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Abstract

Brownian theory provides us with a powerful tool which can be used to delve into a
microscopic world of molecules, cells and nanoparticles, that was originally presumed
to be beyond our reach. Consequently, modeling the inherent dynamics of a system
through a Brownian transport equation is of relevance to several real-word problems that
involve nanoparticles including, the transport and mitigation of particulate matter (PM)
generated though fossil fuel combustion and nanocarrier mediated drug delivery. Exper-
imentally forecasting these systems is challenging due to the simultaneous prevalence of
disparate length and time scales in them. Correspondingly, an in-silico driven assessment
at such nanoscales can complement existing experimental techniques.

Hence, in this thesis, a novel multiphase direct numerical simulation (DNS) framework
is proposed to address the transport at these nanoscales. A coupled Langevin-immersed
boundary method (LaIBM), that solves the fluid as an Eulerian field and the particle in
a Lagrangian basis, is developed in this thesis. This framework is unique in its capability
to include the resolved instantaneous hydrodynamics around the Brownian nanoparticle
(without the need for an a priori determination of the relevant mobility tensors) into the
particle (Langevin) equation of motion. The performance of this technique is established
and validated using well-established theoretical bases including the well-known theories
for unbounded and hindered diffusion (wherein hydrodynamic interactions mediated by
the fluid such as particle-particle or particle-wall influence the governing dynamics) of
Brownian particles in a liquid. Correspondingly, it is shown that directional variations in
mean-squared displacements, velocity auto-correlation functions and diffusivities of the
Brownian nanoparticle correspond well with these standard theoretical bases. Moreover,
since the resolved flow around the particle is inherently available in the proposed DNS
method, the nature of the hydrodynamic resistances (on the particle) including the in-
herent anisotropies and correlated inter-particle interactions (mediated by the fluid) are
further identified and shown to influence particle mobility. Furthermore, this framework
is also extended towards Brownian transport in a rarefied gas using first order models to
account for the non-continuum effects. Thus, the utility of this novel method is estab-
lished in both colloids and aerosols, thereby aiding in modeling the transport of a fractal
shaped PM (in the latter) and a spherical nanocarrier in a micro-channel (in the former).

Keywords: Aerosols; Brownian motion; Colloids; Hydrodynamic interactions; Langevin-
immersed boundary method; Mobility; Multiphase DNS; Nanoscale and Rarefied gas.
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To my son... My lucky charm...
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"Logical thinking cannot yield us any knowledge of the empirical world; all knowledge of
reality starts from experience and ends in it."

- Albert Einstein, 1933
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NOMENCLATURE

Greek letters

α Friction coefficient at the solid-fluid interface
βcorr

St Corrected Stokes mobility for hindered diffusion s kg−1

βSt Stokes mobility s kg−1

δ(x) Dirac delta function
∆x(t) is the displacement x(t) − x(0) m
∆t Time step in the numerical simulation
γSt Stokes friction factor kg s−1

λ Reduction in particle mobility
λgas mean free path of the gas m
µf Dynamic fluid viscosity kg m−1 s−1

νf Kinematic fluid viscosity m2 s−1

ρf Fluid density kg m−3

ωi
p Angular velocity of the particle

σ Total fluid stress tensor
τB Ballistic time scale of a Brownian particle s
τD Smoluchowski or diffusion time scale of a Brownian particle s
τp Particle response time s
υ(r, t) Standard Gaussian white noise tensor field with uncorrelated components δ-correlated

in space and time
ζ Magnitude of Brownian fluctuations

Roman letters

A Function of Kn that is determined based on empirical data
b Slip length in liquids m
Cc Cunningham correction
C(t) Auto-correlation function
∆V Volume of a control element m3

D∞ Diffusivity of a free particle m2 s−1

dp Particle diameter m
Ff Fluid force on a single Brownian particle in the control volume N
FIB Total force on the IB
Fp Pressure force on a single Brownian particle in the control volume N
f(x, t) Probability density function of a free Brownian particle
h Distance from the particle center to the wall surface m
I Moment of inertia of the particle
J Identity tensor
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kB Boltzmann constant m2 kg s−2 K−1

Kn Knudsen number
L Characteristic system scale m
mp Particle mass kg
n Normal at the surface over which the fluid stress is computed
n Number of moles of fluid in the equation of state mol
N1 Number of Brownian particles in a control volume
Nav Avogadro’s number mol−1

p Pressure on a Brownian particle kg m−1 s−2

Q Mass-flow rate of a molecular gas in micro-channels kg s−1

R Universal gas constant J K−1 mol−1

r(x, y, z) Particle position vector
rp Particle radius m
Rf Stochastic forcing of the fluid stress tensor FH
r(t) Impulse response of a stationary stochastic process
R(ω) Fourier transform of the impulse response of a stationary stochastic process
S Surface over which the fluid stress is computed
S1, S2 Cross-sectional surface area of a control volume m2

Sc Schmidt number
S(t) Stochastic forcing term in the Langevin equation N
S(ω) Fourier transform of the stochastic forcing
S̃uu(ω) Velocity power spectral density
T Temperature K
t Time s
FIB Total torque on the IB
up Particle velocity vector
urms Particle root mean squared velocity m s−1

v Fluid velocity vector
x Particle x-position m
xp(t) Particle position m
x(t), y(t) Linear signals in time domain
X(ω), Y (ω) Linear signals in frequency domain

Superscripts and subscripts

⟨2⟩2 Mean squared value
⟨2⟩⊥ Wall-normal component
⟨2⟩∞ Free-diffusion
⟨2⟩∥ Co-axial component
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1
Introduction

Brownian motion: a macroscopic window to the microscopic
world

"These motions were such as to satisfy me, after frequently repeated observation, that
they arose neither from currents in the fluid, nor from its gradual evaporation, but

belonged to the particle itself."
- Robert Brown, 1828

Brownian motion, or the chaotic dance of molecules/nanoparticles due to incessant colli-
sions with the constituent elements of a fluid, has been an integral part of modern day
science ever since it was serendipitously noticed by Dutch scientist Jan Ingenhousz (in
1785) while observing finely ground charcoal under a microscope. This characteristic
random behavior, named after Robert Brown (a British botanist) who noticed these ir-
regular motions in a great variety of materials suspended in a liquid ranging from pollen
to fragments of an Egyptian sphinx [13], has been the subject of extensive research since
the 17th century. From understanding the complex behavior of micro-organisms, to fore-
casting the next stock market crash, to studying the dynamics of super-massive black
holes and to modern day artificial intelligence – understanding chaos through the lens of
Brownian theory has been the approach of choice for a generation’s worth of research. In
fact, the significance of Brownian theory in modern day science is unmistakable, as this
core idea is the subject of Einstein’s famed dissertation [14] and many would argue that
it is his biggest contribution (to science) along with the theory of relativity. Thus, Brow-
nian theory is touted to be that elusive window into a microscopic world of molecules,
cells and nanoparticles that was presumed to be beyond our reach.

The simplistic representation of systematic chaos as a mathematical abstraction of a
random process, in a scale independent framework (i.e. applicable in the same form
to both micro-organisms as well as spinning galaxies), has been the unique feature of
modern day Brownian theory that makes it an appealing modeling technique across
several research fronts. To limit the scope of the ensuing discussions, the developed ideas
in this thesis are positioned with two potential overarching applications:

1. Cleaner emissions from combustion processes

3



2. Nanocarrier mediated drug delivery

These are explained in this chapter in order to establish the necessary context for the
theoretical and numerical developments presented in this thesis.

1.1 Clean air: a basic requirement for society?

Urban air quality has been on the decline since the industrial revolution particularly
due to the increasing energy demands from the modernization of our society. With the
increasing dependence on energy from fossil fuels, the corresponding levels of particu-
late matter (PM) such as PM10 (less than 10 microns in diameter) and PM2.5 (less
than 2.5 microns in diameter), that contain pollutants such as sulfates and nitrates rise
[15]. These PM aerosols, which are usually formed due to incomplete combustion of
hydrocarbon-based fuels during a variety of common combustion processes in power gen-
eration, vehicular propulsion etc., are hazardous to human health. This is due to their
widespread dispersion in the atmosphere, particularly PM2.5, as its microscopic size al-
lows the pollutant particles to enter the blood stream via the respiratory tract and travel
throughout the body. Such an intravenous transport of PM can cause far-reaching health
effects including asthma, lung cancer and heart disease [15]. This chronic issue with poor
air quality is highlighted in Fig. 1.1, indicating that a significant portion of the global
population breathes PM2.5 contaminated air at concentrations∗ exceeding the limits set
by the World Health Organization (WHO).

A more local survey in Europe, further, identified that emissions from households, in-
dustrial plants and road transport accounted for a majority of the fine aerosols (PM2.5
and PM10) emitted in the region [16]. Hence, the European commission (EC) has imple-
mented a series of directives that establishes the health based standards and objectives
for these pollutants (Directive 2008/50/EC of the European Parliament [17]). Stringent
PM emission control needs to be adopted if these demands from the EC are to be met,
indicating a palpable need for novel strategies to mitigate the same. The most generic
mitigation strategy is some form of after-treatment of the gases emitted as a result of
the combustion of hydrocarbon-based fuels using a particulate filter. For vehicular emis-
sions, which account for 10-15 % of the total PM emissions in Europe, a combination
of the diesel oxidation catalyst (DOC), diesel particulate filter (DPF) and diesel NOx
reduction catalyst (DeNOx) are employed downstream from the tail pipe to regulate the
exhaust. Among these, the DPF (see Fig. 1.2), a dedicated unit that is commonly made
from cordierite or silicon carbide extruded monoliths, is used to purge the exhaust gas
of PM by trapping them in its constituent monolith channels. In a typical DPF, every
second channel is plugged at either end, creating a chessboard-like appearance of the

∗The US AQI is among the most widely recognized index for communicating air quality. This index
converts pollutant concentrations into a color-coded scale between 0-500, where higher values indicate
increased health risk.
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Figure 1.1: This map presents average PM2.5 exposure by country for 2019, as calculated
from available city data and weighted by population. Grey countries and regions indicate
that these locations had insufficient data available. This figure is adapted from the report
published by IQAir, a Swiss air quality technology company [15].

monolith front and back. Further, the flow in these channels is laminar, meaning that
PM accumulates in the channel through Brownian or molecular deposition/diffusion and
interception. Although effective at PM capture, these DPF’s are associated with a sig-
nificant fuel penalty, mainly because of the pressure build up due to deposition. Hence,
smarter technologies to circumvent the deficiencies of these traditional monolith filters
are desirable, consequently, creating a niche requirement for advanced experimental and
modeling techniques to better design and further improve these existing systems.

1.2 Nanocarriers: a new tool to combat cancer?

While the industrial revolution has had a detrimental impact on the environment, it has
simultaneously benefited mankind by improving the overall standard of living, catering
to better hygiene and sanitation. These improved conditions for living coupled with the
modern advancements in medical science have brought about dramatic declines in the
mortality rate from infectious diseases. These improvements, however, come at the cost
of changing demographics and exposure to a wider class of risk factors, increasing the
incidence of another dangerous disease, i.e. cancer, in the human population (with more
than 10 million new cases reported every year) [20]. Current cancer treatments include
surgical intervention, radiation and chemotherapeutic drugs, which often also kill healthy
cells and generate a toxic response in the patient. It would, therefore, be desirable to
develop strategies that can either passively or actively target cancerous cells [21]. The
aim of such smart drug-delivery systems is to administer smaller drug doses to patients
while offering improved therapeutic efficiency and fewer side effects when compared with
conventional drug delivery methods [22].
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Figure 1.2: An example of a PM emission mitigation device: diesel particulate filter
(DPF) employed in diesel powered drives. This figure is adapted from [18].

Figure 1.3: An example of nanocarrier mediated drug delivery targeting tumor cells. The
carrier is a 100 nm polymer sphere (poly-ethylene glycol or PEG) loaded with docetaxel,
a drug that kills malignant cells. This figure has been adapted from Bourzac [19].
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Recent research in nanomedicine [22, 23], or the application of nanotechnology to achieve
innovation in healthcare, has catapulted the technological advancements in both active
and passive targeting of a cancerous cells to new heights. These recent advances are
also resulting in therapies that were previously thought impossible, such as drugs that
change their properties depending on where they are in the body or targeting tumor cells
at inaccessible regions. Some labs are even testing ideas inspired by robotics, such as
nanoparticles that communicate with each other to increase accumulation at a tumor
site [19]. Correspondingly, Fig. 1.3 depicts a plausible way to actively target cancerous
cells. The tumor site is injected with gold nanoparticles and is subsequently heated to
warm the site up, thereby bringing about a signaling cascade that initiates blood clot-
ting. The drug carrying nanoparticle (termed as a nanocarrier), which is injected in
the blood, is attracted to this signaling cascade due to the unique markers it possesses,
binding selectively only with the tumor cells. In this case, the nanocarrier (which is 100
nm in diameter) consists of a hydrophobic biodegradable polymeric core (made of poly-
ethylene glycol or PEG) that encapsulates the active substance (the drug docetaxel) and
enables its controlled release. Moreover, this coating also provides the needed mobility to
transport the nanocarrier in the blood stream. It follows that the targeted delivery of a
nanocarrier is governed by a complex interplay of hydrodynamic and multivalent interac-
tions with the biomolecules (such as red blood corpuscles) in blood. Hence, novel insights
into the dynamics of a nanocarrier in such a system can enable advanced, personalized
and targeted nanomedical services by delivering the next level of cancer treatments to
clinicians and patients. A numerical model of this system would definitely accelerate such
a development as experimental assessments are both cumbersome and time-consuming.

1.3 Brownian behavior: the connecting link

Two disparate applications that target some of the most pressing concerns of today are in-
troduced in this chapter. Although these use cases seem uncorrelated, they are united by
a common thread that correlates behavior at the smallest scales to the observed system-
wide phenomena. This brings us back to the title of this chapter - ‘Brownian motion: a
macroscopic window to the microscopic world’, meaning, the Brownian perspective can
provide the missing link in these challenging problems. This is particularly relevant here
as we deal with nanoparticle (with a size range 1 nm to 1 µm) transport in a fluid, where
multiple effects (both molecular and hydrodynamic in nature) compete for dominance in
governing the inherent particle dynamics. Moreover, in these cases, the particles diffuse
in the vicinity of a wall and/or other particles, thereby increasing the complexity of the
transport process. Thus, a comprehensive insight into the complex interplay between
the micro- and macro scale phenomena mediated (in-part) by the hydrodynamic fields
developed (in the surrounding fluid) is crucial to improving our understanding of the
underlying transport phenomena in these systems. Moreover, as the aforementioned sys-
tems involve fine particles, experimentally forecasting the hydrodynamics is challenging
due to the simultaneous prevalence of disparate length and time scales. This necessitates
the parallel development of numerical approaches that complement existing experimental
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techniques. Hence, the development of a general numerical technique that can handle
both the complex hydrodynamics as well as the accompanying Brownian behavior in such
systems, is the overarching objective of this thesis. The corresponding developments in
this regard are detailed in the subsequent chapters and in the appended papers.

1.4 Document structure

This thesis is organized as follows. In Chapter 2 the aims and objectives of this work are
established. Next, in Chapter 3 the relevant theoretical background on Brownian theory
in a fluid (i.e. both unbounded and bounded flows) is presented. This chapter establishes
the basis that is needed to interpret the results presented in the appended papers. This is
followed by Chapter 4 which provides an overview of the numerical methods typically used
in Brownian modeling, including a detailed account of a novel continuum based direct
numerical simulation (DNS) framework (which is one of the primary contributions of this
thesis) and positions its relevance with respect to the available methods. In Chapter 5
some essential highlights from this thesis are listed within the context of the appended
papers. Finally, Chapter 6 consists of the concluding remarks within the context of the
overarching goals of this thesis (as established in Chapter 2) along with a brief description
on the future scope of this research effort.

8



2
Aim

The transport of nanoparticles (in the size range 1 nm to 1 µm) in a fluid presents
a challenging problem that couples both molecular and hydrodynamic (or continuum)
phenomena. Consequently, it is governed by disparate length and time scales. Thus, the
main objective of the current work is to develop various strategies to numerically resolve
phenomena at these relevant scales within the context of the applications introduced in
Chapter 1. These overarching objectives are listed as follows:

1. To develop a general numerical method that can handle nanoparticle dynamics
in a fluid, including the accompanying macro-scale and micro-scale effects, using
a continuum based framework (multiphase DNS) i.e. projecting down from the
continuum to the molecular scales.

• Extend the ideas from traditional Langevin based treatments to include the
fully resolved hydrodynamics around the particle.

• Derive a generalized method that extends the applicability of well established
resolved-surface multiphase DNS techniques (such as the immersed boundary
method, for instance).

• Demonstrate the capability of this method by validating it against existing
analytical theories for Brownian motion in both unbounded as well as bounded
domains (i.e. for both free and hindered diffusion.)

2. Establish a hydrodynamic basis, using numerical simulations for diffusive transport
of nanoparticles, within the context of the two use cases briefly described in Chapter
1 (i.e. hindered diffusion).

• Probe the hydrodynamic fields around a Brownian particle (uniform and frac-
tal shaped) in a rarefied gas (i.e. micro-channel flows).

• Identify the relevant nature of the hydrodynamic stresses on the particle, i.e.
the directional bias of the hydrodynamic resistance (along the wall-normal and
co-axial directions) on a particle transported along the co-axial centerline of
a micro-channel and the corresponding implications on its diffusive behavior.

• Identify anomalies in the directional bias of the hydrodynamic resistance in
non-symmetric scenarios such as off-axis (i.e. a position that is displaced from
the co-axial centerline of the channel) diffusion in micro-channels.

9
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3
Nanoparticle dynamics

Brownian transport in a fluid

In the context of this thesis, nanoparticle dynamics predominantly refers to the inces-
sant and irregular motion of a nanoparticle in a liquid or gas. The surrounding fluid
mediates the complex interactions between the nanoparticles and the surrounding envi-
ronment (for instance bounding walls or other particles). The physical Brownian motion
of nanoparticles (investigated in this thesis) is undertaken in a Newtonian fluid with a
non-porous and inert nanoparticle. These investigations are carried out numerically in a
dilute fluid (whose density is much lower than that of a particle) using theory and meth-
ods that probe both the short and long time-scale aspects of the Brownian behavior. A
continuum based hydrodynamic approach to describing Brownian systems is adopted in
this thesis. Correspondingly, a brief survey of Brownian theory along with the necessary
theoretical basis required to interpret the reported results (appended in the papers) is
elaborated in this chapter.

3.1 Overview of Brownian theory

The fundamentals of modern Brownian theory were established in the 1900’s by Albert
Einstein [14], William Sutherland [24], Marian von Smoluchowski [25] and Paul Langevin
[26]. It is surprising that this Brownian perspective played almost no role in physics until
1905 and was generally ignored even by the physicists who developed the kinetic theory
of gases, though it is now frequently remarked that Brownian movement is the best il-
lustration of the existence of random molecular motion [27]. It was Einstein who first
attempted to establish the relevance of Brownian behavior by combining statistical me-
chanics and Stokes’ result [28] for the friction around a spherical particle due to a steady
flow [14]. Einstein’s theory neglects the inertia of the particle, implying that an infinite
force is required to change its velocity to achieve a random displacement at each step.
Von Smoluchowski, shortly afterwards, published a more comprehensible derivation of
a similar result (in terms of a random walk – or discrete straight trajectories), using a
theoretical model taken over from gas theory [25]. He clarified that each (apparently)
straight segment of the Brownian trajectory is a consequence of multiple collisions with
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the fluid particles which gives rise to a net displacement along that direction. Langevin
used this random walk theory and coupled it with a continuum assumption of the fluid
to recover Einstein’s result through the use of a stochastic differential equation: the
Langevin equation∗ [26]. The particle inertia was inherently accounted for within this de-
scription. Although Langevin employed a continuum description of the fluid (at the scale
of the particle), the fluid is perceived through its constituent molecules. These constantly
collide with the Brownian particle, accelerating and decelerating it perpetually. Thus,
the random displacements can be estimated from the balance between the viscous damp-
ing from the fluid and thermal fluctuations due to molecular collisions. This molecular
basis of Brownian theory was confirmed by Jean Baptiste Perrin consequently proving
the existence of molecules [30]. A chronological account of these early developments in
Brownian theory is available in the review by Brush [27].

Langevin’s theory neglected fluid inertia as it used the steady state Stokes’ drag for
damping the thermal fluctuations from molecular collisions (i.e. the Brownian particle
is significantly heavier than the molecules it is interacting with). Consequently, Orn-
stein and Uhlenbeck generalized the original Langevin description to include non-Stokes
behavior (i.e. fluid inertia) as well [31]. They achieved this by deriving the frequency
distribution function for the velocity and displacement of a free (unbounded) particle un-
dergoing Brownian motion [31]. The resulting random process is commonly referred to
as the Ornstein-Uhlenbeck process. Using this treatment, they showed that the velocity
auto-correlation function (VACF) of the particle decays exponentially. However, Kubo
[32] (another prominent name in the field) noted that this description is not valid at
the shortest time-scales, in which the Brownian particle suffers only a few or no impacts
(i.e. the particle has a well-defined velocity). These observations are also applicable in
systems where the Brownian particle is not necessarily heavier than the molecules in-
teracting with it. Computer simulations of the atoms in liquid argon by Rahman [33],
further, corroborated these observations by demonstrating a power law dependence for
the VACF at long time-scales (as opposed to the exponential decay). Thus, a generalized
form of the Langevin equation (GLE) was proposed by Kubo [32] to account for dynam-
ical coherence in Brownian displacements at short times. Additionally, hydrodynamic
models for the fluid (to generalize Stokes’ law for the frictional force), can also be used to
describe Brownian motion inclusive of fluid inertia, as shown by Alder and Wainwright
[34], Zwanzig and Bixon [35], Widom [36] and Hinch [37], to name a few. All these
developments culminated into the modern hydrodynamic theory of Brownian motion for
a free particle, which has been further validated with exhaustive experimental evidence,
recently, by Blum et al. [38], Huang et al. [39] and Kheifets et al. [40]. A more detailed
overview of these theories is also available in the reviews by Chandrasekhar [41], Bian et
al. [42], Radhakrishnan et al. [43] and Mo and Raizen [44].

Correspondingly, the rest of this chapter establishes the needed mathematical bases which
are derived from these popular hydrodynamic theories for both bounded and unbounded
Brownian diffusion in a fluid (either liquid or gas). Note that the continuum assumption

∗A translation of Langevin’s original work is available at [29]
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§§ needs to be satisfied for these bases to hold since, it is assumed that the momentum of a
Brownian particle relaxes to an equilibrium through its interaction with the immediately
surrounding fluid (i.e. the system is strongly overdamped by the viscous friction forces).
This limit in a fluid, where the Brownian particle interacts through continuum-level forces,
permits these macro-scale abstractions of molecular level phenomena.

3.2 Mathematical basis for free diffusion

In this thesis, we are concerned with the transport of nanoparticles in the size range 1
nm to 1 µm, which would mean that both macro- and molecular scale effects compete for
dominance. Physically, this results in two primary consequences – firstly, the molecular
effects manifest as a random driving force on the particle maintaining its incessant irreg-
ular motion and secondly, the ensuing hydrodynamic effects give rise to a frictional force
(or drag) for a forced motion. Thus, in mathematical terms, a superposition of these
two opposing effects gives rise to the meandering Brownian displacements, which when
averaged over long times yields a net diffusivity (a measure of the rate at which particles
diffuse) for the Brownian particle. Such a Brownian behavior is typically represented
within the Stokes-Einstein or (alternately) Langevin bases for a freely (unbounded) dif-
fusing particle. These representations are followed in this thesis as well and are described
below.

3.2.1 Stokes-Einstein description

Einstein’s seminal work [14] provided two major contributions: (i) it relates the mass
diffusion to the mean squared dispacement (MSD) of the particle and (ii) connects two
transport processes – the mass diffusion of the particle and the momentum diffusion of
the fluid. These contributions are contained in the equations that describe the long-term
statistical behavior of a Brownian particle. Correspondingly, the MSD of a particle with
position vector r(x, y, z) is given as:

< ∆r(t)2 >= 6D∞t. (3.1)

Eq. (3.1) can be used for directly estimating diffusivity from a measurement of the
particle MSD (in a general random-walk like process). Further, the diffusivity, D∞, of a
freely diffusing particle is given by the Stokes-Einstein relation as:

§§The continuum assumption considers the fluid as a continuous collection of macroscopic volumes
(which are orders of magnitude greater than the distance between two adjacent molecules of fluid) within
which the molecular details of the system are smoothed out. This concept of a continuous medium permits
the definition of averaged quantities that reflect the underlying molecular nature such as temperature,
density, pressure, velocity etc. at each point in the fluid domain (these quantities are assumed to have
a continuous distribution in space and time) [45, 46]
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D∞ = βStkBT, (3.2)

where, βSt is the Stokes’ mobility (reciprocal of the friction coefficient γSt [47]) of the
particle, which for a sphere in an incompressible fluid at steady state is:

βSt = γ−1
St = 1

6πµf rp
, (3.3)

with, µf as the dynamic viscosity of the fluid and rp as the particle radius, respectively.
Note that Eq. (3.3) is applicable when the no-slip (i.e. fluid velocity at the particle
surface is zero) condition is valid at the particle. The particle response time, τp, or the
time scale of a particle slowing down owing to friction from the fluid (after an initial
impulse) is estimated from the mobility as:

τp = mpβSt. (3.4)

The Eq. (3.2) balances the mass transport of the particle with the momentum transport
of the fluid. Consequently, the drag on the particle is steady and the thermal kicks (due
to collisions with the fluid molecules) average to zero over a long period, leaving the drag
on the particle as that in a deterministic fluid. It follows that, the particle inertia is
neglected in this description, meaning an infinite force is required to change the velocity
of the particle at each instance in the trajectory. Thus, the particle velocities cannot
be defined, leading to a fractal trajectory or random walk as shown in Fig. 3.1. A
mathematical model corresponding to this case is a Gaussian white noise process for the
velocity. Meaning, the instantaneous position xp(t) corresponds to a Wiener process¶¶,
which is continuous but nowhere differentiable in time. Note that the velocity can still
be determined from consecutive positions along the random walk, if the observations are
time-resolved sufficiently. Consequently, the chosen temporal resolution should capture
the relevant mass-diffusion process as given by the diffusion or Smoluchowski time-scale:

τD = r2
P

D∞
, (3.5)

Another inherent assumption in the Stokes-Einstein treatment is that the Schmidt num-
ber (Sc), given as the ratio νf /D∞, is ≪ 1, where νf is the kinematic viscosity (µf /ρf )
of the fluid. Physically, this means that momentum diffuses much faster than does the
particle and this motion is viscous-dominated. In particular, the fluid velocity quickly
relaxes to the solution of the steady Stokes’ equation as the particle barely moves [49].

¶¶A continuous-time stochastic process W (t) for t ≥ 0 with W (0) = 0 and such that the increment
W (t) − W (s) is Gaussian with mean 0 and variance t − s for any 0 ≤ s < t, and increments for non-
overlapping time intervals are independent [48].
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Thus, the Eq. (3.2) captures the long term behavior of a free Brownian particle in a
viscous fluid well, however it disallows a definition of an instantaneous particle velocity.
This is particularly relevant at the shortest time scales of motion (≪ τD), when the Brow-
nian particle moves in a straight line with a constant velocity before collisions with fluid
molecules slow it down and randomize its motion (as shown in experiments by Huang et
al. [50]). At this scale, known as the ballistic regime, the particle’s inertia becomes sig-
nificant and its motion is highly correlated. The ballistic time-scale (τB) can be deduced
from the collisional time scale of the molecules (i.e. the duration between successive
random bombardments). This is resolved using Langevin’s treatment [26]. Finally, and
most importantly, the Brownian process is assumed to be a Markovian, i.e. the future
states of the system are independent of the present and past states. This assumption
is usually valid, when it is assumed that the fluid is inertia-less (as is the case in the
Stokes-Einstein description).

Figure 3.1: Concept of random-walk: On the left is the actual trajectory of a Brownian
particle, while on the right are the observed locations of the particle as extracted from a
Stokes-Einstein description (Eq. (3.2)) at the diffusive time scale (τD in Eq. (3.5)). The
red arrows indicate the fractal trajectory (random walk) that is usually identified from
this description.

3.2.2 Langevin description

The fundamental theory of Einstein and Smoluchowski is restricted to time scales at which
the decay of the velocity of the Brownian particle is negligible (i.e much larger than the
particle response time). Hence, a more complete description of the Brownian motion of
a free particle was proposed by Langevin [26, 41]. Although Langevin’s approach, like
Einstein’s, is from a mathematical point-of-view rather simple, there is a very subtle
conceptual point at the basis of his theory for Brownian motion. This is the validity
of Stokes’ law (which has a macroscopic nature) together with the assumption that the
Brownian particle is in statistical equilibrium with the molecules in the liquid. In other
words, despite the mass of the colloidal particle being (exceedingly) larger than the mass
of the molecules, energy equipartition is assumed to hold. This equation of motion† for

†Brownian motion occurs in 3D and Eq. (3.6) applies only to the x-component of this motion.
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the Brownian particle, with mass mp, is formally based on Newton’s second law as:

mp
dup

dt
= −γStup + χ(t), (3.6)

where, up denotes the velocity of the particle and χ(t) is the stochastic forcing (in the
attached papers this is referred to as FBrownian) that denotes the fluctuating part of the
Brownian motion. It should be noted that both these parts are related as they are a
result of the same fundamental phenomenon, i.e. random collisions with the surrounding
molecules. The frictional term γSt is given by Eq. (3.3). Hence, the Langevin equation
(3.6) is the momentum equation for the particle with a random forcing for the non-
equilibrium behavior and with a friction force that is linear in instantaneous velocity.
The fluctuating component χ(t) is assumed to be independent of the velocity up and
further fluctuate rapidly in comparison with variations in velocity. Consequently, in
this description, the particle velocity is well defined and is subject to both the viscous
dissipation (friction force) from the fluid and the random stochastic forcing. Uhlenbeck
[31] further showed that Eq. (3.6) is constrained by certain restrictions on the fluctuating
component χ(t), i.e. it follows a Markovian Gaussian white noise process. Hence, the
stochastic forcing satisfies:

⟨χ(t)⟩ = 0, ⟨χ(t)χ (t′)⟩ = S̃uuδ (t − t′)

⟨χ(t)x (t′)⟩ = 0, ⟨χ(t)up (t′)⟩ = 0.
(3.7)

Here, ⟨...⟩ denotes an ensemble average in thermal equilibrium and S̃uu is the strength
of the Gaussian noise (which will be determined below). In the Langevin Eq. (3.6), up is
continuous and differentiable under the constraints of a stochastic differential equation
(provided χ(t) is an additive and independent noise). Thus, the MSD and velocity auto-
correlation function (VACF) can be extracted from this equation as shown below.

MSD and VACF

The MSD can be derived by re-writing Eq. (3.6) in terms of the position x(t) and averag-
ing the same using the ⟨...⟩ operator under the constraints presented in Eq. (3.7), followed
by the application of the equipartition theorem mp⟨u2

p⟩ = kBT ‡. Correspondingly, we
obtain the expression for the MSD at all time scales as:

⟨∆x2(t)⟩ = 2kBT

γSt

(
t − mp

γSt
+ mp

γSt
e

−γStt

mp

)
. (3.8)

‡A colloidal particle suspended in a liquid at temperature T is assimilated to a particle of the liquid,
so that it possesses an average kinetic energy 2RT

Nav
. Accordingly we get: 1

2 mp⟨u2
p⟩ = 2RT

Nav
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In Eq. (3.8), when t ≫ τB , the exponential term is negligible, leading to the Einstein’s
result for long-term or over-damped behavior i.e. Eq. (3.1) (in 1D). However, when
t ≪ τB or as t → 0, the ballistic or under-damped result can be obtained:

< ∆x(t)2 >= kBT

mp
t2 = u2

rmst2. (3.9)

Here, urms is the root-mean-squared velocity of the particle. The corresponding time
scale (i.e. the relaxation time for the Brownian particle) in the ballistic regime, τB , is
given as:

τB = mp

γSt
. (3.10)

The VACF of the Brownian particle can be derived by evaluating the solution of the first-
order inhomogeneous stochastic differential equation i.e. Eq. (3.6). Ornstein-Uhlenbeck
showed that the VACF of a freely diffusing Brownian particle is:

C(t) ≡ ⟨up(0)up(t)⟩ =
〈
u2

p(0)
〉

e
−γStt

mp = kBT

mp
e

−γStt

mp . (3.11)

The detailed derivation of both the MSD and VACF is available in Appendix 7.2.

3.2.3 Linear response theory and the Langevin equation

Figure 3.2: Schematic of an output from a linear time invariant (LTI) system in the time
(left) and frequency (right) domains.

17



Linear response theory describes how an (small) external perturbation affects the macro-
scopic properties of a system. In this context, a Brownian process can be regarded as
a system which is regularly perturbed by thermal kicks (from the fluid molecules) and
can correspondingly be modeled using linear response theory (as shown by Ounis and
Ahmadi [51–53]). Since the magnitude of these applied stochastic forces are small, the
response of the system has a linear dependence on it. Moreover, this response does not
depend on the time when the stochastic forcing is applied, meaning it is a linear time-
invariant (LTI) system. Consequently, the Brownian system is perturbed by a Gaussian
white noise with zero mean (E[χ(t)] = 0) and a co-variance given by the Dirac-delta
function (E[χ(t)χ(τ)] = δ(t − τ)). This forcing appears at a time-scale lesser than the
particle response time (τp). Consequently, such a strategy is adopted to model Brownian
behavior in this thesis.

The correlation functions, derived previously (see Eq. (3.11)) represents a stationary¶

stochastic process in the time domain, which satisfies the Wiener-Khinchin theorem‖.
It follows that, such time signals can be represented in the frequency space using the
corresponding Fourier transforms. Correspondingly, the power spectral density, S̃uu(ω),
of the random process (based on the velocity), which is needed in order to describe the
Gaussian white noise signal, can be deduced as:

S̃uu(ω) = kBTγSt

πmp
= 2γSt

2

π
D∞, (3.12)

Thus, the stochastic forcing term, χ(t), is modeled as a Gaussian white noise process
with the vector of spectral intensity Sn

ij given as:

Sn
ij = S̃uu(ω)δij . (3.13)

A detailed derivation of this power spectrum (i.e. Eq. (3.13)) is provided in Appendix
7.3.

To summarize, in this thesis, the Langevin behavior is studied as an LTI system, i.e. a
Gaussian white noise perturbed Brownian particle that is immersed in a fluid is stud-
ied. This approach is chosen as it is easy to implement in a Lagrangian form within
the numerical framework developed in this thesis. Moreover, this approach accurately
reproduces the necessary dynamics of the system (see Fig. 3.3) as well. Additionally,
hindered diffusion can easily be included in such a Langevin description by accounting

¶A continuous-time random process, X(t), t ∈ R is wide sense stationary if:
1. µX(t) = µX , for all t ∈ R, where µX is the mean.

2. CX(t1, t2) = CX(t1 − t2), for all t1, t2 ∈ R, where CX is the correlation function.

‖The power spectrum S(ω) of a stationary random process and its auto-correlation function are
Fourier transform pairs
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for the relevant particle mobility in Eq. (3.3), as will be elaborated in the subsequent
section.

Figure 3.3: 1D Brownian behavior modeled as an LTI system (stochastic forcing done
using a Gaussian white noise signal): Particle mean-squared behavior (represented as
MSD∗

x = MSDx/D∞τp) in the left panel and VACF in the right panel. Note that the
Langevin Eq. (3.6) is integrated using a forward Euler explicit time marching scheme.
The mean-squared behavior shows the clear transition from the correlated ballistic regime
(indicated with slope 2) to an un-correlated and linear Stokes-Einstein regime. Further,
V x

acf decays exponentially.

Note, however, that this approach is valid only under the following conditions:

1. The random forcing appears as a white noise at a scale lesser than the particle
response (or ballistic) time scale τp.

2. The hydrodynamic coupling between the particle and the fluid (i.e. the fluid fric-
tion) is given by the steady Stokes’ drag [47].

3. There is equipartition of kinetic energy among the degrees of freedom of the system,
i.e. between the molecules of the fluid and the particle performing Brownian motion.

The white-noise assumption is satisfied when the particles are much larger than the
surrounding fluid molecules without being much less dense [37]. The validity of the steady
drag has been a source of debate for several applications of the Langevin treatment,
especially when the particle-fluid density ratios are lower (i.e unsteady effects such as
Basset history and added mass forces begin to play a role) [33, 34, 37]. However, for
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the typical cases studied in this thesis, the particle-fluid density ratios are significantly
higher, meaning that the hydrodynamic coupling can be given by steady hydrodynamic
forces. Moreover, the particle Reynolds number†† is ≪ 1, for the nanoparticles studied
in this thesis, meaning, the fluid inertia is negligible.

3.3 Hindered diffusion

In the previous section, a detailed mathematical basis for describing free (or unbounded)
diffusion is established. In particular, the Langevin approach, which is central to this
thesis, has been described in detail. However, not all real systems are so ideally behaved.
In many cases, the Brownian particle diffuses in an environment where other interactions
mediated by the fluid (such as particle-particle, particle-wall or non-continuum effects),
assume a governing role in dictating the dynamics of the system. Within the context of
this thesis, nanoparticle transport in such altered environments is referred to as hindered
diffusion (i.e. the free diffusion of a Brownian particle is ‘hindered’ by additional effects
mediated by the fluid). It is well established that the mobility of the particle is altered
and in most cases reduced when diffusing in the vicinity of a wall or another particle. This
was confirmed by direct measurements in Brownian systems, first by MacKay and Mason
[54] and later by others [50, 55–70] using advanced particle tracking techniques. This
reduction in particle mobility is attributed to the associated increase in the hydrodynamic
resistance on the particle when diffusing in the vicinity of a wall or another particle. A
detailed account of related hindered diffusion theories for Brownian motion is available
in the reviews by Deen [71], Burada et al. [72] and Mo and Raizen [44]. The details on
these theoretical developments are omitted from this section for brevity (but are briefly
discussed in the appended papers, see Papers B and D).

A similar reduction in the hydrodynamic resistance is also noticed for a particle suspended
in a rarefied gas, as first reported by Epstein [73] and later by Cercignani and Pagani [74,
75]. The reduction in this case is, however, due to the existence of non-continuum effects
in the gas. These are attributed to the longer mean free paths (or distance between
successive molecular collisions) in air when compared with a corresponding liquid (where
the molecules are more tightly packed). Thus, a new transport scale defined by the
Knudsen number (Kn):

Kn = λgas

L
, (3.14)

with λgas as the mean free path of the gas and L as a characteristic system length scale,
is introduced in these systems. This scale identifies the relative importance between
(microscopic) molecular and (macroscopic) hydrodynamic interactions (or the degree of

††Ratio between inertial and viscous forces given as dpρf up

µf
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rarefaction). When Kn > 0.001, the particle does not perceive the gas as a continuum
any longer and begins directly interacting with its constituent molecules, particularly as
the particle sizes are very close to the mean free path (molecular length scales) of the
surrounding gas. Thus, the overall resistance to motion is also reduced.

In this thesis, hindered diffusion is modeled by correcting the Stokes’ mobility (in Eq.
(3.3)) used in the Langevin basis to adequately represent the actual mobility of the
particle. Correspondingly, the respective treatments adopted for this mobility correction
(in liquids and gases) are described in this section.

3.3.1 Wall-bounded diffusion

The dynamics of Brownian particles close to a rigid wall are significantly affected by
wall interactions. When a rigid particle approaches within a few radii from the wall,
its mobility is altered. Usually, this mobility is discussed along two principal directions
relative to the motion between the particle and the wall, a co-axial (or parallel) and
wall normal (or perpendicular) mobility, respectively. Independent measurements of the
mobility and diffusion coefficient (D) of Brownian particles diffusing near a wall have
indicated that they are each to be corrected by the same factor [50, 57, 61, 63–65, 76, 77].
This implies that these quantities are functions of the radial position of the Brownian
particle in relation to the boundary walls. This is due to the increased hydrodynamic
resistances in the vicinity of a wall, leading to a reduction in particle mobility. Further,
the wall-normal motion is impeded more strongly than the co-axial one. This is expected
as, for wall-normal motion, the fluid between the particle and the wall needs to be
squeezed out, correspondingly, increasing the resistance. This basis was first established
by Faxén and later improved upon by the analytical theories of Brenner [78, 79] for
longitudinally bounded flows.

The correction to the particle mobility in a liquid is represented as λ throughout this
thesis. This is done by multiplying the Stokes’ mobility (see Eq. (3.3)) for a free particle
with this factor as:

βcorr
St = 1

6πµf rpλ
, (3.15)

where βcorr
St is the corrected Stokes’ mobility. Most recently, Kihm and co-workers [63,

80] further validated with experiments that the reduction in mobility (by the factor λ)
is indeed described by the analytical theories of Brenner [78, 79]. Moreover, λ can rep-
resent any other effect such as a slip-wall [81, 82] or even other neighboring particles
(multi-particle diffusion) [60, 78, 83, 84], provided the appropriate correlation is used.
An overview of most analytical/theoretical developments including the appropriate ex-
pressions for λ can be found in the classical books of Happel and Brenner [85] and Kim
and Karilla [86].
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3.3.2 Diffusion in a rarefied gas

Diffusion of a nanoparticle in a rarefied gas is usually not classified under hindered dif-
fusion, however, within the context of this thesis, this is also included within this broad
classification. The motivation behind this inclusion is that these systems are also modeled
in a similar way as hindered diffusion in liquids, i.e. the particle mobility is corrected to
incorporate the necessary deviations from the Stokes’ mobility (Eq. (3.3)). For rarefied
gases, these deviations are due to the breakdown of the continuum assumption when the
characteristic dimensions of the flow are comparable to the mean free path of the gas (in
this case air has a mean free path of approximately 67 nm at 20◦C and standard atmo-
spheric pressure). Thus, for the range of Brownian particles considered in this thesis (1
nm to 1 µm), rarefaction effects of the gas are also relevant. Under such conditions, the
fluid can no longer be regarded as being in thermodynamic equilibrium (with the parti-
cle) and a variety of non-continuum or rarefaction effects are likely to be exhibited [87].
This necessitates an additional correction factor in the Langevin equation, Eq. (3.6) (in
a similar manner as that of λ) while modeling the relevant Brownian behavior. Note that
in a rarefied gas the no-slip boundary condition, traditionally employed at the particle
surface, is no longer applicable and a sub-layer (known as the Knudsen layer) of the order
of one mean free path starts to affect the fluid interaction between the bulk flow and the
particle.

Figure 3.4: Flow regimes classified based on the Knudsen number (figure adapted from
Bird [88]).

Rarefied flows are characterized by Kn into the following four regimes: continuum flows
(Kn < 0.001), slip flows (0.001 ≤ Kn < 0.1), transition flows (0.1 ≤ Kn < 10), and
free-molecular flows (Kn ≥ 10) [87, 89–94]. The applicability of the continuum hypoth-
esis is determined on the basis of these regimes, as shown in Fig. 3.4. Systems which
are strongly rarefied or at the limit of free molecular flow are characterized by a Kn
greater than unity while those which are at the continuum flow limit are characterized
by a Kn much lower than unity. As Kn increases, the rarefaction effects become more
pronounced and eventually the continuum assumption breaks down. Hence, the particle-
fluid interaction has to be resolved by solving the Boltzmann equation (will be discussed
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in Section 4.1.2). Nevertheless, conventional continuum descriptions of the forces can be
extended to describe weakly rarefied or slip flows (10−3 < Kn < 10−1) by imposing the
appropriate slip and temperature jump boundary conditions on the surface [87].

Early attempts at understanding such rarefied flow regimes at low densities began with
Maxwell [95], when he derived a slip boundary condition for a dilute gas using kinetic
theory. This idea was extended by Cunningham [96], who derived an empirical first-order
slip velocity correction factor from hydrodynamic theory for small Kn. Further, Millikan
[97] confirmed that the drag reduction (due to hindered momentum transfer between the
particle and fluid) at higher Kn can be deduced using the Cunningham correction (Cc)
when formulated as a function of Kn as:

Cc(Kn) = 1 + AKn, (3.16)

where, A is a function of Kn that is determined based on empirical data. The Cun-
ningham correction produces results that are in excellent agreement with the available
experimental data as shown by Alan and Raabe [98]. Mosfegh et al. [99] summarize the
Cunningham-based slip correction factors (and corresponding A values) that have been
proposed and commonly used (based on extensive experimental trials) for air with mean
free path of 67.3 nm at 101.3 kPa and 23°C. Among these, the most commonly used
correlation is the one proposed by Davis [100] and is given as -

Cc = 1 + Kn
(

1.257 + e
−1.1
Kn

)
. (3.17)

Correspondingly, the correction to Stokes’ mobility (i.e. Eq. (3.3)) for diffusion in rarefied
gases is given as:

βcorr
St = 1

6πµf rp( 1
Cc

)
. (3.18)

The Eq. (3.18) shows that Cc is always used in conjunction with the steady Stokes’
drag, which is by definition obtained using a no-slip condition at the particle surface.
The continuum hypothesis could also be extended for moderate Kn by exchanging the
no-slip condition for a slip condition (at the particle surface) [101]. This approach can be
used with some success in the slip flow regime (up to Kn ≈ 0.15). Nevertheless, in this
thesis, we limit ourselves only to the empirical first-order Cunningham slip correction
due–in–part to its relative ease of implementation (within the developed framework) and
demonstrated capability to adequately represent non-continuum effects in weakly rarefied
gases [98]. Moreover, these higher-order slip conditions are highly geometry dependent
[102], further adding to the complexity of the problem. Consequently, there is not yet a
consensus in open literature neither on the best choice for a higher-order slip formulation,
nor on their advantages in complex geometries [103].
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4
Numerical modeling

approaches
Molecular and continuum based methods

The primary objective of this thesis is to present a novel continuum based framework
to assess the (Brownian) dynamics of a nanoparticle under any given condition (either
free or hindered diffusion). Traditionally, the modeling of Brownian behavior has been
approached from two perspectives – building up from micro-scales or projecting down
from the macro-scale. This dichotomy consequently leads towards assessments at vary-
ing levels of detail. The former are generally at a high level of detail but at a microscopic
scale of abstraction, while the latter are lacking in the molecular details but are, however,
at a relevant macroscopic scale. In this thesis, a continuum based abstraction is preferred
(as elaborated in Chapter 3). Furthermore, these continuum based projections are ad-
ditionally improved by consistently incorporating the missing molecular details, thereby
extending their applicability. Note also that molecular methods are used as well in order
to investigate certain complex dynamics in rarefied particulate flows where a continuum
based abstraction fails. Thus, in this chapter, these numerical treatments are described
in relation to the theoretical bases introduced in the previous chapter. Furthermore, a
brief review of the current state-of-the art in the numerical modeling of Brownian motion
is also presented here.

4.1 Current state-of-the-art

Early analytical developments within Brownian theory were derived with both first
principles based approaches using kinetic theory (i.e. Langevin, Fokker-Planck§§ and

§§The Fokker-Planck equation for the distribution function f of the Brownian particles (derived from
the Langevin Eq. (3.6)) is given as:

∂f

∂t
=

∂

∂up
· (γStupf) + q

∂2f

∂u2
p

,
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Boltzmann equations [31, 41]) and hydrodynamic approaches using the linearized Stokes’
equations¶¶ [86, 104]. Most modern techniques heavily borrow from these classical ap-
proaches and further improve upon them. Correspondingly, these modeling techniques
are classified into three overarching categories based on the corresponding level of com-
putational abstraction (as shown in Fig. 4.1). These are: micro-scale, meso-scale and
macro-scale methods, in decreasing level of spatial resolution (i.e. moving from meter-
scales to pico/nano-scales), respectively. Due to the large scale-separations, the dynamics
of the Brownian particles are largely dependent on the detailed mechanics of the sus-
pending fluid. Thus, the wide spectrum of available methods are generally applicable
(efficiently) based on the governing length scales of the system as represented in terms of
Kn. Correspondingly, micro-scale methods are more relevant when directly describing
molecular-scale interactions (Kn ≥ 10) and macro-scale methods when the continuum
theory holds (Kn → 0). The meso-scale methods are applicable when the continuum
theory begins to fail and when micro-scale methods are too expensive. The relevant
developments within these three categories of numerical methods are described below.

4.1.1 Micro-scale methods

Dynamic simulations of Brownian systems at a molecular level of abstraction (using ki-
netic theory) were pioneered by Alder and Wainwright [105]. The aim of such a method
was to obtain the spatial and temporal evolution of the relevant macroscopic proper-
ties of the system on the basis of the mechanical laws governing the molecular motion.
This method, referred to as molecular dynamics (MD), solves the Newton’s equation of
motion for the simulated molecules/particles interacting through Lennard-Jones, hard-
sphere, electrostatic, etc. types of inter-particle forces. This was first successfully used by
Rahman [33] to demonstrate the non-exponential decay of the VACF in liquids and has
since been used for several applications, including studying bio-molecules [106]. The MD
technique evaluates the time-dependent behavior and evolution of a molecular system,
from which the thermodynamic and kinetic properties are evaluated. Although such an
approach works reasonably efficiently in liquids (where the molecules directly interact
with only a few neighboring molecules), it gets computationally expensive in dilute gases
where a molecule could have potentially thousands of collision partners. This could make
the problem completely intractable for certain applications, as the computational bur-
den of the method scales with the square of the number of simulated molecules. This
is because the computation for any single molecule requires the consideration that all
other molecules are possible collision partners [88]. This inherent limitation of the MD
method, led to the development of the most widely used molecular method for dilute gas
flows, the direct simulation Monte Carlo (DSMC). This method, pioneered by Bird [88,
107], is also similar to the MD approach with one crucial difference: the inter-molecular
collisions are dealt with on a probabilistic rather than a deterministic basis (hence the

where q = kBT γSt
mp

¶¶The continuum Navier-Stokes equations can be linearized by neglecting the non-linear convective
terms, meaning the Brownian particle is diffusing in a quiescent fluid.
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name Monte-Carlo). DSMC has been shown in principle to be an exact solution of the
Boltzmann equation∗∗∗ [108], meaning the necessary molecular nature of the system can
be obtained without the need for any additional models or fitting. The DSMC method
can in principle be used across the regimes indicated in Fig. 3.4. However, it is best
applicable to describe flows with Kn ≥ 10, as it can get computationally expensive when
Kn → 0. Moreover, Michaelides recently used this method to assess nanoparticle diffu-
sivity in an isothermal fluid within narrow cylindrical pores [109], further demonstrating
the usefulness of the method in assessing the micro-scale dynamics of a Brownian system.
Thus, Bird’s DSMC framework is used in this thesis to describe rarefied gas dynamics
in the transition regime. More specifically, the effect of a symmetric nanoparticle in rar-
efied micro-channel flows is investigated using a DSMC solver (dsmcFoamPlus), details
of which are discussed in the succeeding sections.

Figure 4.1: Classification of numerical methods based on their corresponding scales of
abstraction in terms of level of detail.

∗∗∗The Boltzmann transport equation is given as:

∂f

∂t
+ ui

p

∂f

∂xi
+ ai

p

∂f

∂vi
p

=
(

Df

Dt

)
coll

,

where, ui
p and ai

p represents the velocity and acceleration of a distribution of molecules/particles. Note
that f is a one-particle distribution function, i.e. it is assumed that the probability of finding a particle
at a particular point in phase space is independent of the coordinates of all other particles in that phase
space. Such a description is only valid for a dilute gas.
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4.1.2 Meso-scale methods

Simulating every aspect of a system at a molecular level of detail can not only be very
expensive but also unnecessary. Under conditions where Kn is sufficiently low that a
detailed molecular basis is intractable, while still being sufficiently high enough that
the continuum based approaches are reaching their limit (i.e. usually in the slip and
transition flow regimes), a meso-scale approach is more preferred. Methods at this level
of abstraction are based on microscopic models and meso-scopic kinetic equations. The
basic premise for using these simplified kinetic-type methods for macroscopic fluid flows
is that the macroscopic dynamics of a fluid is the result of the collective behavior of many
microscopic particles in the system and that the macroscopic dynamics is not sensitive
to the underlying details in the microscopic physics [110]. Consequently, in mesoscopic
kinetic theory, the distribution of particles in a gas is the quantity which evolves on
timescales around the mean collision time between the molecules (i.e. at a scale where
the system relaxes to local equilibrium through collision events).

Some of the most widely used mesoscopic methods for modeling Brownian behavior are
the lattice Boltzmann method (LBM) and dissipative particle dynamics (DPD). These
are briefly described below.

Lattice Boltzmann method

The LBM framework originated from lattice gas automata (LGA), which was proposed
as a new technique to solve the continuum averaged Navier-Stokes equations (described
later in Eq. (4.1)). Consequently, these equations were solved using a simulation where
particles of the same mass are allowed to move on a regular lattice and local collision
rules are introduced at the nodes which conserve the number of particles and momentum
(discrete particle kinetics utilizing a discrete lattice over discrete time) [111–113]. The
lattice gas automata was extended to solve the Boltzmann equation (for a distribution
of particles/molecules) with a linear BGK collision operator, that directly captures the
relaxation of the distribution function towards the equilibrium Maxwellian distribution.
This is achieved by discretising the Boltzmann equation in velocity space, physical space
and time†††. Thus, the particles in the LGA method are replaced by distribution functions
in the LBM approach. A more detailed account of the LBM framework is beyond the
scope of this thesis and the reader is referred to detailed reviews on the same by Chen
and Doolen [114] and the book by Kruger et al. [115].

†††Discretized Boltzmann equation:

fi (x + ci∆t, t + ∆t) = fi(x, t) −
∆t

τ

(
fi(x, t) − feq

i (x, t)
)

,

where, fi(x, t) moves with velocity ci to a neighboring point on the lattice x + ci∆t at the time step
t+∆t and τ is a velocity-dependent collision time that relaxes the system to the equilibrium distribution
feq

i .
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LBM has been used in conjunction with existing MD methods, for studying Brownian
behavior in finite size suspensions. Ladd [116, 117] proposed one such hybrid method
that solved the particle dynamics using Newton’s equations of motion (MD) and the sur-
rounding fluid using the LBM framework. Since the molecular fluctuations are inherently
absent in the Boltzmann equation, these are additionally included in the fluid description
using the fluctuating hydrodynamics approach of Landau and Lifshitz [118], leading to a
stochastic term in the the time evolution of the velocity distribution function. This ap-
proach, also known as the fluctuating lattice Boltzmann method (FLBM), was extended
to polymer solutions by coupling it to a Langevin evolution of the particle dynamics, by
Ahlrichs and Dunweg [119] and later by Mynam et al. [120]. Despite being highly par-
alellizable, LBM is memory-intensive. Consequently, propagating populations requires a
large number of memory access events. Moreover, FLBM has a few bottlenecks associ-
ated with the choice of the discretization scheme for the stochastic differential equation,
primarily due to the correlation between the form of the required fluctuation-dissipation
relations and the choice of scheme [121].

Dissipative particle dynamics

DPD, on the other hand, can be considered as a coarse-grained MD method that allows
for the simulation of larger length and time scales than molecular dynamics and avoids the
lattice-related artefacts of LBM. This model consists of a set of point particles that move
off-lattice, interacting with each other through three types of forces: a conservative force
derived from a potential, a dissipative force that tries to reduce radial velocity differences
between the particles and a stochastic force directed along the line joining the center of
the particles. The last two forces can be termed as a pair-wise Brownian dashpot which
represents the viscous forces and thermal noise between the groups of atoms represented
by the dissipative particles. All these forces describe additive pair-interactions between
particles (obeying Newton’s third law). Hence, DPD conserves momentum. Due to this,
the behavior of the system is hydrodynamic at sufficiently large scales [122]. Note that
all interactions have a finite radial range. For a more detailed description of this method,
the reader is referred to the review by Espanol [122].

DPD is particularly suited for evaluating the hydrodynamics of complex fluids at the
mesoscale with finite Kn. Typical applications are suspensions of polymers. This method
has also been used in conjunction with the Langevin equation to assess Brownian systems.
Gubbioti and co-workers used DPD to account for a spatially dependent mobility field
determined a priori. This field was solved in conjunction with a rigid body Langevin
equation [123] to assess hindered diffusion in micro-channels. This method is perfectly
suited for studying pore scale diffusion in symmetric channels, however, the a priori de-
termination of the mobility field gets progressively harder in heterogeneous pores, thereby
limiting its applicability. Another disadvantage of DPD is that it contains a large number
of parameters that have to be selected carefully. For instance, the choice of the radial
cut-off limits is delicate and affects the emergent hydrodynamic behavior. Finally, as
with other mesocale methods, these can also be memory intensive as the dynamics of
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individual particles have time scales significantly shorter than the hydrodynamic time
scales.

4.1.3 Macroscopic methods

The Macroscopic or continuum based methods are in essence coarse-grained abstractions
of micro- and meso-scale descriptions that rely on two fundamental assumptions: (i) the
continuum limit, i.e. the point in space where the field is defined is a volume element
containing a large number of atoms and (ii) the local equilibrium assumption, i.e. these
volumes are large enough to reproduce the thermodynamic behavior of the whole sys-
tem. This concept of a continuum fluid is fundamental to the viscous damping being
described in the Langevin equation, which models the total fluid resistance (in the over
damped limit) as the continuum Stokes’ drag on the particle (as elaborated in Chapter 3).
Hence, the original Langevin equation (i.e. Eq. (3.6)) can be considered to model Brow-
nian behavior at a continuum level of abstraction, consequently requiring the molecular
fluctuations to be added additionally (as these have been averaged out in a continuum
description) through the stochastic forcing term.

This continuum assumption permits the governing equation system to be simplified into
non-linear partial differential equations, i.e. the Navier-Stokes (NS) equations [28, 47,
124]∗∗∗. This equation, for an incompressible (divergence free) fluid is given by the
following continuity and momentum equations:

∇ · v = 0,

ρf

(
∂

∂t
v + v · ∇v

)
= −∇P + µf ∇2v, (4.1)

where, v and P are the velocity vector and pressures in the fluid, respectively‡‡.

The NS equations are strongly non-linear, meaning they require advanced iterative tech-
niques such as computational fluid dynamics (CFD) for obtaining the desired solution.
Alternately, these equations can also be linearized by neglecting the non-linear convective
terms, giving an equation system that can be determined by semi-analytical solutions.
This means that the solution to the governing hydrodynamic fields (obtained from the NS
equations) coupled with the integration of the Langevin equation for the particle yields

∗∗∗A concise history of the conceptual foundations of fluid mechanics from the time of Newton’s
Principia in 1687 up to the definitive work of Stokes in 1845, can be found in [125]

‡‡The operators are given as:

∇ =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
, ∇2 =

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
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a reasonable description of Brownian behavior. Note that within the context of this
thesis, the former CFD based approaches are grouped under multiphase direct numerical
simulation or DNS methods while the latter are grouped as analytical methods. These
are described below.

Analytical methods

Analytical approximations of the NS equations, obtained by linearizing Eq. (4.1) or ne-
glecting the non-linear convective terms when Rep ≪ 1 (meaning the particle is diffusing
in a quiescent fluid) is given as:

∇ · v = 0,

ρf
∂

∂t
v = −∇P + µf ∇2v, (4.2)

are used to estimate the hydrodynamic resistance γSt used in the Langevin Eq. (3.6).
A variety of methods have been reported in literature to solve the linearized (unsteady)
Stokes’ Eq. (4.2), as listed in the classical books by Happel and Brenner [85] and Kim
and Karilla [86]. Among these, the method of reflections pioneered by Smoluchowski [25]
and later extensively used by Brenner [78] has been popular in solving the steady Stokes’
equations (i.e. without the time derivatives in Eq. (4.2)). This technique has since been
extended to Brownian motion by Ermak and McCammon [126] through the Brownian
dynamics (BD) approach. The BD approach was further extended towards a colloidal
system of N-particles in a viscous, incompressible fluid under creeping flow conditions by
Brady and Bossis [127] through the Stokesian dynamics (SD) approach. Despite being
successful at simulating the rheology of spherical particles in a suspension, both BD and
SD neglect unsteady particle inertia to accommodate for computational efficiency, thus,
limiting their applicability to only particle-fluid systems at high density ratios.

In most real systems of interest, the net force on the particle from the fluid includes both
reactive (e.g. added mass or Basset history forces) and resistive (e.g. viscous dissipation)
components. These can be included by solving the unsteady Stokes’ equation for the
fluid given in Eq. (4.2). Consequently, the method of reflections for steady Stokes’ flows
was extended by Ardekani and Rangel [128] and later by Simha et al. [129] to account
for these unsteady effects within the mobility estimates. Felderhof [130, 131] further
simplified this problem using a point-particle approximation to determine the dynamics
of sufficiently small spherical particles (i.e. approximating the spherical particle by a
point force, reducing this to a Green’s function problem). All these approaches may not
be analytically tractable in a closed-form without approximations (despite the linearity)
particularly in situations with reduced symmetry. Moreover, the solution procedure gets
progressively elaborate (in a mathematical sense) when describing asymmetrical particles
(such as nanofibers, nanorods, nanosheets, nanowires or nanotubes) and/or channels such
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as an arbitrary pore. This is due to the direct dependence of the morphology (including
shape, size and structure/composition) of the particle on its corresponding hydrodynamic
interaction [85, 86]. Note that detailed descriptions of these aforementioned analytical
methods are beyond the scope of this thesis. For a broader perspective on these methods,
the reader is referred to the classical books by Happel and Brenner [85] and Kim and
Karilla [86]. Additionally, papers on the subject by Felderhof [130], Simha et al. [129],
Mo and Raizen [44] and Brady and Bossis [127], are also a relevant resource.

Multiphase direct numerical simulation (DNS)

The NS equations can also be solved numerically using computational fluid dynamics
(CFD). This solution procedure discretizes the equation system both temporally and spa-
tially in the domain of interest. The chosen discretization reduces the partial differential
equations into a linear algebraic equation system that can be solved directly using effi-
cient sparse-matrix solvers. In this thesis, a finite volume discretization is used to solve
the NS equations [132]. Moreover, this solution is coupled to the Brownian description
of the particle through the Langevin equation. Such a method that can simultaneously
account for both the particle dynamics via a solution to the particle transport equation
and the fluid hydrodynamics via a solution to the governing fluid equations (using CFD),
along with the accompanying interactions is referred to as a multiphase CFD technique.
Note that in this method the fluid and the particle are treated individually and the cou-
pling is achieved through both the hydrodynamic drag and the fluctuation-dissipation
relation in the Langevin description (see Appendix 7.1).

Within the context of multiphase CFD, direct numerical simulations (or DNS) refers to
a class of methods that directly solve the coupled equation system describing the various
phases [133]. Thus any macro-scale description of Brownian motion can inherently be
considered a multiphase DNS method when, the Brownian particle and the surrounding
fluid are accounted-for individually. Moreover, the two phases under consideration can
be coupled with each other to varying degrees. These are given as 2-way and 4-way
coupling, respectively. The 2-way coupled system represents both particle-fluid and fluid-
particle coupling, implying that each phase is affected by the presence of the other.
While, a 4-way coupled system is a 2-way coupled system with additional interaction
between the constituent particulate phase entities (i.e. particle-particle interactions such
as collisions) also included. The continuum based methods discussed in this thesis are
2-way coupled since we deal with single or (at the most) pairwise hydrodynamic behavior.
It follows that, the two phases can be adequately represented as an Eulerian-Lagrangian
combination. Consequently, in this thesis, the fluid is solved as an Eulerian field (using
CFD) and the particle Langevin equation is solved in the Lagrangian frame of reference.
This Lagrangian representation (or inertial frame of reference) is further classified as
point-force (or point-particle) or surface-resolved treatments [133], based on how the
particulate phase is resolved (see Fig. 4.2).

As the name suggests, the point-force approach (shown in the left panel of Fig. 4.2)
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Figure 4.2: Different types of Lagrangian representations where the shaded area represents
the particle (with effective diameter dp) and the grid represents the spatial resolution for
the continuous phase solution (where ∆x is the effective cell resolution): Left panel –
point-force representation (dp < ∆x). Right panel – Resolved surface representation
(∆x ≪ dp). This figure is adapted from Michaelides et al. [133].

includes the Lagrangian particulate phase as point masses (or sources) i.e. the particles
have negligible volume but a finite mass or inertia and move at their own (independent)
velocity. Usually, this approach is referred to as a pseudo-DNS method, since the relevant
hydrodynamic forces on the particle are modeled (and not resolved). Despite this, since
the solution from the NS equations governing the fluid at the point where the particle
is located is used in the hydrodynamic models, it is an improvement over the analyti-
cal methods listed earlier. The point-particle assumption is central to this Lagrangian
representation with an ordinary differential equation (ODE) based on the changing par-
ticle position. Such an equation, which was provided by Maxey and Riley [134], also
includes unsteady fluid effects such as the added mass (due to fluid acceleration caused
by the particle acceleration) and Basset history forces (due to acceleration between the
phases and the development of a boundary layer near the interfacial surface) [135]. The
corresponding equation of motion for a Brownian particle is given as:

mp
dup

dt
= −γvrel + Fam + Fhistory + χ(t), (4.3)

where, Fam and Fhistory represent the added mass and Basset history forces, written as:

Fam = −1
2

ρf Vp

(
dup

dt
− Dvrel

Dt

)
, (4.4)

Fhistory = −3
2

d2
p

√
(πρf µ)

∫ t

0

dvrel
dτ√
t − τ

dτ, (4.5)

with, vrel as the relative velocity between the particle and the fluid (at the location
of the particle) i.e. up − v, τ as the time period for the integration and the material
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derivative as D
Dt ≡ ∂

∂t + uj
∂

∂xj
. This Eq. (4.3) is integrated over the duration of the

simulation (i.e. t). Consequently, in this approach, the hydrodynamic interactions with
the fluid are modeled as point forces (i.e. for e.g. the steady state Stokes’ drag is used
to describe the particle-fluid coupling). Thus, for this to work, these point-particles
have to be sufficiently smaller than the spatial discretization or resolution (∆x) of the
surrounding fluid (dp < ∆x). Note that the flow between the particles and the particle
and flow boundaries is actually resolved and is further used within the particle equation of
motion. Consequently, this approach has been widely used to study Brownian transport
(including their turbulent dispersion) in a gas, as first shown by Ounis and Ahmadi [51,
52]. Despite being a popular method, these point-force based methods inherently fail
when the particles have a definite volume (i.e. the point-particle assumption is not valid),
as is the case during pore diffusion wherein the particles occupy a significant portion of the
flow domain. Correspondingly, the applicability of these point-force methods is limited to
studying dilute particulate flows in channels where the particles are significantly smaller
than the characteristic channel dimension.

Thus, due to the inherent limitations of the point-force treatment, the resolved surface
approach (shown in the right panel of Fig. 4.2) is the preferred choice in this thesis (since
we deal with particles that are significant when compared with a relevant system length
scale). In this approach, the detailed flow around each particle must be solved to a high
degree of resolution. This permits the flow solution to be numerically integrated over
the particle surface in order to obtain the net momentum exchange with the surrounding
fluid [133]. Thus, the Lagrangian method updates the particle position based on this
integrated interaction. If particle rotation is permitted, a torque equation can be used
to determine its angular velocity. Consequently, the resolved surface approach has found
increasing incidence in some of the most recent studies on Brownian hydrodynamics,
overcoming some of the major drawbacks of the point-forcing approach. Note that in
this approach, the spatial grid resolution ∆x, in the vicinity of the particle, must be fine
enough to allow for a detailed resolution of the fluid stresses around it (∆x ≪ dp). Thus,
the resolved-surface approach is computationally intensive, such that simulation of many
(e.g. hundreds or thousands of) particles will generally be impractical on even the most
advanced computers [133].

It is reiterated that the continuum based multiphase DNS frameworks available do not
contain the relevant molecular details (thermal fluctuations), as these have been averaged
out during the derivation of the NS equations (Eq. (4.1)). Thus, when these methods are
used in Brownian hydrodynamics simulations, the corresponding micro-scale effects have
to be consistently incorporated within the continuum description of the system. Tradi-
tionally, this can be accomplished by either adding the relevant fluctuations to the fluid
phase or on the Brownian particle (as in the Langevin description). While the Gaussian
forcing of the particle has been well explored, since the original assessments of Langevin
[26], the stochastic forcing of the fluid or the fluctuating hydrodynamics approach is a
relatively newer idea. This is described in brief below.
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Fluctuating hydrodynamics

The fundamental concept behind this approach is that at intermediate length and time
scales between the molecular and the hydrodynamic levels of abstraction, thermally in-
duced fluctuations can be reduced to random fluctuations in the fluxes of the conserved
variables, i.e. the momentum, heat and mass fluxes. Correspondingly, the fluctuations
are included only within the deterministic fluid description, thereby ensuring that the
microscopic conservation laws and thermodynamic principles are obeyed, while also main-
taining the fluctuation-dissipation balance. These constitute a group of methods referred
to as the fluctuating hydrodynamics (FH ) approach of Landau and Lifshitz [118] which
is derived using the fluctuation-dissipation theorem of statistical mechanics applicable
at mesoscopic scales [136, 137]. Correspondingly, the Landau and Lifshitz Navier-Stokes
(LLNS) equations is given as:

∇ · v = 0,

ρf (vt + (v · ∇)v) = ∇ · σ,

σ = −Pδij + µ
[
∇v + (∇v)T

]
+ Rf , (4.6)

where, δij is the identity tensor and Rf is the random fluctuations in the total fluid stress
tensor σ, respectively. These non-equilibrium fluctuations, which are captured through
the random stresses (stochastic momentum flux), are modeled as:

Rf =
√

µf kBT [υ(r, t) + υ(r, t)T ]. (4.7)

Here, υ(r, t) is a standard Gaussian white noise tensor field with uncorrelated components,
that is δ-correlated ¶¶¶ in space and time. The particle motion is solved using Newton’s
equation of motion (velocity up is directly estimated from the hydrodynamic force on the
particle). Note that the LLNS equations are stochastic partial differential equations that
reduce to the NS equations (Eq. (4.1)) in the limit of large volumes. The validity of the
LLNS equations (see eq. (4.6)) for non-equilibrium systems has been extensively assessed
by Espanol et al. [138] and verified using molecular dynamics simulations by Mansour et
al. [139]. Further, the LLNS based methods have been used predominantly in liquid-solid
systems, wherein the breakdown of continuity (i.e. the traditional NS equations) occurs at
considerably smaller scales [140]. Hence, this approach has successfully been incorporated
in several numerical methods that describe Brownian dynamics in dilute fluids and in
modeling reactive multi-species fluid mixtures [141–145]. These numerical simulations
have been carried out either using the finite volume method [142, 143, 146–148], finite
difference method [149], finite element method [150] or the immersed boundary method
[151–154] (an alternate approach to solving the NS equations). All these techniques
represent a surface-resolved approach to solving Brownian diffusion using FH. A detailed
insight into these FH based methods is beyond the scope of this thesis and the reader is

¶¶¶⟨υ(r, t)υ(r, τ)⟩ = δ(t − τ). Thus, υ(r, t) is correlated with itself only when t = τ .
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referred to the papers by Donev et al. [143, 144] , Uma et al. [142], Atzberger et al. [151,
152], Balboa et al. [153] and to the reviews by Radhakrishnan et al. [43] and Griffith
and Patankar [148] for the same.

Although the fluctuating hydrodynamic approach has found utility in Brownian particle
dynamics studies, there are still some bottlenecks associated with its implementation in
general finite volume or finite element based DNS frameworks. The main difficulty is in
devising a discretization scheme for the stochastic differential equations primarily because
of the correlation between the form of the required fluctuation-dissipation relations and
the choice of scheme [121]. Further, finite-volume discretizations naturally impose a grid-
scale regularization (smoothing) of the stochastic forcing. Moreover, the non-linear LLNS
equations are ill-behaved stochastic partial differential equations that are challenging
to integrate [155]. This is because, the stability properties of the available numerical
schemes for the nonlinear LLNS system are not well understood and the whole notion
of stability is different from those in regular deterministic schemes [144]. Finally, and
most crucially, employing the LLNS equations to describe gas-solid flows is still heavily
debated particularly due to the higher Kn encountered in these systems.

Since the overarching objective of this thesis is to develop a general numerical method
(for Brownian transport) which is applicable in both liquids and gases, the FH based
methods are not preferable. Consequently, an alternate approach is proposed where the
particle motion is modeled using a stochastic differential equation (in the spirit of the
Langevin Eq. (3.6)) while employing the resolved-surface Lagrangian treatment, thereby
leaving the fluid equations unaltered. This idea is described in detail in the subsequent
sections (see Section 4.3). However, prior to this discussion, some desirable features of
such a framework are first listed in order to establish the minimum requirements for the
ensuing numerical development.

4.2 Desired features of a DNS framework

The brief overview of the current state-of-the-art in the numerical modeling of Brown-
ian systems identified a noticeable requirement for a general method that can easily be
implemented within the confines of a multiphase DNS framework at a reasonable com-
putational load. It is possible to envisage a DNS scheme where the NS equations for the
fluid are solved coupled with the Langevin equation (which includes a random forcing
term) for particle motion. Since the flow around the Brownian particle is fully resolved,
hydrodynamic interactions mediated by the fluid (such as particle-particle or particle-wall
effects) are inherently accounted for in such a description. The only noticeable challenge
is to consistently account for the random forcing of the particle. Moreover, since the
continuum formulation of the fluid is untouched in this approach, existing discretization
schemes used in CFD can be applied effectively. The Langevin equation can also be
integrated using elementary temporal integration strategies that obey the Itô interpre-
tation [156]. In summary, the development of such a Langevin based resolved-surface
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Euler-Lagrangian method seems feasible and is the primary objective of this thesis. Con-
sequently, we can establish some desirable features for such a framework:

1. General DNS methodology: applicability is not restricted by the choice of the solver
(i.e. can be applied across a variety of resolved-surface DNS frameworks such as
the immersed boundary method, arbitrary-Lagrangian-Eulerian technique etc.)

2. Sound theoretical basis: the stochastic forcing is consistently incorporated within
the validity of the fluctuation-dissipation theorem, so that the statistical behavior
is accurately reproduced.

3. Reasonable computational overhead: effectively utilize the current generation of
advanced sparse matrix GPU solvers to further make simulations tractable.

4. Capability to handle both gas-particle and liquid-particle systems: adequately re-
solve the varying particle diffusion dynamics in liquids and gases.

5. Capability to handle hindered diffusion: simulate challenging theoretical problems
involving hydrodynamic interactions mediated by the fluid (such as particle-boundary,
particle-particle interactions).

6. Capability to handle asymmetric systems: simulate non-symmetric particles and/or
geometries with ease.

In the remainder of this chapter, the fundamental aspects of the numerical tools used and
developed in this thesis are elaborated. First, a detailed account of the novel Langevin
based multiphase DNS method developed is presented (used in Papers A, B, C and D)
followed by a brief account of the utilized DSMC solver (in Paper E).

4.3 Langevin immersed boundary method (LaIBM )

One of the primary objectives of this thesis is to develop a multiphase DNS method that
can overcome the limitations of the available continuum based multiphase CFD methods
and further extend their applicability towards assessing nanoparticle transport in a fluid.
Consequently, as motivated in the earlier sections, an Euler-Lagrange resolved surface
approach is chosen as a basis for such a development. Such an approach is also favorable
since it is simpler to formulate and easier to implement. However, the available methods
need to be extended to also include both non-equilibrium (rarefied) as well as molecular-
scale details, in order to accurately represent the Brownian diffusion of a nanoparticle.
Hence, an improved multiphase DNS framework that can simultaneously handle particle-
fluid and fluid-particle coupling (i.e. at least 2-way coupled) as well as the accompanying
Brownian dispersion of the nanoparticle at high solid volume fractions would be ideally
suited to describe the nanoparticle dynamics discussed in Chapter 3. Since this method
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leverages both the Lagrangian Langevin description and an immersed boundary method,
it is henceforth referred to as the Langevin-Immersed boundary method or LaIBM . Note
that the immersed boundary method solves the Eulerian fluid field using discretizations
of the governing NS equations similar to those applied in conventional CFD [132].

In this section, the necessary numerical details of the LaIBM framework are provided
within the context of the resolved-surface Euler-Lagrangian multiphase DNS class of
methods discussed in Section 4.1.3. Further, a general overview of immersed boundary
methods is also provided to establish the needed context.

4.3.1 Immersed boundary methods: A general overview

Immersed boundary methods are a class of numerical techniques employed in the CFD
(i.e. numerical solutions to the NS equations Eq. (4.1) using for e.g. finite volume
discretization) of complex flow systems that greatly simplify the spatial discretization
demands. This method, originally proposed by Peskin [157] to simulate cardiac mechanics
and the associated blood flow, solves the governing equations in a Cartesian grid that
does not conform with the complex geometries of the simulated system. In essence, the
object around which the flow is to be assessed is immersed in a standard Cartesian flow
grid and its presence is accounted for by slightly modifying the governing NS equations.
Note that a surface grid still has to be generated for the immersed body (IB), however,
the volume grid on which the actual governing equations are solved for can be generated
with no-regard to this surface grid [158] i.e. regular boxy domains can be used over
which the IB object (included as an external .stl geometry file) is triangulated. The
main advantages of such a treatment are as follows:

1. Using a Cartesian grid can significantly reduce the per-grid-point operation count
due to the absence of additional terms associated with grid transformations.

2. On a non-body conforming grid, complexity and quality are not significantly af-
fected by the complexity of the geometry.

3. Including body motion in IB methods is relatively simple due to the use of a sta-
tionary and non-deforming Cartesian grid.

4. Dynamic refinement around the immersed object is permissible, meaning, the ac-
curacy is increased at a minimal computational overhead.

Incorporating the presence of the IB in the NS equations is the primary challenge in
setting up this framework. Usually this modification takes the form of a source term (or
forcing function) in the governing equations that reproduces the effect of the boundary.
This is usually done in one of the following ways:
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Figure 4.3: Example of an immersed Cartesian octree grid around a pair of spherical
Brownian particles with a diameter of 400 nm each (x-z plane): Note that there is no
need for a body conforming mesh as the spheres cut through an adaptive Cartesian octree
background grid on which the discretized NS equations are solved.

1. Continuous forcing: the source term is introduced into the continuous equations
(i.e. prior to the discretization) around the vicinity of the IB.

2. Discrete forcing: the source term is only introduced in the discretized equations
around the vicinity of the IB (typically within the IB).

3. Implicit forcing: there is no source term introduced into the equations. Instead, a
boundary condition is used to constrain the velocity at the IB surface so that the
correct behavior is reproduced.

The continuous forcing approach is very attractive for flows with immersed elastic bound-
aries and was originally envisioned by Peskin for the coupled simulation of blood flow and
muscle contraction [157]. In this method, the IB is represented as a set of elastic springs
whose locations are tracked in a Lagrangian framework by a collection of mass-less points
that move with the local fluid velocity. The effect of the IB on the surrounding fluid is
essentially captured by transmitting the elastic stress (calculated using Hooke’s law) to
the fluid through a localized forcing term in the momentum equations [158]. This forcing
is, however, distributed over a band of cells around each Lagrangian point (based on
the discrete Dirac delta function). Consequently, this approach poses challenges for rigid
bodies as the forcing terms are not easy to implement at the rigid limit. Moreover, due
to the smoothing of the forcing term, a sharp representation of the IB is not available.
Consequently, this method is explicit, first-order accurate and unstable.

Hence, for dealing with sharply defined rigid bodies (as we do in this thesis), a better
forcing alternative is desired. This can be fulfilled by employing a discrete (or non-
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distributive) direct forcing approach that adds the requisite source terms in the vicinity
of the IB. Despite being second order accurate, this approach is only explicitly formulated
and can be unstable for unsteady flows. Alternately, the implicit forcing approach can
also be used to treat bodies with sharply defined edges. In this method, the velocity at
the IB is constrained by an implicitly formulated immersed boundary condition (IBC)
that is second-order accurate. This unique and stable treatment is central to the efficiency
and accuracy of the multiphase DNS framework used in the thesis and is elaborated in
the following section.

4.3.2 Immersed Boundary Octree Flow Solver: IPS IBOFlow®

In this thesis, we use the multiphase flow solver IPS IBOFlow®, developed by the Fraunhoffer-
Chalmers Research Centre (FCC), Sweden [159]. This solver employs a unique mirror-
ing immersed boundary method (MIBM) to efficiently handle the particle-fluid coupling
(resolved-surface DNS). The MIBM discretizes the NS equations over a Cartesian octree
grid¶¶¶ that can be dynamically coarsened and refined. Further, it is coupled with a finite-
element (FEM) rigid body solver to resolve the particle short range dynamics (i.e. handle
the particle motion in a Lagrangian basis). This coupling between the Eulerian and La-
grangian descriptions is elucidated in Fig 4.4. Details on these two core-components of
the solver are further presented below beginning with the MIBM used.

Figure 4.4: Overview of the LaIBM framework: the particle dynamics are handled in a
Lagrangian basis while the surrounding fluid is resolved in an Eulerian one. Note that
the Lagrangian basis utilizes the resolved fluid stresses on the particle (from the Eulerian
solution) to compute/correct the particle mobility. This framework is 2-way coupled. This
figure is adapted from Paper C [3].

¶¶¶This is a recursive decomposition of the spatial domain into blocks (not necessarily rectangular)
in which each internal node has exactly eight children. Octrees are most often used to partition a
three-dimensional space by recursively subdividing them it into eight octants.

40



Eulerian description of the fluid: mirroring immersed boundary method

The governing equations for the flow around the immersed boundaries are given by the
continuity and momentum equations for incompressible flows i.e. the NS equations (see
Eq. (4.1)). This set of equations are solved together with the implicit Dirichlet IB
condition:

ui = uib
i , (4.8)

which sets the velocity of the fluid to the local IB velocity. In MIBM, the velocity is set
by an implicitly formulated second-order accurate immersed boundary condition. In this
method, the interior cells and the cells close to the surface are identified as shown in Fig.
4.5.

Figure 4.5: 2D view of the adaptive dynamic grid refinement around an immersed spheri-
cal particle (with diameter 400 nm). Cell types shown are exterior (grey), interior (white)
and mirror or IB cells (black). This figure is adapted from Paper A [1].

For the mirroring cells that lie close to the surface, their centers (mi) are geometrically
mirrored over the local IB to the exterior points (e) as:

uib
i = umi + ue

2
. (4.9)

By mirroring the velocity field over the IB second order accuracy is achieved. Typically,
the exterior points do not coincide with a grid point, hence, implicit tri-linear interpola-
tion is adopted to accomplish this. When the velocity is mirrored over the IB, a fictitious
(velocity) field is generated within it. To fulfill the continuity equation, this field needs
to be replaced by the IB velocity in all flux calculations (note that the velocity within
the IB is not used). A more detailed description of this method is available in [160–162].
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It should be noted that in the current method the total force acting on the IB is given
by the surface integral of the total stress tensor over the IB as:

Fi
IB =

∫
IB

σ · ndS =
∫

IB

(−Pδij + τ) · ndS =
∫

IB

(
−Pδij + µf ∇2v

)
· ndS, (4.10)

where, δij is the Dirac delta and σ is the total fluid stress tensor with Pδij and τ as the
pressure and viscous contributions for a surface S with normal n, respectively. The index
i represents the degrees of freedom for the IB in a Cartesian basis. The corresponding
torque on the IB with a position vector r is calculated using:

TIB =
∫

IB

r × σ · ndS. (4.11)

The pressure-velocity coupling in Eq. (4.1) is handled using the segregated SIMPLEC
method, [163] which first approximates the momentum equation with an estimated pres-
sure field and then corrects the pressure by employing the continuity equation. All vari-
ables are stored in a co-located grid arrangement (meaning the variables such as pressure,
velocity etc. are stored at the cell centers). Further, the Rhie-Chow [164] flux interpola-
tion is used to suppress pressure oscillations. A partitioned approach is employed to solve
the coupled problem. Correspondingly, the grid and assembly are fully parallelized on
the CPU and the resulting large sparse-matrices are solved on the GPU with Algebraic
Multi-Grid solvers (AmgX) [165]. The IB method described above has been extensively
validated and used for the DNS of complex multiphase flow phenomena [162, 166–172].
More recently, it has also been extended towards non-Newtonian flows as well [173, 174].

Lagrangian Langevin description of the particle

The particulate phase in the LaIBM framework is governed by the Lagrangian Langevin
equation of motion (see Eq. (3.6)). This equation balances the macro-scale hydrodynamic
drag on the particle with the molecular-scale Brownian fluctuations. For the diffusion
of a particle (represented by an IB) with mass mp, translational velocity ui

p, angular
velocity ωi

p and moment of inertia I , the corresponding Lagrangian Langevin basis is
rewritten as:

mp

dui
p

dt
= Fi

IB + Fi
Brownian, (4.12)

I
dωi

p

dt
= Ti

IB − ωi
p × J · ωi

p. (4.13)
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In Eqs. (4.12) and (4.13), note that the continuum resolved translational (Fi
IB) and

rotational (Ti
IB) hydrodynamic fields are directly used in the Langevin equation, thus,

enforcing a direct coupling of the Eulerian solution with the corresponding Langevin equa-
tion of motion (resolved-surface DNS). Thus, these Eqs. (4.12) and (4.13) are modeled
as an LTI system as established in Section 3.2.2. Note that the hindered diffusion of the
Brownian nanoparticle is included through the correction factors to the particle mobility
used in the stochastic forcing term Fi

Brownian (synonymous with χ(t) used in Eq. (3.6))
i.e. either λ or 1/Cc based on if hindered diffusion or rarefied hydrodynamics are being
evaluated, respectively. The essential descriptors of this representation in terms of the
mobility correction λ (i.e. in a liquid) are given below.

The directional reduction in mobility, λi, which is required in the stochastic forcing term
used in Fi

Brownian, is estimated by normalizing the magnitude of the hydrodynamic force
on the confined Brownian particle (Fi

IB) with the corresponding Stokes’ drag (along the
ith direction) on the same particle. This is given as:

λi = Fi
IB

γStui
p

. (4.14)

Here, the Stokes’ friction factor γSt has the form as defined in Eq. (3.3) and a represen-
tative particle time scale , τp, is given as:

τp = mp

γSt∥λi∥ (4.15)

The force Fi
Brownian, which represents the Brownian fluctuations in the particle motion,

is modeled as a Gaussian white noise process (an LTI system as described in Section
3.2.3) as given by:

Fi
Brownian(t) = mpG

√
πSi

uu
∆t

. (4.16)

Here, G is a vector of normally distributed independent random numbers of zero mean
and unit variance (Gaussian distribution) and ∆t is the time step length during which the
Brownian force is active. The vector of spectral intensity Si

uu (as given in Eq. (3.12)),
is a function of the directional Brownian diffusivity Di, which is in-turn given by the
Stokes-Einstein relation with the corrected mobilities as:

Di = D∞

λi
= kBT

γStλi
, (4.17)

where, D∞ (or bulk diffusivity) is given by Eq. (3.2) with a further reduction by λi
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(in accordance with [175–177]) to account for confinement effects. Note that unbounded
Brownian diffusion is simulated by setting λ as unity. Moreover, a rarefied gas-solid
system is modeled by using 1/Cc (as given in Eq. (3.17)) in place of λ.

These linear and angular momentum conservation equations (Eqs. (4.12) and (4.13)) are
integrated using the Newmark time-marching scheme [178]. In this method, acceleration,
velocity and displacement at time t = tn+1 are obtained as functions of the values at
t = tn by assuming a linear acceleration during that small time step. This one-step
semi-implicit method can be represented by the following set of equations:

u̇p
n+1 = u̇p

n + ∆t

2
(
üp

n + üp
n+1)

(4.18)

un+1
p = un

p + ∆tu̇p
n + 1 − 2κ

2
∆t2üp

n + κ∆t2üp
n+1 (4.19)

The scheme is unconditionally stable with κ as a tuning parameter that has a default
value of 0.25 (the constant average acceleration method) [178]. It is stressed that this
solution (or solution process) to Eq. (4.12), a stochastic differential equation (SDE), is
not synonymous with the commonly encountered ordinary differential equations (ODE’s).
The integration of these SDE’s are constrained by certain properties of the stochastic
time integral as first defined by Itô [156]. To understand these constraints let us split the
integral time interval into a number of small time steps which are then summed to give the
final solution. This limit result is not independent of the choice of the intermediate time
interval, which is used while splitting the solution into smaller time steps, as one would
expect from classical Riemann integration laws [179]§§§. This is because the solution
would change depending on the time point at which the integration is started, as these
are random time evolving systems (the trajectories have infinite variation). Hence, it is
very important to decide on the sense (or form) of the integral which should be solved.
The Itô sense, which has a clear probabilistic interpretation and is most often used to
describe Brownian processes, assumes that the integral is solved from the beginning
of the time interval. This interpretation is most convenient for numerical simulations
because the increment of the stochastic process is uncorrelated with the variables at the
same time. This would mean that, forward stepping explicit schemes are preferred while
solving SDE’s in an Itô sense. More generally, higher order schemes (such as higher
order Runge-Kutta schemes) can introduce spurious drifts in the solution and should be
avoided [180].

§§§A bounded function f : [a, b] → R, is said to be Riemann integrable over [a, b] if there is a number
A ∈ R, such that for every ε > 0, there is a δ > 0; implying that any partition P = {a = x0 < x1 <
... < xn = b} of the interval [a, b], with lengths |xi − xi−1| < δ for all i = 1, ..., n. Further, if there exists
ti ∈ [xi−1, xi], then: ∣∣∣∣∣

n∑
i=1

f (ti) (xi − xi−1) − A

∣∣∣∣∣ < ε =⇒
∫ b

R

f(x)dx = A
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4.3.3 Some unique capabilities of LaIBM

LaIBM is developed with the ambition of satisfying the requirements listed in Section
4.2. Thus, this framework has some unique features which are derived from the existing
capabilities of the resolved-surface multiphase DNS method (described in Section 4.3.2).
These are:

1. Contains the resolved hydrodynamics around the Brownian particle: the framework
leverages a resolved solution of the hydrodynamics around the Brownian particle
to estimate the relevant reduction in mobility λ.

2. Mobility estimation on-the-fly: closely coupled with the previous point, since the
resolved hydrodynamics are used to compute mobility, the instantaneous hydro-
dynamic fields around the particle are directly reflected in the estimated diffusive
behavior.

3. Multi-particle dynamics: diffusion of several particles and the accompanying hydro-
dynamic interactions mediated by the fluid can be assessed simultaneously (each
particle’s motion is individually solved for and the accompanying inter-particle hy-
drodynamic interactions are included in the respective λ’s).

4. Not limited by symmetry considerations: the framework is derived for any shape or
form (singular or aggregates) of the particle and the accompanying domain (straight
or arbitrary tortuous channels) and is, hence, not limited by the availability of
uniform solutions to the hydrodynamic resistances nor symmetry considerations,
such as other methods reported in literature [68, 104, 130, 175].

4.3.4 Some limitations of the framework

As with any method development, the over-arching objectives are made realizable (pri-
marily to demonstrate a proof-of-concept) for the derived DNS method, by simplifying
the system under investigation. The corresponding assumptions that currently limit the
developed framework are:

1. Validity of the Langevin equation: the early iterations of this new DNS method are
derived based on the fundamental assumption that the steady Langevin equation
(i.e. Eq. (3.6)) is valid. This means that the framework is limited to handling high
particle-fluid density ratios (where unsteady effects such as history and added mass
forces are negligible). The main issue with handling lower density ratios is that
the unsteady effects would be included in FIB and TIB , but not in the Brownian
forcing modeled using Eq. (4.16). Hence, the stochastic forcing term would have
to be re-derived.
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2. Gaussian white noise assumption: closely coupled with the previous point, the
Brownian fluctuations are assumed to be a Gaussian white noise that is delta cor-
related in time (i.e. Markovian in nature). This means that the VACF of the
Brownian particle decays exponentially (as given in Eq. (3.11)), whereas in real
liquids it is shown to have a long time tail [33, 34, 181]. This is attributed to the
unsteady hydrodynamic effects on the particle (fluid inertia mediated).

3. Negligible fluid inertia: although, the framework can inherently handle the con-
vective fields in the fluid, the numerical studies chosen in this thesis mimic low
Reynolds number hydrodynamics i.e. primarily creeping flows (Rep ≪ 1), where
the fluid inertia is negligible, are simulated. This choice is made to maintain the
validity of the steady Langevin Eq. (3.6) and the analytical bases discussed in
Chapter 3.

4. Rarefaction effects are modeled and not resolved: gas-particle systems modeled in
this DNS framework are limited by the first-order Cunningham correction, which
is based on a theoretical ansatz that is not necessarily always valid. Nevertheless,
the corresponding parameters (in the expression for Cc) are fitted to experimental
data and the agreement is good for all Kn. Thus, the non-continuum diffusion
dynamics are being modeled and not resolved.

5. Numerical instabilities in the IBM: the inherent length and time scales in the Brow-
nian transport problem (of a nanoparticle) are very close to the machine precision of
most modern computing platforms, meaning, these problems push existing sparse
matrix solvers to the limit. Thus, a scaling up of the problem (using the Reynolds
and Schmidt number’s) is needed in the current iteration of the DNS method to
circumvent these issues without a loss of generality.

4.4 Direct simulation Monte-Carlo

The direct simulation Monte-Carlo (DSMC), developed by Bird [88, 107, 182], is a stochas-
tic particle-based technique for modeling dilute real gases in which the molecular diame-
ter is much smaller than the mean free path (λg). This method leverages three physical
characteristics of a dilute gas:

1. Molecules move in free flight without interaction at time scales in the order of the
local mean collision time.

2. The impact parameters and initial orientation of colliding molecules are random.

3. There are an enormous number of molecules per cubic mean free path and only a
small fraction need be simulated to obtain an accurate molecular description of the
flow.
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These three assumptions are highly accurate for dilute gases and combined they enable
the DSMC method to simulate macroscopic non-equilibrium flows [183]. It is reiterated
that the defining characteristic of a non-equilibrium flow is the local departure (within
a volume) from the Maxwell-Boltzmann equilibrium distribution functions for molecular
velocity and internal energy. The continuum based methods (including the multiphase
CFD techniques developed in this thesis) inherently assume only small departures from
this equilibrium distribution, while the DSMC method is able to predict the distribution
functions (within each small gas volume) with no such assumptions or restrictions on the
shape of the distribution.

Figure 4.6: Schematic of a DSMC simulation domain with simulator particles that rep-
resent a large number of identical real molecules within discretized collision cells. An
example of a sampled distribution function from a single DSMC cell is also shown. This
figure is adapted from Boyd and Schwartzentruber [183].

The primary objective of the DSMC method is to decouple molecular motion (modeled de-
terministically) and inter-molecular collision (modeled probabilistically) over small time
intervals. The time interval over which the solution is sought is subdivided into smaller
sub-intervals over which the particle motion and collisions are decoupled. Consequently,
the trajectories are computed over a time interval which is lesser than the mean collision
time in discretized collision cells (see Fig. 4.6). Further, DSMC relies on discrete parcels,
which each contain a collection of molecules, to represent the total molecular number
density (N) of the real gas. This enables collisions between pairs of simulated parti-
cles to be modeled with precisely the same physical considerations as collisions between
pairs of real molecules. Consequently, the deterministic nature of molecular movement
and collisions (as simulated with MD, for example) is lost. A DSMC simulation cannot
determine precisely which real molecules actually collide and what impact parameters
characterize the initial conditions of such collisions. This loss of determinism is also a
result of moving simulated particles in straight lines for a fraction of their mean collision
time. In effect, although the distribution functions are accurately resolved at spatial and
temporal scales of the mean free path and mean collision time, the precise locations of
the real molecules comprising those distributions are no longer known below these scales
(positions of simulated particles within a DSMC cell significantly below the mean free
path is irrelevant to the method) [183].

In this thesis, the open-source solver dsmcFoam+ developed by White and co-workers
[184–186] is used for carrying out the relevant assessments. This code-base, which is
built within the OpenFOAM (or Open-source Field Operation And Manipulation) suite
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of libraries [187], is licensed under the GNU general public license with a publicly available
software repository [188]. Further, it has been extensively validated against experimental
and theoretical data across a wide variety of rarefied flows [184, 186, 189–194]. A brief
overview of this solver is provided in Fig. 4.7. For a more comprehensive outlook of this
method, the reader is referred to Bird’s monograph [182] and to the papers by White et
al. [184, 185].

Start

Initialize the solver

Populate the cells with ’dsmcParcels’

Simulate particle motion and compute interactions

Update particle indexing

Perform collisions

Sample particle properties

Is tn > tend

Compute averaged properties

Stop

Yes

No

Figure 4.7: Overview of the dsmcFoam+ solver (adapted from White et al. [185]).
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5
Highlights

Summary of the key scientific contributions and papers

The primary objective of this thesis is to develop an in-silico based evaluation strategy
for the transport of Brownian nanoparticles in a fluid (a gas or liquid). Correspond-
ingly, these contributions (from this thesis), as reflected in the appended papers, are
briefly highlighted in this chapter. These papers represent a chronological development
of the original research questions identified in Chapter 2. Correspondingly, in Paper
A the fundamentals of the novel multiphase DNS method are established by demon-
strating that the Langevin description of the Brownian particle can be combined with
a resolved-surface DNS of the Eulerian fluid fields around the particle for a gas-particle
system. Subsequently, in Paper B the developed framework is extended towards liquid-
particle systems, particularly to investigate the hindered diffusion of a spherical particle
in arbitrary geometries (including micro-channels and pores). Further, in this paper a
directional bias (anisotropy) in the hydrodynamic resistances on the particle is identi-
fied, with a pronounced co-axial resistance noted when compared with a wall-normal
one. This hydrodynamic bias is further examined in Paper C by evaluating the off-axis
hindered diffusion dynamics (i.e. at a location displaced from the co-axial axis along the
center-line) in micro-channels. Next, in Paper D the liquid-particle investigations are
extended towards pair-wise transport and diffusion near a soft-boundary (formed at the
interface of two liquids), thereby demonstrating the capabilities of LaIBM in handling
multi-particle dynamics (in the former) as well as complex diffusive behavior (in the lat-
ter), which are beyond the scope of the traditional analytical methods (as discussed in
Section 4.1.3). Finally, in Paper E the gas-particle system is revisited at a molecular
level of abstraction using the DSMC method to better understand the non-equilibrium
effects around a symmetric particle in a micro-channel. In summary, the main scientific
contributions from this thesis (which are summarized in Table 5.1) address some of the
challenges encountered while studying the transport of Brownian nanoparticles (such as
a nanocarrier or soot particles) under hydrodynamic confinement and further establishes
the foundations for an in-silico assessment of such complex transport of nanoparticles.
The rest of this chapter contains a summary of each appended paper.

49



Table 5.1: Key scientific contributions in the appended papers.
Highlights

Paper A

• Derived and validated a multiphase DNS framework for Brownian mo-
tion in a gas-particle system.

• Extended the DNS method to include non-equilibrium (rarefied) par-
ticle dynamics.

• Modeled the diffusion dynamics of a fractal shaped soot particle.

Paper B

• Derived and validated the multiphase DNS framework for Brownian
motion in a liquid-particle system.

• Extracted the reduction in particle mobility, λ, from the resolved hy-
drodynamic field around the particle (λ estimation on-the-fly), for a
Brownian particle under hydrodynamic confinement (wall-bounded dif-
fusion).

• Incorporated the resolved instantaneous hydrodynamics around the
Brownian particle (without the need for an a priori determination of
the relevant mobility tensors) into the particle Langevin equation of
motion.

• Identified anisotropies in the hydrodynamic resistances on the Brown-
ian particle in the wall-normal and co-axial directions.

• Modeled the diffusion dynamics in an arbitrary pore.

Paper C

• Established a hydrodynamic basis for off-axis Brownian diffusion in
micro-channels (i.e. at a location off-set from the co-axial axis of the
channel).

• Identified an enhancement in co-axial diffusivity during off-axis hin-
dered diffusion under intermediate confinements.

Paper D

• Extended the applicability of the validated multiphase DNS framework
towards multi-particle systems (i.e. pairwise diffusion) and diffusion
near a soft-boundary (a 3-phase system).

• Demonstrated that the inter-particle interactions (mediated by the
fluid) leads to a correlated motion between the pair of particles as
a result of being accelerated by each other’s wakes.

• Demonstrated that particle mobility is enhanced near a soft-boundary
due to a significant reduction in the hydrodynamic resistances near
such an interface (accomplished by incorporating the dynamics of the
evolving interface with LaIBM through a volume of fluid coupling).

Paper E

• Demonstrated the impact of a particle on the Knudsen paradox in
micro-channel Poiseuille flows.

• Identified that the Knudsen minimum is shifted towards higher Kn
and that the mass-flow rate changes (in the channel) become less pro-
nounced towards the free molecular flow regime (due to a shift towards
relatively more ballistic molecular motion at shorter geometrical dis-
tances).
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Paper A

A. S. Kannan, V. Naserentin, A. Mark, D. Maggiolo, G. Sardina, S. Sasic, and H. Ström.
A continuum-based multiphase DNS method for studying the Brownian dynamics of
soot particles in a rarefied gas. Chemical Engineering Science 210 (2019), 115229. issn:
0009-2509. doi: 10.1016/j.ces.2019.115229

Motivation and division of work

The main objective of this paper is to derive and validate a novel multiphase DNS
technique based on the immersed boundary method (that satisfies some of the require-
ments listed in Section 4.2) to study the diffusion dynamics of a nanoparticle in a gas-
particle system. Besides being the main author, my contribution consisted of setting-
up/conceptualizing the simulations and post-processing/analyzing the results. The other
co-authors supervised, reviewed and provided valuable feedback on the analyzed results
and on the drafted manuscript.

Results and discussion

Vectors of velocity magnitude
around a fractal aggregate (with
diameter 348 nm).

In this paper, the fundamentals of the novel multi-
phase DNS method are established by showing that
the Langevin description of the Brownian particle can
be combined with a resolved-surface DNS of the Eu-
lerian fluid fields around the particle. The developed
general framework is validated using a gas-particle
quiescent aerosol inclusive of non-continuum effects
(modeled with the Cunningham correction i.e. Eq.
3.16). It is shown that this framework can capture the
diffusion dynamics of a spherical Brownian particle
(with a 400 nm diameter) in an unbounded domain,
including its transition from a particle-inertia domi-
nated (correlated ballistic regime) to a non-correlated
diffusive one. Further, the exponential decay (due
to creeping flow conditions) of the velocity auto-
correlation function (as given in Eq. 3.11) is also captured. The assessment is carried out
over a range of particle-fluid density ratios relevant to soot aerosol applications, mimick-
ing the conditions established in the analytical basis described in Chapter 3. Furthermore,
the proposed DNS method is extended to model the diffusion dynamics of a real fractal
soot aggregate. The reported results show that the proposed framework can reproduce
the meandering motion of soot particles under rarefied conditions.
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Paper B

A. S. Kannan, A. Mark, D. Maggiolo, G. Sardina, S. Sasic, and H. Ström. Assessment of
hindered diffusion in arbitrary geometries using a multiphase DNS framework. Chemical
Engineering Science 230 (2021), 116074. issn: 0009-2509. doi: 10.1016/j.ces.2020.
116074

Motivation and division of work

The main objective of this paper is to extend the applicability of the developed multiphase
DNS framework towards liquid-particle systems, particularly to investigate the hindered
diffusion of a spherical particle in arbitrary geometries (including micro-channels and
pores). Besides being the main author, my contribution consisted of setting-up/conceptualizing
the simulations and post-processing/analyzing the results. The other co-authors super-
vised, reviewed and provided valuable feedback on the analyzed results and on the drafted
manuscript.

Results and discussion

50 dp

50 dp

Spherical particle diffusing
in an arbitrary pore.

In this paper, the hindered diffusion of a spherical parti-
cle in arbitrary geometries is investigated. The correction
factor for Stokes mobility (given by Eq. 3.3) of the parti-
cle, λ (given by Eq. 4.14), is directly estimated from the
Eulerian solution of the surrounding fluid. This estimated
value is further used to adjust the stochastic forcing (given
by Eq. 4.16) on the Brownian particle to accurately repre-
sent the relevant diffusive behavior. As a proof-of-concept,
the Brownian diffusion of a spherical nanoparticle (with a
400 nm diameter) under creeping flow conditions is assessed
at varying degrees of confinement (i.e across progressively
narrower micro-channels). Correspondingly, the fundamen-
tal form of the Langevin equation (i.e. Eq. 3.6), with the additional correction (λ) for
the increased hydrodynamic wall resistances, is employed. The relevant dynamics of the
Brownian particle are reproduced including, the transition from a ballistic to a diffu-
sive regime and the exponential decay of the velocity auto-correlation function (due to
creeping flow conditions). Further, a directional bias (anisotropy) in the hydrodynamic
resistances on the particle is identified, with a pronounced co-axial resistance noted when
compared with a wall-normal one. These observations are also corroborated with rele-
vant analytical [195, 196] and experimental [197] studies from literature. Additionally,
the qualitative capabilities of the DNS framework in resolving the hydrodynamics around
a Brownian particle diffusing in an arbitrary pore are also demonstrated.
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Paper C

A. S. Kannan, A. Mark, D. Maggiolo, G. Sardina, S. Sasic, and H. Ström. A hydro-
dynamic basis for off-axis Brownian diffusion under intermediate confinements in micro-
channels. International Journal of Multiphase Flow (Submitted December 2020)

Motivation and division of work

The main objective of this paper is to further examine the hydrodynamic ansiotropies
reported in Paper B by evaluating off-axis hindered diffusion dynamics (i.e. at a location
displaced from the co-axial axis along the center-line) in micro-channels. Besides being
the main author, my contribution consisted of setting-up/conceptualizing the simulations
and post-processing/analyzing the results. The other co-authors supervised, reviewed
and provided valuable feedback on the analyzed results and on the drafted manuscript.

Results and discussion

Hydrodynamic fields around a spherical
particle: contours of non-dimensional
velocity overlaid with flow vectors (from
the CFD simulations).

In this paper, the directionally varying diffu-
sive behavior of a spherical nanoparticle (with
a 400 nm diameter) diffusing at a location
off-set from the center-line (co-axial axis) of
a square micro-channel (over varying degrees
of intermediate hydrodynamic confinements)
is investigated using the DNS framework pro-
posed in the earlier papers. It is showed that
the co-axial diffusivity of a particle diffusing
off-axis is enhanced when compared with a cor-
responding center-line diffusion. Further, this
effect is augmented as the particle confinement increases (or as the micro-channel gets
narrower). This increased particle diffusivity is attributed to the reduced co-axial fluid
resistance on the particle when it is displaced off-center. A hydrodynamic basis is estab-
lished for the noted anisotropies in the resistances by further supporting the hydrody-
namic fields around the diffusing particle with CFD simulations around a similar mov-
ing non-Brownian particle (the general hydrodynamic behavior is similar in both cases).
More specifically, the direction of fluid motion in the narrow region between the particle
and the wall changes with the particle-wall distance at tighter confinements, creating a
position of minimum hydrodynamic resistance for co-axial motion at an off-axis location
(which in turn is a function of the effective confinement). Such a minimum was noted in
both multiphase DNS and steady-state CFD results, as well as in the results reported in
literature (the dissipative particle dynamics results of Gubbiotti et al. [123]).
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Paper D

A. S. Kannan, A. Mark, D. Maggiolo, G. Sardina, S. Sasic, and H. Ström. Hindered
diffusion of nanoparticles in a liquid re-visited with a continuum based direct numerical
simulation framework. To be submitted to a journal (2021)

Motivation and division of work

The main objective of this paper is to extend the applicability of the validated DNS
framework from the earlier papers towards multi-particle systems (i.e. pairwise diffu-
sion) and diffusion near a soft-boundary (a 3-phase system). Besides being the main
author, my contribution consisted of setting-up/conceptualizing the simulations and post-
processing/analyzing the results. The other co-authors supervised, reviewed and provided
valuable feedback on the analyzed results and on the drafted manuscript.

Results and discussion

Comparison between single and pair-
wise diffusion: contours of velocity mag-
nitude overlayed with flow streamlines
around the particle.

In this paper, the hindered diffusion problem
in a liquid – wherein hydrodynamic interac-
tions mediated by the fluid (such as particle-
particle or particle-boundary effects) influence
the governing particle dynamics, is revisited
using the DNS framework derived in the ear-
lier papers. It is shown that the expected hin-
dered diffusion behavior near a no-slip bound-
ary is captured, with both the directional
mean squared displacement and velocity auto-
correlation functions reflecting the increased
hydrodynamic resistance. This discussion is
further extended towards diffusion near a soft-boundary (formed at the interface of two
liquids) by incorporating the dynamics of the evolving interface with the motion of the
nearby Brownian particle, through a volume of fluid coupling. It is shown that the par-
ticle mobility is enhanced near such a soft-boundary due to significant reduction in the
hydrodynamic resistances that result from the lowered fluid shear near this interface.
Furthermore, the pairwise diffusion of Brownian particles is also assessed in this paper.
It is demonstrated that the inter-particle interactions (mediated by the fluid) leads to
a correlated motion between the pair of particles as a result of being accelerated by
each other’s wakes. This discussion further establishes the applicability of the proposed
DNS framework in evaluating hindered diffusion phenomena over a wide range of applica-
tions including (but not limited to) nano-carrier mediated drug delivery and particulate
emission dispersion and mitigation.
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Paper E

A. S. Kannan, T. S. B. Narahari, Y. Bharadhwaj, A. Mark, D. Maggiolo, G. Sardina,
S. Sasic, and H. Ström. The Knudsen paradox in micro-channel Poiseuille flows with a
symmetric particle. Applied sciences (Submitted November 2020)

Motivation and division of work

The main objective of this paper is to revisit the gas-particle aerosol at a molecular level
of abstraction, by investigating the effects of a stationary particle on a micro-channel
Poiseuille flow, using a DSMC framework. Besides being the main author, my contribu-
tion consisted of conceptualizing the simulations and post-processing/analyzing the re-
sults. Tejas Sharma Bangalore Narahari and Yashas Bharadhwaj set-up the simulations
and performed the initial post-processing of the data. The other co-authors supervised,
reviewed and provided valuable feedback on the analyzed results and on the drafted
manuscript.

Results and discussion

Contours of Mach number (Ma) around
a square nanoparticle (in the transition
regime), overlaid with velocity stream-
lines along an xy plane.

In this paper, the effects of a stationary par-
ticle on a micro-channel Poiseuille flow (from
continuum to free-molecular conditions) are in-
vestigated using the DSMC method. Corre-
spondingly, the non-equilibrium Knudsen para-
dox (a unique and well-established signature of
micro-channel rarefied flows), which is the non-
monotonous variation of channel mass-flow
rate with the Kn, is evaluated in such micro-
channel rarefied flows. These assessments show
that with the presence of a particle, the Knud-
sen minimum is shifted towards higher Kn and
the accompanying mass-flow rate changes becomes less pronounced towards the free
molecular flow regime. This effect is more significant as the particle becomes large (in re-
lation to the channel) and results from a shift towards relatively more ballistic molecular
motion at shorter geometrical distances. Further, an increase in the local hydrodynamic
resistances in the flow (due to the presence of the particle), leads to noticeable deviations
from the numerical basis derived for straight micro-channel Poiseuille flows by Cercignani
et al. [198]. Thus, this paper addresses a perceived knowledge gap in rarefied flows, along
with a relevant challenge while modeling reactive gas-solid flows in confined geometries at
the nanoscale, where simultaneous handling of local and non-local transport mechanisms
over the particle surfaces must be realized.
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6
Final word

Conclusion and future outlook

The primary objective of this thesis was to facilitate an in-silico evaluation of nanopar-
ticle transport in a confined environment (such as a micro-channel or a blood vessel),
by developing novel strategies to study these complex phenomena at both molecular and
continuum scales of abstraction. In this process, the existing collection of numerical tools
(routinely used for this purpose) are improved and further extended, thereby complement-
ing and in some cases replacing experimental based efforts. This is increasingly the trend,
as assessments in such highly confined Brownian systems are challenging to undertake
due to the inherent difficulties with accurate measurements at these scales. Furthermore,
there are additional difficulties in ensuring proper access for the measurement techniques
under such confinements as well. Thus, the next generation of technologies which are
needed to tackle some of the common problems that plague our society today (as high-
lighted in Chapter 1) can be developed and optimized by employing the novel in-silico
based strategies discussed (see Section 4.1) and developed (see Section 4.3) in this thesis.

Consequently, the two over-arching objectives of this thesis (as listed in Chapter 2), which
were:

1. To develop a general numerical method that can handle nanoparticle dynamics in a
fluid, including the accompanying macro-scale and micro-scale effects, using a con-
tinuum based framework (multiphase direct numerical simulation) i.e. projecting
down from the continuum to the molecular scales and,

2. To establish a hydrodynamic basis, using numerical simulations for diffusive trans-
port of nanoparticles, within the context of the two use cases briefly described in
Chapter 1 (i.e. hindered diffusion),

have been achieved. This was accomplished by developing a DNS framework (LaIBM)
that leverages a resolved solution of the hydrodynamics around the Brownian particle
and couples this with a Lagrangian Langevin description. This approach is preferred over
the alternative fluctuating hydrodynamics based method [43, 142–144, 148, 151–153], due
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to the relative ease of implementation and the accompanying avoidance of the issues re-
lated to the discretization of the LLNS equations (see Eq. 4.6). To our best knowledge,
this is the first continuum-based framework that directly includes the resolved instanta-
neous hydrodynamics around the Brownian particle into the particle Langevin equation
of motion. Consequently, the framework is used to evaluate both gas-particle and liquid-
particle systems, probing certain aspects of the Brownian transport problem relevant
to the use cases introduced in Chapter 1 (i.e. soot aerosols and nanocarrier mediated
drug delivery). In addition, a molecular DSMC method is also used to further probe
the non-continuum phenomena (such as the Knudsen paradox) around a symmetrical
particle in a rarefied gas (i.e. under conditions where continuum based methods fail).
All these assessments combined provide a description that spans across molecular and
continuum scales, thereby resolving the Brownian transport problem from two opposing
perspectives i.e. building up from kinetic theory or alternately projecting down from
continuum theory. The results achieved during the course of this thesis are still in their
nascent stages as evidenced by the limitations of the current iteration of the method
(as listed in Section 4.3.4). However, a lot of the future potential is already built into
the framework, which makes it equipped to handle the complex transport phenomena
encountered in both aerosols and colloids.

Future outlook

This thesis is primarily positioned to encourage a multiphase DNS based assessment of
nanoparticle transport, hence, much of the future outlook will be focused on this aspect.
Further, although the current form of the framework is based on the steady Langevin
equation (see Eq. 3.6), it could be extended towards the generalized Langevin equa-
tion [32, 199] including unsteady effects (such as Basset history, added mass force etc),
provided the stochastic forcing has the right form (the Gaussian noise is replaced by a col-
ored noise instead). As stated earlier, the developed LaIBM framework has the in-built
capability to account for multi-particle dynamics including collisions. Moreover, as an
IB method is used, complex fractal-shapes as well as any other type of particle including
(but not limited to) nanofibers or droplets can be included. Since the framework relies
on a continuum-based solution to the surrounding flow field, additional transport of tem-
perature and/or species can be directly incorporated by solving the relevant transport
equations. Hence, it has the inherent capability to provide a detailed insight into reactive
pore-scale phenomena as well. Furthermore, this framework can also resolve particle de-
formation if needed (coupling between hydrodynamics and structural mechanics), which
is very useful while evaluating the interactions of a nanocarrier with the constituent en-
tities (such as red blood corpuscles) in blood. More recently, the IBM method has also
been demonstrated to handle non-Newtonian fluids [173, 174], another feature that can
support the in-silico modeling of nanocarrier transport. In summary, this framework has
the necessary infrastructure to simulate the complex Brownian phenomena of nanoparti-
cles in a fluid by taking into account both the hydrodynamic and molecular interactions
that govern such flows.
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7
Appendix

7.1 Derivation of the Stokes-Einstein relation

A detailed derivation of the closed-form expression for the diffusion coefficient D∞ in
Eq. (3.2). This derivation is done in accordance to Peskir’s [200] ideas, by establishing
a dynamic equilibrium between the pressure and viscous forces acting on the particle,
thereby aiding in a simplified representation of Einstein’s [14] original derivation.

Figure 7.1: A schematic of a cylindrical vessel filled with a fluid, containing N suspended
Brownian particles.Due to the impacts by fluid molecules, Brownian particles will begin
the process of diffusion.

Consider a cylindrical vessel as shown in Fig. 7.1 filled with a fluid containing N sus-
pended Brownian particles at t = 0. The diffusion of the Brownian particles is initiated
from x = 0 due to collisions with the fluid molecules. Thus, at an instant t > 0, a
concentration gradient for the Brownian particles is established across the cylinder, with
a higher number of particles on the left side as opposed to the right (assuming diffusion
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is from left to right), as shown in the Fig. 7.1. Consequently, the pressure on imaginary
cross-sections S1 and S2 (with area A) of a fluid control volume, at locations x and x+∆x
is:

p(x) − p(x + ∆x)
∆x

= F (x) − F (x + ∆x)
A∆x

= N1Fp

A∆x
, (7.1)

where p(x) > p(x + ∆x) and N1 is the number of Brownian particles in the fluid element
with volume ∆V . Fp is the force exerted on every Brownian particle that passes through
this control volume. Taking lim∆x→0 in Eq. (7.1):

∂p

∂x
= −νFp, (7.2)

where, ν = ν(t, x) is the average number of Brownian particles in the control volume.
This force on the particle will impose a velocity on each particle given as:

Fp = vp

βSt
= −Ff , (7.3)

with 1/βSt as the fluid friction. This equation demonstrates a dynamic equilibrium be-
tween the forces of pressure and friction i.e. Fp is retarded by the fluid force Ff . Further,
Einstein concluded with statistical mechanical arguments that N Brownian particles sus-
pended in a liquid satisfy the equation of state given by:

pV = nRT, (7.4)

where, n is the number of moles and R is the gas constant (one mole of the gas contains
Nav molecules). Thus, with N1 = nNav:

p = nNav

∆V

R

Nav
T = νkBT. (7.5)

Differentiating Eq. (7.5) and using Eqs. (7.2) and (7.3), we get:

∂p

∂x
= kBT

∂ν

∂x
= −νFp = −vpν

βSt
. (7.6)

The number of Brownian particles (∆N) passing through an area ∆A under an interval
∆t is given by Fick’s law as:
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∆N = −D∞
∂ν

∂n
∆A∆t. (7.7)

Thus, it follows that:

νv = N1

A∆x

∆x

∆t
= N1

A∆t
= −D∞

∂ν

∂x
(7.8)

Inserting Eq. (7.8) into Eq. (7.6), we get the Stokes-Einstein relation:

D∞ = kBT

6πµf rp
(7.9)

when, the Stokes mobility of the particle is:

βSt = 1
6πµf rp

. (7.10)
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7.2 Derivation of the MSD, VACF and fluctuation-
dissipation relation from the Langevin equation

The equation of motion for a Brownian particle, with mass mp, is formally based on
Newton’s second law as:

mp
dup

dt
= −γStup + χ(t), (7.1)

The fluctuating component χ(t) is assumed to be independent of the velocity up and
further fluctuate rapidly in comparison with variations in velocity. Consequently, in
this description, the particle velocity is well defined and is subject to both the viscous
dissipation (friction force) from the fluid and the random stochastic forcing. Uhlenbeck
[31] further showed that Eq. (7.1) is constrained by certain restrictions on the fluctuating
component χ(t), i.e. it follows a Gaussian white noise process. Hence, the stochastic
forcing (with an intensity Suu) satisfies:

⟨χ(t)⟩ = 0, ⟨χ(t)χ (t′)⟩ = Suuδ (t − t′)

⟨χ(t)x (t′)⟩ = 0, ⟨χ(t)up (t′)⟩ = 0.
(7.2)

The MSD can be derived by re-writing Eq. (7.1) in terms of the position x(t) as:

mp
d2x

dt2 = −γSt
dx

dt
+ χ(t), (7.3)

Multiplying Eq. (7.3) with x and by further using:

dx2

dt
= 2x

dx

dt
and

d2x2

dt2 = 2(dx

dt
)2 + 2x

d2x

dt2 ,

(7.4)

we get:

mp

2
d2x2

dt2 − mpu2
p = −γSt

2
dx2

dt
+ xχ(t). (7.5)
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Averaging Eq. (7.5) (or using the ⟨...⟩ operator) under the constraints presented in
Eq. (7.2) and by applying the equipartition theorem mp⟨u2

p⟩ = kBT ‡, we obtain the
differential equation:

mp

2
dz
dt

+ γSt

2
z = kBT, (7.6)

where, z = d
dt ⟨x2⟩.

Since ⟨z⟩ = 2⟨x(0)up(0)⟩ = 0, the solution of Eq. (7.6) is given as:

z(t) = 2kBT

γSt
(1 − e

−γStt

mp ). (7.7)

Eq. (7.7) is integrated to yield the expression for MSD at all time scales as:

⟨∆x2(t)⟩ = 2kBT

γSt

(
t − mp

γSt
+ mp

γSt
e

−γStt

mp

)
. (7.8)

In Eq. (7.8), when t ≫ τB , the exponential term is negligible, leading to the Einstein’s
result for long-term or over-damped behavior in 1D. Correspondingly, the MSD of the
particle increases linearly in time as:

< ∆x(t)2 >= 2Dt. (7.9)

When t ≪ τB or as t → 0, the ballistic or under-damped result can be obtained. This is
done by using the power series:

e−t = 1 − t + t2

2!
+ O(t3), (7.10)

in Eq. (7.8). We then obtain the result (consistent with the equipartition theorem):

< ∆x(t)2 >= kBT

mp
t2 = u2

rmst2. (7.11)

Here, urms is the root-mean-squared velocity of the particle. The corresponding time
scale (i.e. the relaxation time for the Brownian particle) in the ballistic regime, τB , is
given as:

‡A colloidal particle suspended in a liquid at temperature T is assimilated to a particle of the liquid,
so that it possesses an average kinetic energy 2RT

Nav
. Accordingly we get: 1

2 mp⟨u2
p⟩ = 2RT

Nav
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τB = mp

γSt
. (7.12)

The VACF of the Brownian particle can be derived by evaluating the solution of the first-
order inhomogeneous stochastic differential equation i.e. Eq. (7.1). Ornstein-Uhlenbeck
showed that a formal solution to this equation is:

up(t) = up(0)e
−γStt

mp + 1
mp

∫ t

0
e

−γSt(t−ξ)
mp χ(ξ)dξ. (7.13)

Using the ⟨...⟩ operator in Eq. (7.13), under the constraints in Eq. (7.2) and assuming
that all particles start at t = 0 with the same velocity up(0), we get:

⟨up⟩ = up(0)e
−γStt

mp . (7.14)

This equation shows that velocity goes down exponentially due to the fluid friction. This
exponential decay is further visible in the VACF, which is obtained by multiplying Eq.
(7.13) with up(0) and using the ⟨...⟩ operator under the corresponding constraints. This
simplification leads to:

C(t) ≡ ⟨up(0)up(t)⟩ =
〈
u2

p(0)
〉

e
−γStt

mp = kBT

mp
e

−γStt

mp . (7.15)

Fluctuation-dissipation theorem

Furthermore, squaring Eq. (7.14) and using the ⟨...⟩ operator again, we obtain:

⟨u2
p⟩ = ⟨u2

p(0)⟩e
−2γStt

mp + e
−2γStt

mp

∫ t

0

∫ t

0
e

t(ξ+η)
mp ⟨χ(ξ)χ(η)⟩dξdη. (7.16)

Ornstein-Uhlenbeck further showed that the integral in Eq. (7.16) can be written as:

∫ t

0

∫ t

0
e

t(ξ+η)
mp ⟨χ(ξ)χ(η)⟩dξdη = ζ

2γStmp
(1 − e

−2γStt

mp ). (7.17)

Hence, the mean-squared velocity is given as:
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⟨u2
p⟩ = ⟨u2

p(0)⟩e
−2γStt

mp + ζ

2γStmp
(1 − e

−2γStt

mp ). (7.18)

Over long times, the equipartition theorem is valid, meaning:

ζ = 2γStkBT. (7.19)

This represents a fundamental relation named as the fluctuation-dissipation theorem,
which shows that the magnitude of the fluctuation ζ must be balanced by the strength of
the dissipation γSt so that the temperature is well defined in Langevin’s model. There-
fore, the pair of friction and random forces acts as a thermostat for a Langevin system.
This relationship between the friction and random forcing on the particle is physically
reasonable since they have a common origin i.e. interactions between the particle and
the surrounding fluid molecules.

Additionally, by taking the integral of the VACF of the Brownian particle i.e. Eq. (7.15),
we can observe that:

∫ ∞

0
⟨up(0)up(t)⟩dt = kBT

mp

∫ ∞

0
e

−γStt

mp dt = kBT

γSt
= D∞, (7.20)

which is the Stoke-Einstein relation for a free particle. This Eq. (7.20) is a fundamental
relation, known in statistical mechanics as the Green-Kubo relation [32], that relates the
macroscopic transport coefficients to the correlation functions of the variables fluctuating
due to said microscopic processes. Similarly, the time-dependent diffusion co-efficient is
obtained from the VACF as:

D∞(t) ≡
∫ t

0
⟨up(0)up(t)⟩dτ = 1

2
d

dt
⟨∆x2(t)⟩ = kBT

γSt
(1 − e

−γStt

mp ). (7.21)

This equivalence of the two definitions for the VACF and the MSD is because the VACF
can be calculated from the second derivative of the MSD§.

§ d
dt

⟨∆x2(t)⟩ = 2
∫ t

0 C(τ)dτ

65



7.3 Power spectrum of an Ornstein-Uhlenback pro-
cess

The correlation functions, derived previously (Eq. (3.11)) represents the stochastic pro-
cesses in the time domain, provided it is stationary ¶ and the Wiener-Khinchin theorem
‖ is satisfied. It follows that, such time signals can be represented in the frequency space
using the corresponding Fourier transforms. The output, y(t) of a LTI system can be
obtained by the convolution of the input signal (x(t)) and its impulse response (r(t)), as:

y(t) =
∫ ∞

−∞
x(τ)r(t − τ)dτ. (7.1)

The corresponding output, Y (ω), in the frequency domain can be written based on the
convolution theorem ∗∗ as:

Y (ω) = X(ω)R(ω), (7.2)

where, R(ω) and X(ω) are the Fourier transform of the impulse response r(t) and the
time domain input x(t), respectively. In the context of a Brownian particle being excited
by a stochastic noise, this response, R(ω), is nothing but the mobility (Eq. (3.3)) of the
particle. The fluctuation-dissipation relation or Green-Kubo formula (see Eq. (7.20) in
Appendix 7.2) has a corresponding form in the frequency space by relating the mobility
R(ω) to the Fourier-Laplace transform of the velocity auto-correlation, as:

Y (ω) = 1
kBT

∫ ∞

0
eiωtC(t)dt. (7.3)

Correspondingly, the Fourier transform of the Langevin equation (see Eq. (3.6)) is given
as:

− iωmpup(ω) + γStup(ω) = S(ω). (7.4)

¶A continuous-time random process, X(t), t ∈ R is wide sense stationary if:
1. µX(t) = µX , for all t ∈ R, where µX is the mean.

2. CX(t1, t2) = CX(t1 − t2), for all t1, t2 ∈ R, where CX is the correlation function.

‖The power spectrum S(ω) of a stationary random process and its auto-correlation function are
Fourier transform pairs

∗∗The Fourier transform of a convolution in the time domain equals the product of the Fourier
transforms of each function in the frequency domain
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The response R(ω), of the system (based on Eq. (7.2)) can be written as:

R(ω) = 1
−iωmp + γSt

. (7.5)

Thus, the power spectrum density, S̃u(ω), of the random process output (based on the
velocity), which is needed in order to describe the Gaussian white noise signal, can be
deduced using the Wiener-Kinchin theorem as:

S̃uu(ω) =
∫ ∞

−∞
eiωt⟨up(0)up(t)⟩dt. (7.6)

Using Eq. (7.3) in Eq. (7.6), we obtain:

S̃uu(ω) = 2kBTR[R(ω)] = kBTγSt

πmp
= 2γSt

2

π
D∞, (7.7)

where, R[R(ω) is the real part of the mobility given in Eq. (7.4). This is obtained by
summing Eq. (7.3) and its complex conjugate and use the fact that the VACF is an even
function. The position power spectrum density is obtained from Eq. (7.7) as:

S̃x(ω) = S̃u(ω)
ω2 = 2kBTR[R(ω)]

ω2 . (7.8)

Thus, the stochastic forcing term, χ(t), in the Langevin equation (see Eq. (7.1)) is
modeled as a Gaussian white noise process with the vector of spectral intensity Sn

ij given
as:

Sn
ij = S̃uu(ω)δij . (7.9)
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