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Single-neutron and single-proton removal cross sections have been measured for medium-mass neutron-
rich nuclei around Z = 50 and energies around 1000A MeV using the FRagment Separator (FRS) at 
GSI. The measured cross sections confirm the relative low values of the proton-removal cross sections, 
observed since a long time ago and not yet understood. Model calculations considering the knock-
out process together with initial- and final-state interactions describe the measured neutron-removal 
cross sections. Proton-removal cross sections are, however, significantly over-predicted by the same 
calculations. The observed difference can be explained to a large extent by the knock-out of short-range 
correlated nucleons from dominant neutron-proton pairs in neutron-rich nuclei.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Single-nucleon knock-out reactions at intermediate and high 
energies are a widely-used tool to investigate the structure of 
the atomic nucleus, as the removed nucleon is expected to pro-
vide information on the previously occupied single-particle state. 
The success of knock-out studies is due not only to the well-
defined experimental conditions characterizing these reactions, but 
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also to the relatively simple theoretical description provided by 
Eikonal models. Following these ideas, direct kinematics (e, e′ p) 
low-momentum transfer experiments on stable nuclei, performed 
in the 80s and 90s, probed the limits of the independent par-
ticle shell-model picture. Those investigations showed a 30-40% 
reduction in the spectroscopic factors quantifying the shell-model 
fragmentation of the occupancy of single-particle states around 
the Fermi level [1,2]. Less than half of this reduction has been 
attributed to long-range correlations responsible for collective nu-
clear modes [3,4]. Similar investigations, using proton beams, have 
provided complementary information on the single-particle struc-
ture of stable nuclei [5].

High momentum-transfer proton knock-out experiments in-
duced by electrons [6] and protons [7] probed the existence of 
short-lived correlated nucleon pairs by the identification of knock-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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out nucleons forming pairs with relatively low center-of-mass mo-
mentum (ktot < kF ) but rather large relative momentum (krel > kF ). 
Those short-range correlated (SRC) nucleon pairs, produced by the 
short-range components (scalar or tensor) of the nuclear force, 
involve around 20% of the nucleons in a given nucleus [8,9], ex-
plaining the depopulation of single-particle states below the Fermi 
momentum (kF ) and the population of higher energy states. Re-
cently, it has also been shown that about 90% of the SRC pairs are 
neutron-proton pairs [10], indicating the dominance of the tensor 
interaction. As consequence, the number of protons in SRC pairs 
increases with neutron-excess in the nucleus [11–13].

Nucleon-induced knock-out reactions in inverse kinematics 
opened the possibility to study the structure of unstable fast-
moving secondary projectile nuclei [14]. Moreover, exclusive single-
nucleon knock-out measurements including γ -ray detection have 
provided spectroscopic information on the ground state of the in-
vestigated nuclei [15]. This technique has also been used more 
recently to explore the reduction of the single-particle spectro-
scopic strength around the Fermi level by introducing a “quench-
ing” factor defined as the ratio between measured single-nucleon 
knock-out cross sections and calculated ones, the latter taking into 
account shell-model spectroscopic factors [16].

The systematic investigation of single-nucleon knock-out reac-
tions on light projectile nuclei, covering a large range in neutron 
excess or separation energy, and energies up to around 100A MeV, 
not only showed a sizable quenching of the expected spectroscopic 
strength but also a strong dependence on the neutron excess. In-
deed, it was shown that the removal of loosely bound nucleons in-
duces a small or negligible quenching of the spectroscopic strength 
while the quenching for the removal of deeply bound nucleons is 
beyond 50% [17]. However, transfer [18] and quasi-free, (p, 2p) or 
(p, pn), nucleon removal [19,20] do not show any clear depen-
dence of the quenching of the spectroscopic strength as function 
of the neutron excess for the same nuclei.

The dominance of neutron-proton SRC pairs has been proposed 
to contribute to the puzzling dependence of the quenching of the 
spectroscopic strength on the neutron excess [4]. The knock-out 
of a SRC proton from a neutron-rich nucleus would cause the 
paired nucleon, mostly a neutron, to recoil and be ejected as well 
[10]. Therefore, the increase of the number of SRC protons with 
the neutron excess [12], will reduce, accordingly, the probability 
of single-proton removal processes. To elucidate this discussion, 
and in particular the not yet explained quenching of the proton-
removal cross sections in neutron-rich nuclei, we have performed 
a systematic investigation of single-proton and single-neutron re-
moval reactions for medium-mass nuclei, around Z = 50, at rela-
tivistic energies.

2. Experiment and measurements

The experiment was performed at the GSI facility in Darmstadt, 
taking advantage of two different beams impinging on a 1 g/cm2

beryllium target to produce large isotopic chains of medium-mass 
nuclei. Fission of 950A MeV 238U projectiles produced neutron-
rich nuclei around 132Sn and fragmentation of 1200A MeV 132Xe 
projectiles, leading to less neutron-rich nuclei around Z=50. As the 
reactions were induced in inverse kinematics at high energies, the 
forward-focused reaction fragments were analyzed with the FRS 
magnetic spectrometer [21].

In this experiment the two sections of the FRS, shown in Fig. 1, 
were tuned as two independent magnetic spectrometers. The first 
section was used to separate the medium-mass nuclei produced 
in the target located at the entrance of the FRS. The identification 
of the transmitted nuclei was achieved by measuring the magnetic 
rigidity (Bρ), time of flight (ToF), and energy loss (�E), using fast 
plastic scintillators located behind the first and second dipoles of 
2

Fig. 1. Schematic representation (not to scale) of the Fragment Separator with the 
detection setup used in this experiment.

the FRS (SC1 and SC2), time-projection chambers (TPCs 1, 2 and 
3), and a fast ionization chamber (IC1), placed at the intermediate-
image plane. An additional 2591 mg/cm2 beryllium target was 
placed at the intermediate-image plane to induce nucleon-removal 
reactions. Those reaction residues were separated using the second 
section of the FRS and identified by the same Bρ-ToF-�E method. 
Additional details of the experiment can be found in Ref. [28].

Fig. 2 shows the identification matrices obtained with the 238U 
beam for a magnetic tuning of the first section of the FRS centered 
on 132Sn (upper panel) while the setting of the second section 
was centered on 131Sn and 132In (lower panel). As can be seen, 
in these measurements we could not only identify the residual nu-
clei produced in single-nucleon removal reactions but also other 
residual nuclei where the projectile nucleus has lost few neutrons 
and protons. The resolution achieved in the isotopic identification 
of the fragments transmitted through the first section of the FRS 
was �Z/Z≈2.6 10−3, �A/A≈1.2 10−3, and in the second section 
�Z/Z≈3.0 10−3, �A/A≈7.8 10−4.

Cross sections were obtained normalizing the number of final 
fragments, identified at the final image plane of the spectrome-
ter (lower panel in Fig. 2), to the number of incoming projectiles, 
identified at the intermediate image plane of the spectrometer 
(upper panel in Fig. 2), and the number of nuclei per surface unit 
of the target material. Because of some limitations of the exper-
imental setup, the measured yields of projectile and final nuclei 
were corrected by loses caused by secondary reactions in all layers 
of matter placed at the intermediate image plane of the spec-
trometer, modifications in the atomic charge-state of the ions, and 
ion-optical transmission between the intermediate and final image 
planes of the spectrometer.

Although the matter at the intermediate image plane of the 
spectrometer caused a non negligible probability for secondary re-
actions, the dominance of the target in this matter load and the 
fact that both, projectile and final nuclei, have a similar mass num-
ber, the final corrections to the projectile and final yields were 
very similar and almost canceled. Indeed, this correction amounted 
on average to around 3% and its contribution to systematic un-
certainties was estimated to be around 2%. The correction due to 
atomic charge states was also rather small, ≈2%, because of the 
high energies and moderate atomic number of the investigated 
nuclei. The contribution of this correction to the systematic uncer-
tainty was estimated to be around 5%. The largest correction was 
caused by the ion-optical transmission through the spectrometer. 
The transmission between the intermediate and final image plane 
was estimated using the measured angle and momentum distribu-
tions of the incoming projectiles at the intermediate image plane 
of the spectrometer, and standard ion-optics model calculations. 
Because we run consecutive magnetic tunings of the spectrome-
ter overlapping in magnetic rigidity, we could always select the 
magnetic tuning with the largest transmission for a given isotope, 
except for the nuclei with the largest neutron excess. Because of 
this reason, most of the cadmium, indium, and tin isotopes could 
be measured with a transmission above 90%, and only for the most 
neutron-rich isotopes the transmission was around 80%. For anti-
mony and tellurium isotopes the transmission reduced on average 
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Fig. 2. Identification of the incoming cocktail beam with the first section of the FRS 
for a magnetic setting centered on 132Sn (upper panel), and of the single-nucleon 
removal fragments (131In and 131Sn) identified with the second section of the FRS 
(lower panel).

down to 80% and 60%, respectively. The estimated accuracy of this 
correction was around 10%. Corrections associated to the thickness 
of the target and the data acquisition dead time were estimated to 
be of the order of 3% and 1%, respectively, and their contribution 
to the systematic uncertainty of the order of few per cent. Further 
details on these corrections can be found in Ref. [22].

To investigate long isotopic chains of medium-mass nuclei 
around Z = 50, several magnetic tunings of the first section of 
the FRS were used. Those tunings were centered on 119Sn, 124Sn, 
and 126Sn for the 132Xe beam, and 128Sn, 130Sn, 132Sn, and 136Sn 
for the 238U beam. For each of these tunings, the second section 
of the FRS was centered on the corresponding one-neutron and 
one-proton removal residues. In this experiment we measured 72 
single-neutron removal and 13 single-proton removal cross sec-
tions, integrated over bound excited states, although in this letter 
we just report the results for isotopes of tellurium, antimony, tin, 
and indium around N = 82.

Fig. 3 shows the single-neutron removal cross sections (up-
per panel), and the single-proton removal cross sections (lower 
panel), measured in this work as function of the neutron number 
of the initial nucleus. In both cases, the measured cross sections 
are rather similar for the isotones of the three elements covered by 
the measurements. The single-neutron removal cross sections are 
also similar for all isotopes from N = 78 until N = 83. At N = 84
all cross sections drop significantly, increasing again at N = 85. The 
observed decrease of the cross sections at N = 84 is explained 
by the fact that the excited states populated in the residual nu-
clei lie above the neutron separation. For N = 84 projectiles, the 
single-neutron removal produces with a large probability N = 83
residues with a hole state in the 1d3/2 or the 0h11/2 orbital, below 
the N = 82 shell gap, and one neutron occupying the 1 f7/2 orbital 
above the shell gap. Those configurations correspond to excitation 
energies in the residual nuclei larger than the N = 82 gap energy, 
∼3.7 MeV. Because of these large excitation energy values, and 
the low neutron binding energies (Sn) of the N = 83 residues (e.g. 
Sn(133Sn)=2.4 MeV), the survival probability against neutron emis-
sion of the single-neutron removal residues from N = 84 projec-
tiles becomes rather small. Conversely, N = 82 remnants produced 
3

Fig. 3. Single-neutron (upper panel) and single-proton removal cross sections ob-
tained for different isotopes of indium, tin, antimony, and tellurium. Lines represent 
standard model predictions (dashed and dotted lines) and predictions including a 
phenomenological description of the impact of SRC nucleon pairs (solid line).

in the single-neutron removal of N = 83 projectiles do not popu-
late orbitals above the N = 82 shell gap and the populated hole 
states are close to the Fermi level. The excitation energy gained 
in that case is rather small, while the binding energy is relatively 
large (e.g. Sn(132Sn)=7.2 MeV). The survival probability of the rem-
nants produced in the single-neutron removal of N = 83 isotopes 
is therefore rather high. This argument is also valid for all N < 84
projectile nuclei. The increase of the cross section for N = 85 can 
also be explained by the large binding energies compared to the 
excitation energies of the populated states.

Single-proton removal cross sections, shown in the lower panel 
in Fig. 3, are also very similar for all isotones until N = 83 where 
they drop. Moreover, the cross section for 133Sn is slightly higher 
than for 134Sb. This behavior can also be explained by using ar-
guments similar to those discussed above for the single-neutron 
removal. The decrease in cross section at N = 83 is due to the 
lower survival probability of those remnants against neutron emis-
sion because of the low binding energies. Moreover, the larger 
excitation energy expected by the removal of a proton in nuclei 
with occupied orbitals above the Z = 50 shell reduces the survival 
probability of 134Sb with respect to 133Sn. Below N = 83 the effect 
of the larger excitation energies in Z > 50 remnants does not seem 
to be sufficient to overcome the larger neutron binding energies.

Another remarkable fact is, that single-proton removal cross 
sections are about an order of magnitude smaller than those for 
single-neutron removal. This difference has also been observed in 
nucleon-removal cross sections obtained with stable medium-mass 
and heavy nuclei (e.g. 112,124Sn [23], 136Xe [24], 197Au [25], 208Pb 
[26], and 238U [27]), and with a few unstable medium-mass nuclei 
(e.g. 132Sn [28], 90Sr [29], 137Cs [29]). The common feature to all 
these measurements is that they concern neutron-rich nuclei. One 
could then expect that the mentioned difference in cross sections 
is caused by the larger excess of neutrons at the nuclear surface. 
However, previous works, taking into account realistic radial distri-
butions of protons and neutrons in some of these nuclei, could not 
account for the observed differences in cross section [23].

In Fig. 4 we depict the single-neutron (upper panel) and single-
proton (lower panel) removal cross sections measured in this work 
for different tin isotopes (dots) together with similar measure-
ments reported in literature: 133,134Sn [30] (inverted triangles), 
132Sn [28] (square), 124,120,112,110Sn [23] (rhomboids), 112,104Sn 
[31] (triangles), and 107Sn [32] (cross). The good agreement be-
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Fig. 4. Single-neutron (upper panel) and single-proton (lower panel) removal cross 
sections for different tin isotopes measured in this work (dots) and by other authors. 
Lines represent standard model predictions (dashed lines) and predictions including 
a phenomenological description of the impact of SRC nucleon pairs (solid line).

tween coincident measurements validates the results obtained in 
the present work. Moreover, with the complete set of existing data 
we systematically cover the single-neutron and single-proton re-
moval cross sections for a large fraction of tin isotopes between 
104Sn and 134Sn.

3. Model calculations

Modeling of inclusive nucleon-removal reactions requires the 
description of all processes leading to a final A-1 residual nucleus. 
This includes the direct knock-out of a single nucleon, producing 
a final residue in a bound state, but also initial- and final-state in-
teractions that may contribute to nuclear excitations feeding the 
A-1 channel, or to the production of A-1 unbound remnants. In 
particular, inelastic electromagnetic and nuclear excitations, or re-
scattering of the knock-out nucleons have to be considered. More-
over, one needs an accurate description of the structure of the 
involved nuclei, such as their radial distributions of protons and 
neutrons, and the corresponding single-particle states, as well as 
spectroscopic factors describing their ground states.

Since a complete theory to describe all the above processes 
is missing, one should try at least to employ models describ-
ing reaction and then structural properties of the involved nuclei 
in a consistent way. Because of the additional complexity to de-
scribe initial- and final state interactions, we decided to use the 
advanced Liège intra-nuclear cascade (INCL) model providing an 
accurate description of the knock-out processes, including realistic 
radial profiles for protons and neutrons [33]. Moreover, this for-
malism provides a good description of final-state interactions of 
the knocked-out nucleons, as well as nucleon excitations present 
in the energy range relevant for this work.

Particle-hole excitations in the remnants were computed using 
experimental information, if available, and realistic shell model cal-
culations providing the energies and occupations of single-particle 
orbitals. These calculations were done using a 88Sr core with the 
orbitals 1p1/2, 0g9/2, 0g7/2, and 1d5/2 as model space for protons, 
and 0g7/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2 for neutrons [34,35]. 
Hole states were randomly defined considering the occupation of 
the different valence orbitals and the overlap between the corre-
sponding wave functions and the range of impact parameters for 
knock-out processes provided by the INCL model.
4

Fig. 5. Upper panel: 0pxn removal cross sections for 133Sn and 134Sn compared 
to previous measurements from Ref. [30]. Lower panel: 1pxn removal cross sections 
for 132Sn. Lines represent standard model predictions (dashed lines) and predictions 
including a phenomenological description of the impact of SRC nucleon pairs (solid 
line).

The final excitation of the knock-out remnants was obtained 
by adding particle-hole excitations and the energy gained in the 
re-scattering of the outgoing nucleons, as computed by the intra-
nuclear cascade model. The survival probability of these remnants 
was computed as the fraction of the excitation function below the 
particle emission threshold.

Cross sections and energy gained by electromagnetic and nu-
clear excitations due to the isovector giant-dipole and the isoscalar 
giant-quadrupole resonances of the projectile nuclei were com-
puted according to Ref. [36,37]. Here, the fraction of the excitation 
function between the one- and two-nucleon emission thresholds 
was accounted as part of the single nucleon-removal cross section. 
Because most of the investigated nuclei are neutron-rich, these 
excitations contribute mostly to the single-neutron removal cross 
section.

4. Results and discussion

The results of the model calculations are depicted with dashed 
lines in Figs. 3 and 4. The calculations provide a rather good de-
scription of the measured neutron-removal cross sections (see up-
per panel in Fig. 3), in particular the small difference between 
isotopic chains and the drop in cross section at N = 84, due to 
the N = 82 shell gap, as explained in Sect. 2. For heavier iso-
tones, the model calculations slightly underestimate the measured 
cross sections. This deviation can be explained by the recently ob-
served gamma decay of unbound states in these nuclei [30], not 
considered in our calculations. The single-neutron knock-out cross 
sections of lighter isotopes measured in other works, shown in the 
upper panel of Fig. 4, are also nicely described.

To further check the calculations, in the upper panel of Fig. 5
we depict the multi-neutron removal cross sections for 133Sn and 
134Sn. The opposite behavior observed in the cross section of both 
nuclei for the one- and two-neutron removal for the two nuclei is 
explained by the influence of the shell gap in the one-neutron re-
moval for N = 84 isotones. Again, the model calculations provide 
an accurate description of the multi-nucleon removal processes. 
This result is important because it confirms that the model not 
only properly describes the excitation energy gained by the knock-
out remnants around the nucleon emission thresholds, mostly de-
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Fig. 6. Ratios of the experimental and calculated inclusive single-nucleon removal cross sections Rs , for a long chain of tin isotopes, as a function of the asymmetry energy 
�S. In the left panel (a), the measured cross sections are normalized to standard model calculations described in Sect. 3. In the right (b) panel the measured values are 
normalized to model calculation including a phenomenological description of the impact of SRC nucleon pairs in the knock-out process. Solid points correspond to data 
obtained in the present and our previous work [23], and open points were taken from Ref. [31].
termined by particle-hole excitations, but also the higher excitation 
energies induced by initial- and final-state interactions.

The surprising result is the large over-prediction of the proton-
removal cross sections obtained with the same model calculations, 
as shown by the dashed lines in the lower panels of Figs. 3 and 
4. Moreover, the one-proton x-neutron (1pxn) removal cross sec-
tions, depicted in the lower panel of Fig. 5, show that this over-
prediction mostly affects the single-proton removal channel.

The fact that some 20% of the nucleons inside a nucleus belong 
to SRC neutron-proton pairs may provide a rather simple expla-
nation [12]. The knock-out of SRC protons induces the emission 
of the neutron partner, because of their large relative momentum, 
depopulating the 1p0n channel in favor of the 1p1n. Moreover, in 
neutron-rich systems the relative fraction of protons in SRC pairs 
is rather large (i.e. in 132Sn 13 protons and 13 neutrons belong to 
SRC pairs, representing 26% or the protons and 16% of the neu-
trons).

The model calculations presented above, were modified to in-
clude a phenomenological description of the impact of the SRC 
neutron-proton pairs in the knock-out process. Every time the INCL 
model generates the knock-out of a single nucleon in the pro-
jectile nucleus, we assume that this nucleon may belong with a 
certain probability to a nucleon-nucleon pair that breaks, and the 
two-high momentum nucleons propagate through the nucleus, in-
creasing eventually its excitation energy by further re-scattering, 
and finally escaping. The probability to knock-out a proton or a 
neutron from a SRC pair is obtained assuming that 20% of the nu-
cleons belong to neutron-proton pairs. For symmetric nuclei, the 
fraction of protons and neutrons in SRC pairs will be then 20%. 
However, along an isotopic chain, as the ones we have investigated, 
the relative number of neutrons in SRC pairs will slightly decrease 
with the neutron excess (N/Z ), while the relative number of pro-
tons will increase, as shown in Ref. [12]. As a consequence, for 
neutron-rich nuclei the probability to knock-out a proton from a 
SRC pair will be significantly larger than the probability to knock-
out a neutron.

These new calculations, producing a depopulation of the 1p0n
channel in favor of the 1pxn ones, provide a better description of 
the measured single-proton removal cross sections, as shown by 
the solid lines in the lower panels of Figs. 3, 4, and 5. The too 
small increase in the cross section for the 1p1n, with respect to 
standard model calculations (lower panel in Fig. 5), is explained 
by the excitation energy gained in the re-scattering of the two 
outgoing nucleons, populating then 1p2n and 1p3n channels. On 
the other hand, the relatively smaller presence of neutrons in SRC 
pairs, and the slight decrease of its relative fraction as function of 
5

the neutron excess, only produces a small reduction in the previ-
ously calculated single-neutron removal cross sections. This is the 
reason why the final estimates obtained with the new calculations 
still provide a good description of the data, as shown by the solid 
lines in the upper panels in Figs. 3 and 4.

To gain a deeper insight into the interpretation of these re-
sults we followed Ref. [17], and in Fig. 6 we depict the ratios 
Rs between the measured single-nucleon removal cross sections 
and model predictions presented in Fig. 4 for different tin iso-
topes. These ratios are shown as function of the asymmetry energy 
for the different nuclei, �S = Sn − S p for neutron removal and 
�S = S p − Sn for the proton removal, being Sn and Sp the binding 
energies for neutrons and protons, respectively. In the left panel 
(Fig. 6(a)), we normalize the measured cross sections to standard 
model calculations (dashed lines in Fig. 4) while in the right panel 
(Fig. 6 (b)), we normalize the data to model calculations including 
a phenomenological description of the role of SRC nucleon pairs in 
the knock-out process (solid lines in Fig. 4).

As can be seen, the ratio Rs for the single-neutron removal does 
not show any clear dependence with the asymmetry energy. The 
inclusion of SRC neutron-proton pairs just moves this ratio up for 
the single-neutron removal by a factor that varies between 17% 
and 14% along the tin isotopic chain.

The situation for the single-proton removals is completely 
different. The ratio Rs obtained with the standard calculations 
(Fig. 6(a)) shows a clear decrease with the asymmetry energy, 
similar to the one observed in Ref. [17]. However, this strong 
dependence of the ratio with the asymmetry energy clearly re-
duces when SRC nucleon pairs are considered in the calculations 
(Fig. 6(b)). As previously explained, the dominance of neutron-
proton SRC pairs causes the fraction of protons belonging to SRC 
pairs to increase along the tin isotopic chain from some 22% up 
to around 31%. This conclusion is particularly valid if one excludes 
in this analysis the value obtained for 133Sn. The argument is that 
the single-proton removal cross section of 133Sn is influenced by 
strong shell effects, as previously discussed.

The remaining 30% over-prediction of the calculated single-
proton removal cross sections does not have a simple interpreta-
tion. This deviation could be reduced by increasing the total frac-
tion of SRC nucleons. However, for a fraction above 25% we also 
observed a too strong reduction in the calculated single-neutron 
removal cross section. Another possibility would be deficiencies in 
the reaction model, as for example an underestimation in the cal-
culated excitation energies gained by the remnant nuclei due to 
particle-hole or final-state excitations. However, both explanations 
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would also produce an underestimation of the calculated single-
neutron removal channels.

5. Conclusions

Measurements of the single-neutron and single-proton removal 
cross sections over long isotopic chains of medium-mass nuclei 
confirm the systematic reduction of the proton-removal cross sec-
tions for neutron-rich nuclei. Similar reductions in these cross 
sections were previously observed in lighter and heavier nuclei, 
indicating that this is a general feature. Model calculations de-
scribing the knock-out process together with initial- and final-
state interactions reproduce the measured neutron-removal cross 
sections. Proton-removal cross sections are, however, significantly 
over-predicted by the same calculations. The presence of SRC on 
nucleon pairs, and more particularly the dominance of neutron-
proton pairs, explains to a large extent the observed quenching. 
The removal of a SRC proton mostly populates the 1pxn channels 
rather than the 1p0n. This effect is even larger in neutron-rich sys-
tems with a larger relative presence of protons in SRC pairs.
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