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ARTICLE

Predicting clinical resistance prevalence using
sewage metagenomic data
Antti Karkman 1,2, Fanny Berglund 3,4, Carl-Fredrik Flach3,4, Erik Kristiansson4,5 &

D. G. Joakim Larsson 3,4✉

Antibiotic resistance surveillance through regional and up-to-date testing of clinical isolates is

a foundation for implementing effective empirical treatment. Surveillance data also provides

an overview of geographical and temporal changes that are invaluable for guiding interven-

tions. Still, due to limited infrastructure and resources, clinical surveillance data is lacking in

many parts of the world. Given that sewage is largely made up of human fecal bacteria from

many people, sewage epidemiology could provide a cost-efficient strategy to partly fill the

current gap in clinical surveillance of antibiotic resistance. Here we explored the potential of

sewage metagenomic data to assess clinical antibiotic resistance prevalence using environ-

mental and clinical surveillance data from across the world. The sewage resistome correlated

to clinical surveillance data of invasive Escherichia coli isolates, but none of several tested

approaches provided a sufficient resolution for clear discrimination between resistance

towards different classes of antibiotics. However, in combination with socioeconomic data,

the overall clinical resistance situation could be predicted with good precision. We conclude

that analyses of bacterial genes in sewage could contribute to informing management of

antibiotic resistance.
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Antibiotics are critical for the prevention and treatment of
bacterial infections. The global rise in antibiotic resistance
is therefore threatening large parts of modern health care.

Regional, up-to-date surveillance data on resistance levels to
different antibiotics in different pathogens is critical for guiding
optimal empirical antibiotic treatment1. Surveillance also serves
the purpose of identifying temporal resistance trends that can be
used to guide or evaluate interventions to reduce the development
of multiresistant bacteria.

Traditional surveillance data are based on data from a large
number of clinical isolates, each subjected to susceptibility testing
with standardized methods. As this approach is labor intensive,
expensive and needs specialized infrastructure2, surveillance data
are lacking or very limited in many parts of the world, not least in
low- and middle-income countries3. In addition, the collection of
resistance data from clinical isolates is far from standardized
across the world4, making comparisons between countries chal-
lenging and hampering global efforts to tackle the resistance
crisis.

For decades, municipal sewage has been used to monitor
poliovirus at a community level5. More recently, a similar
approach has been taken to capture regional development of
SARS-CoV-2 prevalence6,7. Sewage epidemiology has also been
proposed as an alternative or complementary method to over-
come some of the challenges in antibiotic resistance surveillance,
particularly the need for extensive patient sampling and the
limited resources and infrastructure in low- and middle-income
countries. In addition, sewage epidemiology can be used to
sample entire populations without linking data to individuals,
avoiding ethical challenges related to traditional surveillance1,2,4

and even serve as an early warning system for new or rare forms
of antibiotic resistance8,9. Clinical resistance surveillance is often
biased to more severe cases as only a minority of non-hospitalized
patients are being sampled and samples taken after initial treat-
ment failure are overrepresented2. In contrast, sewage-based
surveillance covers the whole population served by the sewage
network and therefore presents a less-biased picture of regional
resistance levels8–11. The differences in resistance prevalence in
hospital and community waste waters also demonstrate the bias
in clinical settings2,8,9.

There are at least two main approaches for sewage-based
antibiotic resistance monitoring; isolate-based approaches or
gene-based analyses of complex microbial communities. Some of
the advantages and disadvantages of both approaches have
recently been reviewed12. In short, the isolate-based approach
uses susceptibility testing of many individual bacterial isolates
and thus offers direct information about the resistance pheno-
type, including multi-resistance patterns in clinically relevant
species. However, although a large number of isolates can be
efficiently collected and managed as recently indicated by a global
monitoring of cefotaxime-resistant coliforms from sewage13, this
approach can be as labor intensive as clinical surveillance with
regard to the susceptibility testing part. The gene-based approach,
on the other hand, uses the metagenomic DNA of the sewage
community and can either target the whole resistome (shotgun
sequencing) or focus on a specific set of resistance genes (PCR).
Therefore, the gene-based approach reflects the genetic basis for
resistance in all species present in the sewage, but cannot offer
direct information on resistance phenotype. The infrastructure
for sequencing and bioinformatic analyses could easily be cen-
tralized and only sampling would need to be done locally, further
reducing the costs and infrastructure needed and making the
method easier to standardize4. There are, however, several con-
ceptual limitations with a metagenomic approach. These include
(1) prediction from genotype to phenotype (2) challenge to
identify point mutations leading to antibiotic resistance, (3)

shotgun sequencing makes it hard to assign resistance genes and
thus predicted resistances to specific species, and (4) the challenge
to identify multi-resistance patterns without data on isolates.

Depending on the intended purpose of surveillance and thus
the need for precision, metagenomic analyses may still prove to
be valuable, but until now, an evaluation of how well such data
correlates to regional clinical surveillance data has been lacking4.
Some data do suggest that it could be possible to predict clinical
resistance levels from sewage data. In a trans-European high-
throughput PCR-array based surveillance study, the abundance of
sewage antibiotic resistance genes (ARGs) was shown to mirror
the north-to-south clinical resistance gradient in Europe14. Fur-
thermore, resistance levels of Escherichia coli isolated from sewage
have recently been shown to correlate with the resistance levels in
clinical isolates1,2.

Recently, a global monitoring of ARGs in sewage was con-
ducted, including over 60 countries15. There were systematic
differences in ARG prevalence between continents; Asia, Africa,
and South America having a higher incidence of ARGs in sewage
compared with Europe, North-America, and Oceania. Antibiotic
usage is often considered to be the most important factor driving
resistance, but in this study the differences in sewage resistance
could be best explained with socioeconomic factors15. Another
study came to similar conclusions when analyzing global clinical
resistance data; antibiotic use was not the best predictor, but
rather socioeconomic factors16. Both Collignon et al.16 and
Hendriksen et al.15 observed that factors related to sanitation/
hygiene are significantly associated with antibiotic resistance,
both when expressed in terms of ARG abundances in sewage and
when expressed in terms of the proportion of resistant E. coli in
clinical isolates. Thus, both studies hypothesized that contagion,
the spread of resistant bacteria, could be one of the most
important drivers of the prevalence of clinical resistance globally.
Poor hygiene, poor sanitation, and poor infrastructure enhance
contagion, resulting in more individuals being infected with/
carriers of resistant strains17. This could, in turn, lead to increased
shedding of resistant bacteria on a community level, which could
be reflected in sewage. Resistance in sewage bacteria is, con-
ceptually, a more direct measure of resistance in a population
than both antibiotic use or social factors, mirroring insufficient
transmission control. Data from sewage therefore has the
potential to reflect clinical resistance levels regardless of drivers,
and possibly better than previous models based on social factors.

As metagenome-based surveillance data quantify the whole-
community resistome, it is not obvious which genetic markers
correlate best with clinical resistance to the different classes of
antibiotics in infections caused by a given pathogen. An optimal
marker should be both specific and sensitive to be able to accu-
rately reveal the local clinical resistance levels in a given species to
a given antibiotic. One apparent approach would be to quantify
ARGs for each class of antibiotic in sewage metagenomes sepa-
rately, but given that ARGs are unequally distributed across
species, this might be misleading when correlating the sum of
ARGs to the resistance in clinical isolates of a given species. A
way to at least partly circumvent this could be to use only ARGs
commonly found in a given species, e.g., ARGs in the E. coli
accessory genome. Still, a large portion of the ARGs known to
occur in E. coli may actually be present in other species in the
sewage community, thus likely reducing the correlation. As a
broad indication of resistance, the prevalence of class 1 integrons,
more specifically the intI1 integrase gene, has previously been
linked to phenotypic resistance in E. coli18,19, hence the correla-
tion to this gene could be worthwhile investigating.

Here, we aimed to explore whether sewage metagenomic data
reflect clinical antibiotic resistance on a global scale and if so, how
accurately it is possible to predict clinical resistance using models
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based on sewage metagenomic data. To achieve this, we investi-
gated the correlation between reported clinical resistance pre-
valence in bloodstream infections of E. coli or an aggregated
resistance index from16 and either (1) total ARGs, (2) total ARGs
for each antibiotic class separately, (3) the 10 most abundant
ARGs that are known to be present in the E. coli pangenome, (4)
the 10 most abundant E. coli ARGs separated by antibiotic class,
(5) IntI1 integron gene abundances in sewage. Furthermore, we
(6) compared whether sewage data correlated better to the pre-
valence of clinical resistance compared with socioeconomic fac-
tors. Last, we (7) explored if models based on both sewage data
and socioeconomic factors would give the best model for clinical
resistance prevalence in terms of model fit. After a leave-one-out
cross-validation of the models, we (8) used sewage data together
with socioeconomic factors to predict clinical antibiotic resistance
in countries where surveillance data are lacking.

Results and discussion
In this study, we explored the possibility to use country level
relative abundance of ARGs in sewage metagenomic data to
predict country level proportion of antibiotic-resistant clinical
isolates. We annotated the total acquired resistance gene abun-
dance and the class 1 integron (intI1) integrase gene abundance
from recently published global sewage metagenomic data set from
ref. 15. Publicly available country level data on the proportion of
resistant invasive E. coli clinical isolates was collected based on
availability for four different antibiotic classes; aminopenicillins,
fluoroquinolones, third-generation cephalosporins and ami-
noglycosides. In addition, we used the “aggregate resistance”
index as generated by Collignon et al.16, representing the com-
bined average prevalence of E. coli and Klebsiella spp resistant to
third-generation cephalosporins, fluoroquinolones, and carbape-
nems, and meticillin-resistant Staphylococcus aureus.

First, the annotated acquired ARGs in the sewage metagenomic
data were correlated with the proportion of resistant clinical E.
coli using a beta regression model. The relative abundance of all
ARGs could, however, not to a large extent, explain the variability
in the clinical resistance patterns (p value < 0.05, R2 0.12–0.24,
Table 1). A similar result was obtained when separating the ARGs
into individual resistance classes (i.e., beta-lactam, fluor-
oquinolone, third-generation cephalosporin, and aminoglycoside
resistance genes). Here, only the models where beta-lactam ARGs
were correlated with clinical aminopenicillin resistance had a
noticeable higher model fit than when using all combined ARGs
(p value < 0.05, R2 0.31, Supplementary Fig. 2 and Table 1). Next,
in an effort to further reduce the noise in the data, only the ten
most common acquired ARGs found in all sequenced E. coli

genomes were used. These models showed higher model fits for
all resistance classes compared with the models using all ARGs
found in the metagenomic data (R2 0.41, 0.49, 0.39, and 0.20 for
the clinical aminopenicillin, fluoroquinolone, third-generation
cephalosporin and aminoglycoside resistance, respectively, Fig. 1,
Table 1).

We observed that one country, Malta, created an outlier that
strongly affected the models with the ten most common E. coli
ARGs. When Malta was excluded from the analysis, the model fit
increased substantially for all clinical resistance classes (R2 values
of 0.72, 0.67, 0.72, and 0.44 for the aforementioned clinical
resistance profiles, Supplementary Fig. 3). However, as we had no
prior reason to believe that the data obtained for Malta is erro-
neous, we chose to keep it in the model. When using the ten most
abundant ARGs in E. coli separated by the antibiotic class they
confer resistance to, a better model fit was achieved for the beta-
lactam and third generation cephalosporin ARGs predicting
aminopenicillin and third generation cephalosporin resistance (R2

values of 0.48 and 0.53, respectively). It should be noted that
cross-correlations (using ARGs for one antibiotic class to corre-
late with clinical resistance to another class) was approximately as
good, or even better (e.g., beta-lactam ARG model for clinical
fluoroquinolone resistance) than within-class correlations
(Table 1). Although this may appear counterintuitive, this could
have multiple explanations. Even with the attempt to use only
ARGs found in E. coli, a large portion of the ARGs could very well
be present in other species in the sewage. The relative abundance
of the genus E. coli in the sewage metagenomes varied from 0.1 to
10%, with a mean of 1%15. Our inability to capture mutation-
based resistance, the dominant factor behind, e.g., fluor-
oquinolone resistance, is another possible reason. It should be
noted that clinical resistance prevalence to the investigated anti-
biotic classes were strongly correlated to each other (Supple-
mentary Fig. 1). With such close correlation, it becomes more
difficult to find models that can explain resistance to individual
classes of antibiotics with high specificity.

Given that the class-related information on ARGs had a limited
contribution to the correlations, the correlation between intI1
integrase gene abundance and prevalence of resistance to different
classes of antibiotics in clinical E. coli isolates was investigated.
Here, the level of correlation varied substantially between anti-
biotic classes (p value < 0.01, R2 0.31–0.66, Fig. 2, Table 1). The
best model was found for fluoroquinolone (R2 0.66) and third-
generation cephalosporin (R2 0.62) resistance in clinical isolates.
The model for aminoglycoside resistance had the lowest model fit
(R2 0.31). Although total acquired ARG and intI1 gene
counts were correlated in the sewage data (p < 0.01, R2 0.42,

Table 1 The obtained R2 from the beta regression analysis using the metagenomic sewage data.

AP-res. FQ-res 3GC-res AG-res Aggregated resistance

All ARGs 0.24 0.24 0.21 0.12 0.32
BL-ARGs 0.31 0.22 0.21 0.12 0.16
FQ-ARGs 0.26 0.26 0.23 0.14 0.08
Third gen. Ceph. ARGs 0.34 0.20 0.24 0.10 0.17
AG-args 0.17 0.21 0.14 0.10 0.29
E. coli top ten ARGs 0.41 0.49 0.39 0.20 0.30
E. coli top ten, no outlier 0.72 0.67 0.72 0.44 0.34
E. coli top ten BL-ARGs 0.48 0.38 0.46 0.16 0.07
E. coli top ten FQ-ARGs 0.17 0.15 0.14 0.09 0.03
E. coli top ten third gen. ceph. ARGs 0.53 0.25 0.43 0.12 0.21
E. coli top ten AG-args 0.24 0.33 0.24 0.17 0.31
IntI1 0.59 0.66 0.62 0.31 0.24
Combined IntI1+ socioeconomical factors 0.85 0.80 0.86 0.68 0.76
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Fig. 1 E. coli clinical resistance models based on the ten most common ARGs in E. coli. Proportion of resistant invasive E. coli clinical isolates to
aminopenicillins a, fluoroquinolones b, third generation cephalosporins c, and aminoglycosides d against the relative abundance of the 10 most common
ARGs in E. coli. The blue line shows the fitted clinical resistance from the beta regression model with resistance gene abundance as explanatory variable.
Note that for some countries, data on clinical resistance was not available for all classes.
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Fig. 2 E. coli clinical resistance models based on the intI1 integrase gene. Proportion of resistant invasive E. coli clinical isolates to aminopenicillins a,
fluoroquinolones b, third-generation cephalosporins c, and aminoglycosides d against intI1 integrase gene abundance. The blue line shows the fitted clinical
resistance from the beta regression model with intI1 abundance as explanatory variable. Note that for some countries, data on clinical resistance was not
available for all classes.
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Suppl. Material), intI1 overall performed better. The association
of intI1 to phenotypic resistance in E. coli18,19 might have less
noise compared with the resistance gene approach, which is
hampered by the broad distribution of ARGs in bacteria,
explaining the overall better performance. This, in turn, would
mean that this approach might not be optimal for other clinically
relevant pathogens.

When modeling the aggregated resistance index, neither the
intI1 abundance nor the acquired E. coli ARGs had as good model
fit as for E. coli clinical resistance patterns. However, they were
still significantly associated (p value < 0.01, R2 0.24 and 0.30,
respectively, Table 1, Fig. 3a and Supplementary Fig. 4). In the
intI1 model, two outlier data points (Nigeria and Peru) had very
high intI1 abundance, whereas the aggregated resistance index
was moderate. Removing these two data points enhanced the
model considerably (p value < 0.01, R2 0.43, Fig. 3b). There was
no clinical resistance surveillance data for E. coli available from
these two countries. The outliers could, potentially, be caused by
an error in the aggregated resistance index data since higher
values, at least for Peru, were already reported in 2008–200920.
There is only sparse data on clinical resistance prevalence for
Nigeria, but very high resistance levels for E. coli and Klebsiella
against third-generation cephalosporins (80–90%) have been
reported21.

Taken together, the total abundance of all acquired ARGs, the
top ten most common E. coli associated acquired ARGs and intI1
gene counts could be used to predict clinical resistance prevalence
with varying precision. Sewage metagenomic data also appears to
provide more accurate predictions of clinical resistance levels to
some antibiotic classes than others. As intI1 integrase gene counts
overall performed the best in our analysis, and is a considerably
simpler measure than a large set of ARGs, it was used in further
analyses. These results should therefore be interpreted as indi-
cations of the overall resistance prevalence. Therefore, resistance
patterns to any antibiotic classes that do not follow the overall
resistance pattern would be predicted less accurately.

Although sewage metagenome data alone correlated with
clinical resistance with reasonably high precision in most cases,
there was still a lot of variability in the data that could not be
explained with the sewage data alone. Socioeconomic factors have
been shown to be good predictors of clinical resistance16,17.
Previous results suggest that contagion may be one of the most

important factors contributing to the prevalence of clinical
resistance17. Countries with better sanitation and better health
care infrastructure, and therefore less contagion in, e.g., hospitals,
could have lower clinical resistant prevalence despite the higher
resistance levels in the overall population. Since socioeconomic
factors, most likely, have an indirect influence on the clinical
resistance levels, the sewage data could be a more direct measure
reflecting the prevalence of resistance in local populations.

To compare correlations between sewage data and prevalence
of clinical resistance to correlations between socioeconomical
factors and clinical resistance prevalence, we collected selected
socioeconomic factors for all included countries from the World
Bank database. Gross domestic product (GDP) and the propor-
tion of the population living in urban areas correlated with each
other and the factors related to basic living conditions; access to
electricity, basic sanitation index and availability of clean drinking
water were strongly correlated with each other (Suppl. Fig. 5).
Owing to the correlations between the collected socioeconomical
factors, only basic sanitation, GDP and proportion of urban
population were used in modeling clinical resistance rates.
Models based on these three socioeconomical factors performed
better than models based on sewage data only (R2 0.68–0.84,
Suppl. Table 1). This showed that although being indirect mea-
sures of clinical resistance, socioeconomical factors correlated
with clinical antibiotic resistance prevalence on country level,
thus confirming the results by16,17.

To explore if we could refine our models further, we proceeded
by combining socioeconomic factors with our sewage-based
models. The simplistic intI1 model performed better or equally
well as the different ARG models and was therefore used in the
combined models. Relative intI1 abundance in the sewage
metagenomes, the logarithm of GDP, basic sanitation index and
the proportion of urban population were included in all models of
clinical resistance. The socioeconomical factors were negatively
correlated with clinical resistance; more urban population, better
sanitation and bigger GDP predicted lower clinical resistance
rates, whereas higher sewage resistance predicted higher clinical
resistance (Figs. 4 and 5). In all models, except for aminoglycoside
resistance, a combined model with sewage data and socio-
economical factors gave a better model fit than using either alone
(Table 1, Supplementary Table 1). Already in the sewage data
alone model, the aminoglycoside resistance model had the lowest
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Fig. 3 Aggregated resistance model based on intI1 integrase gene. Aggregated resistance index as described in Collignon et al.16 correlated with
normalized intI1 gene abundance in sewage. All data in a and two outliers (Nigeria and Peru) removed in b. The blue line shows the fitted clinical resistance
from the beta regression model with intI1 abundance in sewage as an explanatory variable.
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Fig. 4 E. coli clinical resistance models based on combined sewage and socioeconomical data. Proportion of clinical resistant invasive E. coli isolates to
aminopenicillins a, fluoroquinolones b, third-generation cephalosporins c, and aminoglycosides d against relative intI1 integrase gene abundance in sewage.
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model fit and the combination with socioeconomic factors did
not give a better model fit than using socioeconomic factors alone
(Table 1 and Fig. 4d).

Based on the best combined models, we assessed how well
clinical resistance could be predicted in countries where we did
not have clinical surveillance data. To estimate how good the
models are at predicting clinical resistance, a leave-one-out cross-
validation was performed. From the cross-validation, the mean
absolute error (MAE) was calculated for each resistance profile
(aminopenicillin, fluoroquinolone, third-generation cephalos-
porins, aminoglycoside and aggregated resistance index). In
general, all models performed well in predicting clinical resistance
with the MAE ([%]) ranging from 5.99 (aminopenicillin) to 8.27
(fluoroquinolone) (Methods, Supplementary Table 2, Supple-
mentary Fig. 6). Next, using the combined models with socio-
economic factors and sewage data for each resistance class, we
predicted the proportions of resistant clinical isolates for all
countries where clinical resistance data were lacking from any of
the classes included in this study. Not surprisingly, the models
predict the highest resistance rates for countries in Africa, South
Africa being an exception (Fig. 6). For Georgia and Macedonia,
the clinical resistance data was based on very few isolates (<100),
so these countries were not included in the original models.
However, our models predict lower clinical resistance levels in

these two countries than the surveillance data, suggesting that the
data based on only a few isolates was potentially biased towards
more severe clinical cases and does not reflect the real prevalence
of clinical resistance in these countries (Fig. 6). As stated earlier,
Nigeria and Peru seemed to be outliers with high intI1 abundance
in sewage, but only moderate aggregated resistance index. Our
combined models predict very high clinical resistance levels in
Nigeria and Peru (Fig. 6). There is also support in the literature
for the higher clinical resistance levels for these two
countries20,21. Clinical resistance data obtained from Resistance-
Map22 for Nigeria shows a high level resistance in E. coli against
third-generation cephalosporins and fluoroquinolones (>75% in
2017), in line with the predictions made by our model. Resistance
data for Peru is lacking from ResistanceMap.

To get an overview of the global clinical resistance we used the
model for the aggregated resistance index (from ref. 16) for all
countries where sewage resistance and socioeconomical data were
available (Fig. 7, for other classes see Supplementary Fig. 7). Our
global predictions were in line with previous literature and
showed that the clinical resistance levels are highest in South
America, Africa, and Asia16,23. Of course, these are predictions
rather than direct observations. Although the leave-one-out
cross-validation added confidence to the predictive power of the
model, and could reflect accurately the overall clinical resistance

0.97

0.94

1.00

0.93

0.21

0.59

0.66

0.67

0.78

0.09

0.86

0.71

0.67

0.73

0.08

0.45

0.78

0.61

0.11

0.25

0.22

0.17

0.27

0.61

0.47

0.48

0.50

0.35

0.46

0.36

0.53

0.39

0.47

Pred AP Pred FQ Pred 3rd GC Pred AG Pred Agg

Canada

Singapore

USA

Israel

Colombia

Kazakhstan

Cambodia

Ethiopia

Togo

Pakistan

Viet Nam

Nepal

Senegal

Cote d'Ivoire

Tanzania

Nigeria

Peru

Ghana

Zambia

Botswana

Sri Lanka

Moldova

Brazil

Iran

Albania

Georgia

Macedonia

Continent

Continent
Africa

Americas

Asia

Europe

0.2

0.4

0.6

0.8

Fig. 6 Predictions of clinical resistance prevalence using combined models. Predictions for countries where we did not have clinical resistance data from
at least one of the resistance classes, including the aggregated resistance index, based on the final beta regression models including both relative
abundance of relative intI1 integrase gene abundance in sewage and socioeconomic data. In cases where there was clinical surveillance data for some
antibiotic classes available, only the surveillance data are shown as proportion. The numbers shown for Georgia and Macedonia are based on very few
(<100) isolates, so they were not included in the models, but were included in the predictions. The values from surveillance are displayed in top of the
predicted ones. Pred AP predicted aminopenicillin, Pred FQ predicted fluoroquinolone, Pred 3rd GC predicted third-generation cephalosporin, Pred AG
predicted aminoglycoside, Pred Agg predicted aggregated resistance index.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01439-6 ARTICLE

COMMUNICATIONS BIOLOGY |           (2020) 3:711 | https://doi.org/10.1038/s42003-020-01439-6 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


situation in these countries, values should be interpreted with
caution.

Sewage metagenomic data certainly have limitations and can-
not directly replace clinical surveillance. For example, current
methods are unable to link resistance genes found in sewage
metagenomes to their bacterial hosts. As resistance patterns in
different pathogens are correlated (Supplementary Figs. 9–12) it
is plausible that the resistance of additional species also could be
predicted by sewage metagenomics data, but such models would
need further optimization and validation. With our models, some
resistance patterns are better predicted than others and the results
most likely will provide more information about the overall
prevalence of antibiotic resistance than giving a high resolution of
specific resistance profiles for a given species. As mentioned,
many resistance phenotypes are a result of point mutations, and
detecting these with a metagenomics approach is challenging.
From a conceptual point of view, isolate-based approaches are
therefore likely needed for sufficient precision for all classes of
antibiotics. A metagenomic approach could still provide impor-
tant and cost-efficient information on geographical and temporal
trends, thereby indicating where stewardship actions are effective,
ineffective or particularly needed.

In conclusion, sewage data alone correlated to the overall
clinical resistance levels. However, despite efforts to use the
information from the abundances of separate ARG classes, the
correlations to clinical resistance did not improve. A model based
only on relative abundance of intI1 performed better or on par
with all tested approaches based on ARGs. Models based on
sewage metagenomic data had, furthermore, a lower model fit
than models based on socioeconomic factors. One important
reason for this is likely the differences in bacterial populations
between those causing disease and those contributing to gene
counts in the sewage metagenomes, e.g., not all E. coli strains
cause disease in humans. Another reason is the difficulties to
translate abundances of disconnected single resistance genes into
bacterial phenotypes, including the inability to detect mutation-
based resistance. There are also differences in the human popu-
lations covered, as sewage is usually from one or a few cities
covering all inhabitants including carriers without disease,
whereas clinical resistance data are usually generated on a
country-wide basis but with a bias towards hospitalized, sick

patients. In here, the sewage data were from one to few sewage
treatment plants and then extrapolated to represent the whole
country, as the clinical data were on country level. Optimal data
would include time-matched, clinical resistance data representing
the same population served by the sewage treatment plant. The
best models were achieved by combining sewage metagenomic
data with socioeconomic data. Such a model could, as demon-
strated here, be used for clinical resistance prevalence predictions
to get a view of global clinical resistance prevalence including
countries where surveillance data on clinical resistance is lacking.

Methods
Data extraction. All data used in this study were retrieved from public databases
or published articles (Table 2).

Metagenome sequence analysis. Raw sequencing data were downloaded from
ENA under the project accession ERP015409. Remaining adapter sequences were
removed with cutadapt v. 2.724. The trimmed reads were searched for ARGs
against the ResFinder database v.3.1.025 using DIAMOND v. 0.9.l1426 with para-
meters “–id 90 –min-orf 20 –seq no” and the ARG counts in each sample were
normalized with the total sequencing effort (M bases). Sum of normalized gene
counts was used as a proxy for sewage resistance load. The intI1 integrase gene
abundance was determined in similar fashion (except “—id 95”) using the Mobi-
leGeneticElementDatabase from ref. 27 and adding up the intI1 integrase gene
counts. For countries with more than one metagenome, the mean of counts
was used.

To determine which ARGs that were connected to E. coli, all genomes
annotated as E. coli were downloaded from NCBI genbank in December 2019. The
genomes were then searched for ARGs against the Resfinder database using
DIAMOND v. 0.9.14 with parameters “blastx –max-target-seq 0 –subject-cover 70”.
The best scoring hits with a sequence identity higher than 98% at a given position
in the genome were then extracted and used in the subsequent analysis. The most
common ARGs in the available E. coli genomes were determined through counting
the occurrence of each extracted hit.

Statistics and reproducibility. The prevalence of clinical resistance was modeled
using beta regression with log-log link function using function betareg from
betareg v. 3.1–2. We used the pseudo R2 values calculated by betareg function and
referred to them as R2 values for clarity throughout the manuscript. The difference
in model fit between nested beta regression models were assessed using likelihood
ratio test with function lrtest from package lmtest (v.0.9.37). The PCA ordinations
were calculated using function rda from vegan v. 2.5–6. The correlation plots were
drawn using function ggpairs from GGally v.1.4.0. The heatmap was produced with
package pheatmap v. 1.0.12. All other figures were produced with ggplot2 v. 3.2.1.

The leave-one-out cross-validation was performed as follows. For each type of
clinical resistance, the sewage data together with the socioeconomic data were

-50

0

50

-100 0 100 200

Longitude

L
a

ti
tu

d
e

0.2 0.4 0.6

Predicted aggregated
resistance index

Fig. 7 Global predictions for aggregated resistance index. Yellow means lower resistance and red higher resistance levels. Countries in gray have no
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modeled as above but with one country excluded. The level of clinical resistance
was then predicted for the excluded country using the obtained model. This was
repeated for each country in the data set. For each country the absolute error,
consisting of the absolute value of the difference of the real value and the predicted
value, was calculated. The mean absolute error (MAE) was then calculated based
on the average over the absolute error for all countries.

All data analysis steps were done in R v. 3.6.2. For more-detailed data analysis
see the project analysis repository at: www.github.com/karkman/GlobalSewage.
The project repository also contains all needed numerical data to reproduce the
analyses in this project.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data sets analyzed during the current study are publicly available and listed under
Data extraction in Methods.

Code availability
Detailed data analysis for this study can be found from: www.github.com/karkman/
GlobalSewage.
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