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Abstract: The reduction of anthropogenic greenhouse gas emissions is crucial to avoid further
warming of the planet. We investigated how effluent gases from a biogas powered Euro VI heavy-duty
engine impact the performance of a bimetallic (palladium and platinum) oxidation catalyst. Using
synthetic gas mixtures, the oxidation of NO, CO, and CH4 before and after exposure to biogas exhaust
for 900 h was studied. The catalyst lost most of its activity for methane oxidation, and the activity
loss was most severe for the inlet part of the aged catalyst. Here, a clear sintering of Pt and Pd
was observed, and higher concentrations of catalyst poisons such as sulfur and phosphorus were
detected. The sintering and poisoning resulted in less available active sites and hence lower activity
for methane oxidation.

Keywords: oxidation catalyst; emission control; catalyst deactivation; engine bench; biogas; methane

1. Introduction

To mitigate the negative impacts of emissions on health and the environment from the
transportation sector, emission legislation is applied around the world. The legislation regulates
the emission levels of nitrogen oxides (NOx), particulate matter (PM), carbon monoxide (CO), and
hydrocarbons (HC). Regulations restricting the emissions of CO2 will be more common and are already
in place in some parts of the world [1]. The emissions from a vehicle must not exceed certain levels
over the lifetime of the vehicle or a certain distance of use, which for heavy-duty vehicles in Europe
presently is seven years or 700,000 km, respectively [2]. There are several approaches toward the
reduction of CO2 emissions from vehicles. One of these approaches is to increase the efficiency of
the engine to reduce the amount of fuel that is used. However, a more efficient engine could lead
to a reduction in exhaust temperature. This will put more pressure on the development of catalytic
materials that have higher efficiency at lower temperatures, to be able to comply with regulations [3].
Another approach to reduce the emissions of fossil CO2 to the atmosphere is to increase the use
of biofuels such as biogas. One possible disadvantage of using biofuels could be the presence of
impurities in the fuel, which will impact the durability of the aftertreatment catalysts of the vehicle.
The presence of impurities in biogas is dependent on the feedstock, as this type of fuel can be produced
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from several different feedstocks, causing different compositions of impurities in the final fuel. Some
of the most potent catalyst poisons that could be present in the fuel and/or lubrication oil are sulfur,
phosphorus, and siloxanes [4].

Bi-metallic Pd/Pt catalysts are today commonly used for oxidation of CO, HC, and NO in the
aftertreatment system in vehicles [5,6]. The role of palladium in these catalysts is to be active for
oxidation of methane; however, palladium based catalysts are sensitive to the presence of water
vapor and tend to lose activity over time due to hydrothermal sintering [7–10]. As water is always
present in the combustion exhaust, palladium based catalysts are often modified by the addition
of platinum, which stabilizes the active metal particles and makes them less prone to sintering [11].
Besides sintering [12], oxidation catalysts may deactivate by other mechanisms [13–15], one of the most
studied of which is SO2 poisoning [16–19]. The bi-metallic catalysts can be deactivated by poisoning
and sintering of precious metal particles similar to mono-metallic catalysts. However, the bi-metallic
catalysts may in addition suffer from segregation of the metals as shown by Gremminger et al. The
Pd/Pt bi-metallic catalyst is dynamic and presents surface species that are dependent on the reaction
condition [20], and when exposed to water, these Pd/Pt species could segregate [21]. This segregation
of platinum and palladium into mono-metallic particles impacts the stability and activity of the catalyst.
Many studies are focused on a single poison at the lab scale [12,16–18,21,22], while others compare the
impact of lab aging and vehicle aging [22–24].

In the present study, the impact of biogas exhaust on the oxidation catalyst performance is
investigated. The exhaust exposure is conducted for 900 h in an engine bench setup with a full Euro VI
emission control system. In that way, an understanding of how the use of biogas impacts the oxidation
catalyst in a real-life exhaust environment can be achieved.

2. Results and Discussion

The catalyst samples used are named according to Table 1.

Table 1. Description of the catalyst samples.

Sample Name Description

DOCref Fresh sample of the oxidation catalyst
DOC in Inlet sample of the engine bench aged oxidation catalyst
DOC out Outlet sample of the engine bench aged oxidation catalyst

Figure 1a–c shows the conversion of CH4, NO, and CO versus temperature using a feed consisting
of the mentioned gases, water, oxygen, and argon as balance. Results are shown for the fresh
Pd/Pt oxidation catalyst (DOC ref) and for an inlet (DOC in) and an outlet (DOC out) sample of
the catalyst after 900 h aging with biogas exhaust in the engine bench. The performance of the samples
was measured during heating and cooling ramps between 100 and 450 ˝C at a rate of 5 ˝C/min.
The conversion performance of the catalysts to oxidize each of these compounds was also measured
separately. The results for these experiments are shown in Figure 1d–f. From the results of the heating
ramp experiments presented in Figure 1a,d, it is clear that the exposure to biogas exhaust results
in a considerable decrease in the catalyst’s ability to oxidize CH4, in particular for the inlet part of
the engine aged catalyst. It can also be observed that the complex gas mixture results in a higher
conversion of CH4 than what is obtained without CO and NO in the feed, as shown in Figure 1d and
Table 2. The presence of NO during methane oxidation has been shown to be beneficial in studies by
Sadokhina et al. [25]. These authors suggested that the improved activity originates from the reaction
between NO and hydroxyl groups on the surface of the active phase, leaving more active sites available
for methane oxidation.
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Figure 1. Conversion during heating of (a,d) CH4, (b,e), NO and (c,f) CO over the fresh oxidation
catalyst (DOC ref) and the inlet (DOC in) and outlet (DOC out) of the engine bench aged oxidation
catalyst. Top row (a–c), in a feed consisting of 1000 ppm CH4, 1000 ppm NO, 1000 ppm CO, 8% H2O,
5% O2, and argon as balance. Bottom row (d–f), in a feed consisting of 1000 ppm CH4 or 1000 ppm NO
or 1000 ppm CO with 8% H2O, 5% O2, and argon as balance.

Table 2. Conversion of methane at 450 ˝C for 50% conversion of CO (T50) in a feed with and without
NO and CO over the fresh oxidation catalyst (DOC ref) and the inlet (DOC in) and outlet (DOC out) of
the engine bench aged oxidation catalyst.

Sample
Conversion of CH4 Conversion of CH4 T50 for CO T50 for CO
in the Presence of in Absence of in the Presence of in the Absence of
NO and CO (%) NO and CO (%) NO and CO (˝C) NO and CO (˝C)

DOC ref 87 72 166 108
DOC in 15 8 192 159
DOC out 26 15 199 161

Downstream of the oxidation catalyst and the particulate filter in the emission control system
is the selective catalytic reduction (SCR) catalyst, which reduces NOx into nitrogen and water.
The NOx reduction can take place by several different routes depending on the NO/NOx ratio [26].
The route that is desired is the fast-SCR reaction, which is followed when the NO/NOx ratio is
around 0.5. In Figure 1b,e, the conversion of NO to NO2 over the oxidation catalyst is shown. At
lower temperatures, the samples exposed to biogas exhaust show lower activity for oxidation of NO,
when compared to the reference sample, in both gas mixtures, and the outlet part of the engine aged
oxidation catalyst appears to have lost slightly more of its activity. However, at temperatures above
300 ˝C, the inlet sample of the aged oxidation catalyst shows a higher or similar conversion of NO in
both gas compositions. It has been shown by Mulla et al. [27] that larger Pt particles are more active
for oxidation of NO compared to smaller ones, and as seen from the TEM images in Figure 2, the noble
metal particle size has increased after exposure of the oxidation catalyst to biogas exhaust, in particular
for the inlet sample, due to sintering. Furthermore, a separation of the conversion maximum of NO
into two peaks is visible for the samples exposed to biogas. This double peak could be caused by
the segregation of Pd/Pt into mono-metallic sites. Platinum is more active for NO oxidation when
compared to palladium, and as mentioned, large Pt particles are especially active for NO oxidation [28].
Hence, the double peak appears only for the engine bench aged samples where large mono-metallic Pt
particles likely have formed and not for the fresh sample of the oxidation catalyst.

After exposure to biogas exhausts, the temperature where 50% conversion (T50) of CO is reached
is shifted 25 ˝C towards higher temperatures in the complex gas feed and 50 ˝C in the feed with only
CO besides oxygen, water, and argon, see Table 2. For CO, the decrease in activity of the oxidation
catalyst after exposure to biogas exhaust is evident from Figure 1c,f; however, the decrease in activity is
not as severe as for CH4. The impact of the other components in the complex feed on the conversion of
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CO is clear when comparing Figure 1c and Figure 1f. In the presence of NO and methane, the activity
for CO oxidation is significantly lower for both the fresh and the engine aged catalysts compared to
the corresponding feed without CH4 and NO (see Table 2).

The content of sulfur (S), phosphorus (P), and calcium (Ca) in the fresh and aged oxidation
catalysts is shown in Table 3. The table also shows the composition of the catalyst in terms of Pt and
Pd content; note that the reference sample has a slightly lower content of noble metals. This could
be due to the fact that the fresh and engine aged samples come from different batches. The catalyst
cores used in the engine bench setup are cut from longer cores produced by the catalyst manufacturer.
There is a gradient in coating over the length of the catalyst, which could cause a difference in catalyst
loading between the samples. It can be seen that S, P, and Ca are found in higher concentrations on the
inlet sample of the engine bench aged oxidation catalyst compared to the corresponding outlet sample.
It is also seen that the concentrations of S and P are substantially higher than the concentration of Ca.
This is expected since the former two compounds are present in higher concentrations in both the fuel
and the lubrication oil [29], while Ca is a component only present in the lubrication oil [23].

50 nm 50 nm 50 nm
a) b) c)

20 nm20 nm20 nm d) e) f)

DOC ref

DOC ref

DOC in

DOC in

DOC out

DOC out

Figure 2. TEM images of (a,d) the fresh oxidation catalyst (DOC ref) and (b,e) the inlet (DOC in) and
(c,f) outlet (DOC out) of the engine bench aged oxidation catalyst, at two magnifications, (a–c) and
(d–f), respectively.

Table 3. Content of Pd, Pt, S, P, and Ca in the fresh oxidation catalyst (DOC ref) and in the inlet (DOC
in) and outlet (DOC out) of the engine bench aged oxidation catalyst as obtained by XRF analysis.

Sample Pd (wt.%) Pt (wt.%) S (wt.%) P (wt.%) Ca (ppm)

DOC ref 0.49 ˘ 0.05 0.20 ˘ 0.05 0.00 ˘ 0.04 0.00 ˘ 0.04 280 ˘ 70
DOC in 0.64 ˘ 0.05 0.24 ˘ 0.05 0.27 ˘ 0.04 0.18 ˘ 0.04 470 ˘ 70
DOC out 0.69 ˘ 0.05 0.27 ˘ 0.05 0.25 ˘ 0.04 0.04 ˘ 0.04 320 ˘ 70

In the TEM images, the Pt/Pd, Pt, and Pd particles are shown as bright dots, as can be seen in
Figure 2. It is clear that the particle size has increased for the samples exposed to biogas exhaust
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(Figure 2b,c,e,f). The average noble metal particle size was calculated on the basis of 100 particles,
and the result is summarized in Table 4, where the particle size distribution is also included. The size
of the active metal particles in the oxidation catalyst increased after exposure to biogas exhaust in
the engine bench, likely due to thermal effects [23]. On the other hand, the temperature measured
in the oxidation catalyst during aging did not exceed 550 ˝C, which means that sintering should not
be severe. However, the presence of sulfur and phosphorus in the engine exhaust has been shown
to promote sintering of Pt into larger particles [30,31]. The combination of long term exposure in an
oxidizing environment at temperatures up to 550 ˝C, in combination with the presence of sulfur and
phosphorus in the exhaust, is probably the cause of the observed sintering of Pt.

From the X-ray diffractograms shown in Figure 3, it is evident that the peak around 40 degrees
(2Θ) is shifted towards higher angles for the aged samples, in particular for the inlet sample of the
engine bench aged oxidation catalyst. This indicates that the bimetallic catalyst has more mono-metallic
sites, and in combination with the increased intensity of that peak, it is clear that there are larger
mono-metallic particles present after aging of the catalyst [32–35]. The increased intensity is also seen
for the Pd peak around 46.5 degrees, which is in agreement with the TEM analysis and activity tests,
also showing that the particle size is increased and that more mono-metallic particles are present after
exposure to biogas exhaust.

DOC out

DOC in

DOC ref

35 47 494537 434139 51 53
2   [ ]
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Figure 3. X-ray diffractograms for the fresh oxidation catalyst (DOC ref) and for the inlet (DOC in)
and outlet (DOC out) of the engine bench aged oxidation catalyst. The diffraction patterns have been
shifted in intensity for clarification, and full patterns between 30 and 90 degrees (2Θ) can be found in
the Supporting Information. Diffraction peaks indicated by * show Pd.

The poisoning by S and P indicated by the presence of these elements (see Table 3) and the
increased Pd/Pt particle size (Figure 2) will cause blocking and loss of active sites, respectively.
The blocking and loss of active sites can clearly be seen from the CO chemisorption measurements
presented in Table 4. The amount of CO that is chemisorbed on equimolar amounts of noble metal
strongly decreases for the samples that have been exposed to biogas exhaust for 900 h in the engine
bench compared to the reference sample of the oxidation catalyst.
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Table 4. Average Pd/Pt metal particle size, particle size distribution, and CO uptake for the fresh
oxidation catalyst (DOC ref) and for the inlet (DOC in) and outlet (DOC out) of the engine bench aged
oxidation catalyst as obtained by TEM and CO chemisorption.

Sample Average Noble Metal Particle Size CO Uptake
Particle Size (nm) Distribution (nm) (mol/mol Pd/Pt)

DOC ref 4.0 2–9 0.063
DOC in 9.5 5–17 0.001
DOC out 8.0 2–19 0.003

Table 3 indicates that sulfur is uniformly distributed over the length of the engine bench aged
oxidation catalyst, while phosphorus is found in higher concentrations in the inlet of the catalyst,
in agreement with previous studies [13,36,37]. This could also be seen from the SEM-EDX analysis
(Figure 4) where phosphorus is mapped in yellow. The concentration of P is clearly higher on the
surface of the washcoat for the inlet sample of the engine bench aged oxidation catalyst, while S is
more evenly distributed over the washcoat, as well as the length of the catalyst [38]. The increased
concentration of P on the inlet sample of the engine bench aged oxidation catalyst, when compared to
the corresponding outlet sample, results in fewer available active sites. This, together with the loss
of active sites due to Pd/Pt sintering, could explain the measured difference in activity for methane
oxidation for the fresh and aged samples; see Figure 1a,d.

DOC 
ref

DOC 
in

DOC 
out

PdPtSPCa

100 µm 
250 µm 
100 µm 

Figure 4. SEM images and EDX maps of Ca, P, S, Pt, and Pd for the fresh oxidation catalyst (DOC ref)
and for the inlet (DOC in) and outlet (DOC out) of the engine bench aged oxidation catalyst.

From the XPS analysis, it is clear that several elements are present on the surface of the
samples. The survey spectra with assigned peaks for Pd, Pt, Al, Si, C, and O are included in the
Supporting Information (see Figures A1 and A2) for clarification. From the XPS spectra shown in
Figure 5 (left column), we found that phosphorus is present in the inlet sample of the engine bench aged
oxidation catalyst in two different forms, as phosphate (135 eV) and oxidized phosphorus (likely at
138 eV) [39]. P4O10, also known as phosphate glass, covers the surface of the sample in a non-selective
way, while the phosphates could form bonds with the alumina support [40,41]. For the outlet sample



Catalysts 2019, 9, 1014 7 of 14

of the engine bench aged oxidation catalyst, mainly phosphate is found, and this is most likely due to
P4O10 sticking to the first surface it comes in contact with, which is the inlet of the oxidation catalyst.
From the XPS analysis, we can also see that sulfur is present in the form of sulfate on both engine
bench aged samples. Sulfates primarily form PdSO4 at ambient pressure, and no or minor formation
of PtSO4 is expected [42,43]. In agreement with the XRF analysis, neither sulfur nor phosphorus is
found on the reference sample
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Figure 5. Phosphorus and sulfur 2p core level spectra of the fresh oxidation catalyst (DOC ref) and of
the inlet (DOC in) and outlet (DOC out) of the engine bench aged oxidation catalyst.
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3. Materials and Methods

The aging of the catalysts was performed in an engine bench consisting of a Volvo G13C 460 hp
engine and a Euro VI emission control system, and the setup is schematically shown in Figure 6.
The engine was a dual-fuel type engine, which was powered with 90% biogas and 10% diesel for 900 h,
during which the gas flow was altered to simulate mixed driving. The temperature in the engine bench
was kept between 170 and 550 ˝C throughout the duration of the aging. After exposure to biogas
exhausts for 900 h, the emission control system was dismantled, and the parts were characterized and
tested separately.

Figure 6. Emission control system setup with the oxidation catalyst (DOC), particulate filter (DPF),
selective catalytic reduction (SCR) catalysts (SCR 1-3), and ammonia slip catalyst (ASC).

3.1. Catalyst Material

The oxidation catalyst used in this study was a Pd/Pt based catalyst supported on alumina
(Al2O3) and washcoated onto a cordierite substrate. The catalyst samples were provided by a catalyst
manufacturer, and no further specification of the sample preparation procedure is available. Full size
bricks were used in the engine bench while sample cores with a diameter 11 mm and a length 19 mm
were drilled out and tested in the synthetic gas bench reactor. The noble metal loading of the catalyst
was 100 g/ft3, and the Pt:Pd ratio was 1:2 by weight. Samples were taken from the inlet and the outlet
of the oxidation catalyst to observe any axial differences downstream of the catalyst. The engine bench
aged samples of the oxidation catalyst were compared with a fresh sample. The cell density of the
oxidation catalyst was 400 cpsi.

3.2. Activity Testing

The catalyst activity during CO, CH4, and NO oxidation was evaluated in a synthetic gas bench
reactor. The activity of the catalyst (DOC) to oxidize each gaseous compound was evaluated separately,
as well as in a complex mixture. The experimental conditions are shown in Table 5. The synthetic gas
bench reactor, described in detail elsewhere [44], consisted of a horizontal quartz tube heated by a
resistive heating coil. The gas flow was controlled by Hi-Tech Bronkhorst mass flow controllers. The
water was fed by a Bronkhorst CEM system, and the effluent gases were analyzed by an MKS 2030
HS Fourier transform infrared spectrometer (FTIR). Thermocouples were placed in a blank monolith
substrate upstream of the oxidation catalyst for temperature control and in the center of the oxidation
catalyst for temperature monitoring.

3.3. Characterization

3.3.1. SEM-EDX

The radial distribution and position of elements were mapped using a Hitachi SU-500 scanning
electron microscope (SEM, AB Volvo, Gothenburg, Sweden) equipped with an energy-dispersive X-ray
(EDX, AB Volvo, Gothenburg, Sweden) analysis system, Oxford Instruments SDD 80 mm2. Full cores
were cut from the fresh and engine bench aged samples, and 10 mm thick slices were cut from the
cores, then the untreated uncut surface was analyzed.
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Table 5. Experimental protocol for oxidation activity tests. Base feed for all experiments: 8 vol.% O2,
5 vol% H2O, and Ar used as balance. GHSV: 45,000 h´1. The temperature was increased and decreased
linearly by 5 ˝C/min.

Temp (˝C) CO CH4 NO Description(vol. ppm) (vol. ppm) (vol. ppm)

100–450Ö 1000 - - CO oxidation
100–450Ö - 1000 - CH4 oxidation
100–450Ö - - 1000 NO oxidation
100–450Ö 1000 1000 1000 Complex mixture of gases

3.3.2. Elemental Analysis Using XRF

A PANalytical Epsilon 3XL analyzer ( Scania CV, Södertälje, Sweden and Chalmers University of
Technology, Gothenburg, Sweden) was used to perform X-ray fluorescence (XRF) analysis to determine
semi-quantitatively the elemental composition of the fresh and engine bench aged catalyst samples.
For the analysis, around 2 g of each of the samples was needed, and the washcoat and cordierite
substrate were analyzed together. The samples were mixed with a binder using a ball mill (300 rpm,
10 min) and then pressed into flat briquettes (150 kN, 3 min). This method does not quantify the
amount of catalyst poisons in the samples exactly, but for comparison of poison content between
similar samples, the method is satisfying. The measurement was performed tree times to receive an
error margin.

3.3.3. TEM

Transmission electron microscopy (TEM) was performed using an FEI Titan 80–300 instrument
operating at an accelerating voltage of 300 kV (Chalmers University of Technology, Gothenburg,
Sweden). Images were acquired in the scanning TEM (STEM) mode using a high angle annular dark
field (HAADF) detector. The average noble metal particle size and the particle size distribution for
each catalyst sample were determined from these images. A small amount of washcoat was scraped off
from the monolith sample and transferred to a copper grid. Images were recorded at several different
magnifications for each sample.

3.3.4. XRD

XRD (X-ray diffraction) was used to determine if segregation of Pd and Pt occurred during engine
bench aging. The X-ray diffractometer used was a Bruker axs D8 ADVANCE instrument (Chalmers
University of Technology, Gothenburg, Sweden) with a Cu Kα radiation equivalent to 0.15418 nm. The
washcoat was scraped off, and the powder sample was transferred to a sample holder with a silicon
wafer as the base. Diffraction data were collected for 2θ = 30–90˝.

3.3.5. XPS

The presence and chemical state of the elements on the surface of the catalyst samples
were identified by X-ray photoelectron spectroscopy (XPS) using a VersaProbe III Scanning XPS
Microprobe ( Chalmers University of Technology, Gothenburg, Sweden) with an Al anode providing
monochromated Kα radiation (1486.6 eV). For charge compensation, both an ion gun (Ar`) and electron
neutralizer (e´) were used. The sample was prepared by cutting out six channels from the monolith
core and attaching them by using double sided carbon tape. The analyzed area was 500 ˆ 500 µm2,
and the information depth was around 5 nm. The binding energy scale was calibrated to the position
of the Si 2p signal of SiO2 at 103.3 eV [45], because the nature of the varying amount of carbon present
on the different samples could not be determined with certainty, and hence, calibration to the carbon
signal was unreliable. We estimated an accuracy of ˘ 0.5 eV for the binding energy. The spectra were
normalized to the background at the low binding energy end. The P 2p and S 2p spectra in Figure 5
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were deconvoluted using a Voigt profile with a spin-orbit split of ∆ “ 0.85 eV for P 2p and ∆ “ 1.18 eV
for S 2p, respectively [45]. A linear background was subtracted prior to deconvolution.

3.3.6. CO Chemisorption

To quantify the active sites on the catalyst, CO chemisorption was performed using an ASAP2020
instrument from Micromeritics (Chalmers University of Technology, Gothenburg, Sweden). The
samples were prepared by cutting out 3 ˆ 3 channels from each catalyst sample. The sample was then
confined between folded quartz wool and oxidized at 350 ˝C for 1 h followed by evacuation for 15 min
and reduction by hydrogen at 350 ˝C for 1 h. The pretreatment was finalized by evacuation at 350 and
35 ˝C for 10 min each. The CO chemisorption measurement was performed at 35 ˝C by gradually
increasing the CO dosage from 100 to 600 mm Hg.

3.4. Biogas

Biogas refers to gases produced by anaerobic fermentation or digestion of organic matter like
sewage waste [46]. The biogas used for aging in this study follows European standards, which means
that the concentrations of impurities like sulfur are limited. The total sulfur content in biogas, excluding
odorant, should be below 20 mg/m3 [47].

4. Conclusions

The exhaust from a dual-fuel heavy-duty engine powered by biogas and equipped with a Euro
VI emission control system was shown to have a significant impact on the CH4 oxidation activity
of the Pd/Pt bimetallic oxidation catalyst. We could also observe that the activity for CO oxidation
decreased while the activity for NO oxidation increased for the inlet of the oxidation catalyst after 900 h
of exposure to biogas exhausts. The loss of activity for CH4 and CO oxidation was likely caused by loss
of active sites by sintering and poisoning by sulfur and phosphorus. The explanation for the increased
NO oxidation at higher temperatures was that larger Pt particles had higher activity for oxidation of
NO to NO2. Evidence of sintering was seen in the results from TEM and XRD analysis, and indications
of sintering/poisoning could be seen in the decrease in CO uptake during CO chemisorption for
the aged catalyst. The presence of catalyst poisons, i.e., S and P, was confirmed by XRF, XPS, and
SEM-EDX. The distribution of sulfur was uniform throughout the washcoat and the length of the
aged oxidation catalyst, while higher concentrations of phosphorus were seen on the surface of the
washcoat and in the inlet of the catalyst. Sulfur was present in the form of sulfates, which mainly react
with Pd sites. Phosphorus, however, was found in two different states where the P4O10 state was only
found in the inlet of the aged catalyst, while phosphates were present both in the inlet and outlet of
the aged catalyst. Both phosphorus states covered the surface, and the phosphate could also react with
the alumina support. To ensure a good transition from the use of fossil fuels to more bio based fuels,
optimization of the oxidation catalyst is needed, in particular for the oxidation of methane.
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Appendix A.

Appendix A.1. XRD
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Figure A1. Full XRD diffractograms for the fresh (DOC ref) and the inlet of the engine bench aged
(DOC in) and outlet (DOC out) of the engine bench aged oxidation catalyst.

Appendix A.2. XPS
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Figure A2. Cont.
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Figure A2. Full XPS survey spectra for the fresh oxidation catalyst (DOC ref) and the inlet (DOC in)
and outlet (DOC out) of the engine bench aged oxidation catalyst.
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