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Securing appropriate driver responses to conflicts is essential in automation that is not per-
fect (because the driver is needed as a fall-back for system limitations and failures).
However, this is recognized as a major challenge in the human factors literature.
Moreover, in-depth knowledge is lacking regarding mechanisms affecting the driver
response process. The first aim of this study was to investigate how driver conflict response
while using highly reliable (but not perfect) supervised automation differ for drivers that
(a) crash or avoid a conflict object and (b) report high trust or low trust in automation
to avoid the conflict object. The second aim was to understand the influence on the driver
conflict response of two specific factors: a hands-on-wheel requirement (with vs. without),
and the conflict object type (garbage bag vs. stationary vehicle). Seventy-six participants
drove with highly reliable but supervised automation for 30 min on a test track.
Thereafter they needed to avoid a static object that was revealed by a lead-vehicle cut-
out. The driver conflict response was assessed through the response process: timepoints
for driver surprise reaction, hands-on-wheel, driver steering, and driver braking.
Crashers generally responded later in all actions of the response process compared to
non-crashers. In fact, some crashers collided with the conflict object without even putting
their hands on the wheel. Driver conflict response was independent of the hands-on-wheel
requirement. High-trust drivers generally responded later than the low-trust drivers or not
at all, and only high trust drivers crashed. The larger stationary vehicle triggered an earlier
surprise reaction compared to the garbage bag, while hands-on-wheel and steering
response were similar for the two conflict object types. To conclude, crashing is associated
with a delay in all actions of the response process. In addition, driver conflict response does
not change with a hands-on-wheel requirement but changes with trust-level and conflict
object type. Simply holding the hands on the wheel is not sufficient to prevent collisions or
elicit earlier responses. High trust in automation is associated with late response and
crashing, whereas low trust is associated with appropriate driver response. A larger conflict
object trigger earlier surprise reactions.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Safe vehicle automation has great potential to save lives by overcoming human limitations, as 94% of crashes are attrib-
uted to driver-related critical reasons (NHTSA, 2015). On the other hand, introducing automation to a human–machine sys-
tem comes with serious human factors challenges (Bainbridge, 1983; Lee, Wickens, Liu, & Boyle, 2017; Seppelt & Victor,
2016) which may jeopardize safety. Today’s vehicles already offer driver assistance (supervised automation), for which con-
trol is shared between the vehicle and the driver at all times (Seppelt & Victor, 2016). That is, the vehicle assists the engaged
and attentive driver with longitudinal and lateral vehicle control. Driver engagement and attention is needed because of
known system limitations (e.g., sensors that may not detect a pedestrian crossing a highway or an object in lane) that might
occur unexpectedly and that require driver intervention.

How an extended period of supervised automation affects driver response to automation limitation is today not well
understood (McDonald et al., 2019; Mole et al., 2019). Current evidence on how drivers respond in critical situations after
automation mainly stems from studies of unsupervised automation (McDonald et al., 2019; Mole et al., 2019). This type of
automation does not require the driver to be attentive or engaged since the automated driving system (ADS) prompts the
driver response by alerting the driver to take back control (the transition of control is ADS-prompted) through a salient noti-
fication when needed. In contrast, in supervised automation the driver response can either be ADS-unpromptedwhen there is
no notification given by the system, but the driver detects the need to act when system limitations occur (e.g., an unexpected
object in lane which the system does not detect, or a steering torque limitation in a curve), or ADS-prompted (e.g., a disen-
gagement message, or a forward collision warning). System limitations (i.e., a declared limitation of the system, often
described in the car manual) should be differentiated from a silent-failure event where the system is not working as intended.
There is currently a lack of understanding of how drivers respond in ADS-unprompted system limitation events, even if the
literature on driver response to silent-failure events is expanding (Bianchi Piccinini et al., 2019; Larsson, Kircher, &
Hultgren, 2014; Strand, Nilsson, Karlsson, & Nilsson, 2014).

The change of tasks and situation for the driver, as a consequence of reliable supervised and unsupervised automation in
contrast to manual driving, is associated with (a) reduced situation awareness or entering an ‘‘out-of-the-loop‘‘ state
(Endsley & Kiris, 1995) and (b) degraded performance when automation fails after having performed well for a long period
(Bainbridge, 1983;Wickens, Hooey, Gore, Sebok, & Koenicke, 2009). The out-of-the-loop driver state is defined byMerat et al.
(2019) as: ‘‘Not in physical control of the vehicle, and not monitoring the driving situation, OR in physical control of the vehi-
cle but not monitoring the driving situation”, in contrast to the in-the-loop state: ‘‘In physical control of the vehicle and mon-
itoring the driving situation”, and the on-the-loop state, ”Not in physical control of the vehicle, but monitoring the driving
situation”. However, the details of what constitutes physical control and monitoring is not fully understood (Mole et al.,
2019; Victor et al., 2018). Merat et al. (2019) offers a first definition of what physical control means in terms of driver
engagement: ‘‘Vehicle physical control implies a direct physical coupling between multisensory perceptual cues and motor
outputs (steering, accelerating/braking”. In addition, Merat et al. (2019) points out that: ‘‘being in-, on– and out of the loop
should not be viewed as discrete states, but rather levels of engagement along a continuum.”. Thus, keeping the hands on the
wheel is the first sign of the driver being in physical control and in-the-loop, but to what extent the driver also needs to apply
torque or frequent steering input is still unknown. Investigations of recent crashes involving vehicles with supervised
automation (NTSB, 2017, 2018, 2019) have found longer durations of hands-off-wheel driving, which indicates that drivers
with a reduced physical control is already present in real traffic. According to the Merat et al. (2019) definition, these drivers
may be either out-of-the-loop or on-the-loop dependent on their monitoring behaviour. Hands-off-wheel driving is regu-
lated differently in the US and the EU: in the US, most states do not specifically prohibit hands-off-wheel driving (Smith,
2013), while current European Regulations do not allow hands-off-wheel driving for longer than 15–30 s without a warning
(visual at 15 s and visual and auditory at 30 s) (UNECE, 2017). To be able to inform current hands on wheel regulations which
today differ between the US and the EU it is important to understand if requiring drivers to keep their hands on the wheel or
not influences driver conflict response.

As a step toward better understanding the driver conflict response to ADS-unprompted system limitation events, Victor
et al. (2018) investigated conflict outcome in a longitudinal cut-out scenario (Euro NCAP, 2018) taking place after 30 min of
supervised automation. In their study, one-third of the drivers (all high-trust) crashed with the stationary conflict object,
which was revealed by the lead-vehicle cut-out. The drivers crashed because they expected automation to act, but automa-
tion could not detect the object (because it was a declared system limitation) and therefore did not act (Victor et al., 2018).
The crash rates were similar with or without a hands-on-wheel requirement, and for the type of conflict object (e.g., station-
ary vehicle, garbage bag). Additional analysis revealed that almost all crashers (95%) reported (after the drive) that they
expected automation to act, despite being informed otherwise (Gustavsson et al., 2018). In addition, 77% of the crashers
either reported that they did not realize the need to act or realized the need too late. On the other hand, most non-
crashers (74%), reported that they did expect or were uncertain about an intervention from automation and that they real-
ized the need to act or realized the need late (85% non-crashers). Further analyses by Tivesten, Victor, Gustavsson, Johansson,
and Ljung Aust (2019) investigated glance behaviour during the 30 min of driving prior to the conflict and found that three
different pre-conflict behavioural patterns were indicative of increased risk of crash involvement. These patterns were: low
levels of visual attention to the forward path, high Percent Road Centre (i.e., gaze concentration), and long visual response
times to attention reminders. Out of these patterns, low visual attention was the most common behaviour present in 70% of
15
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the crashers. To conclude, Victor et al. (2018) found high trust in automation to be associated with crashing, whereas the
conflict object type did not seem to influence if drivers crashed or not. However, a detailed understanding of how (i.e., in
which way) these factors influences driver conflict response in automation is missing. Specifically, the influence of trust
in automation on driver conflict response has been pointed out as a factor that needs additional work (McDonald et al.,
2019). The influence of different conflict object types on the driver conflict response in automation has not received much
attention previously (Mole et al., 2019; McDonald et al., 2019), but is important to consider since it may impact driver con-
flict response.

The present paper expands upon this previous work (Gustavsson et al., 2018; Tivesten et al., 2019; Victor et al., 2018) by
analysing the driver conflict response in ADS-unprompted conflicts due to system limitations. A more detailed understand-
ing of the driver conflict response is provided through the response process: timepoints for driver actions prior to either
crashing or avoiding the conflict object. The first aim of the present study is to understand how the conflict response differ
between drivers that (a) crashed and drivers that avoided the conflict object and (b) reported high trust in automation to
handle the conflict and drivers that reported low trust in automation to handle the conflict. The second aim was to under-
stand the influence of two specific factors: hands-on-wheel requirement (with vs. without) and the conflict object type (gar-
bage bag vs. stationary vehicle), on driver conflict response. Specifically, the following research questions were considered:
(1) Is the conflict outcome (crash vs. no crash) associated with a specific type of response process?, (2) Is the subjectively
reported level of trust in automation to handle the conflict (high vs. low) associated with a specific type of response process?,
and (3–4) Is the response process influenced by: a hands-on-wheel requirement (with vs. without), and the type of conflict
object (garbage bag vs. stationary vehicle)?

2. Methods

The data was collected in two test track experiments previously reported (study 2 and 3 in Victor et al., 2018). Seventy-six
participants drove with supervised automation (30 min), before experiencing a longitudinal cut-out scenario (Euro NCAP,
2018) with a stationary static conflict object (CO) in lane, requiring the participants to intervene to avoid a crash. The inde-
pendent variables were: (a) the hands-on-wheel (HoW) variable (30 participants were required to supervise automation
with hands on the steering wheel, and the remaining 46 (16 in study 2, 30 in study 3; see Table 1) participants were not
required to) and (b) the CO variable (30 participants encountered a stationary vehicle and 46 (16 in study 2, 30 in study
3; see Table 1) participants encountered a garbage bag as the conflict object).

2.1. Equipment

The experiments were performed on the AstaZero test track (rural road) near Gothenburg, Sweden. The Test Vehicle (TV)
was a Volvo XC90 (Model Year 2016) equipped with standard sensors, a GPS, and three cameras (collecting data at 20–30 Hz)
and with a modified driver information display (i.e., to present experiment-specific attention reminders). The TV used a
Wizard-of-Oz method (Habibovic, Andersson, Nilsson, Lundgren, & Nilsson, 2016) with a safety driver in the back seat. In
addition, a test leader, collecting subjective measurements throughout the drive, was also seated in the back seat. A
robot-controlled XC90 lead vehicle (LV) was the only other vehicle present.

2.2. Scenario design

All participants supervised automation for 30 min before experiencing the conflict situation of interest for this paper.
Before the test, the participants received information about the automated system limitations and the supervising role.
As described in Victor et al. (2018), all 16 participants in study 2 received medium detailed written instructions (all in
the without HoW requirement and Bag group in Table 1). All 60 participants in experiment 3 received high detailed class-
room training (and were equally distributed with 15 participants per group in Table 1), see Victor et al. (2018) for further
details. The participants were informed to continuously supervise the drive (as they would in normal driving) and to inter-
vene whenever needed. Further, the automated system’s limitations were emphasized and examples of situations requiring
driver intervention were explained (e.g., potholes, objects in lane). In addition, the participants were informed about the pos-
sibility to override automation (i.e., steer or brake) at any time. Throughout the drive, the TV followed the LV at a constant
headway and with a maximum speed of 70 km/h. No conversation between the participant, the test leader and the safety
Table 1
Group Specifications including number and percentage of participants.

Participants [N (%)] Without HoW requirement With HoW requirement Total

Car Bag Car Bag

Study 2 0 16 0 0
Study 3 15 15 15 15

Total 15 (20%) 31 (40%) 15 (20%) 15 (20%) 76

16



L. Pipkorn, T.W. Victor, M. Dozza et al. Transportation Research Part F 76 (2021) 14–25
driver took place, except when asking for subjective measures. All participants received attention reminders if they had
repeated or long glances away from the road (Victor et al., 2018). The attention reminders were triggered by the test leader
based on a specific glance behavior algorithm. In practice, the test leader observed the driver from a video in the backseat
and manually applied the algorithm by detecting and measuring eyes off path durations. The attention reminders were given
at different levels: the first level attention reminders were given as visual warning messages (‘‘Stay attentive! Look ahead” in
study 2, ‘‘Driver inattention – Keep eyes on road” in study 3) in the instrument cluster. If the first level reminder was ignored,
the drivers could obtain higher level reminders (level 2 in study 2 and level 2–3 in study 3). Higher level reminders included
additional information (e.g., audio, red icon) to make sure the driver would receive them.

2.2.1. The hands-on-wheel requirement and reminders
The seventy-six participants were divided into two groups: 30 participants were required to supervise automation with

their hands on the wheel (with HoW requirement) and 46 were not required to (without HoW requirement). In addition to
the attention reminders, the participants with HoW received reminders to keep their hands on the wheel if they did not. In
accordance with the attention reminders, the HoW reminders were triggered by the test leader if the driver took their hands
off the wheel for more than 5 s (level 1), or more than 10 s (level 2). The first level constituted of a visual message (‘‘Driver
inattention – Apply steering”) which was displayed in the instrument cluster, and the second level constituted of the same
visual message combined with a sound.

2.2.2. The conflict situation
The longitudinal cut-out scenario, used as the conflict situation and which appeared after 30 min of driving, included two

different conflict object (CO) types: a garbage bag or a stationary ‘‘balloon” vehicle. The CO was visible for the first time when
passing through a curve and over a crest, approximately 11 s (206 m) before reaching the CO. The CO became visually
obstructed again (TV about 8 s from CO) by the LV when the road straightened out and appeared again when the LV per-
formed a sudden cut-out (TV about 3 s or 60 m from the CO). The TV did not brake or warn the driver in any way (see
Fig. 1), and the driver had to override automation (i.e., steer, brake) to avoid a crash.

After the conflict, each participant reported their level of trust in automation to handle the conflict with response on a 7-
point scale (1 = not at all, and 7 = completely).

2.3. The driver response process

To assess driver response during conflicts, a driver response process was defined as timepoints for a surprise reaction
(SRT), hands-on-wheel (HOW), driver steering (DS) and driver braking (DB) taking place prior to either avoiding or crashing
with the conflict object (i.e., the conflict anchor t = 0). The response process relevant timepoints can be seen in Table 2.

2.4. Data processing and coding

The timepoints for the response process were coded manually from video views showing the forward path and the drivers
face and upper body side. The video views were also used to assess conflict outcome (i.e., if the drivers crashed with or
passed the CO). The event was coded as a crash if any contact between TV and CO was present (timepoint tcrash at contact
onset) and otherwise as pass (timepoint tpass when the longitudinal distance between the TV front and CO reached zero). In
addition, three reference timepoints were added to establish when certain events took place: (1) when the CO was visible for
the first time (see event at 11 s in Fig. 1), (2) the start of the LV cut-out maneuver (see event at 3.5 s in Fig. 1), and (3) when
the CO became fully visible (see event at 2.5 s in Fig. 1). To control for the possible influence of off-path glances on the
Fig. 1. After 30 min of driving the participants reached a crest from which the CO could be observed the first time. Then, LV covered CO again for some time
before cutting out of lane to fully reveal CO when the TV was about 3 s from it.
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Table 2
Response Process Relevant Timepoints.

Surprise Reaction
Timepoint (SRT):

The time of the first video frame when the driver appears to recognize an unexpected event. This can be a change in
facial expression, gaze fixation or movement of a body part in a way that indicates awareness and/or the start of an
evasive maneuver.
Example: The participants supervises the automated driving with the hands placed on the lap. When the CO becomes
visible to the participant he/she reacts by extending the neck and adjusting the seating position to better see what is
happening further down the road (SRT).

Hands on Wheel Timepoint
(HOW):

The first video frame when the driver is seen to touch the steering wheel with at least part of one hand. This is not
applicable if one hand is already on steering wheel.
Example:When the CO becomes visible to the participant he/she might place the hands on the steering wheel (HOW) to
be prepared to intervene.

Driver Steering Timepoint
(DS):

The first video frame when the driver starts performing a steering maneuver. A binary vehicle signal measuring applied
torque on the steering wheel was used to support the decision of the timepoint.
Example:When the LV changes lane and the CO is revealed the participant starts steering (DS) to avoid crashing into CO.

Brake Timepoint (DB): This was determined by a binary vehicle signal indicating when the brake pedal was pressed.
Example:When the LV changes lane and the CO is revealed the participant starts braking (DB) to avoid crashing into CO.

On-path glance An on-path glance was defined as any glance out of the forward windshield in the direction of travel, including fixations
on CO.

Off-path glance and
transitions

An off-path glance was defined as all glances that were not defined as an on-path glance, including eye closures longer
than 150 ms. Note that the assigned area of interest also included video frames capturing transitions to that area of
interest.
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response process, the glance behavior during the conflict was also assessed. The on- and off-path glances (see definition in
Table 1) were coded using the video views of the forward path and the driver’s face.

2.5. Data analysis and visualizations

To answer the research questions, groups for comparisons were formed using information about: (1) the conflict out-
come, (2) the experimental conditions for HoW requirement and CO type, and (3) the a posteriori reported trust level.

2.5.1. Analysis 1: The response process and glance behaviour for crashers and non-crashers
This analysis was performed to accommodate the first aim (i.e., to understand how the drivers who crashed and avoided

the conflict object responded). The response process was visualized with cumulative distributions for the four variables (SRT,
HOW, DS, DB) in a time interval starting at –13.5 s and leading up to the conflict anchor (tcrash for crashers and tpass for non-
crashers). In case of multiple HOW timepoints the last was included in the response process. In the case of no observable SRT,
HOW or DS the time was set to t = 0. Within the same time interval (from –13.5 s to 0 s), the Percent Road center (PRC) was
calculated at each time step by calculating the percentage participants having eyes on-path. The average and standard devi-
ation PRC were then calculated for seven intervals (–13.5 s � t < –12 s, –12 s� t < –10 s, . . ., –2 s � t < 0). Included in the same
graph as the comparison of crashers and non-crashers (list item 1) was also a comparison of PRC and three vertical lines rep-
resenting the average value of the three reference timepoints.

2.5.2. Analysis 2–4: The response process for difference in hands-on-wheel requirement, the conflict object type and the trust level
These analyses were performed to accommodate the first and second aim (i.e., to understand how the drivers with high

and low trust responded and the influence of a HoW requirement and CO type on the driver conflict response). Three main
analyses (numbered 1, 2 and 3 in the list below) were performed. Further, for trust level two additional analyses (2.1, 2.2)
were performed to better understand the relation between trust level and conflict outcome. The response process was com-
pared for the following groups:

1. Only study 3 participants: with HoW requirement (n = 30), without HoW (n = 30)
2. All participants except mid-trust drivers: high-trust drivers (n = 46), and low-trust (n = 26)
2.1. Non-crashers except mid-trust drivers: high trust (n = 25), and low trust (n = 26)
2.2. High trust participants: crashers (n = 21) and non-crashers (n = 25)

3. Only study 3 participants: conflict object: Bag (n = 30) and Car (n = 30)

Table 3 (an extended version of table 1) displays how the participants (divided into crashers and non-crashers in the top
panel and according to trust level in the bottom panel) were distributed for the two independent variables (HoW and CO).

2.5.3. Statistical analysis
To verify statistically significant differences between the groups, a Mann-Whitney U test was used for all comparisons for

the response times SRT, HOW and DS. A non-parametric test was used because of the data distributions for SRT, HOW and DS
18



Table 3
Group Specifications.

Participants [N/N (%)] Without HoW requirement With HoW requirement Total

Car Bag Car Bag

Crashers 3 9 5 4 21
Non-crashers 12 22 10 11 55

Total 15 31 15 15 76

High trust 10 16 11 9 46
Mid trust 0 3 0 1 4
Low trust 5 12 4 5 26

Total 15 (20%) 31 (40%) 15 (20%) 15 (20%) 76 (100%)
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were observed (from histograms) to be non-normal. The results were considered statistically significant at 0.01 after a Bon-
ferroni correction for multiple testing (0.05/5), based on the assumption of SRT, HOW and DS being related dependent
variables.

3. Results

3.1. Response process in crashers and non-crashers

Fig. 2 shows the PRC and the response process for the (n = 21) crashers and the (n = 55) non-crashers. The PRC is similar
for the time intervals after the object was visible for the first time (–11 s, at the crest), while the mean PRC was noticeably
lower for crashers (~70%) than for non-crashers (~86%) in the (–13.5 s � t < –12 s) interval. Fig. 2 also indicates that all except
one participant constantly had the eyes on-road during the last 2 s before the conflict anchor.

Further, Fig. 2 shows that crashing participants (dotted lines) generally showed a surprise reaction, put hands-on-wheel
and started steering closer to the conflict object compared to the non-crashing participants (solid lines). In addition, some
crashers never put hands-on-wheel nor started steering (at 0 s the HOW and DS curves only reached 67% and 52% respec-
tively), whereas all non-crashers did (at –1 s the HOW and the DS curves reaches 100%). None of the crashers and only 11%
(6/55) of the non-crashers braked.

3.2. Influence of a hands-on-wheel requirement

Fig. 3 presents the response process for participants with (n = 30) and without (n = 30) the HoW requirement. The HoW
requirement resulted in that 28 participants had HOW at –13.5 s (i.e., only 2 participants did not have hands on wheel, even
Fig. 2. Response Process and Percent Road Center for crashers (dotted lines) and non-crashers (solid lines). The three vertical lines represent (from left to
right) the mean of the time points for when: (1) the CO was visible to the driver the first time, (2) the LV started turning and (3) the CO was fully revealed to
the participant.

19



Fig. 3. Response Process for drivers with (dotted lines) and without (solid lines) a HoW requirement.
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if required to). But, the HoW requirement did not result in significantly different SRT and DS distributions: the participants
without HoW requirement had similar distributions to participants with HoW requirement for SRT (Mdn = –7.62 s, Mdn = –7.
46 s) and DS (Mdn = –1.58 s, Mdn = –1.31 s), and did not differ significantly for SRT (U = 437, p = .85, r = –0.02) or DS (U = 408,
p = .53, r = –0.08) respectively. None of the participants with the HoW requirement braked, while 10% (3/30) of the partic-
ipants without HoW requirement did.

3.3. Influence of high and low trust

Fig. 4a shows the response process for the (n = 26) low-trust participants and (n = 46) high-trust participants. The SRT did
not differ significantly for the high-trust (Mdn = –7.57 s) and low-trust participants (Mdn = –7.34 s), U = 542, p = .51, r = –
0.08. However, for the participants who did not have their hands on wheel from the start, the high-trust participants
(Mdn = –1.23 s) put their hands on wheel significantly later than the low-trust participants (Mdn = –2.40 s), U = 90,
p = .001, r = –0.49. In addition, the high-trust participants also steered (Mdn = –1.10 s) significantly later than the low-
trust participants (Mdn = –1.91 s), U = 239, p < .001, r = –0.48. Braking was more prevalent for low-trust participants
(4/26) compared with the high-trust participants (1/46).

Fig. 4b presents the response process for the (n = 26) low-trust and the high-trust (n = 25) non-crashers. The SRT-curves
are overlapping, whereas a minor delay can be observed for the high-trust non-crashers compared to the low-trust non-
Fig. 4. (a) The response process for all high-trust drivers (dotted lines) and low-trust drivers (solid lines), (b) The response process for high-trust non-
crashers (dotted lines) and low-trust non-crashers (solid lines), and (c) The response process for high-trust crashers (dotted lines) and high-trust non-
crashers (solid lines).
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crashers (the dotted lines are shifted slightly to the right). Fig. 4c presents the response process for the (n = 25) high-trust
non-crashers and (n = 21) crashers: The SRT is observed noticeably earlier for the non-crashers compared to the crashers.
However, this difference was not statistically significant under the Bonferroni correction, U = 163, p = .028, r = –0.32.

3.4. Influence of conflict object type

The participants in the Bag condition (n = 30) showed a surprise reaction significantly later (Mdn = –6.54 s) than the par-
ticipants in the Car condition (n = 30) (Mdn = –8.54 s), U = 252, p = .003, r = –0.38, but HOW and DS did not differ significantly
across the groups. All participants in the Car condition had hands on wheel at the conflict anchor (30/30), compared to the
93% (28/30) participants in the Bag condition. In addition, 97% (29/30) of the participants in the Car condition steered to
avoid the stationary vehicle, compared to 83% (25/30) of the participants in the Bag condition. Braking was slightly more
prevalent for the Bag than for the Car (2/30 for Bag, 1/30 for Car).

4. Discussion

4.1. The driver response process and glance behavior for crashers and non-crashers

The present study found that the participants spent most of their time looking on-path during the conflict (i.e., 100% of
the participants looked on path at some point during the seconds before the conflict anchor and the PRC was high (>90%) for
most of the 13.5 s leading up to the conflict object in Fig. 2). This additional analysis confirms that one-third of the partic-
ipants crashed, despite having eyes on path, as previously concluded by Victor et al. (2018). That is, the high PRC (>90%) indi-
cates that when the drivers noticed the conflict object (first visible at –11 s) they kept on looking at it, probably to make
predictions about what was about to happen and how to respond to the situation. Further, a lower PRC for crashers between
–13.5 s and –12 s compared to non-crashers were identified. This result is likely a consequence of that several crashers (70%)
were found to have low levels of visual attention to the forward path during the 30 min automated driving prior to the con-
flict (Tivesten et al., 2019).

The present study extended the previous analysis of conflict outcome reported in Victor et al. (2018), with a detailed
investigation of the drivers’ response process during the conflict. Generally, crashers were observed to respond later in all
actions except braking (i.e., for SRT, HOW, DS) of the response process compared to non-crashers (see Fig. 2). These differ-
ences in response for crashers and non-crashers are likely a consequence of some underlying cognitive control mechanism
(i.e., the crashers did not understand the need to act, Victor et al., 2018) and is a likely explanation for why some drivers
crashed and some did not (i.e., the drivers crashed because they steered late or not at all, compared to the drivers that
avoided a crash because they responded earlier).

Also, the present study observed that some crashers did not act at all, whereas some put hands-on-wheel and attempted
steering (Fig. 2 indicates that HOW only reached 70% and DS reached only 50% for crashers). Interestingly, the crashers were
more likely to act (i.e., put hands-on-wheel and steer) if the conflict object was the stationary vehicle: in section 3.4, 97% of
the participants steered in response to the stationary vehicle, but only 83% for the garbage bag. This is likely due to the larger
size of stationary vehicle compared to the garbage bag. The larger size of the stationary vehicle is likely also the reason
behind the observed earlier surprise reaction in the Car condition compared to the Bag condition (see Section 3.4).

4.2. The influence of requiring drivers to keep hands on the wheel on the driver response process

Victor et al. (2018) concluded that drivers crashed to the same extent independent of if they had their hands on the wheel
or not. The present study enriched this understanding further by finding that requiring a participant to keep hands on wheel
also did not result in earlier steering response times. Together, these findings indicate that driver conflict response with a
static object in supervised automation is independent of a HoW requirement.

The present study found that longer periods of hands-off driving does not necessarily lead to decreased conflict interven-
tion performance – a result in line with previous studies on ADS-prompted conflicts (Naujoks, Purucker, Neukum, Wolter, &
Steiger, 2015; Naujoks et al., 2017). Notably, most drivers in these previous studies kept contact with the steering wheel even
if allowed to have hands off. On the other hand, Llaneras, Cannon, and Green (2017) indicated that using a HoW requirement
as an escalation of consequence for drivers who ignore visual attention reminders resulted in more successful driver interven-
tions to a silent failure lane-drift event (i.e., a lateral conflict situation). Although the present study does not find support for
improved driver conflict response with a HoW requirement in a longitudinal cut-out scenario, it is possible that other conflict
types would benefit from hands on wheel. For example, a driver with hands on wheel may reflexively and beneficially
counter-steer in an abrupt incorrect steering (as indicated by Benderius, 2014). Further, a HoW requirement might prevent
drivers from attending to visual-manual secondary tasks. In addition, besides the requirement to keep the hands on the
wheel, a key parameter in designing safe supervised automation may be the lane keeping performance and characteristics
of the automated system. The driver is likely to provide more frequent steering input, and have a lower trust in the system, if
the lane keeping performance is less precise (e.g., varying lane position) or less reliable (e.g., leaving lane without driver
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input). More research on the parameters and thresholds determining how to keep the drivers ‘‘in-the-loop” and sufficiently
engaged in the driving task (i.e., in physical control) is needed.

4.3. The influence of trust on the driver response process

The present study enriches understanding of the influence of trust on driver conflict response, beyond the previous find-
ing of higher level of trust in crashers compared to non-crashers (Victor et al., 2018; Gustavsson et al., 2018). Firstly, a high-
trust participant was found to generally respond later than a low-trust participant – a finding in line with (Körber, Baseler, &
Bengler, 2018) who found that high trust results in more collisions. Second, the high-trust non-crashers were found to put
hands on wheel and start steering at similar points in time compared to the low-trust participants (all non-crashers; see
Fig. 4b). Third, high-trust non-crashers were observed to show a surprise reaction earlier (visible difference in Fig. 4c, even
if not statistically different after the Bonferroni correction) than a high-trust crasher. In addition, it should be noted that the
different trust levels (i.e., high, low trust) also corresponded to different reported experiences: the majority of high-trust par-
ticipants reported that they expected automation to act, whereas most low-trust participants did not expect automation to
act (Gustavsson et al., 2018). Taken together, these results suggest that high-trust- and low-trust drivers have different men-
tal representations of how the automation would behave in the conflict situation, and this results in later response for high-
trust drivers. For high-trust crashers compared to high-trust non-crashers, the delay in response seems to stem from a later
surprise reaction.

4.3.1. Applying the predictive processing framework on the results
One promising framework to explain the observed delay in response for high-trust drivers compared to low-trust drivers

is the predictive processing (PP) framework (Clark, 2013; Engström et al., 2018). According to the PP framework, the brain
continuously predicts sensory input from the external environment (e.g., looming – the visual expansion of an approaching
lead vehicle on the retina) and minimizes deviations between predicted and perceived sensory inputs, through action (e.g.,
braking, steering) or by updating the prediction. These predictions are generated by a hierarchical generative model, which is
embodied in the brain and develops with experience. In the context of manual driving, the continuous minimization of pre-
diction errors by either updating predictions or acting (steering, braking) is referred to as active inference. Further, active
inference may take place on different hierarchical levels of the driving task (i.e., on the operational, tactical and strategic
levels according to Michon, 1985).

We suggest that the delay in the response process or the absence of a response, as observed in the present study, can be
explained by differences in the generative models (i.e., different mental representations of automation capabilities) in the PP
framework. How different generative models may lead to delayed response, was previously argued in a work on silent adap-
tive cruise control (ACC) failures by Bianchi Piccinini et al. (2019). Longer brake response times were found for ACC-drivers
compared to CC-drivers in a braking lead vehicle scenario, when the ACC-system failed silently. The longer brake response
times, for ACC-drivers, were explained to arise from the ACC-drivers’ generative model of a working ACC-principle. When the
lead vehicle braked, the ACC-drivers’ generative model allowed more looming (since they expected ACC to brake) compared
to the CC-drivers who braked at lower looming levels. In the context of the present study, the differences in expectations on
how automation would act in the conflict situation, suggests that low-trust- and high-trust drivers embody different gener-
ative models. The high-trust drivers seem to embody a generative model that predicted automation to act in the conflict sit-
uation, whereas low-trust drivers did not predict automation to act. Consequently, at the conflict onset (when the lead
vehicle performed the cut-out and looming suddenly increased) the high-trust drivers accepted more looming before acting
(since they awaited automation to act), compared to the low-trust drivers.

However, in comparison to Bianchi Piccinini et al. (2019), the present study also observed that having similar generative
models (as assumed for the high-trust drivers) does not necessarily lead to the same response. Among the high-trust drivers
some responded too late or not at all and crashed, and the rest responded early and did not crash. The reason behind the
difference in response among high-trust drivers could be that several other factors in addition to the generative models also
influences response (e.g., criticality of the situation, individual response times, when the drivers detect the conflict etc.).
Another possible explanation for the difference in response among high-trust drivers is that these drivers were engaged
in inference at different levels of the driving task. According to Engström et al. (2018), automation changes the inference
from active to perceptual inference, on the operational, tactical and strategic levels. The reason is that the driver engages
in monitoring the automated system, rather than actively cancelling prediction errors by steering and braking. In supervised
automation, Engström et al. (2018) argues, the drivers can still be engaged in perceptual inference on the operational level
but may also only be engaged in inference on higher levels (i.e., tactical, strategic). A driver who remains in the operational
loop monitors the lead vehicle and generates predictions about the looming, whereas a driver who only engages in inference
on higher levels monitors the general situation but does not predict looming.

The explanation for why some high-trust drivers crashed and some did not, may thus be that the non-crashers remained
in the operational loop, but the crashers did not. This assumption is supported by the finding of low levels of visual attention
to the forward path during the complete drive among the majority of the crashers (Tivesten et al., 2019) and the delayed
surprise reaction among crashers. A high-trust driver, who is out of the operational loop (i.e., does not predict looming), will
act later because of the need to re-establish predictions at the operational level (i.e., predict looming). When these predic-
tions are re-established, prediction errors can be generated and acted upon (Engström et al., 2018). The reason behind why
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some crashers did not act at all, may be because they never re-established predictions on an operational level (i.e., no pre-
dicted looming means no prediction errors to act upon). On the other hand, the crashers that did act, may have re-established
predictions on the operational level, but too late to accumulate enough evidence for action (prediction error). Another poten-
tial explanation is that all crashers re-established predictions at similar times, but the larger conflict object triggered earlier
response for the crashers that acted (larger looming means faster accumulation of evidence for action). In fact, it could be
that drivers who are engaged in inference at different levels of the driving task embody different generative models (i.e., that
the high-trust drivers that crash and the ones that avoided the conflict had different generative models). If this is true, the
simple division of drivers into high-trust- and low-trust drivers performed in this study does not seem to be able to capture
those differences.

Finally, another influencing factor behind the delayed response observed for high-trust drivers, may be a lower gain
(Bianchi Piccinini et al., 2019). That is, these drivers accumulate looming slower, and consequently it will take longer to reach
the prediction error that triggers an action. The reason behind the lower gain may be due to individual factors or the result of
exposure to automation, but a model based on the lower gain hypothesis cannot distinguish between these.

Future work should study the underlying cognitive mechanisms ruling driver response process in conflict situations by
systematically manipulating different factors that may influence the driver conflict response e.g., conflict expectancy, differ-
ent degrees of driver awareness of system limitations. For example, would adding a prompt (e.g., a take-over request in
unsupervised automation, a warning in supervised automation) in the same situation override potential problems such as
slow accumulation of evidence and/or late surprise reactions, and therefore prevent crashes? Based on the PP framework,
adding a prompt to the longitudinal cut-out scenario is assumed to result in earlier conflict response, because it triggers
the drivers to start making predictions about looming at an earlier stage. Consequently, the earlier the prompt is given,
the earlier the drivers can be assumed to start to make predictions about looming and therefore calculating prediction error
and act upon it.

4.4. Limitations and practical applications

The results presented in this paper should be viewed in the light of its limitations. The experiment was performed on a
test track and not in real traffic. Thus, there was some lack of realism as no traffic was present, the conflict object was a bal-
loon vehicle or a garbage bag, the participants knew that they were part of a study and a test leader was present. However, it
is difficult—if not impossible—to increase the degree of realism without encountering difficult ethical considerations asso-
ciated with the risk of crashing. In addition, video coding was performed by one single person. A further limitation is that
the drivers answered the questionnaires after the study and therefore the (crash/no-crash) outcome of the study might have
influenced how they responded. Specifically, the results on the influence of driver trust level on the driver conflict response
should be treated as associative rather than casual. Recall that the same is true for the analyses including the conflict out-
come. In addition, it should be mentioned that the present study only considered the timing of the driver conflict response
(when the drivers started steering) and not the quality (the steering performance). Instead, the driver conflict response qual-
ity in the present paper is only assessed in terms of the drivers’ ability to avoid crashing with the object. For studies where
there is no clear understanding of how a late response may be linked to the conflict outcome, it is important to consider both
the timing and the quality of the driver conflict response. The reason is that the timing of the driver conflict response does
not necessarily correlate with the quality of the response (Louw et al., 2017).

The present study has some practical implications: we did not find any evidence for faster response for drivers that were
required to keep their hands on the wheel. This result can inform current hands on wheel regulations (at least for the cut-out
conflict situation): a hands-on-wheel requirement alone is not enough to prevent collisions or prompt earlier responses in
highly reliable (but not perfect) supervised automation. Note that the findings from the present study apply to a longitudinal
cut-out scenario with a stationary object, the same results might not apply for lateral conflicts (e.g., lane drifts, or steering
failures). In addition, the results in the present study suggests that supervised automation should be designed in a way that
facilitates low automation trust, since low trust is associated with appropriate driver conflict response. On the other hand, it
is important not to forget that too low automation trust may also result in disuse (Parasuraman & Riley, 1997), i.e., too low
trust may result in drivers that do not use the system at all. Thus, supervised automation should be designed in a way that
facilitates low enough trust to ensure appropriate conflict response, but high enough trust for the drivers to utilize it (i.e., not
turn it off because they do not trust it).

5. Conclusions

Previous studies found that, some drivers, after having supervised automation for some period, may crash with a sud-
denly appearing conflict object that is not detected by automation, even if this is a declared system limitation. By performing
detailed analysis of the driver response process, the present study also found that these drivers (i.e., the crashers) generally
show a late surprise reaction and put hands on wheel, and start steering closer to the conflict object (i.e., a delayed response)
compared to the drivers that do not crash (i.e., the non-crashers). In fact, some drivers crashed without putting their hands
on the wheel nor steering or braking.
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Further, a requirement to just keep the hands-on-wheel may not prevent drivers from crashing, nor promote faster
response. A certain minimum level of applied torque to the steering wheel is likely needed to keep all drivers in the loop
during extended periods of supervised automation. The extent to which a hands-on-wheel requirement may still be bene-
ficial and prevent other types of conflicts (e.g., lateral automation failures, incorrect steering) or keep the driver from per-
forming visual-manual secondary tasks needs further investigation. High trust is associated with late response and
crashing. However, high trust in combination with early surprise reaction is associated with crash avoidance. Low trust in
automation, on the other hand, is associated with appropriate driver conflict response. Finally, a larger conflict object
may trigger an earlier surprise reaction but does not hasten hands-on-wheel or steering response.

To conclude, we found that looking at the response process together with the glance behaviour was useful, because it pro-
vides insights into the visual (where do drivers look), cognitive (when has the drivers cognitively processed the situation
enough to select an action and physical processes (how do drivers prepare for action and how do they act) over time. The
breakdown of the response into different steps, offers a unique opportunity to understand how these steps interact and
which of the steps are affected by the experimental conditions. This understanding is an important step towards identifying
the mechanisms that influence driver conflict response in automation.
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