration and convergence rate
improvement

In addition to robustness and accuracy improvement Richardson iteration (3) improves
also the convergence rate compared to parameter estimation using recursive matrix
inversion techniques only. Richardson iteration plays a role of integration loop for
recursive matrix inversion algorithms and increases the order of convergence by one,
which can be seen by comparison of the following pairs of the error models: (11), (14)
and (16),(45) and (31), (47) and (32), (49), see also Table 4.

Notice that the same integration effect is present in the additional loop of modified
high order Newton-Schulz algorithm proposed in [35]. Combination of high order
Newton-Schulz and Richardson framework is preferable for more accurate and robust
parameter calculation with improved convergence rate.

7 Conclusion

Increasing order ofNewton-Schulzmatrix inversion algorithm,which is a conventional
way for convergence rate improvement for solving the system of linear equations
results in error accumulation and the loss of accuracy in finite-digit calculations.
Algorithm design for convergence rate improvement is considered in this paper

123

622 A. Stotsky

as the trade-off achievement between convergence rate, computational complexity
and robustness. The approach resulted in development of two unified frameworks
for matrix inversion algorithms and for Richardson iteration, where the trade-off
between convergence rate improvement and computational complexity is quantified
using explicit transient error models, factorizations and recursive representations.
The approach allows significant improvement of the convergence rate of estimated
parameters with low orders, reduced error accumulation and efficient simultaneous
computations.

References

1. Ljung, L.: System Identification: Theory for the User. Prentice-Hall, Upper Saddle River (1999)
2. Bayard, D.: A general theory of linear time-invariant adaptive feedforward systems with harmonic

regressors. IEEE Trans. Autom. Control 45(11), 1983–1996 (2000)
3. Stotsky, A.: Recursive trigonometric interpolation algorithms. J. Syst. Control Eng. 224(1), 65–77

(2010)
4. Stotsky, A.: Harmonic regressor: robust solution to least-squares problem. Proc. IMechE Part I: J. Syt.

Control Eng. 227(8), 662–668 (2013)
5. Stotsky, A.: Towards accurate estimation of fast varying frequency in future electricity networks: the

transition from model-free methods to model-based approach. J. Syst. Control Eng. 230(10), 1164–
1175 (2016)

6. Stotsky, A.: Grid frequency estimation using multiple model with harmonic regressor: robustness
enhancement with stepwise splitting method. In: Conference Paper Archive, IFAC PapersOnLine 50-
1, pp. 12817–12822, Elsevier (2017)

7. Chao, B. T, Li, H. L, Scott, E. J.: On the solution of ill-conditioned, simultaneous, linear, algebraic equa-
tions by machnine computation. In: Alan Kingery, R. (ed.) Engineering Experiment Station Bulletin
No. 459, University of Illinois Bulletin (2007)

8. Brussino, G., Sonnad, V.: A comparison of direct and preconditioned iterative techniques for sparse,
unsymmetric systems of linear equations. Numer. Methods Eng. 28(4), 801–815 (1989)

9. Stotsky, A.: Accuracy improvement in least-squares estimation with harmonic regressor: new precon-
ditioning and correction methods. In: 54-th CDC, Dec. 15–18, Osaka, Japan, pp. 4035–4040 (2015)

10. Isaacson, E., Keller, H.: Analysis of Numerical Methods. Wiley, New York (1966)
11. Stickel, E.: On a class of high order methods for inverting matrices. ZAMM Z. Angew. Math. Mech.

67, 331–386 (1987)
12. Soleymani, F.: A new method for solving ill-conditioned linear systems. Opusc. Math. 33(2), 337–344

(2013)
13. Missirlis, N.: A parallel iterative system solver. Linear Algebra Appl. 65, 25–44 (1985)
14. Richardson,L.: The approximate arithmetical solution byfinite differences of physical problems involv-

ing differential equations, with an application to the stresses in a Masonry Dam. Philos. Trans. R. Soc.
A 210, 307–357 (1910)

15. Dubois, D., Greenbaum, A., Rodrigue, G.: Approximating the inverse of a matrix for use in iterative
algorithms on vector processors. Computing 22, 257–268 (1979)

16. Stotsky, A.: Combined high-order algorithms in robust least-squares estimation with harmonic regres-
sor and Strictly Diagonally Dominant Information Matrix. Proc. IMechE Part I: J. Syst. Control Eng.
229(2), 184–190 (2015)

17. Chen, K.: Matrix Preconditioning Techniques and Applications. Cambridge University Press, Cam-
bridge (2005)

18. O’Leary, D.: Yet another polynomial preconditioner for the conjugate gradient algorithm. Linear Alge-
bra Appl. 154–156, 377–388 (1991)

19. Brezinski, C.: Variations on Richardson’s method and acceleration. In: Numerical Analysis, A Numer-
ical Analysis Conference in Honour of Jean Meinguet, Bull. Soc. Math. Belgium, pp. 33–44 (1996)

20. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1985)
21. Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations. Springer Verlag, Heidelberg

(1994)

123

Unified frameworks for high order Newton-Schulz and Richardson... 623

22. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182, 418–
477 (2002)

23. O’Leary, D., White, R.: Multi-splittings of matrices and parallel solution of linear systems. SIAM J.
Algebraic Discrete Methods 6(4), 630–640 (1985)

24. Hadjidimos, A.A., Yeyios, A.: On multisplitting methods and m-step preconditioners for parallel and
vector machines. In: Computer Science Technical Reports, Purdue University, Purdue e-Pubs, Report
Number 92-060, Paper 981 (1992)

25. Ferronato, M.: Preconditioning for sparse linear systems at the dawn of the 21st century: history,
current developments, and future perspectives. Int. Sch. Res. Netw. ISRN Appl. Math. 2012, Article
ID 127647, 49 pages. https://doi.org/10.5402/2012/127647

26. Pan, V., Soleymani, F., Zhao, L.: Highly efficient computation of generalized inverse of a matrix.
arXiv:1604.07893v1 [math.RA] (2016)

27. Li, W., Li, Z.: A family of iterative methods for computing the approximate inverse of a square matrix
and inner inverse of a non-square matrix. Appl. Math. Comput. 215(9), 3433–3442 (2010)

28. Chen, H., Wang, Y.: A family of higher-order convergent iterative methods for computing the Moore–
Penrose inverse. Appl. Math. Comput. 218, 4012–4016 (2011)

29. Climent, J., Thome, N., Wei, Y.: A geometrical approach on generalized inverses by Neumann-type
series. Linear Algebra Appl. 332–334, 533–540 (2001)

30. Schulz, G.: Iterative Berechnung Der Reziproken Matrix. Z. Angew. Math. Mech. 13, 57–59 (1933)
31. Demidovich, B.,Maron, I.: Basics ofNumericalMathematics. Fizmatgiz,Moscow (1963). (in Russian)
32. Peng, R., Spielman, D.: An efficient parallel solver for SDD linear systems, arXiv:1311.3286v1

[cs.NA], (2013)
33. Janiszowski, K.: Inversion of square matrices in processors with limited calculation abillities. Int. J.

Appl. Math. Comput. Sci. AMSC 13(2), 199–204 (2003)
34. Esmaeili, H., Erfanifar, R., Rashidi, M.: A fourth-order iterative inverse for computing the Moore–

Penrose inverse. J. Hyperstructures 1(6), 52–67 (2017)

35. Srivastava, S., Gupta, D.: A higher order iterative method for A(2)
T ,S . J. Appl. Math. Comput. 46(1/2),

147–168 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.5402/2012/127647
http://arxiv.org/abs/1604.07893v1
http://arxiv.org/abs/1311.3286v1

	Unified frameworks for high order Newton-Schulz and Richardson iterations: a computationally efficient toolkit for convergence rate improvement
	Abstract
	1 Introduction
	2 Previous work, unification and problem statement
	2.1 Unified framework for performance improvement of Richardson iteration
	2.2 Existing matrix inversion and parameter estimation algorithms
	2.2.1 Splitting and preconditioning
	2.2.2 High order Newton-Schulz matrix inversion algorithm
	2.2.3 Computationally efficient matrix inversion algorithm

	3 Matrix inversion algorithms with improved convergence rate
	3.1 General power series expansion
	3.2 Unified matrix inversion algorithms
	3.3 Fast matrix inversion algorithm

	4 Recursive realization of the algorithm (29)
	4.1 Recursive calculations for part I
	4.2 Recursive calculations for part II
	4.3 Recursive realization of the matrix inversion algorithm (29)

	5 Combined Richardson iteration and matrix inversion algorithms
	6 Performance of the algorithms and comparisons
	6.1 Comparison of matrix inversion algorithms (10) and (15)
	6.2 Comparison of matrix inversion algorithms (10) and (29)
	6.3 Comparison of Richardson algorithms (3) with Gk (10) and (29) as functions of four orders
	6.4 Integration property of Richardson iteration and convergence rate improvement

	7 Conclusion
	References

