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ABSTRACT: Perovskites have attracted much attention due to their remarkable optical
properties. While it is well established that excitons dominate their optical response, the
impact of higher excitonic states and formation of phonon sidebands in optical spectra still
need to be better understood. Here, we perform a theoretical study of excitonic properties of
monolayered hybrid organic perovskitessupported by temperature-dependent photo-
luminescence measurements. Solving the Wannier equation, we obtain microscopic access
to the Rydberg-like series of excitonic states including their wave functions and binding
energies. Exploiting the generalized Elliot formula, we calculate the photoluminescence
spectra demonstrating a pronounced contribution of a phonon sideband for temperatures up
to 50 K, in agreement with experimental measurements. Finally, we predict temperature-
dependent line widths of the three energetically lowest excitonic transitions and identify the
underlying phonon-driven scattering processes.

In the past years, much effort has been devoted to the study
of perovskite materials.1−5 Their broad absorption spec-

trum 6 combined with impressive light-emitting properties7

makes them a promising material for optoelectronic
applications. They have been, in particular, applied as active
material in solar devices exhibiting a power conversion
efficiency of up to 25.2%.8 Beyond photovoltaics there has
been a rising interest in perovskite-based diodes and lasers.9−12

Recently, layered perovskites have emerged as a subclass of the
bulk material exhibiting enhanced excitonic properties and
tunable characteristics.13 Their optical and electronic proper-
ties can be tailored through an external stress14,15 or an internal
chemical pressure16 or by varying their layer thickness.17 In
addition, a wide variety of compositions can be made thanks to
the large amount of organic cations that can be integrated into
the structure. These materials are considered as a dimensional
reduction of 3D perovskites with the general formula

′ − +(A) A B Xm n n n1 3 1, where A′ is the cation that intercalates
between the inorganic An−1BnX3n+1 layers and n can be
understood as the thickness of the inorganic layers. Here, the
screening of the Coulomb interaction is weaker compared to
3D perovskites, resulting in considerably larger exciton binding
energies.18,19 As a direct consequence, excitons play a crucial
role in the optical response and nonequilibrium dynamics of
these materials. Unbound carriers can still play a significant
role at higher densities and excitations above the single-particle
bandgap. Recent experimental studies on optical properties of
2D perovskites have focused on exciton binding energies,19

absorption line widths,12,20−24 phonon sidebands,25 and high-

density effects.26 However, a microscopic understanding of
some of the reported findings, for example, the formation of
phonon sidebands and the microscopic origin of excitonic line
widths, has not been well understood yet.
Here, we present a joint theoretical study of optical

properties of monolayered hybrid organic perovskites
supported by experimental photoluminescence (PL) measure-
ments. The aim of the work is to provide a microscopic
understanding of many-particle processes determining the
temperature-dependent PL in these materials. We focus on the
monolayered (PEA)2PbI4, which is a particular case of the n-
layered (PEA)2MAn−1PbnI3n+1 perovskite27,28 (cf. Figure 1a).
Here, the inorganic layer consists of corner-sharing PbI6
octahedra sandwiched between two organic layers of PEA
(phenylethylammonium). The lower dielectric constant of the
organic layer results in a dielectrically confined quantum well.
Using a fully quantum mechanical approach, we obtain

microscopic access to excitonic wave functions and binding
energies in 2D perovskites. Exploiting the generalized Elliot
formula, we model temperature-dependent PL spectra
including the emergence of phonon-assisted sidebands. Finally,
we determine the spectral line width of the energetically lowest
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excitonic transitions taking into account scattering channels
driven by the emission and absorption of acoustic and optical
phonons (cf. Figure 1b). The theoretical predictions are
compared to temperature-dependent measurements of photo-
luminescence spectra in the investigated 2D perovskites.
As a first step, we determine the excitonic properties of

monolayered (PEA)2PbI4 perovskites. To obtain microscopic
access to the Rydberg-like series of excitonic states ν, their
binding energies νEb , and wave functions ϕ ν

k , we solve the
Wannier equation29−31

∑
μ

ϕ ϕ ϕℏ − =ν ν ν ν

′
| − ′| ′V E

k
2 k

k
k k k k

2 2

b
(1)

where we approximate the Coulomb interaction by the

Rytova−Keldysh potential32,33 =
ε ε | | + | |

V e
L rq q q2 (1 )

0
2

0 s
2

0
similar

to the treatment of atomically thin transition metal
dichalcogenides (TMDs).34 Here, we used the exciton reduced
mass21 μ = 0.108m0 and the average dielectric constant 35 εs =
3.32 given by the organic layers. The dielectric constant of the
inorganic layer is εwell = 6.1, and its thickness is Lwell = 0.636
nm.35 These quantities determine the screening length

= ε
ε

r L0 well 2
well

s
, which is crucial for the excitonic binding energy

Eb.
Evaluating the Wannier equation, we find =E 228b

1s meV
for the energetically lowest 1s exciton state, while the binding
energy decreases to 43 and 17 meV in the case of 2s and 3s
states, respectively (cf. Figure 2a and Table 1). The obtained
exciton binding energies are in good agreement with
experimentally measured values (cf. the inset of Figure 2a).
These experimental values have been determined by

identifying the spectral position of the exciton resonances
(1s and 2s) and the single-particle band edge in photo-
luminescence excitation,25 optical absorption,24,35,36 and
electroabsorption37 measurements or by extracting the thermal
dissociation ratio of excitons from temperature-dependent
photoluminescence measurements.38 Note that interestingly
the 2p state has a larger binding energy than the corresponding
2s state similarly to the case of TMD monolayers.39 The
corresponding eigenfunctions of the three lowest excitonic
states are illustrated in Figure 2b and show the typical
momentum dependence well known from the hydrogen
problem.
The obtained excitonic binding energies and wave functions

will be used in the following to calculate the photo-
luminescence spectrum and the line widths of excitonic
transitions in the investigated 2D perovskite material.
The photoluminescence is calculated by applying the density

matrix formalism for an interacting system of electrons,
phonons, and photons.40−42 Using the Heisenberg equation
of motion, we calculate the temporal evolution of the photon
number = ⟨ ⟩†n c ck k k , which determines the photoluminescence
via = ̇I E n( ) kPL .31,43 Here, radiative and nonradiative decay
channels play the crucial role. The radiative recombination of
exciton states within the light cone is given by44,45

γ = | |σ
ν

ε σ
ϕℏ | = |ν

νMe
m nc E

r
0 2

2 ( 0)0
2

0
2

0 0

2

0
with the excitonic resonance

Figure 1. (a) Schematic illustration of the crystal structure of
(PEA)2(MA)n−1PbnI3n+1 from monolayered (n = 1) to bulk perov-
skites (n = ∞). (b) Exciton band structure and possible phonon-
assisted scattering channels for 1s and 2s excitons.

Figure 2. (a) Exciton binding energy of the energetically lowest s-type
excitonic states in 2D perovskites. The inset shows a direct
comparison to the measured values denoted by dots (and the
corresponding references24,25,35−38). (b) Momentum-dependent wave
functions for 1s, 2s, and 3s excitonic states.

Table 1. Excitonic Binding Energies Eb Obtained by Solving
the Wannier Equation (cf. Eq 1)

excitonic state E1s E2s E3s E4s E2p E3p E3d

binding energy Eb
[meV]

228 43 17 9 53 19.5 20
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energy = +ν νE E E0 g b , the refractive index of the medium
ε= =n 1.82s , and the optical matrix element for interband

transitions Mσ = 8 fs eV nm−1 projected into the polarization σ
of the emitted light. In the considered low-excitation regime,
phonon-driven scattering channels determine the nonradiative
dephasing40,44

∑π δΓ = | | + ± Δν

μ

νμ μν

±

G n E
1
2

1
2

( )
j

j j j
k

q
q q k q

, , ,

2
,

,i
k
jjj

y
{
zzz

(2)

with Δ = − ± ℏΩμν μ ν
+E E Ej j

k q k q k q,
, . The excitonic dispersion

νEk is described in an effective mass approximation with a total
exciton mass M = 0.44m0.

21 The equation includes absorption
and emission (±) scattering channels involving acoustic and
optical phonons with the mode j. The emission term (+)
includes spontaneous and stimulated processes. The latter is
proportional to the phonon occupation n j

q that is given by the
Bose−Einstein distribution within the considered bath
approximation.
The appearing exciton−phonon matrix element

ϕ ϕ ϕ= ∑ −νμ ν
α

μ
α

μ*
+ −G g g( )j j c j v

q k k k q q k q q
, ,

h e
is given by the

coupling elements for electrons and holes ge/h sandwiched by
the exciton wave functions ϕ μ

k of the involved initial and final
exciton states with αλ = mλ/M.44,45 The electron−phonon

coupling reads =λ λ
ρ ω
ℏ
ℏ

g Dj j
q q

, ,
2

1/2

j
q

2i
k
jjj

y
{
zzz with a constant deforma-

tion potential for optical phonons, i.e., = ±λ λD Dj j
q

,
OP

, , and with

= ± | |λ λD D qj j
q

,
AC

, for acoustic phonon modes.46,47 The
deformation potential interaction is equivalent to applying
pressure or strain to the system,47 resulting in energy shifts in
opposite direction for conduction and valence bands. These
energy shifts are reflected in the coupling strengths gλ (note the
± signs in the deformation potentials defined above), and G is
thus a result of adding the conduction (gc) and valence (gv)
band terms. While the Fröhlich interaction dominates the
electron−phonon interaction, its polar nature results in gc and
gv having the same sign (as the energies shift in the same
direction) and hence a weak exciton−phonon coupling
strength G. First-principles studies are needed to obtain access
to the full phonon dispersion and electron−phonon coupling
elements as well as to thoroughly describe the importance of
deformation potential and Fröhlich interactions. While this is
beyond the scope of this work, we extract the values for
deformation potentials from the experimentally measured
temperature-dependent line width of the 1s exciton assuming
one dominant optical and acoustic phonon branch (cf. Table
2). Note that these are effective modes that can contain several
spectrally close phonon branches. We find that the linear
increase of the PL line width at low temperatures can be traced
back to the scattering with acoustic phonons characterized by

the velocity cAC = 2100 m/s. At high temperatures, there is a
deviation from a linear increase and the major contribution
stems from scattering with optical phonons exhibiting an
energy of 35 meV, similar to recent experimental find-
ings.21,36,48 Note that there is also a defect-induced line
width Γ0 = 6.7 meV at zero temperature.
Considering a many-particle Hamilton operator including

exciton−photon and exciton−phonon interaction and evaluat-
ing the Heisenberg equation of motion for the photon number
nk, we find a coupled set of differential equations including
phonon- and photon-assisted polarizations. Then, the cluster
expansion scheme49 is used to factorize the many-particle
expectation values disregarding contributions connected to
multiphonon processes.40 The final analytic expression for the
σ-polarized photon flux emitted in perpendicular direction with
respect to the monolayer is given by40

∑

∑

ϕ
γ

γ η

=
ℏ

| | | = |
− + + Γ

× + | |
Γ

∓ Ω − + Γ

σ σ
μ

μ

μ
σ

μ μ

σ
μ μ

ν

νμ ν
ν

ν α ν
±

±

I E M
E E

N G N
E E

r
( )

2 ( 0)
( ) ( )

( ) ( )j

j
j

q
q q q

q

q q q

PL,
2

2

0
2

0, 0
2

0, 0
, , ,

2
2 2

i

k

jjjjjjj
y

{

zzzzzzz
(3)

where η = ± +± n1/2 1/2j
j

q q denotes the relevant phonon

occupation factor for absorption/emission and νNq represents
the exciton occupation corresponding to the Boltzmann
distribution for the considered stationary PL. The first term
describes the direct photoluminescence that is often termed
zero-phonon contribution. The second term shows the
phonon-assisted indirect PL and results in the emergence of
phonon sidebands. Evaluating eq 3, we obtain a microscopic
access to the temperature-dependent PL and find that the line
width of the exciton transition clearly increases with temper-
ature, while its intensity becomes smaller (cf. Figure 3a). The
zero-phonon line width ranges between ∼5−10 meV at low
temperatures and ∼50 meV at room temperature.
In Figure 3b−d, we decompose the direct PL stemming

from radiative exciton recombination within the light cone (Q
≈ 0) from the indirect contribution to the PL arising from
phonon-assisted exciton recombination from states with a
nonzero center-of-mass momentum. We find a clear separation
of the two contributions up to 50 K. At higher temperatures,
the zero-phonon line becomes so broad that the phonon
sideband is only visible as a low-energy shoulder. It becomes
evident in an asymmetrically broadened exciton transition
toward lower energies. The energetic separation of ∼35 meV
between the zero-phonon line and the phonon sideband is
governed by the energy of the involved optical phonons. In
contrast, the weak contribution of phonon absorption leads to
a negligible indirect photoluminescence on the high energy
side of the zero-phonon line.
Optical phonons also govern the broadening of the zero-

phonon line for temperatures above 100 K, while at lower
temperature acoustic phonons dominate the PL line width, as
will be further discussed later. The overall red-shift toward
lower energies with decreasing temperature stems from a shift
in the relative position of the conduction and valence bands
due to polaronic effects50 as well as the temperature-dependent
contraction of the lattice. This phenomenon is known as the
Varshni shift and can be described with the empirical formula51

= − α
α +E T E( ) (0) T

Tg g
1

2

2
, where Eg(0) is the band gap energy at

Table 2. Values for the Deformation Potentials for Optical
and Acoustic Phonons Are Extracted from the Performed
Measurements of Temperature-Dependent Excitonic Line
Widths in PL Spectra Assuming One Dominant Optical and
Acoustic Phonon Branch

DAC cAC DOP ℏωOP Γ0

1.9 eV 2100 m/s 158 eV/nm 35 meV 6.7 meV
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T = 0 K and α1, α2 are material-specific constants. The red-shift
is treated phenomenologically in this work, and the material-
specific constants are fitted to experimental data with Eg(0) =
2.565 eV.
To be able to directly compare the theoretical prediction to

experiment, we have also performed temperature-dependent
PL measurements of the same 2D perovskites. The
experimental PL spectra were collected from a monocrystalline
(PEA)2PbI4 thin sheet (∼100 nm) exfoliated from chemically
synthesized crystals. To provide better stability of the
exfoliated perovskite layer, it was encapsulated by h-BN sheets
(for more details see ref 21). For temperature-dependent PL
measurements, the sample was mounted on the coldfinger of a
helium flow cryostat with a quartz optical window. PL was
excited with the frequency-doubled output of a mode-locked
Ti-sapphire laser and tuned to 400 nm. The excitation laser
beam was focused on the sample using a 50× microscope
objective with a numerical aperture of 0.55, giving a spot size
of ∼1 μm diameter. The emitted PL was collected through the
same objective and directed to a spectrometer equipped with a
liquid nitrogen cooled charge-coupled device camera.
Figures 3e and 3f present a comparison of theoretically

predicted and experimentally measured temperature- and
energy-dependent PL spectra. We find a good qualitative
agreement in terms of the appearance of the phonon sideband
at the lower energy side of the zero-phonon line (cf. the
rectangular boxes). In both experiment and theory, we find a
pronounced phonon sideband appearing at 2.33 eV and staying
clearly visible and distinguishable from the zero-phonon line
for temperatures up to 50 K. Above this temperature the
phonon sideband visible in experiment seems to merge/vanish
with the main peak in contrast to theoretical predictions where
this occurs around 100 K. We expect that this discrepancy can
be related to h-BN encapsulation which might modify the
motion of the inorganic layer and the related phonon mode
with respect to the bulk case .25 Indeed, in the case of the bulk
(PEA)2PbI4 crystals the phonon sideband can be resolved up
to around 100 K .20 This observation may indicate that the
electron−phonon interaction can be substantially modified in
thin layers of 2D perovskites due to possible residual strain
induced by the organic cation interacting with the encapsulat-
ing layer .52 It is also worth to note that in encapsulated layers

the LO phonon energy is slightly lower than in bulk
samples 20,25,36 which also points to the non-negligible impact
of encapsulation.
The spectral broadening of excitonic resonances with

temperature plays an important role for the visibility of
phonon sidebands. Thus, we study the exciton−phonon
scattering channels determining the temperature-dependent
spectral line width of the three energetically lowest excitonic
transitions. The line width is determined on a microscopic
footing within the second-order Born−Markov approximation
resulting in the momentum-dependent scattering rates given in
eq 2. The appearing sum over all phonon modes and momenta
includes all scattering processes that fulfill the energy
conservation, that is, − ± ℏΩ =μ ν

+E E 0j
k q k q , where ℏΩ j

q is
the energy of the phonon with the mode j and momentum q,
while νEk and μ

+Ek q are the energies of the initial and final
excitonic states. We include absorption (−) and emission (+)
processes with optical and acoustic phonons. Because only the
states within the light cone (i.e., k ≈ 0) contribute to the direct
PL, the line width of the zero-phonon line is determined by the
scattering rate Γν

≈k 0 (cf. Figure 1b).
The resulting line widths and their underlying microscopic

scattering channels are displayed in Figure 4. We find spectral
line widths of approximately 50, 25, and 15 meV for 1s, 2s, and
3s transitions at room temperature, respectively. In the case of
1s, we show that the scattering with acoustic phonons
dominates the line width up to temperatures of ∼150 K (cf.
the orange shaded region in Figure 4a). We find a linear
dependence on temperature reflecting the behavior of the
phonon occupations that are described by the Bose−Einstein
distribution. Optical phonons start to be important for
temperatures above 100 K (red region) and become the
main channel governing the line width of 1s from ∼150 K.
Optical phonons are important only at higher temperatures,
since their energy is 35 meV, and thus the phonon occupation
is negligibly small at low temperatures. There is also a
temperature-independent contribution stemming from radia-
tive recombination (gray region, 2.66 meV) that also limits the
lifetime of 1s excitons in the light cone. The oscillator strength
considerably decreases for higher transitions due to more
spatially extended wave functions. Hence, the radiative

Figure 3. (a) Photoluminescence spectra of 2D perovskites shown at fixed temperatures. (b−d) PL decomposed into contributions stemming from
the zero-phonon line (ZPL, dashed red) and the phonon sideband (dashed black) at three specific temperatures. (e) Theoretical prediction and (f)
experimental measurement of the temperature- and energy-resolved PL with the phonon sideband appearing at low temperatures (rectangular box).
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recombination has only a marginal contribution to their line
widths with 1.9 × 10−1 meV for 2s and 4.9 × 10−2 meV for 3s
(cf. Figure 4b,c). Note that we assume an ideal defect-free
sample by disregarding the constant broadening Γ0 that arises
from scattering with defects and does not have any impact on
the investigated temperature dependence.
The quasi-linear dependence of the line width for higher

states (2s and 3s) is caused by the fact that scattering with
acoustic phonons is the main mechanism limiting the lifetime
of 2s and 3s states at all temperatures. To explain the overall
low importance of optical phonons for higher excitonic states,
we investigate the wave function overlap ϕ ϕ∑ α

ν
α

μ*
+k k k q, of the

involved initial and final scattering states that enters in the
exciton−phonon coupling elements. In particular, it is
important to consider the specific momenta where energy
conservation is fulfilled (cf. circular and triangular markers in
Figure 5 denoting these momenta for optical and acoustic
phonons, respectively). We find that the only possible
scattering channel fulfilling the energy conservation for the
1s exciton is the intraband 1s → 1s scattering with optical and
acoustic phonons, as shown in Figure 4d.
For the higher 2s and 3s states, multiple scattering channels

are possible (cf. Figure 5b,c). Nevertheless, in all three cases it
is the intraband scattering with acoustic phonons that shows
the maximum wave function overlap due to the small
momentum transfer of this transition. To be able to explain
which specific scattering channel and phonon mode dominate
the line width, it is not always sufficient to only consider the
wave function overlap. The exciton−phonon coupling element
is determined by the wave function overlap weighted by the
corresponding deformation potential that is constant for
optical phonons and linear in q for acoustic phonons.
Furthermore, the temperature- and energy-dependent occupa-
tion of the involved phonon modes also needs to be
considered since it directly enters the scattering rate (cf. eq
2). The combination of a strong electron−phonon coupling,

large wave function overlap, and a moderate phonon number
results in a very efficient intraband scattering with acoustic
phonons that dominates the line width. The efficiency of
scattering with optical phonons decreases for higher states
despite the enhanced number of possible scattering channels
as already seen in transition metal dichalcogenides.45 This can
be traced back to lower excitonic binding energies and thus
more spatially extended excitonic wave functions. Because
scattering with optical phonons provides a higher energy and
momentum exchange than with acoustic phonons, the
scattering strength will be determined by the overlap of two
wave functions with significantly different momenta. Because
the wave functions of higher excitonic states are more localized
in momentum space, there is only a small overlap of initial and
final state wave functions giving rise to a large suppression of
scattering processes with optical phonons.
While acoustic phonons predominantly induce scattering

within an excitonic band, optical phonons can also bridge
larger energy distances between different bands. To better
understand these processes, we further decompose the most
important scattering channels with optical phonons in Figure
4d−f. Because for optical phonons the coupling strength and
phonon number do not depend on momentum, the efficiency
of a particular scattering channel is only determined by the
wave function overlap. We find that the most important
contribution caused by optical phonons corresponds to
emission processes to the energetically lower 1s state (blue
areas in Figure 4e,f). Note that spontaneous emission is much
more likely than stimulated emission at low temperatures,
where the phonon number is very small. Moreover, the fact
that spontaneous emission does not depend on the phonon
number results in the constant line width at low temperatures.
For 2s excitons, the wave function overlap for the optical
phonon absorption processes 2s → 3s and 2s → 3d stands out

Figure 4. (a−c) Temperature-dependent exciton line width of the
three energetically lowest excitonic transitions (1s, 2s, and 3s)
resolving the contribution of optical and acoustic phonons. (d−f)
Microscopic scattering channels driven by optical phonons for the
considered excitonic transitions.

Figure 5. Wave function overlap of the excitonic states involved in
phonon-driven transitions, which determine the spectral line width of
(a) 1s, (b) 2s, and (c) 3s states. The circular (triangular) markers
indicate the momentum at which the scattering can take place via
optical (acoustic) phonons. Here, the energy conservation is fulfilled.
Note that the strongest wave function overlap involving the
transitions within the same band have been multiplied by a factor
of 0.5 or 0.3 to be able to better illustrate other scattering channels.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://dx.doi.org/10.1021/acs.jpclett.0c02661
J. Phys. Chem. Lett. 2020, 11, 9975−9982

9979

https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02661?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02661?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02661?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02661?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02661?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02661?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02661?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02661?fig=fig5&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://dx.doi.org/10.1021/acs.jpclett.0c02661?ref=pdf


(cf. Figure 5b), which is directly reflected in their important
contributions to the optical phonon portion of the line width
in Figure 4e.
The 3s exciton state is close to the continuum allowing

multiple scattering channels driven by emission and absorption
of phonons. The scattering with optical phonons at the 3s state
is dominated by the 3s → 1s transition induced by
spontaneous emission (cf. Figure 4f). Furthermore, because
of the energetic proximity of other states, significant wave
function overlap exists for interband acoustic phonon
scattering processes (cf. Figure 5c). However, the small
phonon number at the large momenta involved in these
scattering processes drastically reduces the efficiency of these
channels, resulting in an even smaller line width at room
temperature compared to the 1s exciton exhibiting much fewer
scattering channels.
In summary, we have presented a theoretical study

supported by experimental measurements shining light on
excitonic properties of monolayered halide perovskites. On the
basis of a quantum mechanical approach, we have determined
the eigenfunctions and binding energies of the entire Rydberg-
like series of excitonic states. Furthermore, we have calculated
and measured temperature-dependent photoluminescence
spectra with a particular focus on the emergence of low-
energy phonon sidebands. Finally, we have provided micro-
scopic insights into the exciton−phonon scattering channels
governing the temperature-dependent spectral line width of the
three energetically lowest excitonic transitions. Overall, our
work contributes to a better understanding of the optical
properties of 2D perovskites and can guide future studies in
this growing field of research.
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