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EXACTNESS AND SOAP OF CROSSED PRODUCTS VIA

HERZ–SCHUR MULTIPLIERS

ANDREW MCKEE AND LYUDMILA TUROWSKA

Abstract. Given a C∗-dynamical system (A,G, α), with G a discrete
group, SchurA-multipliers and Herz–Schur (A,G, α)-multipliers are used
to implement approximation properties, namely exactness and the strong
operator approximation property (SOAP), of A ⋊α,r G. The resulting
characterisations of exactness and SOAP of A⋊α,r G generalise the cor-
responding statements for the reduced group C∗-algebra.

1. Introduction

Recently in [16] the notion of classical Schur multipliers, which has been
intensively studied in the literature (see e.g. [11,13,18,19]), was generalised
to the operator-valued setting: for a C∗-algebra A ⊂ B(H) on a Hilbert
space H, and a set X, Schur A-multipliers were defined as functions ϕ :
X × X → CB(A,B(H)) such that the associated map Sϕ : K(ℓ2(X)) ⊗
A→ K(ℓ2(X))⊗B(H) is completely bounded. Among many applications of
classical Schur multipliers in Operator Theory is Ozawa’s characterisation of
exactness of the reduced C∗-algebra of a discrete group G [17]: for a certain
family of Schur multipliers (ϕi : G × G → C)i the associated maps Sϕi

implement exactness of C∗
r (G). In this paper we will use Schur A-multipliers

to generalise this result to the setting of reduced crossed products.
Schur multipliers are related to the notion of Herz–Schur multipliers as-

sociated to groups. The latter are functions ψ : G→ C on a locally compact
group G that give rise to completely bounded maps on the reduced C∗-
algebra. It is known that they constitute the “invariant” part of the Schur
multipliers on G×G. Herz–Schur multipliers for the reduced crossed prod-
uct were defined in [4] for discrete groups and in [16] for general locally
compact groups; in the latter they were also related to Schur A-multipliers
in a similar manner as for the group case. Herz–Schur multipliers of spe-
cial type are known to encode such approximation properties as nuclearity,
the Haagerup approximation property, the completely bounded approxima-
tion property (CBAP) and the (strong) operator approximation property
((S)OAP) of the reduced C∗-algebra of a discrete group. Recently it was
shown that Herz–Schur (A,G,α)-multipliers do the same for the reduced
crossed product A ⋊α,r G and the first three approximation properties, see
[14, 15]. Bédos–Conti [4, Section 4] have also used similar techniques to
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investigate regularity of C∗-dynamical systems: they give a condition in-
volving Herz–Schur (A,G,α)-multipliers which implies the full and reduced
crossed products are canonically isomorphic. In this note we shall give a
characterisation of SOAP for A ⋊α,r G in terms of Herz–Schur multipliers
for crossed products.

The paper is organised as follows. In Section 2 we fix notation and re-
call the notions of Schur A-multipliers and Herz–Schur multipliers of a C∗-
dynamical system. The main result of Section 3 is a characterisation of
exactness of a reduced crossed product in terms of the existence of certain
Schur A-multipliers; from this characterisation we are able to deduce the
known result that exactness is preserved by actions that satisfy a certain
approximation property. Finally, in Section 4 we give a characterisation
of when a reduced crossed product has the strong operator approximation
property in terms of the existence of certain Herz–Schur multipliers of the
dynamical system. We finish with some observations about duality for the
space of Herz–Schur multipliers and a certain commutative subspace thereof.

2. Preliminaries

Throughout G is a discrete group and A is a unital C∗-algebra acting on the
Hilbert space H. Standard notation for tensor products will be used: the
minimal tensor product of C∗-algebras will be written A⊗B, and the normal
spatial tensor product of von Neumann algebras will be written M ⊗N ; the
Hilbert space tensor product will be written H ⊗ K. We will make heavy
use of the theory of operator spaces, complete boundedness and complete
positivity; a suggested reference for background on these topics is [8].

2.1. Dynamical Systems. Take a discrete group G and a group homomor-
phism α : G→ Aut(A); the triple (A,G,α) is called a C∗-dynamical system
and α is called an action of G on A. Using the representation A ⊆ B(H) we
define representations of A and G on ℓ2(G)⊗H ∼= ℓ2(G,H) by
(

π(a)ξ
)

(s) := α−1
s (a)ξ(s), λrξ(s) := ξ(r−1s), a ∈ A, r, s ∈ G, ξ ∈ ℓ2(G,H).

The pair (π, λ) satisfies the covariance condition

λrπ(a)λ
∗
r = π

(

αr(a)
)

, a ∈ A, r ∈ G,

and therefore defines a ∗-representation of ℓ1(G,A) on ℓ2(G,H) by its inte-
grated form

π ⋊ λ(f) :=
∑

s∈G

π
(

f(s)
)

λs, f ∈ ℓ1(G,A).

The reduced crossed product associated to the system (A,G,α) is the C∗-
algebra defined as the closure of π ⋊ λ(ℓ1(G,A)) in the operator norm of
B(ℓ2(G,H)), and denoted A ⋊α,r G. We refer to [5, Section 4.1] for the
details of this construction, including the fact that the resulting C∗-algebra
A ⋊α,r G does not depend on the initial choice of faithful representation
A ⊆ B(H).



EXACTNESS AND SOAP OF CROSSED PRODUCTS VIA HERZ–SCHUR MULTIPLIERS3

Note that when A = C and the action α is trivial the reduced crossed
product C∗-algebra defined above is the reduced group C∗-algebra C∗

r (G).
Identify ℓ2(G)⊗H with ⊕s∈GH, so that each element x ∈ B(ℓ2(G) ⊗H)

can be identified in the usual way with a matrix (xs,t)s,t∈G, where each entry
comes from B(H). One can check that the main diagonal of x ∈ A ⋊α,r G,
that is {xs,t : s

−1t = e}, is given by {α−1
p (ae) : p ∈ G} for some ae ∈ A. The

map EA which takes x ∈ A ⋊α,r G to ae ∈ A is a conditional expectation
[5, Proposition 4.1.9], and is equivariant in the sense that

αs
(

EA(x)
)

= EA(λsxλ
∗
s), s ∈ G.

2.2. Multipliers. In this section we summarise the definitions and results
on Schur and Herz–Schur multipliers from [16] needed for this paper (though
we use some conventions from [15] which are more convenient). Note that
because we work only with discrete spaces and counting measure the sepa-
rability assumptions of [16] are not required here.

Given k ∈ ℓ2(X ×X,A) define an operator Tk : ℓ
2(X,H) → ℓ2(X,H) by

(Tkξ)(x) :=
∑

y∈X

k(x, y)
(

ξ(y)
)

, x ∈ X, ξ ∈ ℓ2(X,H).

It is easily checked that Tk is a bounded operator and ‖Tk‖ ≤ ‖k‖2. The
collection of all such Tk forms a dense subset of K(ℓ2(X)) ⊗ A. Let ϕ :
X ×X → CB(A,B(H)) be a bounded function and, for k ∈ ℓ2(X ×X,A),
define

ϕ · k(x, y) := ϕ(x, y)
(

k(x, y)
)

, x, y ∈ X.

Clearly the map Sϕ : Tk 7→ Tϕ·k is bounded with respect to the norm
‖ · ‖2; we say ϕ is a Schur A-multiplier if Sϕ extends to a completely
bounded map from K(ℓ2(X)) ⊗ A to K(ℓ2(X)) ⊗ B(H); in this case we
write ‖ϕ‖S := ‖Sϕ‖cb. Those functions ϕ which are Schur A-multipliers are
characterised by Stinespring-type dilation results — see [16, Theorem 2.6]
and [15, Theorem 2.6] for a similar characterisation of when Sϕ is completely
positive, in the latter case we say that ϕ is a positive Schur-A-multiplier.
We recall those results here.

Theorem 2.1. Let X be a set, H a Hilbert space, A ⊂ B(H) a C∗-algebra,
and ϕ : X × X → CB(A,B(H)) a bounded function. The following are
equivalent:

i. ϕ is a Schur A-multiplier;
ii. there exists a Hilbert space Hρ, a non-degenerate ∗-representation ρ :

A→ B(Hρ), and bounded functions V,W : X → B(H,Hρ) such that

ϕ(x, y)(a) = V (x)∗ρ(a)W (y), x, y ∈ X, a ∈ A.

Moreover, if (i) holds true the functions V and W in (ii) can be chosen so
that ‖ϕ‖S = supx∈X ‖V (x)‖ supy∈X ‖W (y)‖.

If ϕ in (i) is a positive Schur A-multiplier then one can choose V =W in
(ii) with the norm equality ‖ϕ‖S = supx∈X ‖ϕ(x, x)‖cb = supx∈X ‖V (x)‖2.
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Suppose that ϕ is a Schur A-multiplier. Then the map Sϕ : K(ℓ2(X)) ⊗
A→ K(ℓ2(X))⊗B(H) has a canonical extension to a map from B(ℓ2(X))⊗A
into the von Neumann tensor product B(ℓ2(X)) ⊗ B(H) defined as follows.
Consider the second dual of the map Sϕ:

S∗∗
ϕ : (K(ℓ2(G))⊗A)∗∗ → B(ℓ2(G)) ⊗ B(H)∗∗.

Writing E for the conditional expectation from B(ℓ2(G)) ⊗ B(H)∗∗ to the
space B(ℓ2(G))⊗ B(H) we obtain a completely bounded map

Φ := E ◦ S∗∗
ϕ : (K(ℓ2(G)) ⊗A)∗∗ = B(ℓ2(X))⊗A∗∗ → B(ℓ2(G)⊗H);

we shall also write Sϕ for the restriction of Φ to B(ℓ2(X))⊗A and this is the
required extension. It is easy to see that if ρ, V ,W are as in Theorem 2.1(ii),
and considering V and W as operators from ℓ2(X) ⊗ H to ℓ2(X) ⊗ Hρ we
have that the extension satisfies

Sϕ(T ) = V ∗(id⊗ ρ)(T )W, T ∈ B(ℓ2(X)) ⊗A.

In what follows writing Sϕ we shall often mean the extension to B(ℓ2(X))⊗A.
Now consider a C∗-dynamical system (A,G,α) and let F : G → CB(A)

be a bounded function. For f ∈ ℓ1(G,A) define

F · f(r) := F (r)
(

f(r)
)

, r ∈ G.

We say that F is a Herz–Schur (A,G,α)-multiplier if the map SF : π ⋊

λ(f) 7→ π ⋊ λ(F · f) extends to a completely bounded map on A⋊α,r G; in
this case we write ‖F‖m := ‖SF ‖cb. The collection of Herz–Schur (A,G,α)-
multipliers will be denoted S(A,G,α).

The functions F which are Herz–Schur (A,G,α)-multipliers can be char-
acterised in terms of Schur A-multipliers: given F : G→ CB(A) define

N (F )(s, t)(a) := αs−1

(

F (st−1)
(

αs(a)
))

, s, t ∈ G, a ∈ A.

Then F is a Herz–Schur (A,G,α)-multiplier if and only if N (F ) is a Schur
A-multiplier, and in this case ‖F‖m = ‖N (F )‖S [16, Theorem 3.8].

3. Exactness

Recall that a C∗-algebra A is called exact if it has a faithful nuclear represen-
tation π : A → B(H), i.e. there exists a net (ki)i∈I of natural numbers and
completely positive contractions ϕi : A→Mki(C) and ψi :Mki(C) → B(H)
such that ‖π(x)− (ψi ◦ϕi)(x)‖ → 0 for every x ∈ A. The notion is indepen-
dent of the representation π: if A ⊂ B(H) is a concretely represented exact
C∗-algebra then the identity representation id : A → B(H) is nuclear. It
follows from Kirchberg’s characterisation of exactness that one can replace
the existence of completely contractive positive maps in the definition of
exactness by completely bounded maps with uniformly bounded cb norms
(see [5, Proposition 3.7.8, Theorem 3.9.1]).
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Recall also that a bounded linear map φ : A → B between two C∗-
algebras is called decomposable if there exist two completely positive maps
ψi : A→ B (i = 1, 2) such that the map φ̃ : A→M2(B) defined by

φ̃(a) :=

(

ψ1(a) φ(a)
φ(a∗)∗ ψ2(a)

)

is completely positive. In this case one defines

‖φ‖dec := inf{max{‖ψ1‖, ‖ψ2‖}},

where the infimum is taken over all ψ1, ψ2 as above. We have ‖φ‖cb ≤ ‖φ‖dec,
and if B is injective ‖φ‖dec = ‖φ‖cb [8, Lemma 5.4.3].

The following result is inspired by Dong–Ruan [7, Theorem 6.1]. We note
that a different definition of exactness of C∗-dynamical systems has been
given by Sierakowski [22] to study the ideal structure of crossed products;
this definition was also studied by Bédos–Conti [3, page 63], where Corol-
lary 3.4 below was established with a different proof.

Definition 3.1. Let A ⊂ B(H). We say a C∗-dynamical system (A,G,α)
is exact if there exists a net (ϕi)i of Schur A-multipliers such that

i. supi ‖ϕi‖S <∞;
ii. for each i there exists a finite set Fi ⊆ G such that ϕi is supported on

∆Fi
:= {(s, t) : st−1 ∈ Fi};

iii. for all a ∈ A we have ‖ϕi(s, t)(α
−1
s (a))−α−1

s (a)‖
i
→ 0 uniformly on ∆R

for each finite R ⊆ G;
iv. for each i and each r ∈ G the space {t 7→ (ϕi(t, r

−1t)(α−1
t (a))) : a ∈ A}

is a finite-dimensional subspace of ℓ∞(G,B(H)).

Remark 3.2. The proof of Theorem 3.3 below shows that the Schur A-
multipliers in Definition 3.1 may be chosen to be positive.

Note also that condition (iv) above implies ϕi(s, t) is a finite rank map
on A for all s, t ∈ G, i ∈ I, but the latter is not equivalent to (iv).

Theorem 3.3. Let (A,G,α) be a C∗-dynamical system, with G a discrete
group. The following are equivalent:

i. (A,G,α) is exact;
ii. A⋊α,r G is exact.

Proof. (i) =⇒ (ii) Let Si be the completely bounded map from B(ℓ2(G))⊗A
to B(ℓ2(G))⊗B(H) associated to ϕi. We observe that A⋊α,rG ⊂ B(ℓ2(G))⊗
A and write Φi for the restriction of this map to A⋊α,r G.

Each Φi is a finite rank map since it is supported on finitely many diag-
onals, and the image of each diagonal is finite-dimensional; here we think
of operators T on ℓ2(G) ⊗ H as block operator matrices (ap,q)p,q∈G where
〈ap,qξ, η〉 = 〈Tδq ⊗ ξ, δp ⊗ η〉.

Now, since B(ℓ2(G) ⊗H) is an injective C∗-algebra we have

‖Φi‖dec = ‖Φi‖cb ≤ ‖ϕi‖S < C
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for some C > 0. Since Φi is finite rank by [19, Theorem 12.7] there exist a
natural number n and completely bounded maps νi : A ⋊α,r G → Mn and
µi :Mn → B(ℓ2(G)⊗H) such that Φi = µi ◦ νi and

‖νi‖cb‖µi‖cb ≤ ‖Φi‖dec ≤ C.

Since for ξ, η ∈ H,

〈(π(a)λr)p,qξ, η〉 = 〈π(a)λr(δq ⊗ ξ), δp ⊗ η〉 =

{

0 if p 6= rq
〈

α−1
p (a)ξ, η

〉

if p = rq,

we have

〈Φi(π(a)λr)(δq ⊗ ξ), δp ⊗ η〉 = 〈ϕi(p, q) ((π(a)λr)p,q) ξ, η〉

=

{

0 if p 6= rq
〈

ϕi(p, q)(α
−1
p (a))ξ, η

〉

if p = rq,

so conditions (i) and (iii) imply that Φi(π(a)λr) converges to π(a)λr in
norm. Since sums of elements of this form are dense in A⋊α,rG and the Si,
therefore the Φi, are uniformly bounded it follows that ‖Φi(x)− x‖ → 0 for
all x ∈ A ⋊α,r G. This implies that A ⋊α,r G is exact by the discussion at
the beginning of this section.

(ii) =⇒ (i) By Ozawa [17, Lemma 2], given a finite subset B of A⋊α,rG

and ǫ > 0 we may find θ : A ⋊α,r G → B(ℓ2(G) ⊗ H) which is finite rank
unital completely positive with ‖θ(x)− x‖ < ǫ for all x ∈ B of the form

θ(x) =

d
∑

k=1

ωk(x)yk, x ∈ A⋊α,r G,

where yk ∈ B(ℓ2(G)⊗H) and each ωk is a vector functional of the form

ωk(y) =
〈

y(δp(k) ⊗ ξk), δq(k) ⊗ ηk
〉

, p(k), q(k) ∈ G, ξk, ηk ∈ H.

Now given such a B and ǫ we define, for s, t ∈ G, a ∈ A,

ϕ : G×G→ CB(A,B(H)); ϕ(s, t)(a) := Psθ(π(αs(a))λst−1)P ∗
t ,

where Pr : ℓ
2(G) ⊗H → H;

∑

s∈G δs ⊗ ξs 7→ ξr. To show that ϕ is a Schur
A-multiplier calculate:

ϕ(s, t)(a) = Psθ(π(αs(a))λst−1)P ∗
t = Psθ(λsπ(a)λ

∗
t )P

∗
t

= PsV
∗ρ(λsπ(a)λ

∗
t )V P

∗
t

= (PsV
∗ρ(λs))ρ(π(a))(ρ(λt)

∗V P ∗
t ),

(1)

where V ∗ρ(·)V is the Stinespring form of the completely positive map θ. It
follows from [15, Theorem 2.6] that ϕ is a positive Schur A-multiplier. Since

(2) ‖V ‖2 = ‖θ(1)‖ = 1

it also follows that we have defined a net of positive Schur A-multipliers
with uniformly bounded multiplier norm.
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For the support condition observe that ωk(π(a)λr) 6= 0 only if δq(k) =

λrδp(k) = δrp(k) for some k. Hence ϕ(s, t)(a) 6= 0 only if st−1 ∈ {q(k)p(k)−1 :
k = 1, . . . , d}.

Given finite sets F ⊂ A, and R ⊂ G we can construct ϕF,R,ǫ as above so
that for all (s, t) ∈ ∆R and a ∈ F

‖ϕF,R,ǫ(s, t)(α
−1
s (a))− α−1

s (a)‖ = ‖Psθ(π(a)λst−1)P ∗
t − Psπ(a)λst−1P ∗

t ‖

≤ ‖θ(π(a)λst−1)− π(a)λst−1‖ < ǫ.

Therefore the net {ϕF,R,ǫ}, where (F1, R1, ǫ1) ≤ (F2, R2, ǫ2) iff F1 ⊂ F2,
R1 ⊂ R2, ǫ2 ≤ ǫ1, satisfies

sup
(s,t)∈∆

R̃

‖ϕF,R,ǫ(s, t)(α
−1
s (a)) − α−1

s (a)‖ → 0

for any a ∈ A and any finite R̃ ⊂ G.
Finally, the condition on the diagonals is satisfied because θ is finite rank:

ϕF,R,ǫ(t, r
−1t)(α−1

t (a)) =
d
∑

k=1

ωk
(

π(a)λr
)

PtykP
∗
r−1t

so {t 7→ ϕF,R,ǫ(t, r
−1t)(α−1

t (a)) : a ∈ A} is a finite-dimensional subspace of
ℓ∞(G,B(H)) for each r ∈ G. �

In previous work we observed that Herz–Schur multipliers can be used
to prove that an amenable action on a nuclear C∗-algebra gives a nuclear
crossed product [15, Corollary 4.6]. In the Corollary below we provide fur-
ther evidence that Herz–Schur multipliers can be used as a technical basis
for approximation results by using Herz–Schur multipliers to prove the cor-
responding exactness result [5, Theorem 4.3.4 (3)] and its generalisation
[3, Theorem 5.8].

We recall from [2, Definition 5.7] that (A,G,α) is said to have the ap-
proximation property, which we call Exel’s approximation property ([9, 10])
if there exist nets (ξi)i and (ηi)i in Cc(G,A) such that

(1) supi ‖
∑

g∈G ξi(g)
∗ξi(g)‖ supi ‖

∑

g∈G ηi(g)
∗ηi(g)‖ <∞;

(2) limi ‖
∑

h∈G ξi(h)
∗aαg(ηi(g

−1h)) − a‖ = 0, for all a ∈ A and g ∈ G.

We remark that if the action α : G → Aut(A) is amenable, see [5, Defi-
nition 4.3.1], then (A,G,α) has Exel’s approximation property with ξi(r) =
ηi(r) ∈ Z(A)+, for each r ∈ G, and

∑

g∈G ξi(g)
2 = 1 for all i. In the

following result we give a multiplier-based proof of a part of [3, Theorem
5.8].

Corollary 3.4. Let (A,G,α) be a C∗-dynamical system with Exel’s approx-
imation property. The reduced crossed product A⋊α,r G is exact if and only
if A is exact.

Proof. If A ⋊α,r G is exact then the existence of a conditional expectation
A⋊α,rG→ A immediately implies A is exact. Conversely, assume A is exact,
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with Φj : A→ B(H) an approximating net of u.c.p. maps, and ξi, ηi : G→ A

nets implementing Exel’s approximation property. We may assume that A
is faithfully embedded in H such that the action is implemented by unitary
operators, so for each p ∈ G let up be a unitary onH such that upau

∗
p = αp(a)

(a ∈ A). Define

ϕi,j(s, t)(a) :=
∑

p∈G

α−1
s

(

ξi(sp)
∗
)

up
(

Φj
(

α−1
p (a)

))

u∗pα
−1
t

(

ηi(tp)
)

,

which gives a net of Schur A-multipliers with uniformly bounded multiplier
norm as in [15, Corollary 4.6].

Since the rth term of the sum is non-zero only if r ∈ s−1Fi ∩ t
−1Gi we

have that ϕi,j is supported on the strip ∆Fi
:= {(s, t) : st−1 ∈ FiG

−1
i },

where Fi and Gi are finite supports of ξi and ηi respectively. As Φj is finite
rank it follows that ϕi,j(s, t) is a finite rank map from A to B(H) for all s, t.

For each t ∈ G and each i, j the subspace of ℓ∞(G,B(H)) given by

{(

ϕi,j(s, t
−1s)(α−1

s (a))
)

s
: a ∈ A

}

=











∑

p∈G

α−1
s

(

ξi(sp)
∗
)

upΦj
(

α−1
sp (a)

)

u∗pαs−1t

(

ηi(t
−1sp)

)





s

: a ∈ A







=

{(

∑

r∈G

α−1
s

(

ξi(r)
∗
)

us−1rΦj
(

α−1
r (a)

)

u∗s−1rαs−1t

(

ηi(t
−1r)

)

)

s

: a ∈ A

}
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is finite-dimensional since Φj is finite rank and ξi, ηi have finite supports.
Finally

∥

∥ϕi,j(s, t)
(

α−1
s (a)

)

− α−1
s (a)

∥

∥

=

∥

∥

∥

∥

∥

∥

∑

p∈G

α−1
s

(

ξi(sp)
∗
)

upΦj
(

α−1
sp (a)

)

u∗pα
−1
t

(

ηi(tp)
)

− α−1
s (a)

∥

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥

∑

p∈G

α−1
s

(

ξi(sp)
∗
)

upΦj
(

α−1
sp (a)

)

u∗pα
−1
t

(

ηi(tp)
)

−
∑

p∈G

α−1
s

(

ξi(sp)
∗
)

upα
−1
sp (a)u

∗
pα

−1
t

(

ηi(tp)
)

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

∑

p∈G

α−1
s

(

ξi(sp)
∗
)

α−1
s (a)α−1

t

(

ηi(tp)
)

− α−1
s (a)

∥

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥

∑

p∈G

α−1
s

(

ξi(sp)
∗
)

up

(

Φj
(

α−1
sp (a)

)

− α−1
sp (a)

)

u∗pα
−1
t

(

ξi(tp)
)

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

α−1
s

(

∑

p∈G

ξi(sp)
∗aαst−1

(

ηi(tp)
)

− a
)

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∑

p∈G

α−1
s

(

ξi(sp)
∗
)

up

(

Φj
(

α−1
sp (a)

)

− α−1
sp (a)

)

u∗pα
−1
t

(

ηi(tp)
)

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

∑

p∈G

ξi(p)
∗aαst−1

(

ηi(ts
−1p)

)

− a

∥

∥

∥

∥

∥

∥

.

The second term converges to 0 uniformly on ∆R for any finite R by the
second condition for the approximation property. If st−1 belongs to the finite
set R the first term is non-zero only if sp ∈ Fi∩ st

−1Gi ⊆ Fi∩RGi, which is
a finite set. Given ǫ > 0 and i one can find j(i) such that ‖Φj(i)(α

−1
sp (a)) −
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α−1
sp (a)‖ < ǫ for all sp ∈ Fi ∩RGi. For ξ, η ∈ H we have
∣

∣

∣

∣

∣

∣

〈

∑

p∈G

α−1
s (ξi(sp)

∗)up(Φj(i)(α
−1
sp (a)) − α−1

sp (a))u
∗
pα

−1
t (ηi(tp))ξ, η

〉

∣

∣

∣

∣

∣

∣

≤
∑

p∈G

∥

∥up
(

Φj(i)
(

α−1
sp (a)

)

− α−1
sp (a)

)

u∗pα
−1
t

(

ηi(tp)
)

ξ
∥

∥

∥

∥α−1
s

(

ξi(sp)
)

η
∥

∥

≤ ǫ
∑

p∈G

∥

∥α−1
t

(

ηi(tp)
)

ξ
∥

∥

∥

∥α−1
s

(

ξi(sp)
)

η
∥

∥

≤ ǫ





∑

p∈G

∥

∥α−1
t

(

ηi(tp)
)

ξ
∥

∥

2





1/2



∑

p∈G

∥

∥α−1
s

(

ξi(sp)
)

η
∥

∥

2





1/2

≤ ǫ





〈

∑

p∈G

α−1
t

(

ηi(tp)
∗ηi(tp)

)

ξ, ξ

〉





1/2



〈

∑

p∈G

α−1
s

(

ξi(sp)
∗ξi(sp)

)

η, η

〉





1/2

By the first condition for the approximation property, it follows that
∥

∥

∥

∥

∥

∥

∑

p∈G

α−1
s

(

ξi(sp)
∗
)

up
(

Φj(i)(α
−1
sp (a))− α−1

sp (a)
)

u∗pα
−1
t

(

ηi(tp)
)

∥

∥

∥

∥

∥

∥

≤ Cǫ.

for some constant C. Hence ‖ϕi,j(i)(s, t)(α
−1
s (a)) − α−1

s (a)‖ → 0 uniformly
on ∆R for all a ∈ A. �

Remark 3.5. Recall that a discrete group G is called exact if C∗
r (G) is

an exact C∗-algebra. Recall also Ozawa’s characterisation of exact discrete
groups [17]: G is exact if and only if the uniform Roe algebra C∗

u(G) =
ℓ∞(G)⋊β,rG is nuclear (β denotes the translation action). We remark that
this result can be seen through approximations of Herz–Schur multipliers
of the dynamical system (ℓ∞(G), G, β). In fact, if C∗

r (G) is an exact C∗-
algebra, then by [17, Theorem 3] or by Theorem 3.3 and Remark 3.2 there
exists a sequence (ϕk)k of positive (classical) Schur multipliers which are
supported on strips and converge to 1 uniformly on strips. The positivity of
ϕk allows to find a net of functions ξk : G → ℓ∞(G)+ that implements the
amenability of the action β of G on ℓ∞(G), so that functions ϕ̃k determined
by

ϕ̃k(s, r
−1s) =

∑

p∈G

ξk(p)(s)ξk(r
−1p)(r−1s)

give a net with the same properties, see e.g. [1, Propositions 2.5, 3.5] or
[5, Theorem 4.4.3]. It is known that ℓ∞(G) is nuclear (see [5, Proposition
2.4.2]). Let (Φi)i∈I be the approximating net of unital completely positive
maps for ℓ∞(G) and define Fk,j : G→ CB(ℓ∞(G)) by

Fk,j(t)(a) :=
∑

p∈G

ξk(p)βp
(

Φj(β
−1
p (a))βt(ξk(t

−1p)
)

, t ∈ G, a ∈ ℓ∞(G).
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The arguments in [15, Corollary 4.6] give that a subnet of Fk,j, which we de-
note in the same way, yields Herz–Schur (ℓ∞(G), G, β)-multipliers that sat-
isfy [15, Definition 4.1] and therefore implement nuclearity of ℓ∞(G)⋊β,rG.
The other implication follows from the fact that any C∗-subalgebra of a nu-
clear C∗-algebra is exact. We note that as each Fk,j is a finitely supported
Herz–Schur (ℓ∞(G), G, β)-multiplier of positive type (see [15]), we have
Fk,j ∈ P (ℓ∞(G), G, β), the positive definite elements of the Fourier–Stieltjes
algebra of (ℓ∞(G), G, β) as defined in [4], see discussion after [15, Remarks
2.10] and [4, Theorem 4.5]. We obtain the following characterisation of ex-
actness of G: G is exact if and only if there exists a bounded net Fi ∈
P (ℓ∞(G), G, β) of finite support such that each Fi(s) is a finite rank map
and ‖Fi(s)(a) − a‖ → 0 for any s ∈ G and a ∈ ℓ∞(G).

One can view a discrete group as a coarse space, in the sense of coarse
geometry — see Roe [21]. An important and well-studied property of coarse
spaces is Yu’s property (A), which may be viewed as the analogue for coarse
spaces of amenability of discrete groups; we refer to the survey [24] for the
background on property (A), including a number of characterisations and
the connection to C∗-algebra theory. The conditions: (i) C∗

r (G) is exact,
(ii) ℓ∞(G) ⋊β,r G is nuclear, which appear in Remark 3.5, and (iii) the
existence of positive Schur multipliers ϕi supported on strips and converging
to 1 uniformly on strips, are known to be equivalent to property (A) of G,
where G is viewed as a coarse space [24, Theorem 4.3.9]. Since C∗

r (G) is a
special case of the reduced crossed product we remark that Definition 3.1
(with positive Schur A-multipliers) may be regarded as a generalisation of
property (A) to C∗-dynamical systems.

4. The Operator Approximation Property

Recall that a C∗-algebra A is said to have the operator approximation prop-
erty (OAP) if there exists a net of finite rank continuous linear maps (Φi)i
on A which converge to the identity in the stable point-norm topology, that
is Φi ⊗ idK(ℓ2) → idA⊗K(ℓ2) in point-norm, and A is said to have the strong
operator approximation property (SOAP) if there exists a net of finite rank
continuous linear maps (Φi)i on A which converge to the identity in the
strong stable point-norm topology, that is Φi⊗ idB(ℓ2) → idA⊗B(ℓ2) in point-
norm. A locally compact group has the approximation property (AP) if
there is a net (ui)i of finitely supported functions on G which converge to
the identity in the weak* topology of McbA(G). Haagerup and Kraus [12]
proved that a discrete group G has the AP if and only if C∗

r (G) has the
SOAP if and only if C∗

r (G) has the OAP, and studied the behaviour of the
AP and weak*OAP under the von Neumann algebra crossed product.

Dynamical systems involving the action of a group with the AP have
recently been studied by Crann–Neufang [6] and Suzuki [23]. Suzuki shows
that if a locally compact group G has the AP then, for any C∗-dynamical
system (A,G,α), A⋊α,rG has the (S)OAP if and only if A has the (S)OAP.
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In this section we give a Herz–Schur multiplier characterisation of the SOAP
for A⋊α,r G, generalising the result of Haagerup–Kraus.

The weak* topology of McbA(G) comes from the introduction of the space
Q(G), which has McbA(G) as its Banach space dual. Recall that Q(G) is
defined as the completion of Cc(G) in the norm given by the duality with
McbA(G):

〈φ, u〉 :=

∫

G
φ(s)u(s)ds, φ ∈ Cc(G), u ∈ McbA(G).

Following [12], for any concrete C∗-algebra C there is a collection of func-
tionals on CB(C): take x ∈ C⊗K(ℓ2) and ψ ∈ (C ′′⊗B(ℓ2))∗, or x ∈ C⊗B(ℓ2)
and ψ ∈ (C ⊗ B(ℓ2))∗, and define

ωx,ψ(T ) := ψ
(

(T ⊗ id)x
)

, T ∈ CB(C).

It is known [12, Proposition 1.5] that

Q(G) = {ωx,ψ : x ∈ C∗
r (G)⊗K(ℓ2), ψ ∈ (vN(G)⊗ B(ℓ2))∗}.

By [12, Proposition 1.4] we have ωx,ψ ∈ Q(G) for any x ∈ C∗
r (G)⊗ B(ℓ2)

and ψ ∈ (C∗
r (G)⊗B(ℓ2))∗. Moreover, G has AP if and only if there is a net

(ui)i of finitely supported functions on G such that ωx,ψ(ui) → ωx,ψ(id) for
any such x and ψ.

Definition 4.1. We define

Q(A,G,α) := {ωx,ψ : x ∈ A⋊α,r G⊗ B(ℓ2), ψ ∈ (A⋊α,r G⊗ B(ℓ2))∗}.

We observe first that Q(A,G,α) is a linear space. In fact, let ωx1,ψ1 ,

ωx2,ψ2 ∈ Q(A,G,α). Let ψ̃i ∈ (M2(A ⋊α,r G ⊗ B(ℓ2))∗ given by ψ̃i(x) =
ψi(xi,i), x = (xi,j)

2
i,j=1 ∈M2(A⋊α,r G⊗ B(ℓ2)), i = 1, 2. We have

ωx1,ψ1 + ωx2,ψ2 = ωx1⊕x2,ψ̃1+ψ̃2
,

with x1 ⊕ x2 ∈M2(A⋊α,r G⊗B(ℓ2)) ≃ A⋊α,r G⊗ B(ℓ2).
We have Q(A,G,α) ⊆ S(A,G,α)∗ , with the duality given by ω(F ) :=

ω(SF ) (ω ∈ Q(A,G,α), F ∈ S(A,G,α)), and there is an obvious contraction
S(A,G,α) → Q(A,G,α)∗.

Definition 4.2. Let (A,G,α) be a C∗-dynamical system, with G a discrete
group. We say that (A,G,α) has the approximation property (AP) if there
is a net (Fi)i∈I of Herz–Schur (A,G,α)-multipliers satisfying:

i. each Fi is finitely supported;
ii. for each r ∈ G and i ∈ I, Fi(r) is a finite rank map on A;
iii. ω(Fi) → ω(id) for all ω ∈ Q(A,G,α).

In the arguments below we will use the following standard consequence
of the Hahn–Banach theorem several times: if C is a convex set in a Banach
space then the weak and norm closures of C coincide.
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Remarks 4.3. i. We cannot deduce the AP for G from the AP for the
system (A,G,α) in general. In fact, Lafforgue–de la Salle [13] have
shown that there exist discrete exact groups without the AP, including
SL(3,Z), and if G is such a group then (by [17]) ℓ∞(G)⋊β,rG is nuclear
and so has the SOAP. By Theorem 4.4 below (ℓ∞(G), G, β) must then
have the AP.

ii. Condition (iii) above implies that A has the SOAP. In fact, for x ∈
A⊗ B(ℓ2) and ψ ∈ (π(A) ⊗ B(ℓ2))∗,we have

ω(π⊗id)(x),ψ(Fi(e)) =
〈

(π ⊗ id)
(

(Fi(e)⊗ id)(x)
)

, ψ
〉

=
〈

(SFi
⊗ id)

(

(π ⊗ id)(x)
)

, ψ̃
〉

= ω(π⊗id)(x),ψ̃(SFi
)

→ ω(π⊗id)(x),ψ̃(id)

=
〈

(π ⊗ id)(x), ψ̃
〉

= ω(π⊗id)(x),ψ(id).

where ψ̃ is an extension of ψ to a bounded linear functional on (A⋊α,r

G)⊗B(ℓ2). We have therefore Fi(e) converges in the strong stable point-
weak topology to the identity map. By the Hahn–Banach theorem, there
exists a net in the convex hull of (Fi(e))i∈I that converges to id in the
strong stable point-norm topology.

Theorem 4.4. Let (A,G,α) be a C∗-dynamical system, with G a discrete
group. The following are equivalent:

i. (A,G,α) has the AP;
ii. A⋊α,r G has the SOAP.

Proof. (i) =⇒ (ii) Conditions (i) and (ii) of Definition 4.2 imply that the
maps SFi

on A⋊α,r G associated to the Herz–Schur (A,G,α)-multipliers Fi
are finite rank. By definition of Q(A,G,α) condition (iii) of Definition 4.2
implies that (SFi

⊗ idB(ℓ2))x → x weakly, for each x ∈ (A ⋊α,r G) ⊗ B(ℓ2).
Hence, by the Hahn–Banach theorem, there is a convex combination of the
SFi

which converges to the identity in the strong stable point-norm topology.
(ii) =⇒ (i) Let (Φi)i be a net of completely bounded maps implementing

the SOAP of A ⋊α,r G. First, let us show that we may assume ranΦi is

contained in B := span{π(a)λr : a ∈ A, r ∈ G}. Write Φi =
∑ki

j=1 φ
i
j ⊗ T ij ,

where φij ∈ (A⋊α,r G)
∗ and T ij ∈ A⋊α,r G. If the T

i
j are not elements of B

then, for each n ∈ N find T ij,n ∈ B such that ‖T ij−T
i
j,n‖ < (nkimaxj ‖φ

i
j‖)

−1.

Then Φi,n :=
∑ki

j=1 φ
i
j⊗T

i
j,n is a net which implements the SOAP of A⋊α,rG

and has ranΦi,n ⊂ B.
Define

Fi : G→ CB(A); Fi(r)(a) := EA
(

Φi(π(a)λr)λr−1

)

,

where EA is the canonical conditional expectation A ⋊α,r G → A. Then
each Fi is a Herz–Schur (A,G,α)-multiplier by the same calculation as [15,
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Proposition 3.4], and the assumption on the range of Φi implies that Fi is
finitely supported and finite rank.

To prove the required convergence let ∆ be the coaction of G on A⋊α,rG,
so

∆(π(a)λr) = λr ⊗ π(a)λr,

and define V (δr ⊗ ξ) := δr ⊗ δr ⊗ ξ (r ∈ G, ξ ∈ H); then V ∗∆(x)V = x

(x ∈ A ⋊α,r G) and SFi
= V ∗(id ⊗ Φi)∆(·)V . For x ∈ (A ⋊α,r G) ⊗ B(ℓ2)

and ψ ∈ ((A⋊α,r G)⊗ B(ℓ2))∗ calculate

|ωx,ψ(Fi)− ωx,ψ(id)| = | 〈(SFi
⊗ id)(x)− x, ψ〉 |

= | 〈(V ⊗ id)∗(id⊗ Φi ⊗ id)(∆ ⊗ id)(x)(V ⊗ id)− x, ψ〉 |

≤ ‖(id ⊗ Φi ⊗ id)(∆ ⊗ id)(x)− (∆⊗ id)(x)‖‖ψ‖ → 0.

�

Remark 4.5. Crann–Neufang [6] also define a version of the AP for a C∗-
dynamical system (A,G,α), based on a slice map property. They show
[6, Corollary 4.11] that if G has the AP then any C∗-dynamical system
(A,G,α) has the AP in their sense. On the other hand, if (A,G,α) has the
AP in the sense of Definition 4.2 then A must have the SOAP. Therefore
these two notions of AP for a C∗-dynamical system are different.

Remark 4.6. Finitely supported functions on G are elements of the Fourier
algebra A(G), and hence the Fourier–Stieltjes algebra B(G) of G. Bédos–
Conti [4] introduced a notion of Fourier–Stieltjes algebra B(Σ) of a C∗-
dynamical system Σ = (A,G,α), by considering the set of A-valued coef-
ficients of the equivariant representations of Σ. It would be interesting to
know whether the net (Fi)i∈I of Herz–Schur (A,G,α) multipliers in Defini-
tion 4.2 can be chosen from B(Σ) in analogy with the group case. For this it
would be enough to know whether Φi that implement the SOAP of A⋊α,rG

can be chosen to be decomposable, see [4, Proposition 4.1, Corollary 4.6].

It is known that if (A,G,α) is a C∗-dynamical system such that G has
the AP and A has the SOAP then A ⋊α,r G has SOAP (see [23, Theorem
3.6]). For discrete groups we now explain this result in our terms, further
illustrating the utility of Herz–Schur multipliers for approximation results.
If (ui)i∈I is a net of finitely supported functions in A(G) such that ui → 1
weak∗ and (Φj)j∈J is a net of finite rank linear maps on A implementing
SOAP of A, then we define

(3) Fi,j : G→ CB(A); Fi,j(r)(a) := ui(r)Φj(a), a ∈ A, i ∈ I, j ∈ J.

We claim that there is a subnet of (Fi,j)i,j which satisfies the conditions of
Definition 4.2. First we check that each Fi,j is a Herz–Schur multiplier of
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(A,G,α). For a finite sum x =
∑

s π(as)λs ∈ A⋊α,r G we have

‖SFi,j
(x)‖ =

∥

∥

∥

∥

∥

∑

s

ui(s)π
(

Φj(as)
)

λs

∥

∥

∥

∥

∥

≤ ‖ui‖∞‖Φj‖
∑

s∈suppui

‖as‖ ≤ ‖ui‖∞‖Φj‖
∑

s∈suppui

‖EA(xλ
∗
s)‖

≤ ‖ui‖∞‖Φj‖| suppui|‖x‖,

where EA : A⋊α,rG→ A is the conditional expectation onto A. This shows
that SFi,j

is bounded. Similarly one sees that it is completely bounded. Let
now a ∈ A⋊α,rG⊗B(H) ≃ (A⊗B(H))⋊α⊗id,rG and f ∈ (A⋊α,rG⊗B(H))∗.
Let E be the canonical conditional expectation from (A ⊗ B(H)) ⋊α⊗id,r G

onto A⊗B(H) and write as := E(aλ∗s) (s ∈ G). Then

∣

∣ωa,f (Fi,j)− ωa,f (id)
∣

∣ =

∣

∣

∣

∣

∣

f

(

∑

s∈suppui

ui(s)π
(

(Φj ⊗ id)(as)
)

λs

)

− f(a)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

f

(

∑

s∈suppui

ui(s)
(

π
(

(Φj ⊗ id)(as)
)

− π(as)
)

λs

)∣

∣

∣

∣

∣

+
∣

∣ωa,f (ui)− ωa,f (1)
∣

∣.

We have ωa,f ∈ Q(G) (see [23, Lemma 3.2]) and hence the second term
converges to zero. If S = suppui and xi(s) = ui(s)as ∈ C(S,A ⊗ B(H)) ≃
A ⊗ C(S,B(H)) ≃ A ⊗ B(H(n)), where n = |S|, then, having the natural
completely bounded embedding ι : C(S)⊗A→ A⋊α,r G we obtain

∣

∣

∣

∣

∣

f

(

∑

s∈S

ui(s)
(

π
(

Φj ⊗ id(as)
)

− π(as)
)

λs

)∣

∣

∣

∣

∣

=
∣

∣

(

f ◦ (ι⊗ id)
)(

(Φj ⊗ id)(xi)− xi
)∣

∣ .

As Φj⊗ idB(H(n)) → idA⊗B(H(n)) in point norm, for each i we can choose j(i)

such that
∣

∣

(

f ◦ (ι⊗ id)
)(

Φj(i) ⊗ id(xi)− xi
)∣

∣→i∈I 0.

Hence

ωa,f (Fi,j(i))− ωa,f (id) →i∈I 0.

We remark that the multipliers of the form (3) are in Bédos–Conti’s
Fourier–Stieltjes algebra B(Σ) if Φj are decomposable and commute with
the action, i.e. αg ◦ Φj = Φj ◦ αg (g ∈ G).

We finish this section with some observations concerning duality between
the space of Herz–Schur multipliers of a dynamical system (A,G,α) and the
space Q(A,G,α). First we introduce a subclass of the Herz–Schur multipli-
ers considered so far. Recall that for a C∗-algebra A we write Z(A) for the
centre of A and M(A) for the multiplier algebra of A.

Definition 4.7. Let (A,G,α) be a C∗-dynamical system, with G discrete.
A Herz–Schur (A,G,α)-multiplier F : G → CB(A) will be called central
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if F (r) ∈ Z(M(A)) for all r ∈ G. Write Scent(A,G,α) for the algebra of
central Herz–Schur (A,G,α)-multipliers.

Central multipliers have been used by a number of authors, including
Anantharaman-Delaroche (see e.g. [1, Proposition 6.4]) and Dong–Ruan (see
[7, Section 3]) to study crossed products. If u : G → C and we define
Fu : G → CB(A); Fu(r)(a) := u(r)a (r ∈ G, a ∈ A) then it is shown in
[16, Proposition 4.1] that Fu is a Herz–Schur (A,G,α)-multiplier if and only
if u ∈ McbA(G) (i.e. u is a classical Herz–Schur multiplier of G), and it
is obvious that Fu is central in this case; hence Scent(A,G,α) contains the
canonical copy of McbA(G).

Consider now a C∗-dynamical system (C0(Z), G, α), where Z is a locally
compact space and G a discrete group. If F : G → Cb(Z) is an element
of Scent(C0(Z), G, α) then there is a function ϕ : Z × G → C such that
Fϕ(r)(a)(z) = ϕ(z, r)a(z). We write ‖ϕ‖m for ‖Fϕ‖m and write simply ϕ
instead of Fϕ. Such multipliers are exactly Herz–Schur multipliers of the
corresponding transformation groupoid G = Z×G— see [16, Section 5] and
[20].

Assume now that Z is discrete. As |ϕ(z, s)| ≤ ‖ϕ‖m ((z, s) ∈ Z × G)
any finitely supported function ψ : Z × G → C defines a bounded linear
functional on Scent(C0(Z), G, α) by

〈ψ,ϕ〉 :=
∑

z,s

ψ(z, s)ϕ(z, s), ϕ ∈ Scent(C0(Z), G, α).

Define Qcent(Z,G,α) to be the completion of Cc(Z × G) in the dual space
(Scent(C0(Z), G, α))

∗. The following results are similar to the corresponding
results in the group case (see [12, Section 1] and [5, Lemma D.7, Lemma
D.8]) and their proofs are essentially the same, so we give only sketches.

Lemma 4.8. If a ∈ (C0(Z) ⋊α,r G) ⊗ B(ℓ2) and f ∈ ((C0(Z) ⋊α,r G) ⊗
B(ℓ2))∗, i.e. ωa,f ∈ Q(C0(Z), G, α), or if a ∈ (C0(Z) ⋊α,r G) ⊗ K(ℓ2) and
f ∈ ((C0(Z)⋊α,r G)

′′ ⊗ B(ℓ2))∗, then ωa,f ∈ Qcent(Z,G,α).

Proof. Let F be a finite subset of Z × G and consider a =
∑

(z,s)∈F π ⋊

λ(δ(z,s))⊗ b(z, s), where b(z, s) ∈ B(ℓ2) for the first case and b(z, s) ∈ K(ℓ2)
for the second case. Then

ωa,f (ϕ) =
∑

(z,s)∈F

ϕ(z, s)f
(

π ⋊ λ(δ(z,s))⊗ b(z, s)
)

, ϕ ∈ Scent(C0(Z), G, α)

showing that ωa,f = ψ for some ψ ∈ Cc(Z×G) ⊂ Qcent(Z,G,α). For general
a the claim follows from |ωa,f (ϕ)| ≤ ‖a‖‖f‖‖ϕ‖m, ϕ ∈ Scent(C0(Z), G, α).

�

The following duality result closely resembles the duality between Q(G)
and McbA(G).
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Proposition 4.9. Let (C0(Z), G, α) be a C∗-dynamical system, with Z and
G discrete. We have the duality Qcent(Z,G,α)

∗ = Scent(C0(Z), G, α); more-
over

Qcent(Z,G,α) = {ωa,f :a ∈ (C0(Z)⋊α,r G)⊗K(ℓ2),

f ∈ ((C0(Z)⋊α,r G)
′′ ⊗ B(ℓ2))∗}.

Proof. The first part is similar to the proof of [5, Lemma D.8]. By definition
Qcent(Z,G,α) ⊂ (Scent(C0(Z), G, α))

∗, so we have a natural contraction
Scent(C0(Z), G, α) → (Qcent(Z,G,α))

∗ . That it is an isometry follows from

‖ϕ‖m = sup{|ωa,f (ϕ)| : a ∈ (C0(Z)⋊α,r G)⊗K(ℓ2))1,

f ∈ (((C0(Z)⋊α,r G)
′′ ⊗ B(ℓ2))∗)1}

≤ sup{|h(ϕ)| : h ∈ Qcent(Z,G,α), ‖h‖ ≤ 1} = ‖ϕ‖(Qcent(Z,G,α))∗ ,

where B1 denotes the unit ball of a Banach space B.
To see the surjection, to each ψ ∈ Qcent(Z,G,α)

∗ we associate ϕ(z, s) :=
〈

ψ, δ(z,s)
〉

, observing that δ(z,s) ∈ Cc(Z × G) ⊂ Qcent(Z,G,α). For any
ω ∈ Cc(Z ×G) we have

∑

z,s

ϕ(z, s)ω(z, s) = 〈ψ, ω〉 ,

which implies that ϕ is a central Herz–Schur multiplier of (C0(Z), G, α) and
moreover ϕ = ψ on Qcent(Z,G,α).

The second statement follows from Lemma 4.8 and [12, Lemma 1.6]
with A = C0(Z) ⋊α,r G, X = Scent(C0(Z), G, α) ⊂ CB(A,A′′) and E =
Qcent(Z,G,α). �

Let θ be a faithful representation of C0(Z) onHθ and form the correspond-

ing regular covariant representation θ̃⋊λ of (C0(Z), G, α) on ℓ
2(G,Hθ). We

write S
θ(C0(Z), G, α) for the set of Herz–Schur (C0(Z), G, α)-multipliers

which admit a weak* continuous extension to θ̃ ⋊ λ(ℓ1(G,C0(Z)))
w∗

(this is
the weak* closure of C0(Z)⋊α,r G in its representation on B(ℓ2(G,Hθ))).

Questions 4.10. (1) Is Scent(C0(Z), G, α) a dual space for general lo-
cally compact spaces Z? Is there a faithful representation θ of C0(Z)
such that Scent(C0(Z), G, α) ∩S

θ(C0(Z), G, α) is a dual space?
(2) Is S(C0(Z), G, α) a dual space? Is there a faithful representation θ

of C0(Z) such that Sθ(C0(Z), G, α) is a dual space?
(3) For discrete Z Proposition 4.9 shows that Q(C0(Z), G, α) is a sub-

space of the space

{ωa,f : a ∈ (C0(Z)⋊α,r G)⊗K(ℓ2), f ∈ (C0(Z)⋊α,r G)
′′ ⊗ B(ℓ2))∗}

when both are considered as subspaces of (Scent(C0(Z), G, α))
∗. Is

the same true for C∗-dynamical systems (A,G,α), with G discrete,
A not assumed commutative and both subspaces considered as sub-
spaces of (S(C0(Z), G, α))

∗? In this case the result of Theorem 4.4
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will be true when in Definition 4.2 (iii) we take ω from this larger
space.
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