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Abstract
Supercurrents, as introduced by Lagerberg, were mainly motivated as a way to study
tropical varieties. Here we will associate a supercurrent to any smooth submanifold of
R
n . Positive supercurrents resemble positive currents in complex analysis, but depend

on a choice of scalar product onRn and reflect the inducedRiemannian structure on the
submanifold. In this way we can use techniques from complex analysis to study real
submanifolds. We illustrate the idea by giving area estimates of minimal manifolds
and a monotonicity property of the mean curvature flow. We also use the formalism
to give a relatively short proof of Weyl’s tube formula.

1 Introduction

A superform on R
n is defined as a differential form on C

n whose coefficients do not
depend on the imaginary part of the variable. The dual of the space of superforms
(with coefficients compactly supported in R

n and with the usual topology from the
theory of distributions), is the space of supercurrents. Superforms and supercurrents
were introduced by Lagerberg (2012), as a way to study tropical varieties. A tropical
variety in Rn defines a d-closed, positive, supercurrent of integration, and conversely
any such supercurrent defines a tropical variety, given a condition on the dimension
of the support. (See also the work of Babaee (2014), for related work using standard
currents on (C∗)n instead of supercurrents.)

Here we extend the ‘superformalism’ in a different direction by associating to any
smooth (or piecewise smooth) submanifold, M , of Rn a supercurrent, [M]s , with the
aim to apply methods from complex analysis to real manifolds. These supercurrents
are d-closed only if the manifold is a linear subspace, but d[M]s is given by an explicit
formula involving the second fundamental form of M . As a result, it turns out that M
is minimal if and only if
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502 B. Berndtsson

[M]s ∧ βm−1/(m − 1)!

is closed, where m is the dimension of M and β is the Euclidean Kähler form on C
n

(Corollary 5.2). Thus, minimality is characterized by a rather simple linear equation,
which suggests a generalization of minimal manifolds to minimal ‘supercurrents’.
This is of course similar to the use of (classical) currents and varifolds in the theory
of minimal manifolds, but has the extra feature of a bidegree, as in complex analysis.
With this we can imitate Lelong’s method for positive closed currents to prove e. g. the
monotonicity formula for minimal manifolds, and a volume estimate that generalizes
a recent result of Brendle and Hung (2017) (Theorem 6.3). We also obtain a result on
removable singularities for minimal manifolds along the lines of the El Mir–Skoda
theorem from complex analysis (Theorem 7.2), and a formula for the variation of the
volume under the mean curvature flow (Theorem 8.2). ( I take the opportunity to thank
Duong Phong for suggesting to apply the formalism to the mean curvature flow.)

After that we give an expression of the Riemann curvature tensor of M as a super-
form. This is basically a rewrite of Gauß’s formula. We apply it in the last section,
to give a rather short proof of Weyl’s tube theorem, Weyl (1939). The proof is in
essence the same as Weyl’s proof, but we have included it, hoping to show that the
superformalism is useful in computations.

Finally I would like to thank an anonymous referee for a very careful reading of
my manuscript, spotting many errors and suggesting several improvements.

2 Preliminaries

We start by recalling the definitions and basic properties of superforms and super-
currents, mainly following Lagerberg (2012) (and Berndtsson (2006)), but with some
modifications. Let E be an n-dimensional vector space over R. Thus E can be identi-
fied with Rn , but at some points it will be convenient not to fix a basis. We define the
’superspace’ of E to be

Es = E ⊕ E = E0 ⊕ E1,

where we use the subscripts to indicate the first or second summand. A superform on
E is a differential form on Es that is invariant under translation in the E1-variable.
If x = (x1, . . . xn) and ξ = (ξ1, . . . ξn) are coordinates on E0 and E1 respectively a
superform can then be written

a =
∑

aI ,J (x)dxI ∧ dξJ , (2.1)

where the coefficients do not depend on ξ . We say that a superform a has bidegree
(p, q) if the lengths of the multiindices in (2.1) satisfy |I | = p and |J | = q. (Notice
that this is not the same bigrading as in the complex case.) With these conventions, a
superform of bidegree (0, 0) can be identified with a function on E , since it does not
depend on ξ . So, a ‘superfunction’ on Es is a function on E .
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Superforms, supercurrents, minimal manifolds and Riemannian geometry 503

We also equip T ∗(Es) = T ∗(E0) ⊕ T ∗(E1) with a complex structure J , such
that J maps T ∗(E0) to T ∗(E1) and vice versa. (Here our definitions differ from
Lagerberg’s, who considers instead maps from T ∗(E0) to T ∗(E1) satisfying J 2 = 1.)
In the sequel we will only consider bases of E0 and E1 such that J (dxi ) = dξi , and
therefore J (dξi ) = −dxi . We then extend J to act on forms of arbitrary bidegree
so that J (a ∧ b) = J (a) ∧ J (b). When a is of bidegree (p, 0) we sometimes write
J (a) = a#.

The ordinary exterior derivative of a is

da =
∑

daI ,J ∧ dxI ∧ dξJ =
∑ ∂aI ,J

∂xk
dxk ∧ dxI ∧ dξJ ,

and we also define

d#a :=
∑

d#aI ,J ∧ dxI ∧ dξJ =
∑ ∂aI ,J

∂xk
dξk ∧ dxI ∧ dξJ .

Es is thus just the complexification of E and d# is just dc = i(∂̄ − ∂), but we write
d# to emphasize that it acts only on superforms, i. e. forms not depending on ξ . Note
that we also have

d#a = (−1)k Jd J (a),

where k = p + q is the total degree of a.
We also suppose given a scalar product on E and extend it to Es so that it is invariant

under J and E0 ⊥ E1. Thus, if dxi are orthonormal, dξi = dx#i are orthonormal on
E1 and dxi , dξi are orthonormal on Es .

Themain point in the construction of Es is the definition of integrals. If a is a formof
maximal bidegree (n, n), wewrite a = a0dx∧dξ with dx = dx1∧. . . dxn, dξ = dx#

and put

∫

Es

a =
∫

E0

a0dx
∫

E1

dξ.

The integral over E0 here is well defined as soon as we have chosen an orientation
of E0, if we assume that a0 has enough decrease at infinity to make the integral
convergent. For the integral with respect to ξ we define

cn

∫
dξ = 1

if dxi are orthonormal and oriented, where cn = (−1)n(n−1)/2. Except for the constant
cn , this is the Berezin integral (Berezin 1987). The reason for introducing the factor
cn is that we want the integral of

a = a0dx1 ∧ dξ1 ∧ · · · dxn ∧ dξn (2.2)
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504 B. Berndtsson

to be positive if a0 is positive in accordance with the complex case. If a is given by
(2.2) and dxi are orthonormal, we get

∫

Rn
s

a = cn

∫

Rn
s

a0dx ∧ dξ =
∫

a0dx cn

∫
dξ =

∫
a0dλ(x), (2.3)

where dλ is Lebesgue measure. Note that if we change orientation, the ’superintegral’
remains the same. This follows since the integrals with respect to x and ξ both change
sign, or directly from (2.3).

Let us briefly compare superintegration to classical integration over the complex-
ification. The first problem with classical integration is of course that the classical
integral over Es would always be divergent since a0 does not depend on ξ . This could
be overcome by replacing E1 by its quotient by a lattice, so that we would replace
Es by E0 × T n , where T n is a torus. The reason that does not work here is that
we will later want to integrate forms of lower bidegree over linear subspaces, and
these subspaces do not in general correspond to subtori, unless the subspace satisfies
a rationality condition that we cannot assume to be satisfied.

We next list a few rules of computation for superintegrals. First

∫

Rn
s

a =
∫

Rn
s

J (a)

since J (a) = a if a is of bidegree (n, n). Furthermore, if a is compactly supported of
bidegree (n − 1, n),

∫

Rn
s

da = 0.

This means that we have the usual formula for integration by parts

∫

Rn
s

da ∧ b = (−1)k+1
∫

Rn
s

a ∧ db

if at least one of the formsa andb is compactly supported. Similarly, usingd# = ±Jd J
and that the superintegral is J -invariant, we also have

∫

Rn
s

d#a = 0.

This means that the same integration by parts formula as for d also holds for d#. From
this one verifies, for example, that if ρ is a function and S is of bidegree (n−1, n−1),
then

∫

Rn
s

ρdd#S =
∫

Rn
s

dd#ρ ∧ S. (2.4)
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Superforms, supercurrents, minimal manifolds and Riemannian geometry 505

We can also define superintegrals over submanifolds ofRn if the form we integrate
is of bidegree (p, n), i. e. is of maximal degree in dξ . For instance, if D is a smoothly
bounded domain in Rn and a = α ∧ dξ is of bidegree (n − 1, n), then

∫

∂D
a :=

∫

∂D
α

∫

E1

dξ = cn

∫

∂D
α.

It thus follows directly that Stokes’ formula holds:

∫

∂D
a =

∫

Rn
s

χDda =:
∫

Ds

da.

’Superintegration’ over a submanifold of forms not of full degree in dξ is a different
matter thatwill be discussed later in Sect. 4, but as a preparation for thatwe next discuss
the case of linear subspaces. Let F be a linear subspace of E = E0 of dimension m.
Then its complexification is Fs = F ⊕ J (F), so F defines a superspace which is a
complex linear subspace of Es . Restricting a superform of bidegree (m,m) on Es to
Fs , we thus have a definition of the integral of a over Fs ,

∫

Fs
a

as before.
Having defined superforms and their integrals, we now turn to supercurrents. The

space of supercurrents of bidegree (p, q), or bidimension (n− p, n−q), is the dual of
the space of smooth, compactly supported (in x !), superforms of bidegree (n− p, n−
q). Here we use the classical notion of duals from the theory of distributions, and we
say that a supercurrent is of order zero if it is continuous for the uniform topology on
superforms. Note that a supercurrent of bidegree(n, n) is a (classical) current of top
degree on E , since superforms of bidegree (0, 0) are functions on E . In particular, a
supercurrent of top degree and order zero is a measure on E (not on Es). As usual,
given coordinates, a supercurrent can be written

T =
∑

TI ,J dxI ∧ dξJ , (2.5)

where TI ,J are distributions on E0. Let us explain this notation a bit more. We think of
a distribution as having bidegree (0, 0) (a generalized function), i. e. as acting on forms
of top degree. Then (2.5) means that if a is a test form of complementary bidegree

T .α =
∑

TI ,J . (aK .LdxI ∧ dξJ ∧ dxK ∧ dξL) .

In particular, if TI ,J are locally integrable functions, then

T .α =
∫

Rn
s

T ∧ α.
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506 B. Berndtsson

In practice, for us, the coefficients will mostly be at worst measures. (The exception
is Sect. 8 where we discuss the mean curvature flow.) If μ is a measure, it acts on
functions, and so should be regarded as a current of bidegree (n, n). We define the
corresponding object of bidegree (0, 0), ∗μ, by

∗μ.α0dx1 ∧ dξ1 ∧ · · · dxn ∧ dξn = μ.α0.

As an example of this we consider superintegration over a linear subspace F . Choose
orthonormal coordinates so that

F = {xm+1 = · · · xn = 0}

and write an (m,m)-form as

a = a0dx1 ∧ dξ1 · · · dxm ∧ dξm + · · ·

Then the restriction of a to Fs is just a0dx1 ∧ dξ1 · · · dxm ∧ dξm , and

∫

Fs
a =

∫

F
a0dλF

as before. Unwinding definitions, this means that the supercurrent defined by super-
integration over F is

[F]s := (∗dλF )dxm+1 ∧ dξm+1 · · · dxn ∧ dξm

= cn−m(∗dλF )dxm+1 · · · ∧ dxn ∧ dξm+1 · · · ∧ dξn .

Since the standard current of integration on F as a subspace of E is

[F] = (∗dλF )dxm+1 · · · ∧ dxn,

we see that

[F]s = cn−m[F] ∧ dξm+1 · · · ∧ dξn .

Note that dξi = dx#i where dxi for i = m + 1, . . . n is a frame for the conormal
bundle of F . In the next section we shall use this to define superintegration over
general smooth submanifolds of E = R

n .
An important point to notice is that whereas the standard current of integration is

well defined without any extra structure, the supercurrent [F]s depends on the choice
of scalar product.

Let T be a supercurrent (or superform) of bidegree (p, p),

T =
∑

|I |=|J |=p

TI J dxI ∧ dξJ .
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Then

J (T ) =
∑

|I |=|J |=p

TI J dξI ∧ dxJ (−1)p =
∑

|I |=|J |=p

TI J dxJ ∧ dξI (−1)p+p2

=
∑

|I |=|J |=p

TI J dxJ ∧ dξI .

We therefore say that T is symmetric if J (T ) = T , or equivalently TI J = TJ I .
In analogy with the complex case we now say that a symmetric supercurrent T of

bidimension (m,m) is (weakly) positive if

T .α1 ∧ α#
1 ∧ · · · αm ∧ α#

m ≥ 0

for any choice of compactly supported (1, 0)-forms α j . It is then easily verified that the
supercurrent of a linear subspace is symmetric and positive, and it is also immediately
clear that it is d-closed.

Similarly, we say that a superform α of bidegree (n−m, n−m) is (weakly) positive
if

α ∧ α1 ∧ α#
1 ∧ · · · αm ∧ α#

m ≥ 0 (2.6)

at every point. This is clearly equivalent to saying that the expression in (2.6) is positive
at any point when α j are constant. When

α =
∑

α jkdx j ∧ dξk

is of bidegree (1, 1), thismeans that thematrix of coefficients (α jk) is positive semidef-
inite. At any point, such a form can be written

α =
∑

α j ∧ α#
j

so we get

Proposition 2.1 The wedge product between a positive (symmetric) (1, 1)-form and a
positive (symmetric) form of bidegree (p, p) is again positive.

By approximation, the same thing holds for the product of (1, 1)-forms with currents
of bidegree (p, p).

We next introduce the analog of the Kähler form in R
n . This is by definition

β :=
∑

dx j ∧ dξ j = (1/2)dd#|x |2.

Then, the volume form on a linear subspace F can be written

dλF = [F]s ∧ βm/m!
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508 B. Berndtsson

in good analogy with the complex case.
In the coming sections we will frequently use contraction with a 1-form in the

computations. This is well defined, since we have induced scalar products on the
space of all forms, and we define contraction as the dual of exterior multiplication. If
a = ∑

a jdx j is a (1, 0)-form, then a�β = a# = J (a), and a#�β = −a = J (a#).
Therefore,

a�β = J (a)

for any 1-form a.
Similarly, contraction with a vector field

�V =
∑

Vj
∂

∂x j

is well defined. Lowering indices, �V corresponds to the (1, 0)-form V = ∑
Vjdx j ,

and �V and V act in the same way by contraction. Hence, e. g. �V �β = V #.
Finally, we will discuss how superforms transform under diffeomorphisms: If G is

a (local) diffeomorphism on E = R
n and α = ∑

αI ,J dxI ∧ dξJ we define the pull
back of α under G as

G∗(α) =
∑

G∗(αI ,J dxI ) ∧ dξJ , (2.7)

i. e. the pull back is the standard pull back on the x-part of the form and the dξ j ’s are
invariant. This means that we extend G to a (local) diffeomorphism on Es by leaving
E1 fixed, and then take the usual pullback. Then

∫

Rn
s

G∗(α) =
∫

Rn
s

α

if α is of bidegree (n, n) and G is orientation preserving.
Let now �V be a vector field on R

n and let Gt be its flow, or one parameter family
of diffeomorphisms. The classical formula of Cartan for the Lie derivative, Warner
(1983), says that if α is of bidegree (p, 0) then

dG∗
t (α)

dt
|t=0 = d

( �V �α
)

+ �V �dα =: L �Vα, (2.8)

where �V � means contraction with the field �V . This formula holds also for forms
of general bidegree. Indeed, this follows immediately from Cartan’s formula on the
superspace Es , if we extend �V to a vector field on Es that has no component in the
second factor.
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Superforms, supercurrents, minimal manifolds and Riemannian geometry 509

3 Relation to convex functions and tropical varieties

It is clear from the last part of the previous section that if φ is a smooth function on
R
n , then φ is convex if and only if dd#φ is a positive superform. By approximation, it

follows that a general, possibly not smooth, function φ is convex if and only if dd#φ
is a positive supercurrent. Conversely, if

α =
∑

α jkdx j ∧ dξk

is a symmetric closed (1, 1) current, we can always write α = dd#φ for some distri-
bution φ. This is because

∂α jk

∂xl
= ∂αlk

∂x j

so

α jk = ∂φk

∂x j

for some φk . By symmetry

∂φk

∂x j
= ∂φ j

∂xk

so φk = (∂φ/∂xk) for some φ. If α is moreover positive, φ must be convex, so the
positive symmetric (1, 1)-currents are precisely the ones that can be written dd#φ for
some convex φ.

If φ is a smooth convex function, we can define (dd#φ)n/n! which equals

cn det

(
∂2φ

∂x j∂xk

)
dx ∧ dξ.

The corresponding measure on R
n is the Monge–Ampére measure of φ

MA(φ) = det

(
∂2φ

∂x j∂xk

)
dx .

By the Bedford-Taylor theory, Bedford and Taylor (1976), this definition makes sense
for general convex functions. Indeed, Bedford and Taylor define (ddcφ)n/n! for
general locally bounded plurisubharmonic functions, hence in particular for convex
functions on R

n , considered as functions on C
n that do not depend on the imaginary

part of the variable. This means that for a general convex function on R
n ,

(
dd#φ

)n
/n! = MA(φ),
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510 B. Berndtsson

where the Monge–Ampére measure in the right hand side is taken in the sense of
Alexandrov. This follows, since the two sides coincide for smooth functions and are
continuous under uniform convergence.

(To be quite honest, Bedford and Taylor (1976) define (ddcφ)n as a measure on
C
n and prove continuity under decreasing sequences in Bedford and Taylor (1982),

hence also for unform convergence when the functions are continuous. Since

(dd#φ)n/n! = π∗(χ(ξ)(ddcφ)n/n!)),

if χ is a function of ξ with integral 1 and π is the projection from C
n to Rn , existence

and continuity of (dd#φ)n follows.)
Let us now consider convex functions of the form

φ(x) = max
i∈I ai · x + bi = max

i∈I li (x),

where I is a finite set.Wewill call such functions, i. e. the maxima of a finite collection
of affine functions, quasitropical polynomials, reserving the term tropical polynomials
for such functions where all components of the (co)vectors ai and the numbers bi are
integers, see Mikhalkin (2006). We may assume that all the ai are different. Indeed,
if ai = ak and say bi > bk , then li > lk everywhere, and we get the same function if
we omit lk .

Let E j = {φ = l j }. Then E j is defined by a finite set of linear inequalities. Assume
that one of these sets, Ek has empty interior. Then we can define

φk = max
i 
=k

li

and get a new quasitropical polynomial which equals φ on a dense set. Hence, by
continuity, φk = φ everywhere, so we may as well omit lk in the definition of φ, and
can assume that all E j have non empty interior. We therefore get a decomposition of
R
n as a finite union of non degenerate but possibly unbounded polyhedra. We then

also have that all the E j are different, since if a j · x + b j = ak · x + bk on an open
set, a j = ak which we have assumed is not the case.

It is clear that

d#φ =
∑

χE j (a
j )#,

where χE j is the characteristic function of the polyhedron E j . Since dχE j = [∂E j ]
for some choice of orientation, we get

dd#φ =
∑

[Fl ] ∧ v#l

for some (1, 0) (constant) covectors vl , where Fl is an enumeration of the faces of the
polyhedron E j . These vl must be normal to Fl , because dd#φ is symmetric (see the
next section for this). Positivity of dd#φ implies that they point in the same direction
as the normal to Fl determining the orientation.
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Superforms, supercurrents, minimal manifolds and Riemannian geometry 511

In thiswaydd#φ describes the tropical varietydefinedby the faces Fl , endowedwith
the multiplicity vectors vl . (Perhaps it would be more proper to talk of quasitropical
variety since themultiplicity vectors are not necessarily integral.) The fact that dd#φ is
closed is equivalent to the balancing condition in tropical geometry: At a point where
several faces intersect, the sum of their multiplicity vectors vanish (see Lagerberg
2012). Conversely, Lagerberg shows that a positive closed supercurrent of bidegree
(1, 1)with support of dimension n−1 (see Lagerberg 2012 for precise, and also more
general, statements) equals dd#φ for some quasitropical polynomial φ.

4 Supercurrents associated to general submanifolds ofRn

Let M be a smooth submanifold of Rn of dimension m. Given an orientation of M we
get the current of integration of M . Let us first assume thatM is a hypersurface, locally
defined by an equation ρ = 0, where ρ is smooth and has nonvanishing gradient on
M . Dividing by |dρ|, we may assume that |dρ| = 1 on M , and we let n = dρ; it is a
unit normal form on M . Now it is a familiar fact that the current of integration on M
can be written

[M] = n ∗ dSM

where dSM is the surface measure on M and the Hodge star indicates that we think
of it as a current of degree zero. The choice of sign of n determines the orientation of
M . From this formula we see in particular that if [M] ∧ v# is symmetric, then v must
be a multiple of n, hence normal to M (we used this at the end of the last section, with
M = Fj ). Moreover, if [M] ∧ v# is positive, v is a positive multiple of n.

Now we define the supercurrent [M]s by

[M]s := [M] ∧ n# = n ∧ n# ∗ dSM .

It is clearly positive and symmetric. More generally, if M has codimension p, it is
locally defined by p equations ρ j = 0, such that dρ j are linearly independent on
M . Replacing ρ j by

∑
a jkρk =: ρ′

j , for a suitable matrix of functions a jk , we may
assume that n j := dρ j are orthonormal on M . Then the currents of integration on M
can be written

[M] = n1 ∧ · · · n p ∗ dSM =: n ∗ dSM ; n = n1 ∧ · · · n p.

The supercurrent associated to M is defined as

[M]s := cpn ∧ n# ∗ dSM .

The definition uses the forms n j that are only locally defined, but it is easily verified
that a different choice n′

j leads to the same supercurrent, since n j and n′
j are related

on M by an orthogonal transformation. If α is a superform on the ambient space,
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α ∧ [M]s
kills all the components of α in the directions n j and n#j ; we will interpret it as the
restriction of α to Ms ; the ’superspace’ associated to M . Accordingly, we say that α

vanishes on Ms if (and only if) α ∧ [M]s = 0
In general, [M]s is not closed, unless M is linear. When computing d[M]s we will

have use for the (1, 1)-forms

F := dn#, Fj = dn#j .

These forms depend on the choice of defining function(s), but transform in a natural
way when we change defining functions.When the codimension p = 1, the restriction
of F toM is the second fundamental formofM . In higher codimension the Fj restricted
to M are the components of the vector valued second fundamental form

∑
Fj ⊗ �n j

with values in the normal bundle of M . (Recall that n j form an orthonormal system
for the space of normal (1, 0) forms at each point.)

Again, we start with the case p = 1. Then

d[M]s = d([M] ∧ n#) = −F ∧ [M],

since [M] is d-closed. This expresses d[M]s in terms of [M] but we want to write it
in terms of [M]s . Therefore we introduce the operator

F = F ⊗ n#�

which acts on a superformor supercurrent byfirst contractingwithn# and thenwedging
with F . Notice that F is an antiderivation. Then

d[M]s = F[M]s . (4.1)

In a similar way, when p > 1 we let

F =
∑

j

Fj ⊗ n#j�,

and still get d[M]s = F[M]s . In the same way we get that

d#[M]s = −F#[M]s, (4.2)

where

F# =
∑

j

Fj ⊗ n j�.

Because of the following lemma, we can also write F = ∑
j n

#
j� ⊗ Fj , i. e. we can

first wedge with Fj and then contract.
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Superforms, supercurrents, minimal manifolds and Riemannian geometry 513

Lemma 4.1 n j�Fj = 0 = n#j�Fj on Ms, i. e. when wedged with [M]s .
Proof We prove this when p = 1. This is only to simplify the index notation; in the
proof n j denotes the components of n, i. e. the partial derivatives of ρ with respect to
x j . Then

n�F =
∑

n jρ jkdξk = 1/2
∑ ∂n2j

∂xk
dξk = 1/2d#|n|2.

Since the norm of n is constant on M , this vanishes on Ms . �

5 Minimal submanifolds

We start with the following computational proposition.

Proposition 5.1 If M is a smooth m-dimensional submanifold of Rn

d
([M]s ∧ β p) =

∑

j

n#j�
(
Fj ∧ [M]s ∧ β p) .

Proof We have, since dβ = 0,

d
([M]s ∧ β p) =

∑
Fj ∧ n#j�[M]s ∧ β p.

Since, by Lemma 4.1, n#j�(Fj ) ∧ [M]s = 0, this equals

∑
n#j�(Fj ∧ [M]s) ∧ β p.

Finally, n#j�β = −n j , which vanishes whenwedgedwith [M]s . This gives the formula
in the proposition. �
If F = ∑

Fi j dxi ∧ dξ j is a (1, 1)-form,

F ∧ βn−1/(n − 1)! = tr(F)βn/n!,

where tr(F) = ∑
Fii is the trace of F . This implies that

F ∧ [M]s ∧ βm−1/(m − 1)! = tr ′(F)[M]s ∧ βm/m!,

where tr ′(F) is the trace of F’s restriction to Ms , since wedging with [M]s kills all
the components of F and β in the normal directions. The traces tr ′(Fj ) =: Hj are the
coefficients of the mean curvature vector

�H :=
∑

Hj �n j .
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(There seem to be different conventions as to the sign of the mean curvature vector.
We follow here the convention in Colding et al. (2015), so that the mean curvature of
a sphere points outwards.)

Applying Proposition 5.1 with p = m − 1 we get

d([M] ∧ βm−1/(m − 1)!) =
∑

Hjn
#
j�([M]s ∧ βm/m!). (5.1)

Since n j are linearly independent, this vanishes exactly when �H vanishes, i. e. when
M is a minimal manifold, so we have proved

Corollary 5.2 [M]s ∧ βm−1 is a closed current if and only if M is a minimal subman-
ifold.

We are therefore led to the following

Definition A positive symmetric supercurrent T of bidimension (m,m) is minimal if

dT ∧ βm−1 = 0.

�
It is clear that this property is conserved by regularisation, e.g. by convolution with

an approximate identity. For a general positive supercurrent of bidimension (m,m),
if it happens that there is a vector field �V = ∑

Vj∂/∂x j such that

dT ∧ βm−1/(m − 1)! =
∑

Vjdξ j�(T ∧ βm/m!),

we say that �V is a mean curvature vector for T . As we have seen, this is the case when
T = [M]s is associated to a smooth manifold, but it certainly also holds when T is
strictly positive and smooth, so that T ∧ βm/m! is a strictly positive volume form. In
both these cases, �V is uniquely determined, so we may speak of the mean curvature
vector. In Sect. 8 we shall see that when T = [M]s is associated to a smooth manifold,

dd#(T ∧ βm−1/(m − 1)!)

can be computed in terms of the flow of the mean curvature field.
We next discuss briefly the Dirichlet form on a symmetric and positive supercurrent

of bidimension (m,m):

D(u, u) :=
∫

T
du ∧ d#u ∧ βm−1/(m − 1)! = T .du ∧ d#u ∧ βm−1/(m − 1)!, (5.2)

if u is sufficiently smooth on R
n . When T = [M]s is the supercurrent associated to

an m-dimensional manifold, this is precisely the standard Dirichlet form

∫

M
|dMu|2dSM , (5.3)
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where dMu is the differential of u restricted to M , and |dMu| is the norm induced by
the Euclidean metric on R

n . Writing ST = T ∧ βm−1/(m − 1)! we have in general

D(u, u) =
∫

du ∧ d#u ∧ ST = −
∫

ud(d#u ∧ ST ). (5.4)

This makes it natural to define the Laplacian on T by

�T u = d(d#u ∧ ST ). (5.5)

With this definition, �T u is a measure on R
n . If T is the supercurrent of a manifold,

or more generally has a mean curvature vector, we can make this more explicit: First
we compute

�T u = dd#u ∧ ST − d#u ∧ dST . (5.6)

If T has a mean curvature vector H = ∑
Hj∂/∂x j , and we let H# = ∑

Hjdξ j be
the corresponding (0, 1)- form, we have with σ = T ∧ βm/m!,

dST = H#�σ. (5.7)

Hence

d#u ∧ dST = (H#�d#u)σ = H(u)σ. (5.8)

Therefore

�T u = dd#u ∧ ST − H(u)σ. (5.9)

If T is minimal, so that ST is closed and H vanishes, we have

�T u = dd#u ∧ ST = dd#u ∧ βm−1/(m − 1)! ∧ T (5.10)

just like in the Kähler case. In particular, the Laplacian has no first order terms and
linear functions are harmonic. For minimal manifolds this is a well known property,
cf. Colding andMinicozzi (1999). In general, for T not necessarily minimal, we get by
applying (5.9) to a coordinate function, u = x j , that the components ofH, Hj = H(x j )
are given by

− Hjσ = �T x j . (5.11)

(In particular, the mean curvature vector field is uniquely determined.)
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6 Volume estimates for minimal submanifolds

To prove volume estimates for minimal manifolds (or supercurrents), we will now
follow the method of Lelong to prove such estimates in the complex setting. This
requires one little twist since the minimal supercurrent T (e.g. T = [M]s) is not
closed itself; it is only T ∧ βm−1 that is closed. This is taken care of by the following
lemma.

Lemma 6.1 Let for δ ≥ 0, |x |δ := (|x |2 + δ)1/2, and let for p > 0

Ep,δ := −1

p
|x |−p

δ ,

and for p = 0

E0,δ = log |x |δ.

Then, if p is an integer,

dd#Ep,δ ∧ β p+1 = (dd#|x |δ)p+2.

Proof This is a direct computation and we will do it for p > 0, the case p = 0 being
similar but simpler. First,

d#Ep,δ = |x |−(p+2)
δ (1/2)d#|x |2

and

dd#Ep,δ = |x |−(p+2)
δ

(
β − (p + 2)

γ

|x |δ2
)

, (6.1)

with γ = d|x |2 ∧ d#|x |2/4. On the other hand

dd#|x |δ = |x |−1
δ

(
β − γ

|x |δ2
)

.

Expanding by the binomial theorem we get

(
dd#|x |δ

)p+2 = |x |−(p+2)
δ

(
β p+2 − (p + 2)

γ

|x |δ2
∧ β p+1

)
. (6.2)

The lemma follows from (6.1) and (6.2). �
The reason we consider Ep,δ instead of Ep,0 is just that we want our functions to

be smooth across zero. The main conclusion we draw from the lemma is that

dd#Em−2,δ ∧ βm−1 ∧ T
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is positive if T is positive of bidegree (m,m). This follows from Proposition (2.1)
since |x |δ is convex. We also remark that it follows from the proof of the proposition
that

dd#Ep,δ ∧ βm−1 ∧ T ≥ 0 (6.3)

if 0 ≤ p ≤ m − 2.
Let T be a minimal current of bidimension (m,m), defined in a neighbourhood of

the origin. Its mass in a ball of radius r centered at the origin is

σ(r) :=
∫

|x |<r
T ∧ βm/m!.

In the computations below we first assume that T is smooth. Then, writing S =
T ∧ βm−1/m!

σ(r) =
∫

|x |=r
(1/2)d#|x |2 ∧ S =

∫

|x |=r
|x |mδ d#Em−2,δ ∧ S

= (r2 + δ)m/2
∫

|x |<r
(dd#|x |δ)m ∧ T /m!, (6.4)

since dS = 0. Since the integrand in the right hand side is nonnegative it follows that

(r2 + δ)−(m/2)σ (r)

is (weakly) increasing. This holds for any δ > 0, so r−mσ(r) is also increasing. By
approximation with smooth forms, this holds also for general minimal currents, so
we have proved the following generalization of themonotonicity theorem for minimal
manifolds (see Colding and Minicozzi 1999).

Theorem 6.2 Let T be a minimal (super)current of bidimension (m,m) defined in a
neighbourhood of the origin. Then

r−m
∫

|x |<r
T ∧ βm/m!

is nondecreasing.

When T is the supercurrent of a minimal manifold, this says that the area of the
manifold inside a ball of radius r , divided by r−m is nondecreasing. In analogy with
the case of minimal manifolds we call

γT (0) := lim
r→0

r−m
∫

|x |<r
T ∧ βm/m!,

the density of T at the origin. When T is the supercurrent of a (smooth) minimal
manifold it equals ωm , the volume of m-dimensional unit ball. (The corresponding
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limit for closed positive (m,m)-currents in complex analysis is the Lelong number of
the current.)

Let us now look again at the formula

∫

|x |<r
T ∧ βm/m! = (r2 + δ)m/2

∫

|x |<r
T ∧ (dd#|x |δ)m/m!.

We proved this for T smooth, but by approximation it holds for general minimal
supercurrents of bidimension (m,m). It means in particular that the integral in the
right hand side is bounded as δ → 0, so there is a subsequence of δ’s such that

T ∧ (dd#|x |δ)m/m!

convergesweakly to ameasure,μ. Outside the origin,where |x | is smooth, thismeasure
must be

T ∧ (dd#|x |)m/m!.

We also see that μ must have a point mass at the origin of size γT (0), since the mass
of μ in any ball centered at the origin with small radius r is

r−m
∫

|x |<r
T ∧ βm/m!.

Thus, every subsequence has the same limit

μ = χx 
=0T ∧ (dd#|x |)m/m! + γT (0)δ0.

By Lemma 6.1 we also have

lim
δ→0

T ∧ dd#Em−2,δ ∧ βm−1/m! = μ,

which can be interpreted as saying that the ’Laplacian’ of Em−2,0 on T (the trace of
dd#Em−2,0) equals a point mass at the origin of size γT , plus a nonnegative contri-
bution outside the origin. The contribution outside the origin vanishes when T is the
supercurrent of an m-dimensional plane through the origin. This reflects the fact that
Em−2,0 is a fundamental solution of the Laplacian then; the crucial observation is that
Em−2,0 is always ’subharmonic on T ’.

We shall next generalize the proof of Theorem 6.2 to a general domain, D. Then
|x | is not constant on the boundary of D, so instead we write |x |m = w(x) on the
boundary , where w is a positive smooth function on the closure of D to be chosen
later. Let T be a minimal supercurrent (which we tacitly take as smooth at first) in a
neighbourhood of D̄. Then the mass of T in D is

∫

D
T ∧ βm/m! =

∫

∂D
d#|x |2/2 ∧ S/m! =

∫

∂D
wd#Em−2 ∧ S/m!.
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(Here we skip the part of the argument where we approximate |x | by |x |δ and we write
Em−2 for Em−2,0.) By Stokes’ theorem this equals

∫

D
wdd#Em−2 ∧ S/m! +

∫

D
dw ∧ d#Em−2 ∧ S/m! =: I + I I

since S is closed. By what we have just seen, I ≥ w(0)γT (0). To see when I I is
positive we compute (for m > 2)

0 = (m − 2)−1
∫

∂D

(
1

|x |m−2 − 1

w1−2/m

)
d#w ∧ S

= 1

m − 2

∫

D

(
1

|x |m−2 − 1

w1−2/m

)
dd#w ∧ S + m−1

∫

D

1

w2−2/m dw ∧ d#w ∧ S

−
∫

D
dEm−2 ∧ d#w ∧ S. (6.5)

Since

dφ ∧ d#ψ ∧ S = dψ ∧ d#φ ∧ S

when S is symmetric we find that

I I = 1

m − 2

∫

D

(
1

|x |m−2 − 1

w1−2/m

)
dd#w ∧ S/m!

+m−1
∫

D

1

w2−2/m dw ∧ d#w ∧ S/m!.

It follows that I I ≥ 0 if w ≥ |x |m in D and w is convex.

Theorem 6.3 Let D be a smoothly bounded domain in R
n. Let a be any point in D

and let w be a convex function on D̄ such that w = |x − a|m on the boundary of D.
If T is a minimal supercurrent in D of bidimension (m,m), then its mass satisfies

∫

D
T ∧ βm/m! ≥ w(a)γT (a)

(where γT (a) is the density of T at a).

(We shall see in the next section that the convexity assumption on w can be relaxed
considerably.)

In the proof we may of course assume that a = 0. For m > 2 the theorem follows
immediately from the argument above, since we can always assume that w ≥ |x |m ,
replacing it if necessary by max(w, |x |m). The case m = 2 is similar; we just have to
replace the boundary integral in (6.5) by

∫

∂D
log

w

|x |2 d
#w ∧ S.
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As a special case we get a recent result of Brendle and Hung (2017), which generalizes
an older estimate of Alexander and Osserman for the case m = 2 (Alexander and
Osserman 1975).

Corollary 6.4 Let M be a minimal manifold of dimension m in the unit ball which
contains the point a. Then the volume of M satisfies

|M | ≥ ωm(1 − |a|2)m/2,

where ωm is the volume of the m-dimensional unit ball.

Proof We have

|x − a|2 = 1 + |a|2 − 2a · x =: v

on the boundary of the ball. Since v is convex (in fact linear),w := vm/2 is also convex
and the corollary follows directly from the theorem, since γT (a) = ωm when T is the
supercurrent of a (smooth) manifold. �

7 Removable singularities

The techniques of the previous section can also be used to give a variant of the El
Mir–Skoda theorem on extension of positive closed currents (El Mir 1984; Skoda
1982) in the setting of minimal manifolds or minimal currents. It should be stressed
that here we are not aiming to prove that a minimal surface with possible singularities
on a small set is actually smooth, but rather that the minimal current defined by the
surface outside the singularities extends as a minimal current. This is a much simpler
problem than regularity, but the results are still useful as they will allow us to apply
the calculus of supercurrents to manifolds with singularities on a set of sufficiently
small dimension. We refer to Harvey and Lawson (1975) for a discussion of and very
precise results on removable singularities in the classical setting.

We first define a locally integrable function u to be m-subharmonic if

dd#u ∧ βm−1

is positive. This condition is preserved under regularization (convolution with an
approximate identity) so we can approximate general m-subharmonic functions with
smooth ones. If u is smooth and we fix a point we can make an orthogonal change of
coordinates so that

dd#u =
∑

λ j dx j ∧ dξ j

at that point. We also have that

βm−1/(m − 1)! =
∑

|I |=m−1

dVI ,
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where

dVI = dxi1 ∧ dξi1 ∧ · · · dxim−1 ∧ dξim−1 ,

for I = (i1, . . . im−1). Thus, at the chosen point,

dd#u ∧ βm−1/(m − 1)! =
∑

|J |=m

λJ dVJ , (7.1)

where λJ = ∑
i∈J λi . In conclusion, a smooth function u is m-subharmonic if and

only if the sum of any m-tuple of eigenvalues of dd#u is nonnegative at any point. We
also see from (7.1) that if u is smooth and m-subharmonic, then

dd#u ∧ βm−1 ∧ T ≥ 0

if T is a positive supercurrent of bidegree (n − m, n − m).
Lemma 6.1 implies that Em−2,δ is m-subharmonic, and taking limits when δ → 0

the same thing holds for Em−2. Therefore, any potential

u(x) :=
∫ −1

|x − y|m−2 dμ(y) (7.2)

for m > 2 and

u(x) :=
∫

log |x − y|dμ(y)

when m = 2 is also m-subharmonic, if μ is a positive measure.
Kernels like Em−2 on R

n are called Riesz kernels, and have a well developed
potential theory, following the lines of the more classical potential theory for the
Newtonian kernel En−2, see Landkof (1972). Thus, we have a notion of capacity
Cm−2 associated to Em−2 and any set of sigma-finite (m − 2)-dimensional Hausdorff
measure has capacity zero.

We also say that a set F is m-polar is there is an m-subharmonic function which is
equal to −∞ on F (and maybe elsewhere as well). By Landkof (1972), any compact
set K with Cm−2(K ) = 0 is m-polar, and moreover there is a measure μ supported
on K whose potential equals −∞ precisely on K . Therefore we get

Proposition 7.1 Any compact set K ofσ -finite (m−2)-dimensionalHausdorffmeasure
is m-polar and there is a potential u of a measure supported on K which equals −∞
on K .

To illustrate this, notice that it is immediate that a discrete set of points is 2-polar, and
that a submanifold of dimension (m − 2) is m-polar in general. Indeed, it suffices to
take μ equal to surface measure.
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Theorem 7.2 Let T be aminimal supercurrent of bidimension (m,m), defined in B\K,
where B is a ball and K and is compact in Rn with sigma-finite (m − 2)-dimensional
Hausdorff measure. Assume that T has finite mass

∫

B\K
T ∧ βm < ∞.

Then the trivial extension of T , T̃ := χB\K T , is a minimal supercurrent in B.

Proof We follow almost verbatim the proof of Proposition 11.1 in Berndtsson and
Sibony (2002). Let u be a potential as in (7.2) with μ supported on K , which equals
−∞ on K . Thus, u is smooth outside K andm-subharmonic. Let χ(t) be an increasing
smooth convex function, definedwhen t ≤ 0, with χ(0) = 1 and χ(t) = 0 for t ≤ −1.
Put

uk = χ(u/k)

for k = 1, 2, . . .. Then uk are smooth, m-subharmonic, 0 ≤ uk < 1, and uk tend to 1
uniformly on compacts outside K . Moreover, all uk vanish in a neighbourhood of K .

Let θ be a smooth function with compact support in B. Then, by integration by
parts,

∫

B
θT ∧ βm−1 ∧ dd#u2k =

∫

B
u2kdd

#θ ∧ T ∧ βm−1 ≤ C (7.3)

where C is a fixed constant independent of k. Here we have used that T ∧ βm−1 is
closed outside of K , and that uk vanishes near K . This implies that

∫

B
θT ∧ βm−1 ∧ duk ∧ d#uk ≤ C,

since

dd#u2k = 2ukdd
#uk + 2duk ∧ d#uk,

and dd#uk ∧ βm−1 ≥ 0 for uk m-subharmonic.
Let p(x) be a smooth function on R, such that p(x) = 1 if x > 1/2 and p(x) = 0

if x < 1/3, and put χk = p(uk). Then χk tends to χB\K and we get if ψ is a smooth
(1, 0)-form supported in B,

∫

B
d

(
χB\K T ∧ βm−1

)
∧ ψ# = lim

k→∞

∫

B
d

(
χkT ∧ βm−1

)
∧ ψ#

= lim
k→∞

∫

B
p′(uk)duk ∧ T ∧ βm−1 ∧ ψ#.

123



Superforms, supercurrents, minimal manifolds and Riemannian geometry 523

The integral

∫

B\K
α ∧ τ # ∧ T ∧ βm−1 =: (α, τ )

is a positive semidefinite bilinear form on the space of smooth (1, 0)-forms in B. By
Cauchy’s inequality we have, choosing α = duk and τ = p′(uk)ψ that

∫

B
p′(uk)duk ∧ T ∧ βm−1 ∧ ψ#

≤
√∫

B\K
duk ∧ d#uk ∧ T ∧ βm−1

∫

B\K
(p′(uk))2ψ ∧ ψ# ∧ T ∧ βm−1.

(It does not matter if we integrate over B or B\K in the left hand side since duk and
p′(uk) vanish near K .) By (7.3), the first integral on the right hand side is bounded
independently of k. The second integral in the right hand tends to zero by dominated
convergence since p′(uk) tends to zero on B\K . Hence

lim
k→∞

∫

B
p′(uk)duk ∧ T ∧ βm−1 ∧ ψ# = 0.

Therefore χB\K T ∧ βm−1 is d-closed, so we are done. �

One consequence of this is that Corollary 6.4 also holds for minimal manifolds
with singularities. More precisely, by the theorem, the extension T̃ has a density also
at points in K . It is easy to see, by the monotonicity theorem, that

γT̃ (a) ≥ lim sup
b→a

γT̃ (b).

If T is associated with a minimal manifold of dimensionm that has singularities at the
set E the density is ωm (the volume of an m-dimensional unit ball) at all the regular
points. Therefore it is at least ωm at the singular points.

(A natural question in this context seems to be if minimal manifolds can be char-
acterized within the class of minimal supercurrents by conditions on the density. For
instance, if T is minimal and the density is constant on the support of T , is T then
c[M]s for a smooth minimal manifold M ?)

We also note that the assumption that w be convex in Theorem 6.3 can be relaxed
to m-subharmonic, since we just need that

dd#w ∧ S = dd#w ∧ T ∧ βm−1

be nonnegative.
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8 Variation of volume and themean curvature flow

We have seen in formula (5.1), that if M is a smooth manifold of dimension m, then

d
(
[M]s ∧ βm−1/(m − 1)!

)
=

∑
Hjn

#
j�

([M]s ∧ βm/m!) , (8.1)

where Hj are the components of the mean curvature vector. In this section we will use
the notation βm = βm/m!,

S = [M]s ∧ βm−1,

and

σ = [M]s ∧ βm .

Then formula (8.1) says that

dS = H#�σ. (8.2)

Since S is J -invariant and of even degree it follows after a small computation that

d#S = JdS = −H�σ. (8.3)

Our main objective in this section is to give a formula for the derivative of the
volume form

σM := [M]s ∧ βm/m!

when M moves under the mean curvature flow, see Colding et al. (2015), Smoczyk
(1999). As in these references, we say that a family Mt of smooth submanifolds ofRn

moves by the mean curvature flow if there is a vector field �H on the ambient space
such that Ft (M0) = Mt , where Ft is the flow of − �H , which restricts to the mean
curvature vector field of Mt on each Mt .

Again we point out that we use here the same conventions about the sign of the
mean curvature vector as in Colding et al. (2015), which seems to be the opposite of
the one in Smoczyk (1999). To make matters worse, the condition

Ft (M0) = Mt ,

means in terms of pullbacks of currents that

F∗−t ([M0]) = [Mt ],

so since we will work with pullbacks, we are dealing with the flow Gt of the vector
field + �H after all. Recalling Cartan’s formula for the Lie derivative (cf. Sect. 2) we
get

123



Superforms, supercurrents, minimal manifolds and Riemannian geometry 525

d

dt
|t=0[Mt ] = L �H [M] = d

( �H�[M]
)

= d (H�[M]) , (8.4)

since [M] is closed.
We first note that the next proposition follows directly from (8.3) and Cartan’s

formula.

Proposition 8.1

dF∗−t (σ )

dt
|t=0 = −dd#S.

We now let σt = [Mt ]s ∧ βm ; the volume form of Mt . (Note that this is not the
same thing as F∗−t (σ ) which has total mass independent of t , whereas the mass of Mt

changes.) The next theorem is the main result of this section.

Theorem 8.2 Let Mt be a family of smoothm-dimensional submanifolds ofRn, moving
under the mean curvature flow, with M0 = M. Let

σt = σMt = [Mt ]s ∧ βm

be their volume forms. Then

dσt

dt
|t=0 = −| �H |2σ − dd#S. (8.5)

We will deduce the theorem from the proposition. Note that

F∗−t (σ ) = F∗−t ([M0]s) ∧ F∗−t (βm).

We now differentiate this with respect to t at t = 0 and use the proposition in the left
hand side. The result is

− dd#S = dσt

dt
|t=0 + [M0]s ∧ d

dt
|t=0F

∗−t (βm). (8.6)

By Cartan’s formula

d

dt
|t=0F

∗−t (βm) = d(H�β) ∧ βm−1 = dH# ∧ βm−1.

Hence

[M0]s ∧ d

dt
|t=0F

∗−t (βm) = (dH#) ∧ [M0]s ∧ βm−1 = d(H# ∧ S) + H# ∧ dS.

But

H# ∧ S = 0
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since H# = ∑
Hjn#j and S contains a factor n# = n#1 ∧ . . . n#p. Moreover, by (8.2),

H# ∧ dS = H# ∧ (H#�σ) = |H |2σ.

Thus

[M0]s ∧ d

dt
|t=0F

∗−t (βm) = |H |2σ,

and inserting this in (8.6) the theorem follows.
Integrating (8.5) against a smooth function ρ, and using (2.4), we obtain

Corollary 8.3 Let Mt be a family of compact manifolds of dimension m, moving under
the mean curvature flow. Then, if ρ is a sufficiently smooth function

(d/dt)|t=0

∫
ρσt = −

∫
ρ| �H |2σ −

∫
dd#ρ ∧ S.

As a consequence, ifρ is nonnegative and convex (or,more generally, m-subharmonic),
then

∫
ρσt

is decreasing.

To understand the intuitive meaning of the corollary, let first ρ be constant equal
to 1. Then we get the well known fact that the volume of M decreases under the
mean curvature flow. When ρ is nonconstant, convex and nonnegative we get an
extra negative contribution to the derivative of the integral of ρ over Mt , so, roughly
speaking, Mt tends to move towards where ρ is small. The next consequence is a more
precise formulation of this.

Corollary 8.4 Under the samehypotheses as inTheorem8.2, assumealso that M = M0
lies in a convex open set �. Then Mt lies in � for t > 0 as long as the mean curvature
flow exists.

This follows since wemay choose ρ to be zero in the convex set and strictly positive
outside. Gerhard Huisken has kindly informed me that this is a well known property
that follows from the parabolic maximum principle, using the formula for the mean
curvature field in formula (5.11).

Anopen set is convex if it has a convexdefining function, i. e. if there is a nonnegative
convex function ρ, such that � = {ρ < 1}. Analogously we could define m-convex
domains as domains that possess an m-subharmonic defining function. (Recall that
we have defined ρ to bem-subharmonic if dd#ρ ∧βm−1 ≥ 0. ) Then the last corollary
also holds if � is only m-convex, where m is the dimension of M . This condition
becomes weaker when the dimension is large: For curves we need convexity, but for
hypersurfaces (n − 1)-convexity is enough.
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Formula (8.5) reflects the fact that themean curvature flow is described by a (non lin-
ear) parabolic equation. It says that the volume forms then flow by a (linear) parabolic
equation. It seems to be a natural question if there is a corresponding equation for
the supercurrents [Mt ]s themselves, i. e. without taking traces as we have done here.
Since the minimal surface equation becomes linear in the supercurrents formalism,
this is perhaps not completely unrealistic.

9 General submanifolds and their Riemannian geometry

In this section we shall describe the Levi-Civita connection and Riemannian curvature
of a submanifold M of Rn in terms of the ’superstructure’.

Let M be a smooth submanifold of Rn and let [M]s be its associated supercurrent.
With the notation from Sect. 3 we have

d[M]s = F[M]s, d#[M]s = −F#[M]s .

Motivated by these formulas we introduce the operators

D := d − F , D# : d# + F#

and get

D[M]s = D#[M]s = 0.

Notice that D and D# are antiderivations, so they satisfy the same rules of computation
as d and d#. If a is a superform on the ambient space we get

D(a ∧ [M]s) = (Da) ∧ [M]s, D#(a ∧ [M]s) = (D#a) ∧ [M]s .

In particular, if a vanishes on [M]s , i.e. a ∧ [M]s = 0, then Da and D#a also vanish
on [M]s , which means that D and D# are well defined as operators on forms on [M]s .

Since F involves contraction with n#j , it vanishes on any form of bidegree (p, 0).
Hence D = d on such forms and we have just retrieved the fact that the exterior
derivative is well defined on submanifolds. On the other hand,F# involves contraction
with n j and does not vanish on forms of bidegree (p, 0), so d# and D# are different
on (p, 0) forms. In fact, D#a can be thought of as the Levi-Civita connection acting
on a. Indeed, D#a is a form of bidegree (p, 1), so it can be seen as a 1-form in ξ with
values in the space of (p, 0)-forms in x . If V = ∑

Vj∂/∂x j is a tangent vector to M ,
the derivative of a in the direction V is

V #�D#a,

where V # = ∑
Vj∂/∂ξ j . It is not hard to verify that this is the Levi-Civita connection.
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To compute its curvature we need to apply D# twice. This is done in the follow-
ing proposition which is just a way of writing Gauß’s formula for the curvature in
supernotation (see also Weyl (1939)).

Proposition 9.1 The curvature tensor R on M is given by the symmetric (2, 2) form

R = (1/2)
∑

Fj ∧ Fj ,

in the sense that, if a is of bidegree (1, 0)

(D#)2a = a�(1/2)
∑

Fj ∧ Fj .

If a is a form of bidegree (p, q) on Ms we can always extend it to a (p, q)-form
on the ambient space. It is convenient to choose a special extension. We say that
the extension is canonical if n j�a = n#j�a = 0 for j = 1, . . . p. It is obvious that
canonical extensions exist locally since n j = dρ j are linearly independent and can
be completed to a basis for the (1, 0) forms. We then just take any extension, write it
in terms of the new basis, and throw away the terms that contain some n j or n#j . The
resulting form coincides with a on Ms in the sense that its wedge product with [M]s
equals a ∧ [M]s .

If a is a canonical extension of a form on Ms , then Fa = F#a = 0, so

D#a = d#a.

Thus

(D#)2a = F#d#a =
∑

Fj ∧ n j�d#a.

To continue, we introduce the notation that if F = ∑
Fi j dxi ∧ dξ j is a (1, 1) form

(on Rn
s ) and a is (p, q) form, then

F ∪ a = −
∑

Fi j dξ j ∧ (dxi�a).

Notice that in the particular case when a has bidegree (1, 0)

F ∪ a = −a�F .

Lemma 9.2 If F = dθ# (where θ is (1, 0)), then we have the commutator formula

[d#, θ�]a := d#θ�a + θ�d#a = −F ∪ a

where a is any superform (canonical or not).

Proof First we note that the commutator is a scalar operator, so that

[d#, θ�] f a = f [d#, θ�]a
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if f is a function. Therefore we may assume that a = dxI ∧ dξJ . Then d#a = 0 and

d#θ�a =
∑ ∂θi

∂x j
dξ j ∧ (dxi�a),

which proves the formula. �

The lemma gives that

(D#)2a = −
∑

Fj ∧ Fj ∪ a,

for a of any bidegree. Combined with the remark immediately before the lemma, this
gives that

(D#)2a = a�(1/2)
∑

Fj ∧ Fj

if a is (1, 0), which concludes the proof of the proposition.
From Proposition 9.1 we see that integrals like

∫

[M]s
χ

(∑
Fj ∧ Fj

)q ∧ βm−2q ,

where χ is a function on M are intrinsic, i. e. they do not depend on the embedding
of M in R

n , since the Riemann curvature (and the metric) are intrinsic. (This is of
course not true for similar integrals containing arbitrary combinations of Fj .) In the
next section we shall give an illustration of this.

10 Weyl’s tube formula

We will now use the formalism of the previous section to give a quick proof of Weyl’s
tube formula (Weyl 1922; Gray 1990). The proof is not really different from the
original proof, but the formalism helps to organise the formulas.

Let M be a compact submanifold of Rn . We will consider Tr (M), the tube around
M of width r , which when M is without boundary is defined as

Tr (M) = {
x ∈ R

n; d(x, M) < r
}
.

When r is sufficiently small, Tr (M) is by the tubular neighbourhood theorem dif-
feomorphic to a neighbourhood of the zero section of the normal bundle N (M) of
M ,

�(M, r) := {v ∈ N (M); |v| < r} .
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A point v in the normal bundle is a vector, normal to Tp(M)where p = π(v), π being
the projection from N (M) to M , and the diffeomorphism is

G : �(M, r) → R
n, G(v) = π(v) + v.

When M is a compact manifold with boundary, we define Tr (M) to be the image of
�(M, r) under this map. Weyl’s tube formula expresses the volume of these tubes,
|Tr (M)|, in terms of curvature integrals over the manifold.

Theorem 10.1 Let M be a compact m-dimensional submanifold of Rn and let Tr (M)

be the tube of width r around M. Then, for r small

|Tr (M)| =
∑

2q≤m

c2qr
2q+p

∫

[M]s
Rq ∧ βm−2q

for some constants c2q that can be explicitly calculated, where p = n − m is the
codimension of M.

Thus the theorem says first that the volume of the tubes of width r is a polynomial in
r for r small, andmoreover andmost remarkably that the coefficients of the polynomial
are intrinsic. Thus, if we have two isometric embeddings of the Riemannian manifold
M into Rn , the tube volumes are the same.

For the proof, we have first

|Tr (M)| =
∫

[Tr (M)]s

(∑
dxk ∧ dξk

)n
/n!.

It is enough to prove the theorem locally; i. e. we may assume that the normal forms
n j = dρ j of Sect. 4 are defined on all of M . Then the normal bundle is trivial and
isometric to M × Br (0), where Br (0) is the ball in Rn of radius r and center 0, via the
orthonormal frame �n j . Hence the diffeomorphism G described above can be written

G : M × Br (0) → Tr (M),

with

G(y, t) = y +
∑

t j �n j .

Pulling back by G as in Sect. 2 we get

|Tr (M)| =
∫

M×Br (0)

(∑
dyk ∧ dξk +

∑
t j dn

#
j +

∑
dt j ∧ n#j

)n
/n!

=
∫

M×Br (0)

(∑
dyk ∧ dξk +

∑
t j Fj +

∑
dt j ∧ n#j

)n
/n!

Although M× B(0, r) is not strictly speaking a domain inRn , the integral here should
be interpreted as an ordinary integral with respect to (y, t) and the Berezin integral
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with respect to ξ . We expand the integrand by the trinomial theorem (since all three
forms within the parenthesis are of degree 2 they commute), and get

|Tr (M)| =
∑

l

cl,m

∫

|t |<r
dt

∫

[M]s
βl ∧

(∑
t j Fj

)m−l
. (10.1)

Here β = ∑
dyk ∧ dξk , and we are using

[M] ∧
(∑

dt j ∧ n#j

)n−m = c[M]sdt1.. ∧ dtk

for some constant c. What remains is therefore to compute the form valued integral

∫

|t |<r

(∑
t j Fj

)m−l
dt .

We first compute the integral

∫

|t |<r

(∑
t j a j

)m−l
dt, (10.2)

where a = (a1, . . . ap) lies in R
p. It clearly vanishes when m − l is odd, and when

m − l = 2q it equals a constant times

|a|2qr2q+p.

This follows since the integral is rotational invariant and homogenous of degree 2q
in a, and homogenous of order 2q + p in r . Hence, up to a constant, the integral in
(10.2) equals

(∑
a2j

)q
r2q+p (10.3)

From a different point view, we could have expanded the integrand in (10.2) and
obtained a linear combination of monomials in a of degree m − l. The fact that the
resulting homogenous polynomial in a is given by (10.3) is therefore an algebraic
identity. This must also hold when a j are not real numbers but lie in any commutative
algebra over the reals, like in our case when a j = Fj are two-forms. Hence

∫

|t |<r

(∑
t j Fj

)m−l
dt = cqr

2q+p
(∑

F2
j

)q = c′
qr

2q+p Rq .

Inserting this into (10.1), the theorem follows.
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