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Macroscopic interpretation of nano-scale scattering data in clay

G. BIRMPILIS*, R. AHMADI-NAGHADEH"* and J. DIJKSTRA*

The potential of X-ray scattering measurements for monitoring changes on the nano-scale in fine-
grained materials in their natural wet state is demonstrated with a series of feasibility tests on well-
controlled kaolin samples — that is, water content, pH and loading history. The results indicate that
subtle changes on the nanometric scale, especially the particle orientations, can be measured with
high fidelity using a standard laboratory small- and wide-angle X-ray scattering instrument. This opens
up possibilities for future in situ loading tests with simultaneous monitoring of the evolving changes of

the fabric in fine-grained soils.
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NOTATION .
d characteristic spacing of scatterers (A)
e void ratio

G, specific density 4
¢ scattering vector (A )

wy  liquid limit (%)

wp  plastic limit (%)

scattering angle (°) R

wavelength of radiation (A)

vertical effective stress (kPa)

INTRODUCTION

The particle size in natural soils may span many orders of
magnitude and the particles are of different physico-chemical
origin. In contrast to the other fractions, the emerging
material response at the continuum scale of the clay fraction
(<2 um) is not solely frictional (Santamarina, 2003). The
large- aspect ratio and crystal structure of the clay platelets
give rise to surface charges. A mixture of these nano-sized
particles forms colloid structures. The intra-particle structure
is that of a crystal, a product of weathering, while the inter-
particle structure is controlled by the dielectric environment of
the pore fluid forming a poly-disperse system of agglomerated
clay platelets (e.g. Mitchell & Soga, 2005).

Most experimental techniques for studying the nano-
scopic and microscopic scales in fine-grained soils are based
on, among others, scanning electron microscopy (SEM),
mercury intrusion porosimetry (MIP) and X-ray diffraction
(XRD). The characterisation of clay crystal structures using
X-rays dates back to Grim (1953). Brindley & Kurtossy
(1962); Quigley & Thompson (1966) and Martin & Ladd
(1975) utilised XRD for the quantitative study of fabric and
orientation of kaolinite minerals and sensitive clays. Ifigo
et al. (2000) used an X-ray diffractometer to study the
orientation of clay pastes in different water contents. XRD
has been complemented with MIP and SEM to study fabric
at inter-particle length scales (Diamond, 1970; Gillot, 1970;
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Pusch, 1970; Bohor & Hughes, 1971). Delage & Lefebvre
(1984) and Delage (2010) used these techniques to study
sensitive clays over a wide range of evolving pore diameters.
In addition, Hattab & Fleureau (2010) and Hattab et al.
(2013) processed the SEM data to extract fabric orientations.
MIP has been used to record the changes of clay structure
due to compaction (Tarantino & De Col, 2008), as well as
in different chemical environments (Pedrotti & Tarantino,
2017).

Most of the above techniques are invasive and hence
incompatible with the continuous monitoring of processes in
a sample. Additionally, the preparation techniques influence
the resulting structure (Gillot, 1970). Microscopy usually
requires intense dehydration (e.g. air drying, critical point
drying, freeze-drying or carbowax impregnation) to exploit
the high resolutions of SEM. Environmental scanning
electron microscopy is better suited for saturated samples,
although Houghton & Donald (2008) showed that diffi-
culties with contrast remain. Contemporary state-of-the-art
cryo-preparation techniques demonstrate that the prep-
aration method not only affects the volumetric strain, but
also the type of resulting fabric (cardhouse/honeycomb)
(Deirieh, 2016; Deirieh et al., 2018).

Non-invasive techniques are required to extend the observ-
ation capabilities to the nano- and micro-structures of clays.
X-ray scattering is a family of non-invasive techniques,
which can provide this valuable information from the nano-
metre to the micrometre scale. Small-angle X-ray scattering
(SAXS) has already been used for the study of particle
orientation in polymers (Pujari et al., 2011), the study of clay
suspensions (Hanley et al., 1994, Morvan et al., 1994
Pignon et al., 1997; Zhang et al., 2003; Jung et al., 2011),
pastes (Ben Rhaiem et al., 1987) and shale rocks (Lee et al.,
2014; Leu et al., 2016). Smaller features of the mineralogy
and sub-particle behaviour of clays can be accessed by
wide-angle X-ray scattering (WAXS) measurements. XRD
and WAXS are most suited to capture changes at the basal
level — for example, particularly for swelling soils these have
proved to be advantageous (Villar et al., 2012).

In this paper, the capabilities of X-ray scattering in the
resolution of the structural characteristics of clay in its
unaltered wet state are investigated. As opposed to previous
SAXS studies on clay—water systems, we additionally study
samples with a fabric resulting from a predefined stress
history. This is achieved by combining best practices in
geotechnical sample preparation with advanced material
characterisation using SAXS/WAXS. Two different testing
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programmes on specimens with different preparation
methods were performed to investigate the effect of the
density (void ratio) and the pore fluid chemistry on the
resulting nanometric structure.

THEORY

X-ray scattering principles

SAXS and WAXS are methods based on coherent scattering
of X-rays due to heterogeneities in the electron density of the
matter. Figure 1 represents the principles of the measure-
ment method, which can be described by Bragg’s law

nA =2dsin6 (1)

where 1 is the wavelength (m) of the radiation source and d is
the characteristic length of scatterers (structural units) in the
material. In the case of scattering instead of the angle of
diffraction 26, the scattering vector ¢ is used to extract
information

4z

q= 75in6’ (2)
2
1= 3)

In principle, scattering measurements are able to capture
inter- and intra-particle distances in systems of clay particles.
The measured signal corresponds to a volume-averaged
response of all scatterers. In most cases the spot size is on the
order of 0-2%0-2 mm?, while the sample thickness ranges
between 1 and 2 mm. Insight into the anisotropy of the
structure is gained by using a two-dimensional (2D) detector,
which captures the scattering vector as a function of the
azimuth. The size and resolution of the 2D detector and the
sample—detector distance dictate the scattering angle, hence
the range of g¢-values that can be measured (see Fig. 1).
Large g-values in the WAXS configuration correspond to the
crystal spacing of the clay minerals and small g-values in the
SAXS configurations provide measurements for the pore-
size distribution.

SAXS/WAXS interpretation

In the g—intensity plot a change of the peak width, or a shift
of the peak altogether, indicates a change in the material that
can be associated with mechanical strain. Orientation data
are obtained from the 2D azimuth data — that is, plotting a
single g-value as a function of the azimuth. The latter will
highlight preferred orientations of the structural elements,
and in time-resolved tests, the change in orientation. The
measurement of pore-level strain is hampered by the
minimal g¢-values (largest ) that can be captured with a

WAXS SAXS
o ‘ [qsaxs
Sample - — ]qwaxs — (i
_— 1. -
X-ray 99— Azimuth

beam

Fig. 1. Schematic representation of the WAXS and SAXS
configurations. When the detector is positioned at a large
distance from the sample, there are sufficient number of pixels
on the detector to capture small-angle scattered photons that
correspond to small g-values and large characteristic lengths d
in the sample

typical SAXS instrument, which for the instrument used is
250 nm.

Finally, pre-set configurations and interaction regimes
have been identified for the interpretation of scattering
data — for example, Guinier, Porod and Kratky plots (Glatter
& Kratky, 1982). These interpretation techniques, however,
are less suitable for materials with a large concentration of
polydisperse and multi-component mixtures that are highly
disordered (Glatter & Kratky, 1982), such as most con-
solidated geo-materials.

EXPERIMENTAL METHODOLOGY

Instrument

The experiments were performed at the Chalmers Material
Analysis Laboratory with a SAXSLAB Mat:Nordic instru-
ment. This instrument covers a g-range from 0-0025
up to 2-8 A=, for combined SAXS/WAXS measurements,
which translates into a d-value range of 2:24-2512 A. The
dual SAXS—WAXS configuration is shown in Fig. 1. The
hutch is under vacuum during the measurements, to reduce
attenuation in the signal resulting from the X-ray scattering
of air molecules.

Materials

Pure (> 96% w/w) kaolinite powder (Acros Organics
211740025, CAS number: 1332-58-7), with particle sizes of
1-0-1-8 um is investigated. The specific gravity is Gy =2-61
and the plastic w, and liquid limits w; are 24-5 and 52-5%,
respectively. This leads to a plasticity index of 28%, which
classifies as a CH (high plasticity) clay.

Sample preparation

The kaolinite was probed for a total of seven different states.
At this stage of investigation, due to the limited in situ testing
capabilities of the SAXS instrument, the preparation of a
series of independent samples is required. In the first series,
the effect of pore fluid chemistry (pH=4, 7 and 9) on the
agglomeration was probed for kaolinite suspensions. The
three different pH environments were selected to examine
the resulting structure of the clay fabric in suspension, as well
as after consolidation. Values of pH below the isoelectric
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Fig. 2. 1D consolidation curve of kaolin slurry at pH 7
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Fig. 3. 2D scattering observations for kaolin suspensions at three different pH levels: 4, 7 and 9

point (IEP) or the point of zero charge favour the
edge-to-face (EF) flocculated structure. In addition, higher
pH values result in a dispersed and deflocculated structure
(Van Olphen, 1977; Wang & Siu, 2006).

The acidic solution was prepared by adding hydrochloric
acid to distilled water, whereas for the alkaline solution,
potassium hydroxide was added.

In the second series, the effect of the density of particles
was studied at pH =7. In this series, the density was grad-
ually increased starting from a slurry (1-5w;), and sub-
sequently consolidated to three different target stress levels.
One part of the slurry was sampled directly for subsequent
X-ray scattering measurements. The slurry was consolidated
after resting for 24 h, under one-dimensional (1D) incre-
mental loading oedometric conditions with two-sided drain-
age at constant temperature (7°C). Three different stress
levels were prepared — that is, oy =60, 260 and 500 kPa of
which the compressibility (e-log oy) curve is plotted in
Fig. 2.

Optically transparent and X-ray translucent borosilicate
thin-walled capillaries were used to contain the suspensions,
slurry and consolidated samples (wall thickness 0-16 mm
and a cross-section of 14 mm X 6:5 mm) during the
scattering experiments. The suspensions were sedimented
according to the chemical environment of the solution
before injection into the capillaries. The slurry was sampled
in the tube by gentle suction. For the consolidated samples,
smaller sub-samples were sampled by penetrating the thin-
walled capillaries at a constant penetration rate (0-01 mm/s)
into the consolidated sample (Birmpilis ez al. 2017). In
all cases after sampling, the capillaries were sealed at
both ends with silicon glue to prevent evaporation and
to sustain the sample under vacuum conditions. To prevent
the dehydration of the clay from silicon glue, an inter-
mediate layer was applied between the clay surface and the
silicon glue. The intermediate layer consisted of chemically
inert mouldable paste (Sugru mouldable glue from
FormFormForm Ltd.).

RESULTS

The scattering patterns of an empty capillary are subtracted
from the readings, as well as the intensity levels are nor-
malised with a zero reading of the intensities. A 2D intensity
map presents the scattering pattern as observed on the
detector. The dark lines are specific to the detector, while
the dark spot at the centre of the beam refers to the beam
stop, which blocks the X-rays that passes right through.
The data are cropped to include the kaolinite mineral at
¢=09 A and another mineral (most likely illite). The
information on high intensity near the centre of this 2D
image (at small g-values) refers to the largest length scale,
and the most reliable indicator of the number of scatterers

Fig. 4. 2D scattering observations for kaolin slurry consolidated
to different stress levels at pH 7

(material density). An isotropic material with randomly
oriented clay particles produces a ring at a distance from
the centre of the beam on the detector corresponding to the
length of the scale producing it. In contrast, an anisotropic
structure will cluster the scatterers in a certain direction — for
example, horizontally oriented clay platelets will produce a
scattering on the vertical axis. In the second data presen-
tation method, the 2D information collapsed into a 1D plot
by averaging the intensity as a function of ¢ over the azimuth
or plotting the intensity as a function of the azimuth for a
single (or average) ¢.

Effect of pH

The 2D X-ray scattering results for the suspensions with
different pH values are shown in Fig. 3. All intensities are
isotropically distributed in rings with a slight preference for
horizontal orientation when the pH in the suspension
increases towards pH 9. Furthermore, the scattering inten-
sities at small g-values increase with increasing pH — that is,
the number of scatterers (thereby the concentration) is higher
with increasing pH. This corroborates the expected EF
structures that lead to a more open micro-structure with a
lower number of scatterers per volume, in suspensions with a
pH below the IEP.

Downloaded by [ CHALMERS TEKNISKA HOGSKOLA AB] on [02/03/22]. Published with permission by the ICE under the CC-BY license



358 Birmpilis, Ahmadi-Naghadeh and Dijkstra

Effect of stress level

A systematic study of the effect of consolidation on the
emerging X-ray scattering patterns is presented in Fig. 4.
Four plots are shown: one for the slurry at 0 kPa and three
additional measurements of the independent samples
extracted after consolidation at, respectively, oy =60, 260
and 500 kPa. Similar to the suspensions, the slurry shows
an isotropic scattering pattern with low intensity. The
structure evolves from isotropic to anisotropic after com-
pletion of the first loading step. The inconsequential
differences in the orientation between the loading steps
stem from the different samples. Finally, the smaller void
ratio from consolidation is also seen in the larger number of
scatterers, especially at low g-values near the centre of the
image.
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Fig. 5. Distribution of the scattering orientation through the
azimuth for suspensions with pH=7, 9 and 4

Summary of results

Figures 5 and 6 show the normalised scattering intensities as
functions of azimuth at ¢=7 A for, respectively, the
suspensions and the loading tests. The orientation of the
mineral is shown at the top of the figure.

The results indicate that the pH of the suspensions does
not have much of an effect on the orientation of the kaolinite
mineral. All minerals are dispersed with a slight preference
for the horizontal orientation. This is corroborated for
the slurry at pH=7. A loading history, however, forces
an anisotropic structure where the minerals are primarily
horizontally aligned, which is already observed at a relatively
low consolidation stress of oy =60 kPa, and logically does
not change for higher stress levels.

Finally, Figs 7 and 8 show the absolute scattering intensities
as functions of the scattering vector ¢ for both the suspensions
and the consolidated samples. The suspensions demonstrate
remarkable data consistency, where only the suspension
at pH=4 has a sligh{ly lower concentration for larger
length scales ¢<0-4 A ', which is expected from the lower
concentration associated with EF orientgtions. The kaolinite
(g=0-898 A ) and illite (4=0:628 A ) peaks are clearly
visible. For the scattering data on the consolidated samples
(Fig. 8) new peaks appear between the kaolinite peak and
the smallest spacings, which are most probably related to
attractive particle interactions that become stronger at smaller
void ratios. The increase in intensity as a function of the
increased stress level is a more general trend observed in Fig. 8
across the g-value range measured.

CONCLUSIONS

X-ray scattering can be used for monitoring subtle changes
on the nano-scale in fine-grained materials in their natural
wet state. The WAXS measurements of particle orientation
in the suspensions are not affected by the pH of the
electrolyte; this finding is in contrast to prior conceptual
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Fig. 6. Distribution of the scattering orientation through the azimuth for kaolin slurry and the subsequent consolidated samples at

vertical effective stress levels of 60, 260 and 500 kPa
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Fig. 7. 1D curves for the scattering vector g of kaolin suspen-
sions in solutions of pH=7, 9 and 4
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Fig. 8. 1D curves for the scattering vector q for the kaolin slurry
and the subsequent consolidated samples at vertical effective
stress levels of 60, 260 and 500 kPa

models that suggest face-to-edge assemblies. The results
show that the nano-scale orientations of the clay minerals
observed in kaolin suspensions and slurries evolve into an
anisotropic system with mainly horizontally aligned par-
ticles after 1D oedometric consolidation at already low
magnitudes of effective stress (60 kPa). Finally, the bulk
density changes can be tracked; however, strains are
predominantly on a scale beyond what is accessible for a
laboratory WAXS/SAXS instrument.
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