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Towards Robust Visual Localization in Challenging Conditions
CARL TOFT

Department of Electrical Engineering
Chalmers University of Technology

Abstract
Visual localization is a fundamental problem in computer vision, with a mul-
titude of applications in robotics, augmented reality and structure-from-motion.
The basic problem is to, based on one or more images, figure out the position and
orientation of the camera which captured these images relative to some model
of the environment. Current visual localization approaches typically work well
when the images to be localized are captured under similar conditions compared
to those captured during mapping. However, when the environment exhibits
large changes in visual appearance, due to e.g. variations in weather, seasons,
day-night or viewpoint, the traditional pipelines break down. The reason is that
the local image features used are based on low-level pixel-intensity information,
which is not invariant to these transformations: when the environment changes,
this will cause a different set of keypoints to be detected, and their descriptors
will be different, making the long-term visual localization problem a challenging
one.

In this thesis, five papers are included, which present work towards solving
the problem of long-term visual localization. Two of the articles present ideas
for how semantic information may be included to aid in the localization process:
one approach relies only on the semantic information for visual localization, and
the other shows how the semantics can be used to detect outlier feature corre-
spondences. The third paper considers how the output from a monocular depth-
estimation network can be utilized to extract features that are less sensitive to
viewpoint changes. The fourth article is a benchmark paper, where we present
three new benchmark datasets aimed at evaluating localization algorithms in the
context of long-term visual localization. Lastly, the fifth article considers how to
perform convolutions on spherical imagery, which in the future might be applied
to learning local image features for the localization problem.

Keywords: Visual localization, camera pose estimation, long-term local-
ization, self-driving cars, autonomous vehicles, benchmark
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Chapter 1

Introduction

At the most fundamental level, the field of visual localization aims to answer the
question ”Where am I?” based on one or more images. This is a problem which
humans seem to solve almost effortlessly as we go about our daily tasks: we
track our position in the world with little effort, sometimes in previously unseen
environments, and successfully use this information to navigate and plan the path
to our destination. Getting lost is the exception rather than the norm.

However, as often seems to be the case, tasks which humans find easy and
intuitive turn out to be very challenging to find a general algorithmic solution to.
The problem of visual localization is no exception.

In order to provide a satisfactory answer this problem, the system needs some
internal representation of the world, relative to which the answer can be provided,
and it is possible to imagine many different forms in which an answer may be
given. For some applications, an answer such as ”in the living room” may be suf-
ficient, whereas other applications, such as navigation of autonomous vehicles,
may require considerably more precision in the answer. For these applications,
the absolute position in terms of x-, y- and z´coordinates, as well as orientation,
relative to some coordinate system may be desired.

Providing such a six degree-of-freedom position would require a 3D model of
the environment to be constructed beforehand, and the localization would occur
with respect to this map. Map construction and representation are thus closely
linked to the localization problem. In fact, camera-pose estimation forms a core
building block of many 3D reconstruction (often called Structure-from-Motion,
or SfM for short) pipelines, where the 3D model is incrementally extended by
triangulating the position of cameras, one at a time [65, 67].

Fig. 1.1 illustrates the basic goal of the visual localization problem.
While the single-image localization problem is important in its own right, a

common scenario in robotics is that of sequential localization where we wish to
compute the most likely position of a robot, based on all measurements which
have been collected up until the current time. These measurements may contain,

1



CHAPTER 1. INTRODUCTION

Figure 1.1: The camera pose estimation problem. Given one or more input im-
ages, we wish to compute the position of the camera which captured the image,
relative to some map representation of the external world. A very common type
of map is the three-dimensional point-cloud.

for example, a video feed, or a sequence of images from one or more cameras, as
well as measurements from inertial measurement units (IMUs) and wheel-speed
sensors. The goal is then to combine these measurements to obtain a reliable
estimate of the current pose of the vehicle.

The problem of visual localization has received a substantial amount of atten-
tion in both the research community and industry the past few years, much due to
the surge in interest in autonomous vehicles such as drones and self-driving cars.
The camera is often seen as an affordable but information-rich sensor, which
might be used instead of, or as a complement to, more expensive sensor setups
with Lidars and radars. Automotive grade GPS receivers may be used to aid in
positioning, but is often not accurate enough: the positioning error in these kinds
of GPS receivers is often on the order of meters [36], much too high for the appli-
cation. The camera may then be a viable alternative to (or complement to), these
GPS receivers. Of course, there exist more accurate (but also considerably more
expensive) survey-grade GPS receivers, but these may still be subject to signal
acquisition failure in tunnels or indoors. They may also be unreliable in densely
populated cities, where there may be no line-of-sight to the GPS satellites in the
”urban canyons”, deteriorating the localization performance as the signal reflects
off of the tall buildings on the way down to street-level. The camera, if its chal-
lenges can be overcome, is thus seen as an attractive potential sensor for vehicle
localization.

Today, one of the most common pipelines for camera pose estimation utilizes
a 3D model in the form of a point cloud, where each point, in addition to its
Cartesian coordinates, also has an associated descriptor vector (often 128 bytes,
such as for SIFT-descriptors [48]), which encodes the local appearance of the
point as it was seen in the cameras during map building.

In order to localize an image taken somewhere in the map, local image fea-
tures are extracted from the query image, and 2D-3D correspondences are es-
tablished between the features in the query image and the 3D map points, as

2



Figure 1.2: Before pose estimation, matches between the query image and the
3D model are established. Note that some of the matches will typically be incor-
rect (shown in red). These 2D-3D correspondences are then fed to a camera pose
estimation method which computes the pose of the camera for which as many of
the 3D matches in the map as possible are projected down onto the corresponding
2D points in the image.

illustrated in Fig. 1.2. This is typically done by, for each keypoint in the image,
finding its approximate nearest neighbour in the map in terms of descriptor dis-
tance using a kd-tree search [54]. Using these matches, the pose which agrees
with the largest number of these matches is then estimated. This may be done
using a perspective-three-point solver [37, 39], in combination with a robust es-
timation technique such as RANSAC [26].

This purely geometrical approach based on local image appearance typi-
cally works well when the query image is taken under similar conditions as the
map. However, if the appearance variation is too large, for instance due to large
changes in viewpoint, lighting, or even seasonal changes, then the local image
appearance may not be discriminative enough to correctly match the 2D fea-
tures to the 3D map. This may then yield too few correct matches to accurately
estimate the camera pose.

Fig. 1.3 illustrates how the same scene can change in appearance across sea-
sons. If an autonomous vehicle is to employ camera-based navigation over a
long period of time, then it should ideally be able to handle these kinds of visual
changes. Creation of accurate maps is a time-consuming and expensive process,
and creating maps for every single conceivable visual condition is unfeasible.
Rather, we desire our localization systems to be robust to these kinds of changes.

While the last few years have seen great progress in this area, the visual
localization systems of today are not able to fully handle these sorts of visual
changes, and developing robust localization methods is a field of active research.
It is also the topic of this thesis.

3



CHAPTER 1. INTRODUCTION

Figure 1.3: Two images from the CMU Visual Localization dataset[8], taken
from approximately the same position, but during different seasons. While
clearly the same spot, matching features based only on local appearance infor-
mation would yield very few correct matches.

1 Thesis aim and scope

In this thesis we address the problem of long-term visual localization, i.e., lo-
calizing images which are taken under conditions very dissimilar to the condi-
tion under which the mapping images were captured. Specifically, we address
the problem of single-image localization, as well as local feature matching be-
tween image pairs. We try to make the localization pipeline more robust by
incorporating higher-level information in the form of semantic information and
pixelwise depth information. By employing a semantically labelled 3D model,
we show how this additional information can be used directly for pose estima-
tion as a replacement for e.g. SIFT, and how it can be used as a complement to
a traditional feature-based pipeline by using semantics to identify mismatched
correspondences (the red correspondences in Fig. 1.2). We show how pixelwise
depth information, obtained from a monocular depth estimation network, can in-
crease the robustness of local features to viewpoint-changes, and also introduce
three new datasets aimed at evaluating long-term visual localization algorithms.
To conclude the thesis, we also include a paper on deep learning for omnidirec-
tional images, since we believe these methods (when they are mature enough)
will be useful for localization and mapping applications.

2 Thesis outline

This thesis consists of two parts. In the first part (of which this is the first chap-
ter), background material is presented in Chapter 2. This is intended as a ”warm
up” containing the necessary background material to comfortably tackle the ap-

4



2. THESIS OUTLINE

pended papers in the second part of the thesis. Readers already familiar with the
camera-pose-estimation problem can likely skip this chapter without any loss of
comprehension when reading the remainder of the thesis. Chapter 3 summarizes
the contents of the five papers, and clarifies the author’s contribution to each of
them. Lastly, Chapter 4 concludes the first part of the thesis and presents a final
outlook on possible future directions for research.

The second part consists of five appended papers, and represents the main
content and novel research work of the thesis.

5
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Chapter 2

Background

The main part of this thesis consists of the papers appended in Part II. However,
research articles are often quite terse and do not elaborate significantly on the
background material since the reader is assumed to already be more or less fa-
miliar with it. This can make reading papers in a new area very challenging, since
the overall setting in which the paper takes place may not be fully explained.

The purpose of this chapter is to serve as such a warm-up and summarize the
relevant background material necessary to understand the contents of the papers
included in Part II, and elaborate some more on the general context that may be
lacking in the individual papers themselves. The structure of the chapter is as
follows: Sec. 1 gives an coarse taxonomy of the visual localization problem, and
some common approaches that may be used to solve it. Sec. 2 introduces what
local image features are, how they can be used to establish matches between
images, and how they often break down in the long-term localization scenario.
Sec. 3 discusses the geometry of camera projection, and how correspondences
between 2D image points and 3D map points may be used to calculate camera
pose relative to a map. Sec. 4 explains how image-retrieval based visual local-
ization works. Lastly, Sec. 5 brings up the topic of semantic segmentations, and
suggests how they may potentially aid in visual localization tasks.

1 Visual localization

As mentioned in the introduction, the problem of visual localization is to deter-
mine the position of the camera which captured one or more images with respect
to a map. There exist many different variations of this problem, with accompany-
ing solutions, depending on what input data is available to aid in the localization
(such as the number of images, any prior information on location, data from ad-
ditional sensors such as from an inertial measurement unit, Lidar, etc) as well as
what representation is used for the map.

7



CHAPTER 2. BACKGROUND

One may roughly categorize the most common localization methods into two
categories [10]: topological and metric. This is not a strict classification, and any
given method may fall somewhere in between.

In topological localization, the map is represented as a discrete set of places,
often encoded as nodes in a graph. The nodes may then represent places, and
adjoining edges correspond to possible paths between these places. The visual
localization problem is the to select, from this finite set of nodes, the one which
corresponds to the position where the image was captured. Depending on what
the graph represents, this may correspond to an answer such as ”in the kitchen”,
or a specific street intersection. This thus corresponds to a discrete classifica-
tion problem. Finer-grained localization could be obtained by placing nodes
densely, and attaching metric coordinates to each node, as done in e.g. [9, 10,
76]. Assigning the query image to a node thus also yields approximate metric
coordinates for the position of the camera.

This discrete form of visual localization is sometimes referred to as visual
place recognition, and is often solved using image retrieval methods, which will
be discussed briefly in Sec. 4.

The other class of localization methods are the metric methods. Here, the
goal is to output the camera position in metric coordinates, such as latitude,
longitude and altitude, or more generally, the coordinates with respect to some
pre-defined coordinate system. In full six degree-of-freedom camera pose es-
timation, the goal is to also estimate the three rotational degrees of freedom,
in addition to the three translational degrees of freedom, for a total of six real
numbers.

Metric localization methods often employ a pre-constructed 3D map of the
environment. By associating landmarks detected by the vehicle’s sensors to land-
marks with known position in the map, it is possible to reason about the position
of the vehicle in the map. However, it should be noted that not all metric local-
ization methods need to rely on an explicit 3D map of the environment. Other
approaches, such using a neural network to directly regress the six degree-of-
freedom pose directly from the image, have been explored [38].

For cameras, the landmarks typically consist of point-features detected in the
image by an image feature detector. These image features form the backbone of
modern 3D reconstruction and visual localization pipelines, and understanding
them is central to understanding the shortcomings of current visual localization
systems in the long-term localization scenario. We will thus describe these local
features more in depth in the following section.

8



2. LOCAL IMAGE FEATURES

2 Local image features

Image feature (or keypoint) detection and description is one of the most funda-
mental problems in computer vision, and forms the foundation on which a large
body of other methods rest [71]. The purpose of the feature detector is to extract
from an image a set of interest points we believe we will be able to redetect in a
different image of the same scene, and the purpose of the descriptor is to encode
the appearance of the keypoints into a descriptor vector, such that keypoints in
the first image can be associated to keypoints in the second image (or map).

If the same set of points can be detected in a different image, we can es-
tablish point-correspondences between images, or between an image and a 3D
model. Image-to-image correspondences can be used for calculating relative
camera pose, which enables subsequent 3D reconstruction of the scene [32].
Image-to-model correspondences allow us to compute the camera pose relative
to the model.

In this section we will first briefly discuss keypoint detectors and descriptors,
and then have a look at them in the context of long-term visual localization.

2.1 Feature detectors

Feature detectors have been studied since the early days of computer vision,
and as such there exist a large number of feature detectors (see e.g. [75] for a
survey). Common among most of them is that they try to find corner- or blob-
like features in the images; flat areas with uniform brightness are not distinctive
enough to match unambiguously across images, and the same is true for edges,
see Fig. 2.1.

Corner detectors work by computing some statistics of the extracted image
patch. For example, they might examine the Hessian, the Laplacian-of-Gaussian
[45], or the Difference-of-Gaussian (DoG) [49] of the image. Other detectors
examine the auto-correlation function of the image [30, 74]: imagine extracting a
rectangular patch centered around the point. If the contents of the patch changes
considerably as we slide the window in any direction (with differences measured
in, perhaps, sum-of-squared difference in pixel intensity between the original
patch and the translated one), then the point corresponds to a corner. On the
other hand, if the patch contents only change in one direction, but are more or
less constant in the other direction, the point likely lies on an edge, and it seems
unlikely we would be able to accurately re-identify it in a different image of the
same scene.
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Figure 2.1: Three example image patches from an image. A feature detector
should trigger on corner-like points we believe we could re-identify in a different
image. Do you think you could find and correctly match the three extracted
patches in a different image of the same scene?

2.2 Feature descriptors

After having identified the keypoints in an image by running a feature detector
on it, we need some way to encode the appearance of the keypoint, so that we
can match it across images, or match it to a corresponding 3D point in a point
cloud. While it is certainly possible in some cases to use a very simple similarity
metric between image patches such as correlation or sum-of-squared-differences
(SSD), the perhaps most widely used way of encoding image patch appearance
is the gradient histogram [19]. The very popular SIFT and SURF features [11,
50] are examples of features which utilize a gradient histogram for describing
the keypoints.

To compute the gradient histogram of a patch, the gradient (horizontal and
vertical derivatives of the pixel intensity) is first computed for each pixel. The
pixelwise gradients are then binned into eight different bins, depending on their
direction. I.e., the sum of the lengths of all gradients pointing in a direction
between 0˝ and 45˝ are put in the first bin, the sum of lengths of all gradients
pointing in a direction between 45˝ and 90˝ are put in the next bin, etc. This
yields a total of eight numbers. An image patch can thus be compressed into
eight numbers, representing, in some sense, in which directions any edges are
oriented, and how strong these are.

However, when condensing a patch centered on a keypoint, the patch is first
subdivided into 4 ˆ 4 sub-patches, and each of these sub-patches is compressed
into a vector of eight numbers using the above method. All these 16 vectors are
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Figure 2.2: Illustration of gradient-histogram computation. The image is divided
into 4 ˆ 4 sub-patches. For each sub-patch, gradients are computed at each
pixel and their magnitudes are added into one of eight bins depending on their
orientation. The total values in these bins yield a descriptor-vector with eight
entries.

then stacked into a single vector of 128 numbers. This vector is then the SIFT-
descriptor of the patch. This process is illustrated in Fig. 2.2 for one of the image
patches from Fig. 2.1.

Now, in order to find point correspondences between two images, or an image
and a map, these local features (consisting of both the set of detections returned
by the feature detector, as well as the corresponding feature descriptors) can be
matched by, for each feature in the image, finding the nearest neighbour in the
descriptor space in the other image (or map).

The SIFT descriptor, while simple, is remarkably effective at matching fea-
tures across images, even under moderate changes of illumination and perspec-
tive distortions. However, while it is illustrative to know how these traditional
feature detectors and descriptors work, it should be noted that recently, learned
features extracted using deep neural networks have started to consistently out-
perform SIFT features on matching tasks. Most notable of these at the time of
writing are perhaps the SuperPoint [20] and D2-Net [21] features. That said, the
SIFT descriptor still remains one of the most popular baselines for comparison
when developing new local image features.

2.3 Feature matching across large appearance changes

While very powerful, the described local image features are not without limi-
tations. They struggle to find correct matches between images taken from very
different viewpoints, such as between two images showing the same street inter-
section but taken from perpendicular streets, or between two images of the same
scene taken during dissimilar environmental conditions. For example, reliably
establishing feature matches between daytime and nighttime images, or between
images taken during different seasons (see Fig. 2.3), remains very challenging
and is still an open problem, and this is also why long-term visual localization is
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Figure 2.3: An example of SIFT-feature matching between two images taken
from approximately the same viewpoint, but during different seasons. A Lowe
ratio of 0.9 was used in the matching process. Not all feature matches are shown,
but only those consistent with the estimated epipolar geometry.

difficult.
Fig. 2.3 shows an example of SIFT-feature matching between two images

taken from approximately the same viewpoint, but far apart in time (during dif-
ferent seasons). Keypoints are extracted using the DoG detector, and then each
feature in the left image is matched using approximate nearest neighbour match-
ing (in descriptor space) to the features in the image to the right. A relative
camera geometry which is consistent with as many matches as possible is calcu-
lated, and the figure shows the surviving, geometrically verified matches. None
of them are correct.

The reason for this failure is two-fold: first of all, the detector does not trigger
on the same set of points in the two images (i.e., the detector is not repeatable
over these appearance variations), and secondly, the descriptor for a given point
changes too much between the images to be reliably matched. The low-level
pixel intensity in a local neighbourhood around any given patch looks completely
different in the two images, even though they correspond to the same point. In
the article [1], several extensive experiments are performed showing (and quan-
tifying) the non-repeatability of the most popular feature detectors for varying
degrees of viewpoint and lighting changes.

If a map is constructed from images captured during the same condition
as in the left image, and we then revisit the same area at a later time, when
the environment looks as in the figure to the right, how do we perform robust
visual localization if traditional local-feature matching yields mostly incorrect
matches? This is the core problem which is discussed in the appended papers in
this thesis.

At this stage, we can make one key observation regarding this simple experi-
ment. If I asked you to manually provide a set of, say, ten point correspondences
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between the two images, would you be able to? Ideally, if they are to be used
for camera pose estimation, the error when ”clicking out” the correspondences
should not be more than a few pixels.

Most likely you would. Though the low-level content of the image may have
changed drastically in any given image patch due to changes in lighting, added
snow, removed leaves and so on, we can (perhaps with some slight effort) match
points based on a higher-level, semantic reasoning. We could match the corners
of the building roof, the corners of the street sign, the tips of the poles in the
picket fence, and so on. None of this would be possible by simply comparing
the low-level image content between pairs of patches; we must reason using
considerably more high-level information about the image contents to find the
correct matches.

It is likely by learning these kinds of higher-level features that local features
based on machine learning have started outperforming traditional features in the
recent literature. Additionally, this thought experiment seems to suggest that
extracting higher-level scene semantics may be useful for the purpose of visual
localization. This idea is explored in the first two appended papers in this thesis.

3 Structure-based localization
Now that we have understood how to identify local features in images, and how
these can be matched between images, we will now have a look at how these
features can be used for the task of visual localization. We will first have a look at
structure-based methods, i.e., methods which employ a 3D representation of the
environment (such as a point cloud) to aid in the localization process. In order
to understand how this is used, we must first have a quick look at the image
formation process for cameras, i.e., the mechanism by which the 3D world is
projected down into a two-dimensional image.

3.1 The camera model

The standard pinhole camera model is a subject which has been written exten-
sively about before, and every course on optics, computer vision and computer
graphics covers this, so it seems somewhat redundant to write yet another intro-
duction. We will here only write down the very basics of camera projection. For
more information, see e.g. Chapter 6 in [31].

The simplest and perhaps most popular camera model is the pinhole camera
model. A pinhole camera, or a camera obscura, is simply a box with a tiny hole
(a pinhole) in one of its sides. When light is emitted from, or scatters off of, an
object in the scene, some of that light might pass through the hole, which we will
call the center of projection O, and will fall onto a point on the opposite side of
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Figure 2.4: Projection of a 3D pointX onto the image plane of a pinhole camera.

the box. An image of the scene will thus form on the inside of the box. If we
were to place a photographic plate on the side opposite from O, an image would
form on the plate. We have thus created a simple camera.

Fig. 2.4 shows the projection process for a point X , with one slight modifi-
cation: the image plane where the image forms is now imagined to be in front of
the center of projection. This is of course not what happens in practice; the im-
age is formed on a plane a distance f behind the center of projection. However,
the image which forms on the physical imaging plane will be a mirror image of
what an observer would see when ”looking out” from O. When displaying the
captured image, it will have to be mirrored in order to display what was actually
seen by the camera. To simplify the calculations, it is more convenient to imag-
ine the image being formed on the image plane placed a distance f in front of
the center of projection.

The relationship between the world pointX and the imaged point xi can now
be deduced from similar triangles. Let X “ pXw, Yw, Zwq and xi “ px, y, fq,
then clearly x “ Xw ¨ f{Zw, y “ Yw ¨ f{Zw.

The equations for camera projections are most conveniently expressed in the
framework of projective geometry. In this framework, it is customary to express
points in 2D and 3D in terms of their homogeneous coordinates: the point px, yq
in IR2 is now represented as px, y, 1q. Furthermore, we identify all points along
the same ray through the origin, i.e., the point px, yq in Euclidean coordinates
is identified with all points ~x “ λpx, y, 1q in homogeneous coordinates, with
λ ‰ 0. Similarly, the point X “ pXw, Yw, Zwq in IR3 is identified with all points
with homogeneous coordinates ~X “ λpXw, Yw, Zw, 1q.

Using this formalism, the camera projection equations derived above can be
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written as

λ~x “

»

–

f 0 0
0 f 0
0 0 1

fi

fl

“

I3ˆ3| ~0
‰

~X, (2.1)

where ~x and ~X are the homogeneous representations of the points x and X , f is
the focal length, I3ˆ3 is the 3ˆ 3 identity matrix, and ~0 is the vector of all zeroes
in IR3.

To obtain the final projection equations for the pinhole camera, two addi-
tional things need to be modified. First, the vector x is measured in meters (or
whichever unit of length is used to express the focal length f ). These coordinates
are often called the normalized image coordinates. However, when working with
images, one initially obtains the image features in terms of their pixel coordi-
nates in the image, counting rows from up to down, and columns left to right,
with the pixel p1, 1q being in the top left corner. To transition from normalized
coordinates to pixel coordinates, one multiplies the normalized coordinates by
the camera calibration matrix K given by

K “

»

–

αx s cx
0 αy cy
0 0 1

fi

fl , (2.2)

where αx and αy is the focal length in terms of pixels (these are identical if the
pixels are square), s is called the skew and is zero for rectangular pixels, and the
point pcx, cyq is the principal point in pixel coordinates, i.e., the point where the
optical axis intersects the image plane.

Lastly, the camera may not actually be located at the origin in the coordinate
system of the 3D world, and it need not be oriented as shown in Fig. 2.4. Suppose
instead that the center of projection is located at some arbitrary position C, and
that the camera has some orientation described by the rotation matrix R, which
brings the camera coordinate axes to the world coordinate axes, then the final
projection equation may be written

λ~x “ P ~X, (2.3)

where
P “ KRrI3ˆ3| ´ Cs (2.4)

is called the camera matrix, which fully determines the projection of world points
into image coordinates.

Note that the camera matrix contains five intrinsic parameters, related to the
camera’s internal workings (sensor size, focal length, skew, etc.), and six extrin-
sic parameters (related to the position of the camera in the external world), for a
total of eleven parameters.
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In the visual localization problems discussed in the papers in this thesis, the
internal parameters have all been determined beforehand in a calibration proce-
dure. This is typically done by taking several pictures of a calibration object
whose physical dimensions are known very precisely [79].

One final thing worth bringing up before moving on to structure-based cam-
era pose estimation, is that the pinhole camera model is an idealized, mathemati-
cal model for the image formation process. In practice, since the pinhole camera
only lets in a very small amount of light, a larger aperture is needed (the exposure
time for the world’s first pinhole camera was around eight hours [33]). However,
increasing the aperture size leads to blurry images in a pinhole camera, so a lens
is placed in the aperture to focus the light. Real optical systems can be quite
sophisticated, and the lenses introduce several different kinds of aberrations in
the optical system, one of which is that of non-linear distortion.

An ideal pinhole camera maps lines in 3D to lines in the image, but non-
linear distortion causes these lines to map onto curved arcs in the image, often
with increasing distortion as one moves away from the principal point. However,
this type of distortion has been studied for a long time, with its roots in the
photogrammetric community [13, 25], and simple and accurate models for the
non-linear distortion have been created. These distortion parameters are typically
estimated during the camera calibration procedure [79], and distorted images
can then be rectified into corresponding pinhole camera images with sub-pixel
accuracy.

3.2 Correspondence-based camera pose estimation

Now that we understand the camera model, we are in a position to look at how
structure-based pose estimation works. The problem of estimating the camera
pose from a set of point or line correspondences is perhaps one of the oldest
problems of computer vision, and there exists a vast literature on the subject. In
this section we will summarize the most important points needed to understand
the papers in Part II.

Minimal solvers

Assume that we have identified a set of points txiuni“1 in the image, and have
matched these to a set of 3D points tXiu

n
i“1 in a 3D point cloud. We can then

write down the projection equation (2.3) for each 2D-3D correspondence. Note
that the projection equations yield three equations per correspondence, but each
correspondence also introduces an extra unknown λ. Each correspondence thus
fixes a net two degrees of freedom in the camera matrix. If the camera intrinsics
are known, e.g., if we have calibrated the camera beforehand, there are a total
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of six unknown degrees-of-freedom in the camera matrix, corresponding to the
position of the camera center, and the camera orientation.

It thus seems a total of three correspondences should in general suffice to
compute the camera pose. This is indeed the case. This problem is known as the
perspective-three-point problem (P3P), and many different methods for solving
this problem have been presented over the years [27, 37, 39], with the first known
solution dating back to 1841 [28].

A classical way of solving the problem is to, for each pair of points, use the
law of cosines to formulate a quadratic equation in the unknown depths of the 3D
points [26, 46, 53]. The three possible pairs thus yield three quadratic equations
in the three unknown depths. One may solve this system in a variety of ways.
One way is to use the Sylvester resultant to successively reduce the system into
a single fourth degree equation, which will yield up to four possible solutions to
the problem [27]. In general, a fourth correspondence is needed to disambiguate
the solution. For four or more point correspondences, there exist linear methods
for calibrated camera pose estimation [2, 58].

In computer vision, methods which solve a problem using only the mini-
mum number of correspondences required theoretically are often called minimal
solvers. They play a central role in robust estimation, which we will see below.

The P3P solvers mentioned above is one kind of minimal solver, but there
exist other kinds of minimal solvers for camera pose depending on what kind of
information is available. For example, if the gravity direction is known in the
camera reference frame (perhaps supplied by an IMU, or estimated from van-
ishing lines in the image [12]), the camera pose only has four extrinsic degrees
of freedom left, enabling pose estimation from only two point correspondences
[41].

Robust estimation

Once correspondences between the image and a map have been established, feed-
ing all correspondences to an n-point pose solver to estimate the camera pose is a
very bad idea. The reason is the presence of outliers, in the data, i.e., mismatched
correspondences which are completely wrong. Including these in a pose estima-
tion routine which minimizes an algebraic error or the geometric reprojection
error of the correspondences will introduce gross errors in the estimated pose. A
way to remove outliers, or to downweigh their contribution to the error function
must be devised.

The undoubtedly most popular technique for outlier detection and removal
in computer vision is the random sample consensus maximization (RANSAC)
procedure [26]. This method is not limited to only camera pose estimation, but
works in a wide variety of robust estimation problems, such as line and plane
fitting, 2D and 3D homography estimation, and so on.
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The main idea is to randomly sample a minimal subset of the correspon-
dences, i.e., extract a subset which is just large enough to apply a minimal solver
on it. For calibrated camera pose estimation, a subset of three correspondences
would be extracted. Once the camera pose (or homography, or whichever type
of model it is we are estimating) has been computed from the minimal subset,
we check how many of the remaining correspondences agree with this model,
within some pre-specified error tolerance. For camera pose estimation, we may
project down the 3D points of the remaining correspondences, and measure the
reprojection error. We count the number of inliers (the size of the consensus
set) for the estimated model. We repeat this procedure a pre-specified number of
times, and simply return the model with the largest consensus set.

Typically, the final pose is then refined using the whole consensus set, using
an iterative local optimization procedure to minimize the reprojection error of
the correspondences in the consensus set.

RANSAC is not the only possible approach to handling outliers, and there
exists a large body of work concerned with developing other kinds of robust
estimation techniques, such as globally optimal model fitting under the L2 norm
[7], and methods based on branch-and-bound [22, 23]. However, these methods
tend to suffer from an exponential worst-case runtime.

Due to its simplicity and generality, RANSAC remains one of the most pop-
ular robust estimation method. However, it has several shortcomings worth men-
tioning. First, RANSAC is clearly not guaranteed to return the optimal solution.
Secondly, the algorithm may be sensitive to the selected error threshold: the
model calculated from a set of correct correspondences may not actually have a
large consensus set due to noisy observations. Lastly, the runtime of RANSAC
increases very rapidly as the ratio of outliers approaches one. This is especially
a problem in long-term visual localization, where a large fraction of the corre-
spondences are expected to be incorrect due to the large appearance variations
of the scene, as well as in large-scale localization, where the number of correct
matches typically decreases with model size due to visual ambiguity resulting
from repetitive structures in the environment [78].

Due to the rapid increase of the runtime with the outlier ratio, it is sometimes
desired to prune outliers if possible before feeding the correspondences into the
RANSAC procedure. This leads us to a class of methods often called outlier
filters, or outlier rejection schemes.

Outlier rejection

If a large amount of outliers are expected, it may be beneficial to utilize an outlier
rejection scheme. Typically, these use prior information about the camera pose to
reason about which correspondences may be outliers. For example, [44] presents
an outlier rejection scheme where the camera rotation is fully known; in this
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Figure 2.5: Visual place recognition formulates the localization problem as an
image retrieval problem. Given a query image and a set of database images, find
the database image most similar to the query image (according to some metric).

scenario it is possible to, for each correspondence, calculate an upper bound on
the number of inliers possible for a camera pose which also has that particular
correspondence is an inlier. If this score is low, it can then be discarded. The
article [70] presents an outlier rejection scheme which utilizes prior information
about camera height and vertical direction. One of the included papers in this
thesis presents a soft outlier rejection scheme based on exploiting the semantics
of the observed image.

4 Image-retrieval based localization

In the beginning of the chapter, we discussed that visual localization methods
can be roughly categorized into metric and topological. The metric methods are
typically 3D structure based, i.e., they employ a 3D model of the environment
and use this to calculate the pose of the camera which captured the query image,
as discussed in the previous section.

The topological localization methods, also called visual place recognition
methods, work in a different manner. Here, the localization problem is instead
formulated as an image search problem: given a set of database images and a
query image, find the database image which most closely resembles the query
image, see Fig. 2.5.

If metric information is included in the map, for example if the images are
geotagged and have associated GPS metadata, then the position of the query
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image could be approximated by the position of the database image [63].
One of the advantages of image retrieval based approaches is that image re-

trieval is a well-studied problem in computer vision, and efficient search strate-
gies using vocabulary trees [56] and inverted file indices have been developed
for this problem.

A common implementation of image retrieval is to compute a whole-image
descriptor for all database image. The whole-image descriptor could be based
on a bag-of-visual-words (BoW) approach [15, 34, 35, 73], or use a vector-of-
aggregated-descriptors (VLAD) [3, 72]. The basic idea behind these methods
is to extract local features from the image, such as SIFT descriptors. If the
descriptor space has been quantized beforehand, for example by clustering all
descriptors from a different set of training images using a k-nearest-neighbour
approach, each descriptor extracted from the query image can be assigned to
the nearest cluster. The corresponding whole-image descriptor would then be
the histogram over the number of features assigned to the different clusters (vi-
sual words). Learning based approaches such as NetVLAD [4], which compute
a whole-image descriptor using a neural network, also exist and perform very
well.

To localize an image, this whole-image descriptor is computed for all database
images, as well as for the query image. The nearest-neighbour (or k-nearest
neighbours) of the query image are then extracted from the database. The pose
of the query image can then be approximated using the pose of the top-ranked
database image.

Computing a global descriptor from extracted local descriptors yields a more
compact representation of the image, but spatial information is lost. To compen-
sate for this, spatial verification and re-ranking [57] can improve the results. This
means that the top-ranked images after image retrieval are then re-ranked based
on how well it is possible to fit some geometric transformation that maps corre-
spondences from the query image to the database images in question. In other
word, this approach tries to take the spatial layout of the features into account to
reconsider the ordering of the suggested best matches. For a survey of the visual
place recognition problem, see [51].

Image retrieval methods have a significant advantage over structure-based
methods: a database of geotagged images is significantly easier to construct,
maintain and extend than a metric 3D reconstruction. It was believed that structure-
based approaches yielded more accurate pose estimates than image retrieval
based methods, but there is recent evidence that estimating the camera pose us-
ing a local 3D model created ”on-the-fly” from the top-ranked database images
can yield just as accurate, if not more accurate, poses than pure structure-based
methods [61]. Additionally, using image retrieval as a pre-processing step in a
structure-based system almost always increases the localization performance, as
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Figure 2.6: An image from the CMU Visual Localization dataset and its corre-
sponding semantic segmentation.

we will see in Paper IV.

5 Semantic segmentation

When discussing local image features in Sec. 2, we discussed the problem of
non-invariance of local features. That is, under viewpoint and illumination changes,
the feature detector may trigger on a different set of points, and the feature de-
scriptor may change to such an extent that feature matching based on descriptor
distances fails completely.

The problem is that traditional descriptors only contain low-level intensity
information in a patch around the feature points. They contain no higher-level,
holistic understanding of the scene. Even in a fairly challenging scenario, a
human would likely be able to provide matches between two images by utilizing
this high-level information.

In the computer vision community, much progress has been made in recent
years on the problem of semantic segmentation. This problem consists of assign-
ing, to each pixel in an image, a label from a pre-defined set of classes. Fig. 2.6
shows an example of an image together with its semantic segmentation. The
image comes from the CMU Visual Localization dataset [10] and the segmenta-
tion is performed using the network [77] trained on the Cityscapes classes [17,
18]. Cityscapes is a dataset and public benchmark for semantic segmentation of
street-view images into semantic classes such as road, sidewalk, car, pedestrian,
pole, building, sky and so on. These aim towards a high-level understanding
of images taken in street scenes, which may be relevant for the task of visual
navigation for autonomous cars.

Today, semantic segmentation is most commonly performed using some vari-
ants of convolutional neural networks (CNNs) [14, 47, 60, 80]. Sometimes, a
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conditional random field (CRF) model is added on top of the network output to
encourage a structured segmentation [6, 14, 43].

Even though the local image features may not be invariant to illumination,
seasons, day-night changes and so on, a good semantic segmentation algorithm
should ideally be robust to these kinds of variations. If semantic information
can be reliably extracted under these conditions, it may be possible to utilize
this during the localization process. For example, it may be used for identifying
incorrect matches (a feature detected on a street sign should be matched to a 3D
point with the corresponding label), as done in e.g. [5] in the context of object
retrieval.

As observed in [5], the idea of integrating semantic information into the clas-
sical computer vision pipelines is something of an emerging theme in the com-
puter vision literature, since this has been shown to improve the performance
across several different tasks. For example, in [42], the authors show that for the
problem of dense stereo reconstruction in road scenes, jointly reasoning about
depth and semantic classes improves the performance of the reconstruction dra-
matically. The article [64] reaches similar conclusions, where they instead jointly
infer semantic labels and depths for ”stixels”. Similarly, in [29] a voxelized
multi-view-stereo reconstruction is performed by joint geometric and semantic
reasoning. It is found that the geometry helps enforce the semantics across im-
ages, and the semantics help the depth reconstruction e.g. in areas (such as the
ground) for which depth values are sampled more sparsely.

5.1 Semantics for visual localization
Lastly, to wrap up this chapter, we arrive at semantics for visual localization. As
mentioned above, integrating semantics into the classical, geometrical pipelines
has been shown to improve performance. The question is then whether this is
also the case for visual localization. There exists evidence this is indeed the case
(see for example [55, 66, 68] for examples where higher-level features such as
lane-markings and pole-structures are used for localization), and it is also the
topic of the first two articles appended in Part II.
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Thesis Contributions

The topic of this thesis is that of long-term visual localization. Current vi-
sual localization approaches typically work well when the mapping images are
similar in appearance and view-point to the images to be localized, but under
change of viewpoint, illumination or seasons, the localization performance typ-
ically degrades rapidly. The non-repeatability of the feature detector, and the
non-invariance of the feature descriptor, are the two main culprits.

We have mentioned in the last chapter that the reason behind the failure of
the traditional local feature approach in this scenario is that they rely only on
low-level pixel-intensity information, and that incorporating a higher-level scene
understanding via the semantic segmentation may potentially alleviate some of
these problems. This is the topic of two of the included papers (Papers I and II).

While working on the first two articles, we noticed the lack of suitable long-
term visual localization datasets to evaluate our methods on. There were a variety
of localization datasets available, but they either did not have sufficient variation
in weather, seasons or illumination to evaluate the performance of the methods
in the long-term localization scenario, or, if they did include this variation, they
did not come with accurate six degree-of-freedom camera poses.

Motivated by this, we joined forces with a quite large group of researchers
and put together three datasets (where we at Chalmers were responsible mainly
for one) specifically aimed at evaluating six degree-of-freedom long-term visual
localization. This work resulted in Paper IV, which is the journal version of a
conference article published at CVPR 2018. The benchmark we present in this
article has turned out to be fairly popular, and we have hosted several workshops
at CVPR and ICCV on this work, where we accept submissions to a long-term
visual localization challenge.

During the summer of 2019, I had the opportunity to do an internship at
Niantic’s research lab in London. The work I did there resulted in Paper III, in
which we tackle the problem of increasing the robustness of local features to
viewpoint changes by utilizing pixelwise depth information gained by running
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the images through a monocular depth-estimation network.
The last paper, Paper V, differs in theme from the other articles. This paper

considers the problem of how to perform convolutions on spherical data, such
as images obtained from an omnidirectional camera. The original idea for the
article came up when considering an aspect of the visual localization problem.
Specifically, a known challenge is to recognize a previously visited area when
it is revisited, but from a different direction. This could be, for instance, a car
driving down the same road twice, but in opposite directions.

When using a regular perspective camera with limited field of view in this
scenario, the scene will look very different in the two different traversals. Each
traversal will observe different parts of the scene, and the parts that are covisible
in both traversals will tend to suffer from quite severe perspective distortion.

It seemed to me that this problem would be almost completely bypassed if
an omnidirectional camera was employed instead. In this case the two traversals
would observe essentially the same scene, and it should be possible to approxi-
mately align the images with only a rotation. Learned local features have recently
started outperforming traditional local features for long-term localization, and I
wondered if these learned features could be applied to omnidirectional imagery.

However, it turned out that the question of how to perform convolutions on
spherical data has not yet been fully settled, and it felt necessary to perform some
more foundational work in this area to better understand this problem before
turning our attention to applications. The result of this work is presented in
Paper V.

In the remainder of this chapter we present a high-level summary of each of
the included papers in turn. The full papers are appended in Part II.

Paper I
C. Toft, C. Olsson, F. Kahl. ”Long-term 3D Localization and Pose from Seman-
tic Labellings”. Presented at the 3D Reconstruction Meets Semantics Workshop
at the International Conference on Computer Vision 2017.

This paper was something of a pilot-study where we examined how well it
is possible to perform single-image visual localization, using only the semantic
segmentation of the query image. In other words, is the semantic information
alone sufficient for visual localization? The method was evaluated on two small
subsets of the Oxford RobotCar dataset, each the size of a few city blocks. The
method uses an image-retrieval method (based only on the semantic segmenta-
tion), and then refines the 6 degree-of-freedom (DoF) camera pose by minimiz-
ing a cost function based on how well the reprojection of a semantically labelled
3D model, consisting of semantically labelled points and curves of the envi-

24



Figure 3.1: Illustration of the method in Paper I. Any given pose may be evalu-
ated by how well the semantically labelled structure projects down into the given
pose. Only the semantic 3D curves are shown (poles, road edge, vegetation-sky
contour). 3D points (not shown) were used as well.

ronment, matches the observed segmentation in the image. See Fig. 3.1 for an
example. The results suggest that semantics is sufficient for localization in small
environments when the query image is sufficiently ”semantically interesting”,
and that the proposed 6 DoF semantic pose refinement does indeed improve the
pose.

Author contribution. I did most of the implementation work of the method and
the evaluation on the datasets. The third author created the datasets used and
contributed the original ideas. The second author contributed to the discussions
and assisted greatly in writing the article.

Paper II

C. Toft, E. Stenborg, L. Hammarstrand, L. Brynte, M. Pollefeys, T. Sattler, F.
Kahl. ”Semantic Match Consistency for Long-Term Visual Localization”. Pre-
sented at the European Conference on Computer Vision 2018.

This paper presents another semantics-based single-image localization method.
Unlike Paper I, which was based on semantics alone, this article aims to increase
localization performance by incorporating semantic information in a classical
geometrical pose-estimation pipeline based on local image features.

Specifically, we address the problem of the high-outlier ratios which are of-
ten encountered when employing feature-based methods in the long-term local-
ization scenario. Inspired by the geometric outlier-filtering methods, we devise a

25



CHAPTER 3. THESIS CONTRIBUTIONS

3D Scene Model
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2D-3D 
Matching

Local Feature
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Weighted
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Semantic Consistency Scoring
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Figure 3.2: The general pipeline of the method presented in paper II. The method
is based on a traditional feature-based pipeline, but each feature is scored de-
pending on how well it agrees with the overall semantics of the scene and image.
This score is then used to weight the sampling probabilities in the RANSAC
loop.

semantic outlier filter, which, like the geometric outlier filters, uses prior knowl-
edge about the camera height above the ground plane as well as the vertical direc-
tion, to reason about the likelihood of each correspondence being an inlier. The
method is evaluated on two self-driving car datasets, and we show that, under the
conditions mentioned, the method can significantly increase the performance of
a classical P3P RANSAC based pipeline.

One of the main advantages of the proposed method is that it is fully parallel
in the number of correspondences: each correspondence can be scored indepen-
dently of the others, and the method of scoring correspondences depends only
on projections and angle calculations. As such, it would be very suitable for an
efficient GPU implementation, though in the paper only a sequential MATLAB
implementation was performed.

Author contribution. The last author supplied the original idea, and I imple-
mented the method and all evaluation scripts. The other authors helped with
discussions, writing, figures and provided semantic segmentations for the used
images.

Paper III

C. Toft, D. Turmukhambetov, T. Sattler, F. Kahl, and G. Brostow. “Single-Image
Depth Prediction Makes Feature Matching Easier”. Presented at the European
Conference on Computer Vision 2020.

When matching local features between two images, the performance de-
grades with increasing viewpoint difference between the images. In this paper,
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Figure 3.3: When matching features between images taken from very dissimi-
lar viewpoints (such as the left and middle image here), we can use pixelwise
monocular depth predictions (show next to the images) to render a top-down
view of the images and match features in these top-down views (right).

we propose a method that utilizes the output from a monocular depth estimation
network to extract features that are less sensitive to viewpoint changes.

The main idea is to use the depthmap to identify parts of the image that
are planar. This is done by computing a surface normal for each pixel, and
then clustering these normals in order to identify connected parts of the image
sharing the same normal. The parts of the scene that are deemed to be planar
can then be rectified using a homography (i.e., rendered from a top-down view),
computed from the estimated surface normal (see Fig. 3.3). The clustering also
tells us which parts of the image is rectified by which homography, allowing us
to bypass some of the problems encountered when using vanishing point based
rectification methods.

The proposed method is evaluated on a new dataset that consists of eight
scenes, each with around 1500 image pairs, ranked by difficulty according to the
relative viewpoint difference between the images. Each scene has been captured
under different environmental conditions for a large range of viewing angles.

Author contribution. This work was performed during an internship at Niantic.
The original idea came from a discussion between me, Daniyar and Gabriel, and
I implemented the pipeline and ran the experiments.

Paper IV

C. Toft, W. Maddern, A. Torii, L. Hammarstrand, E. Stenborg, D. Safari, M. Oku-
tomi, M. Pollefeys, J. Sivic, T. Pajdla, F. Kahl and T. Sattler ”Benchmarking
6DOF Outdoor Visual Localization in Changing Conditions”. Accepted for the
IEEE Transactions on Pattern Analysis and Machine Intelligence.
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Figure 3.4: Maps of the three new datasets we present in Paper IV: the Aachen
Day-Night dataset (left), the RobotCar Seasons dataset (middle) and the Ex-
tended CMU Seasons dataset (right).

This is a dataset and review paper, where we present three challenging new
datasets for visual localization, and document the performance of current state-
of-the-art methods on these datasets. This is the journal version of a conference
article presented at CVPR in 2019. In this article, we address our observation that
there were no public datasets suitable for evaluation of six degree-of-freedom vi-
sual localization in the long-term scenario. There were several datasets contain-
ing images taken under a variety of different conditions (such as several traver-
sals of the same road in winter, summer, spring, day, night etc.), however these
did not come with known reference poses, making them unsuitable for evaluation
of long-term localization algorithms.

In this article, we augmented three of these publicly available datasets with
reference poses by reconstructing each condition individually, and then regis-
tering the different models into the same coordinate system. The dataset we
augmented were the CMU Visual localization dataset [8], the Aachen dataset
[62] and the Oxford RobotCar dataset [52]. Fig. 3.4 shows top-down views of
the reconstructions of our datasets.

The article also presents a comprehensive evaluation of the current state-of-
the-art methods on these datasets, based on submissions to our evaluation server.

Author contribution. This work was a large collaboration between many re-
searchers and research groups. At Chalmers, we were mainly responsible for
the CMU Seasons dataset. Fredrik did most of the bundle adjustment and estab-
lishing ground truth poses. I triangulated the reference models, ran some of the
baseline methods, and formatted and organized the raw dataset into its current,
published form, and was responsible for putting together the journal article and
setting up the benchmarking server and website. Torsten did most of the writing
for the original CVPR article.
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Figure 3.5: We show that a general linear SO(2) equivariant transform from
L2pS2q Ñ L2pS2q can be interpreted as computing the correlation between the
input signal f and a θ-dependent filter hθ, and how these take the form of block-
diagonal matrices in the spherical Fourier domain.

Paper V

C. Toft, G. Bökman, and F. Kahl. ”Azimuthal Rotational Equivariance in Spher-
ical CNNs”. Submitted for review to the International Conference on Learning
Representations 2021.

In this paper we consider the problem of designing neural networks for spher-
ical data. Convolutional neural networks have achieved outstanding success in
the analysis of planar data, but it is not immediately clear how to generalize these
networks to operate on spherical data.

Two of the defining characteristics of a (planar) convolution are its linear-
ity and equivariance to translations. Using these as guiding principles, one can
define convolutions on the sphere equivariant to arbitrary SO(3) rotations, as
done by e.g. Cohen et al., Esteves et al. and Kondor et al. [16, 24, 40]. How-
ever, several recently proposed high-performing networks on the sphere apply
convolutional operators that are not fully SO(3) equivariant (for example, they
may include horizontal and vertical derivatives). We note, however, that these
convolutions are linear and exhibit SO(2) equivariance.

Thus, in this paper we ask how an operator fromL2pS2q Ñ L2pS2qmust look
in order for it to be linear and SO(2) equivariant. We show that these operators
must admit a block-diagonal representation in the spherical Fourier domain if
they operate on band-limited input data. Additionally, we show how these may
be intepreted as a correlation with an azimuthal-dependent filter (see Fig. 3.5).

Lastly, we show how an existing state-of-the-art SO(2) equivariant pipeline
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for spherical data can be recreated in our framework, showing increased invari-
ance to azimuthal rotations of the test data.

Author contribution. I came up with the idea for the paper, and proved the re-
sult in proposition 1 regarding the spectral characterization of SO(2) equivariant
linear operators from L2pS2q Ñ L2pS2q. Additionally, I ran the experiments on
the MNIST dataset, while the second author ran the experiments on the Model-
Net40 dataset.
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Chapter 4

Conclusion and Future Outlook

In this thesis, we have presented work on the problem of robust visual local-
ization, mainly by adressing the following points:

• We have examined how to incorporate semantic information to aid in the
visual localization process.

• We have examined a possible way to utilize depth estimates to extract fea-
tures less sensitive to viewpoint changes.

• We have developed new datasets, and a public benchmark, to enable accu-
rate and fair evaluation of the performance of visual localization methods
in the long-term localization scenario.

• We have worked on untangling some of the theory of spherical convolu-
tions, which may eventually lead to learned local features for omnidirec-
tional cameras.

The field of visual localization has seen considerable progress since I em-
barked on this journey over four years ago. Looking back to my earliest work on
incorporating semantic information in localization, it is already somewhat out-
dated and has been superseded by new ideas, but I believe that work served as an
important stepping stone that provided valuable insights.

For instance, I believe one of the main takeaways from Papers I and II is that
it is possible to perform visual localization without relying only on the matched
3D points; the unmatched points also provide important information regarding
the likelihood of a given hypothesized pose being correct. Additionally, in the
first paper we saw some indications that it might even be possible to perform
localization without relying on local features at all. This line of thinking was
pursued in later work, with some promising results in the sequential localization
scenario, where we saw that good localization results can be obtained in the long-
term scenario without relying on traditional feature matching at all. Instead, only
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the consistency of the projected semantic model was used. See e.g. subsidiary
publications (d) and (e).

When speaking of localization performance, a question which has recurred
continually throughout the work has been that of: What localization error is ac-
ceptable? How do we know when the localization problem has been solved?
What framerate do we need to be able to handle? At the moment, I am not aware
of any work which provides general answers to these questions. The localization
performance of the state-of-the-art algorithms on our benchmark suggest that the
localization methods are rapidly improving, but there is still room for improve-
ment for the very challenging scenarios, such as day-night changes. But it is not
quite clear what accuracy is required for e.g. autonomous driving or augmented
reality, or what accuracy is realistic to expect.

In the following section, I expand on some directions for future research I
believe are promising regarding the visual localization problem.

1 Future work

1.1 Learned features

One approach which has recently caught on is to learn a feature detector and
descriptor. I.e, to train a neural network to output a detection heatmap and cor-
responding dense features, or different variations thereof. In other words, train
a detector which tends to trigger on points which are long-term stable and not
sensitive to viewpoint differences. This might be corners of windows, rooftop
corners, street signs, and so on (or any other kind of point which the system can
reliably re-identify). Popular learned features include SuperPoint [20], D2-Net
[21] and R2D2 [59]. One of the problems which may arise when training this
form of feature, is that ground-truth correspondences will be needed, i.e., the
system needs to know which features actually are stable such that it can learn
from these. We believe our new datasets may be useful to other researchers in
this regard.

Another related approach which seems promising, and is related in spirit
to the semantic localization approaches in Papers I and II, is to perform local-
ization by finding the pose which maximizes the consistency between the ob-
served dense features extracted from an image using a neural network, and the
features of 3D points downprojected onto the image from a hypothesized pose.
As in paper I, such a method does not rely on explicit feature matches, and uses
all contents of the image and scene to reason about the camera pose.

Such an approach is used e.g. by the GN-Net method [69]. This kind of
method is also fairly similar to direct methods for visual odometry, in the sense
that it is essentially correspondence free, but where the alignment error is based
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on feature distance rather than photometric error. This approach would also make
it possible to train a feature extraction network by directly minimizing the local-
ization error.

1.2 Incorporate 3D information during feature matching
Another approach is to incorporate 3D information into the feature extraction or
matching process. This is particularly relevant if a stereo setup is used, or if a
well-performing monocular depth estimation network is available. This is very
similar to the approach used in Paper III, but there is still room for improvement
here. It might be possible to compute the viewpoint invariant descriptor without
explicit unwarping of the flat surfaces, or perhaps to encode the surface shape for
non-planar surfaces into the descriptor. If accurate surface normal estimates are
available, then these may also provide constraints during the feature matching
process.

1.3 Improved datasets
While we have provided three new datasets that we believe are useful for the
community and a step in the right direction, the story is not over here, and there
is still a need for even more comprehensive datasets to properly evaluate local-
ization methods in the long-term scenario.

In particular, none of our datasets are particularly suited for evaluating se-
quential localization methods. It is not reasonable or realistic to expect single-
image methods to work in all scenarios, and in most practical applications, such
as autonomous driving or augmented reality, the pose estimate will be based
on an entire history of data. As such, we believe future reasearch should focus
more towards sequential methods. To evaluate these, large-scale cross-seasonal
datasets captured at high frame-rates with corresponding IMU data would be
valuable. As far as we are aware, no such datasets exist, at least publically.

1.4 Omnidirectional cameras
Lastly, to wrap up Part I, it seems that omnidirectional cameras would be very
useful for the task of visual localization, but very few localization methods seem
to focus on, or evaluate the performance for, this kind of camera. For instance,
re-localizing a car driving down the same road as before, but in the opposite
direction, is very challenging with a regular camera with a limited field of view,
but for an omnidirectional camera, this scenario should pose no extra difficulty.

Omnidirectional cameras also seem especially suited for this task due to their
full field of view: they will not as frequently encouter the situations often en-
countered for regular cameras, where there simply is not anything informative
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inside the current image. However, how to develop neural networks for learning
local features for omnidirectional cameras is, as far as we are aware, still an open
problem.

34



Bibliography

[1] Henrik Aanæs, Anders Lindbjerg Dahl, and Kim Steenstrup Pedersen.
“Interesting Interest Points”. In: International Journal of Computer Vision
97.1 (Mar. 2012), pp. 18–35.

[2] Adnan Ansar and Konstantinos Daniilidis. “Linear pose estimation from
points or lines”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 25.5 (2003), pp. 578–589.

[3] Relja Arandjelovic and Andrew Zisserman. “All about VLAD”. In: Pro-
ceedings of the IEEE conference on Computer Vision and Pattern Recog-
nition. 2013, pp. 1578–1585.
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