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Abstract—Data is the new currency and key to success.
However, collecting high-quality data from multiple distributed
sources requires much effort. In addition, there are several other
challenges involved while transporting data from its source to
the destination. Data pipelines are implemented in order to
increase the overall efficiency of data-flow from the source to
the destination since it is automated and reduces the human
involvement which is required otherwise.

Despite existing research on ETL (Extract-Transform-Load)
and ELT (Extract-Load-Transform) pipelines, the research on
this topic is limited. ETL/ELT pipelines are abstract representa-
tions of the end-to-end data pipelines. To utilize the full potential
of the data pipeline, we should understand the activities in it
and how they are connected in an end-to-end data pipeline.
This study gives an overview of how to design a conceptual
model of data pipeline which can be further used as a language
of communication between different data teams. Furthermore,
it can be used for automation of monitoring, fault detection,
mitigation and alarming at different steps of data pipeline.

Index Terms—Data pipelines; conceptual model; data work-
flow; domain specific language; agile methodology

I. INTRODUCTION

Data is becoming increasingly popular in the industry due

to the importance of data products such as APIs, dashboards,

benchmarks and report creations. The role data plays in the

decision-making process and the development of ML and DL

models makes it even more important. Therefore, all processes

associated with data ranging from data generation to data

reception need to be monitored. Fault detection, reporting and

mitigating the effect of faults are complex but inevitable while

building efficient data products.

Data pipelines are complex chains of activities that manip-

ulate data where the output of one component becomes the

input to the other [1] thereby allowing smooth, automated

flow of data from source to destination. A data pipeline

starts with a data source that generates data and ends at

a destination that receives the processed data. The ultimate

destination of a data pipeline need not be data storage. Instead

it can be any application such as a visualization tool [2] [3],

Machine Learning(ML) models [4] [5] or Deep Learning(DL)

models [6] [7]. Components in the data pipeline are capable

of automating processes involved in extracting, transforming,

combining, validating, and loading data [8]. Data pipelines can

process different types of data such as continuous, intermittent

and batch data [9]. Moreover, data pipelines eliminate errors

and accelerate the end-to-end data processes which in turn

reduces the latency in the development of data products.

Hence, the usage of data pipelines is an absolute necessity

for all data-driven companies.

Although data pipelines have the potential to overcome data

management challenges through automation, monitoring, fault

detection, etc, modeling data pipelines for a use case demands

an unreasonable amount of time and effort. We need to

identify the activities which consume data, the output of each

activity, order of execution, monitoring methods, intermediate

storages, where to place the storage in the pipeline, data

collection method, etc and they varies between companies.

Thus, modeling a data pipeline is important as well as time-

consuming.

This study addresses the above mentioned problems by

proposing a conceptual model which is developed based on

a multiple case study performed at a large-scale telecommu-

nication company. The contribution of this paper is three-

fold. First, it describes the challenges associated with data

management and the usage of existing data pipelines. Second,

a conceptual model of an end-to-end data pipeline is presented

that can be used as a reference while building data pipelines

for applications such as ML/DL models to incorporate au-

tomatic monitoring, fault detection, mitigation and alarming

techniques. The conceptual model is validated through a

case study with three leading companies from manufacturing,

telecommunication and automobile domains. Furthermore, the

paper maps the challenges that can be potentially solved by

the usage of the proposed data pipeline model.

The remainder of this paper is organized as follows. In the

next section, we present the background of the study. Section

III discusses the research methodology adopted for conducting

the study. Section IV introduces the use cases and section V

describes the challenges using the existing pipelines. Section

VI details the data pipeline meta-model. Section VII describes

the conceptual model that we use as a basis for our analysis.

A validation study is detailed in section VIII and section IX

outlines the threats to validity. Section X summarizes our study

and the conclusions.

II. BACKGROUND

Data-driven development has been adopted by the compa-

nies realizing the benefits that can be yield from data [10].

Technologies for data-driven development needs enormous

amount of data for their processing. Consequently, collection,

storage, and processing of copious amounts of data became

a necessity [11]. With the increased amount of data, data
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management challenges also increased [12]. Data pipelines

can be a potential solution to overcome at least some of these

challenges.

Data pipelines are broadly classified into two categories

namely ETL and ELT. ETL stands for Extract, Transform

and Load whereas ELT stands for Extract Load and Trans-

form. P. Vassiliadis has presented a survey on Extraction-

Transformation-Loading (ETL) processes and tools. The study

describes a standardized approach for the construction of

conceptual and logical modeling tools for ETL processes [13].

Also, each component of the E-T-L triplet is analyzed sep-

arately for the activities happening inside each component,

identified the real-time challenges associated with each of

them and solutions to overcome those challenges are explained

in detail.

In [14], the authors have proposed a UML based concep-

tual approach to model ETL processes. A group of UML

concepts is utilized to represent the ETL processes such as

data sources integration, transformation, key generation and

so on. The authors claim that a UML based approach makes

the model simple to understand and powerful. Tilmann and

Hans have described a big data analytics pipeline with abstract

stages of it [15]. They also discuss the necessity of ETL-like

processes in benchmarking and has proposed and implemented

a framework similar to ETL.

A machine learning pipeline is proposed by Amershi et. al

in [16] based on a case study at Microsoft. It discusses the nine

stages of ML workflow along with the best practices followed

at Microsoft. The authors mention the importance of data in

AI applications by illustrating the three data related stages in

ML workflow.

Although these studies lay strong foundation, practitioners

experience several data quality challenges and issues around

data governance and security while dealing with real-time data.

Our study aims to design a conceptual model that can act as

a domain specific language for fault tolerant data pipelines.

III. RESEARCH METHODOLOGY

The objective of this study is to understand the existing

data pipeline as well as the challenges experienced at the case

company and to develop a conceptual model of the robust

data pipeline. Based on the study objectives, we formulated

the following research questions:

• RQ1: What are the challenges related to data and data

pipeline management that practitioners in the case com-

pany experience?

• RQ2: What are the essential elements of a fault-tolerant,

automated, traceable end-to-end data pipeline?

The research methodology adopted for the study is illustrated

in fig. 1.

A. Exploratory Case Study

A qualitative approach was chosen for the case study as it

allows the researchers to explore, study and understand the

real-world cases in its context in more depth [17]. Since the

concept of the data pipeline is a less explored topic in research,

Fig. 1. Research Methodology

TABLE I
DESCRIPTION OF USE CASES AND ROLES OF THE INTERVIEWEES

Case ID Use cases at case company Interviewed Experts
ID Role

A
Data collection pipeline

for data analytics
R1 Senior Data Scientist
R2 Data Scientist

B
Building data pipelines for

data governance

R3 Data Scientist

R4
Analytics System

Architect
R5 Software Developer

C Machine learning pipeline

R6 Data Scientist
R7 Senior Data Scientist
R8 Software Developer
R9 Senior Data Scientist

we have adopted a case study approach [18]. Each case in the

study pertains to a use case that makes use of data. Although

the cases in our study are different use cases from the same

company, they utilize data for different activities and can be

benefited from the data pipeline we develop. Three selected

use-cases at the company are given in table 1.

B. Data Collection

Qualitative data was collected by means of interviews and

meetings [19]. Based on the objective of the research, to

explore and study the applications consuming data in the

company, an interview guide with 45 questions categorized

into six sections was formulated. The first and second sections

focused on the background of the interviewee. The third and

fourth sections focused on the data collection and processing

in various use-cases and the last section inquired about data

testing and monitoring practices and the impediments faced

during each step of the data pipeline. The interview guide

was prepared by the first author and was reviewed by second

and third authors. According to the recommendations, extra

questions were added, a few similar and irrelevant questions

were removed and some questions were modified. Finally,

an interview protocol with 30 questions across six different

categories was developed. All except three interviews were

conducted via videoconferencing. Each interview lasted 50 to

100 minutes. The interviews were recorded with the permis-

sion of respondents and were transcribed later for analysis.

One of the authors works in the case company and the first

author is a consultant who attends weekly meetings with

data scientists and data analysts. Data collected through the

meetings and discussions are also incorporated.

C. Data Analysis

The audio recordings of interviews were transcribed and a

summary of it was prepared by the first author. The transcripts

were investigated for relations, similarities, and dissimilarities.

The interview transcripts were open coded following the
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guidelines in [20]. The first author prepared notes during the

meetings with the team and analyzed them further. The main

contact point who is also an author helped with analyzing

the parts of the pipeline as well as the infrastructure used

for building that. These notes together with the codes from

transcripts were further analyzed to obtain an end-to-end view

of different use cases. It also helped to understand the parts

common to all use cases. After careful analysis of collected

data and based on the inputs from the other two authors, the

first author developed the first conceptual model which got

refined through iterations.

D. Validation Study

The validation study is performed both internally and ex-

ternally through qualitative interviews followed by feedback

sessions. First, the conceptual model of the data pipeline was

presented by the first author to the teams inside the case com-

pany. The reflections about the data pipeline, overall opinion,

agreements and suggestions for improvement were collected

from every practitioner. These reflections are considered as

internal validation.

For external validation of our findings, two manufacturing

companies were selected. An interview guide was prepared

by the first author for validating the conceptual data pipeline

model. The first author presented the model. Second and third

authors conducted an interview followed by a discussion to

collect data. The entire session was recorded for the first case

and for the second one, the first author took notes. Thus,

feedback from 20 practitioners was collected and recorded.

The conceptual model was then modified to address some of

the issues raised during the discussions. Also, the inputs from

the practitioners are incorporated in the conceptual model. The

remaining issues will be addressed in future works.

IV. USE CASES

This section introduces the existing data pipelines used in

the telecommunication firm. Each of these use cases is separate

and there is no interaction between those pipelines.

A. Data Collection Process

The company collects data from multiple sources distributed

across the globe which is a challenging activity. When data is

collected from a device located in another country or from

the customer network, it should be according to the legal

agreement. Also, sensitive information in the data should

be handled responsibly. Furthermore, data collection should

consider the fact that different data sources generate data in

different frequencies and formats. For instance, data can be

collected continuously, intermittently or as batches. Moreover,

the data collection mechanism itself should be capable to

adjust with different intensities of data-flow.

When data collection is automated, these challenges should

be addressed properly. Fig. 2 shows the automatic data col-

lection from the devices. In this scenario, the device is placed

inside a piece of equipment owned by customers. However,

the device data is extracted excluding the customer’s sensitive

Fig. 2. Data Collection Process

Fig. 3. Data Pipeline for Data Governance

information. Base stations have got nodes as well as a device

for monitoring and managing the nodes. Data collection agents

are equipment located on the customer’s premises (physical

location) that can interact either with the nodes directly or

with the device to collect the data. However, to ensure that

the data collection agent has the right to collect data, it is

authenticated with the help of access service. The data thus

collected is transmitted through a secure tunnel to the toolkit

located at the company premise. This data collection agent

also needs the help of access service for authentication. Once

the agent at the customer premise gets the data, it is stored in

the central data storage. The teams can get the data from the

central data storage.

B. Pipeline for Data Governance

The data pipeline shown in fig. 3 is developed to serve the

teams in the company who are working with data whenever

they need it (With the term ’data’, we mean the link from

which the original data can be downloaded). This data pipeline

gets two types of data dumps: internal and external. The inter-

nal data dump is the data that is ingested by the teams inside

the company and external data dump is the data collected

directly from the devices in the fields. The data ingestion

method is different for different sources and the ingested data

is stored in the data storage for further use. The data can have

encrypted links that need to be decrypted before storing it.

Whenever an encrypted data dump is found, the data archiver
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Fig. 4. Pipeline for Machine Learning Systems

module sends it to third-party services for decryption. Decoded

links from the third party are stored. Thus data from different

sources are made available in a central location. Teams can

request data from any stage of the pipeline. The pipeline is

manually monitored by ’flow guardian’ who is responsible for

identifying the faults and solving them.

C. Pipeline for Machine Learning Systems

Data pipeline has four main steps namely ingest, store,

transform and aggregate. Data is generated by the source

which is gathered by a special zone in the field. The data

ingestion module is connected to those zones in the field and

the collected data is ingested into the pipeline as batches.

When new compressed files are found during periodic checks,

the transaction is logged and downloads it. These new files are

then loaded into the archive directory of the data cluster. The

data stored in the cluster cannot be used directly by the ML

applications. Moreover, the data logs collected from different

devices can be of different formats. They need to be converted

to a suitable format. This conversion is performed by the data

transformation module. Data transformation checks for the

new files in the archive directory of the data cluster and when

found, it is fetched, uncompressed and processed to convert

it to an appropriate format. The converted data is then given

as input to the data aggregation module where the data is

aggregated and summarized to form structured data which is

further given as input to the ML models.

V. CHALLENGES WITH DATA MANAGEMENT

In this section, insights into data management challenges are

presented based on the findings from our cross-case analysis.

We have identified ten major challenges with data management

and existing data pipelines used in the company.

A. Data Availability

The availability of the right data in the right format at the

right time is a basic requirement for the successful develop-

ment of data products. Data collection is a difficult task and

sometimes it fails due to authentication failure, environmental

factors or failure of collection device. Even after collecting an

enormous amount of data from the devices, it may not reach

the intended destination. Data collected can be incomplete. i.e

not all information will be available in the data warehouse.

For instance, due to software failures, parts of the data can be

lost. Unless we have a tracking mechanism, this loss is hard

to identify. Furthermore, if well defined data is given as input

to the model, it won’t be able to give the same performance

when unseen real-world data is given leading to underfitting.

B. Data Quality

For data-hungry systems like ML and DL, data quality

is crucial. When low-quality data is fed to the algorithms,

the low-quality output will be produced. For instance, while

collecting fault logs from the devices in the field, there should

be a clear distinction between faults due to environmental

factors and faults due to device failure. The challenge is

when the data is transformed to fit a predefined structure,

”unnecessary” parts of it are removed. Therefore, we would

need a method to save the original file. When the data is

transformed on the fly and then stored, this would not be

possible. It is always good to have the original raw data file

stored so that it can be accessed whenever the structured data

becomes insufficient to meet the requirements.

C. Data-flow Instability

Data-flow to the company’s data storage is not always

stable. The device at the company’s end should be prepared

to receive the data from the distributed devices. The pipeline,

if existing, should be capable enough to handle data-flow

through it. If multiple teams request data simultaneously, the

pipeline should be able to serve it. Moreover, elements in

the pipeline should be monitored properly for the failures.

Failure of pipeline elements lead to data-flow instability.

Timely upload of processed data is mandatory especially in

case of dependencies. If data pipeline is accepting continuous,

intermittent and batch data, at some points, the inflow of data

will be heavy and during other times, it will have to handle

only continuous data. This also lead to data-flow instability if

the pipeline is not able to adjust its capacity.

D. Data Silos

A data silo is the gap between the data and the consumers

who need the data. It is a result of poor architecture, legacy

operational systems, and outdated company culture. The main

problem is that the data becomes isolated and trapped without

reaching the consumers. When individual teams develop their

own data pipeline, it may also lead to data silos. There is

a high probability that multiple teams performing the same

activities for different use cases.

E. Data Dependencies

Data dependency occurs when a team or device has to

depend on the outcome of some other team or device for

starting their activity while developing any data product. There

can have situations where the team has to wait for a long

time for obtaining the required data. When the dependee is a

software device that failed, the dependent won’t be notified.

Usually, in such cases after the expected time of delivery,
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necessary actions are taken to check the existence of dependee.

Data dependencies often lead to delayed production.

F. Data Pipeline Latency and Overhead

Data pipelines can create additional latency to the entire

data workflow. Latency is defined as the time taken by data

to travel through the entire pipeline. When multiple teams are

requesting data or when the data inflow increases, the data

pipeline may produce delayed outputs. Besides that, data has

to go through all components and checks in the pipeline to

reach the destination. Failure or slow down any one of these

components in the transit can lead to latency. The data pipeline

becomes an overhead when the data is used for cases for which

data quality is not important.

G. Data Pipeline Owner Overloaded

The data pipeline owner is a person who is responsible

for monitoring and managing the data flowing through the

data pipeline. During peak times, that person gets overloaded.

Moreover, it is always good to have maximum automation in

the data pipeline.

H. Unreliable Data Pipelines

The reliability of a data pipeline depends on the reliability

of its elements. Therefore, elements within a data pipeline

should be made fault-tolerant. A data pipeline without built-in

validation, mitigation mechanisms cannot ensure data quality.

I. Low Storage Capacity

When every team is constructing their own data pipeline,

everyone stores the same data in different forms in the data

storage leading to shortage of storage space. Databases, data

warehouses, data lakes are for eliminating redundant storage

of data. However, an increased number of data pipelines will

eventually lead to reduced storage capacity. Another reason

is the storage space division between teams. When storage is

divided between teams, each one will get only a small portion

of the actual available storage space.

VI. DATA PIPELINE META-MODEL

The section above described challenges with the data man-

agement encountered by the industry practitioners. From the

empirical findings and through analysis of existing pipelines,

we develop a conceptual model of data pipeline that can

potentially overcome the limitations of existing data pipelines.

Meta-model is a set of concepts used to build data pipelines.

Nodes and connectors are the two main basic components used

to build a data pipeline. Nodes are interconnected with each

other using connectors. Both of the components have certain

capabilities. For instance, the ability to connect different nodes

is the capability of the connector. Fig. 5 shows the components,

capabilities of both nodes and connectors, notations used to

represent nodes and connectors, etc. Colour coding, icons, and

differences in style are used to represent the variations in nodes

and data that is flowing through the nodes. Capability is the

ability of a node to perform a certain activity. For instance,

Fig. 5. Meta-model for building data pipeline

data sources in the pipeline have the capability to generate

data.

Capabilities of Nodes: Data Generation, Data Collection,

Data Ingestion, Data Storage, Data Processing, Data Labelling,

Data Pre-processing, Data Reception.

Capabilities of Connectors: Data transmission, Authenti-

cation, Validation, Monitoring, Mitigation, Sending alarm.

The ability of the connectors to perform certain activity is

termed as capability of connectors. Connectors have different

capabilities. Connectors are the carriers of data. i.e they

transmit data from one node to the next. Some connectors carry

raw data and some carry processed data. Some connectors

carry labeled data. Each of these connectors are given separate

notation and color-coding in fig. 5. All connectors have the

capability to transmit data. Apart from that, they have addi-

tional capabilities like authentication, validation, monitoring,

mitigation and sending an alarm. The authentication capability

of a connector is denoted by placing a light green color square

with ’A’ on top of it. Similarly, validation is represented by

a yellow square with ’V’ on it. Mitigation is represented by

a red square with ’M’. Monitoring by the beige color square

with ’F’ on it. As the letter ’M’ is already taken for mitigation,

we use F(Fault detection). Grey color square with ’S’ denotes

the capability to send the alarm.

VII. CONCEPTUAL MODEL OF DATA PIPELINES

Data pipeline is a complex series of components intercon-

nected with each other where the output of one component is

fed as input to the other. The starting point of the data pipeline

is called source and the final destination is called a sink. All

other nodes are intermediate nodes. Each component in the

data pipeline manipulates data by performing activities. The

data pipeline model presented in this section is a conceptual

model. According to the requirement, it can be used by any

organization for any data application by creating instances.

Fig. 6 illustrates the conceptual model of a data pipeline.

Data Generation: Data pipelines start from a source

and in most real life cases the source will be multiple and

distributed. Therefore, our pipeline also has multiple sources

distributed all around the world. Data sources can be of
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Fig. 6. Conceptual model of data pipeline

different types. Any device having the ability to generate

data is called a data source. Data sources considered here are

classified into two categories: Human-generated and Machine

generated. Data that is produced through manipulations by

team members, other team members or other organizations

come under human-generated data. Machine-generated data

are produced by the various devices employed in different

equipment, vehicles and so on. For instance, data generated

by a device embedded inside the car, data produced by mobile

applications, etc.

Data Collection: The data-flow from the source can be

batch, intermittent or continuous. Three different styles of

arrows starting from data sources indicate that the connector

between the data source and data ingestion can carry all the

three variations of data-flow. Although the data collection

node can collect data from the sources, it should show the

permission to collect data from the sources.

Raw Data Storage - Data Lake: The data collected from

the source will be raw and should be stored so that the original

data files can be retrieved in the future. However, the data

collection node has to show its right to ingest data into the

data pipeline. This authentication is carried out by connectors

between data collection and data lake.

Data Ingestion: Raw data files can be taken from the data

lake and ingested into the data processing component. This

data ingestion method will be different for different types of

data. Data can arrive in all shapes and sizes. Real-time stream

data will be processed sequentially. The continuous data will

be validated immediately after extracting it from the data lake.

Data Processing: Data processing itself is a composite

node in which there can be multiple individual components

like data aggregation, data parsing, data transformation, etc.

Data aggregation is the process by which raw data is expressed

in a suitable form for statistical analysis. With data transfor-

mation, the unstructured aggregate data is converted into a

structured format or semi-structured format. Thus, the data

processing step converts all different types of data into a single

format and stored in the data staging area. This is symbolically

represented in the fig. 6 with three different incoming arrows to

data processing indicating continuous, intermittent and batch

data. The output from the data processing step is a single thick

arrow.

Data Staging and Data Warehouse: The data staging is

a temporary storage area where the data can be stored for

validation. After validating the structured or semi-structured

data, it is stored in a data warehouse. This data warehouse

functions as a point from which the data can be taken for

several data applications like report creation, ML applications,

dashboard creation, etc.

Data Labeling: Our study is mainly focused on ML

applications. Therefore, the data pipeline shows the necessary

steps for automating the data pipeline for ML applications. ML

algorithms can be supervised, unsupervised or reinforcement.

For unsupervised algorithms, the data labeling step can be

skipped. That is the reason why the data labeling step is shown

in a light blue color different from the other nodes. As most of

the companies are using a supervised approach for their ML

applications, the focus is more on the same.

Data Pre-processing: To achieve better performance from

ML algorithms, data needs to be pre-processed before training.

The pre-processing depends on the practitioners developing the

application and also the nature of the problem. Nevertheless,

popular data pre-processing steps are data quality assessment,

data imputation, data encoding, data sampling, dimensionality

reduction, etc. Thus, data pre-processing can include any

process which transforms data in such a way that it can be

fed to a machine-learning algorithm.

Data Reception: The output from the data pre-processing

is given as input to the ML models which uses it for training,

retraining, testing, and validation. The ML model act as a

data sink in fig. 6. As most of the companies are following

agile methodology, the data will be collected back from the

data products for further iterations. Therefore, data produced

by these ML applications are again collected by the data

collection node and goes through the pipeline continuously.

Capabilities of Connectors: Each connector between the

nodes have the capability to send data to any other node,

monitor the data-flow, fault detection, check for associated

mitigation strategies when a fault is detected. If there is no

defined mitigation strategy, then it has the capability to send

alarms to the responsible team. The faults that may happen

at each stage will be different. Therefore, mitigation strategies

also will be different. Similarly, the responsible team/person

who can handle a particular fault will be also different from

each other.

To summarize, the conceptual model of the data pipeline is

fully automated in which monitoring is performed throughout

the pipeline. The data pipeline is fault-tolerant to some extent

because mitigation strategies are there to ameliorate the effects

of faults. Moreover, teams can request data from any point in

the pipeline according to their requirement.

VIII. VALIDATION STUDY

The conceptual data pipeline model was validated through

interviews with 20 industry professionals from three compa-

nies of different domains and different maturity levels. Two

of the authors, together with one author online conducted the

interview study for validation. The purpose of the research

was to develop a conceptual model of a fully automated,
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fault-tolerant and traceable data pipeline. Table 2 illustrates

the challenges with data management that can be partially or

completely solved by the usage of data pipelines.

Data availability can be solved to a certain extent with

the proposed data pipeline. However, when the source fails

to generate data, then the data will not be available. The

failure will be detected automatically and the corresponding

mitigation strategies will be adopted. Also, when the customer

is reluctant to share data, then, of course, the data will not

reach the pipeline. In such a scenario, the corresponding

manager will receive an alarm and they can take necessary

actions to ameliorate the situation. Data quality challenges

cannot be completely solved. If the data produced by the

source is low quality, there is no inherent mechanism in the

pipeline to make it high quality. However, high-quality data

will not lose its quality during its transmission through the

pipeline. Data-flow instability can be also solved using the

proposed data pipeline with its built-in mechanisms to control

the flow of data. Data silos is a complicated phenomenon that

cannot be solved by the mere introduction of a data pipeline.

It needs reorganizations, a cultural shift in the company, etc.

Data dependencies can be completely solved as the pipeline

itself is designed to be fully automated. Dependency between

teams will be eliminated and all teams will have a dependency

on the data pipeline. Data pipeline latency will be there. As the

components in the pipeline are more and all those components

have got intelligence in the form of capabilities, latency comes

as a side effect. Data pipeline owner overhead can be reduced

as the responsibility will be spread across multiple persons

who have got a better understanding of a specific part of

the data pipeline. The reliability of the data pipeline can be

ensured with the connector level mitigation strategies. Failure

of a particular component will affect the data-flow which will

be detected by the monitoring mechanism and the fault is

taken care of either by the mitigation strategies or by the

corresponding responsible person. Storage capacity cannot be

increased by implementing the data pipeline. As discussed

earlier, it can eliminate the redundant storage of data. However,

no provision in the data pipeline can increase storage capacity.

TABLE II
ANALYSIS OF DATA CHALLENGES THAT CAN BE SOLVED WITH THE

PROPOSED DATA PIPELINE

Challenges with Data Management Proposed Data Pipeline
Data Availability Partially solve
Data Quality Partially solve
Data-flow Instability Completely solve
Data Silos Cannot solve
Data Dependencies Completely solve
Data Pipeline Latency Cannot solve
Data Pipeline Owner Overloaded Completely solve
Unreliable Data Pipeline Completely solve
Low Storage Capacity Cannot solve

The model developed by the first author was presented

before the industrial experts and their consensus and disagree-

ments were recorded. The validation section will be structured

in terms of agreements and suggestions for improvement.

Agreements refer to situations where practitioners agree and

confirm while suggestions for improvement refer to situations

in which the interviewees had a different opinion. Some minor

corrections were made to the model and the other concerns

raised are saved for extended work of the data pipeline model.

Case A: Manufacturing Company
The conceptual model was presented by the second author

and the third author collected the feedback from the industry

professional.
Agreements: The conceptual data pipeline model was

identified as a standard concept that can be used by teams

located in different parts of the world while building their data

pipeline. With a standard architecture, there can have a com-

mon understanding of processes. Automation of monitoring

and mitigation are interesting and important
Suggestions for Further Enhancements: Monitoring has

three variations such as performance monitoring, data profile

monitoring, and condition monitoring. Performance monitor-

ing can continuously check for the software performances in

the data pipeline. Condition monitoring can ensure the data

pipeline health and data profile monitoring can make sure

that the data flowing through the data pipeline meets the data

quality requirements, detect faults and allows investigation of

data problems thereby making it traceable.

Case B: Automobile Company
The conceptual model for data pipeline was presented by the

first author and we collected the agreements and disagreements

from all the industry professionals.
Agreements: Practitioners recognized this conceptual

model as a language for communication between data pro-

fessionals. When there is a common language, it is easy

to avoid misinterpretations. Moreover, they all agreed about

the monitoring spread across the pipeline and the need for

different storage stages.
Suggestions for Further Enhancements: The major dis-

agreement was concerning the nomenclature of nodes in the

data pipeline. The data warehouse is a term to represent the

aggregated and well-transformed data which is used for a

specific use case. In the conceptual model, the data warehouse

is capable of storing data for multiple applications. The

suggestion was to rephrase all these ambiguous names such

as data preparation and data processing. Another problem is

that the model does not give attention to the reinforcement

algorithm. Data pipeline does not explain who is the person

responsible for each step of the pipeline. To increase read-

ability and understandability for everyone in the company, it

was suggested to have different model views. For instance, a

model with no technical terms, a second one with much lesser

abstraction and so on.

Case C: Telecommunication Company
Internal validation of the data pipeline is performed at the

telecommunication company. The first author presented the

work and recorded the responses from the team.
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Agreements: The team liked the conceptual model of the

data pipeline as they all were developing their pipeline for

a particular use-case. They realized the need for a standard

pipeline model that can be followed by everyone in the orga-

nization. Moreover, some of them were happy about storing

original data in a data lake as they were experiencing issues

with the availability of raw data files.
Suggestions for Further Enhancements: The data process-

ing step itself can include data labeling and data preprocessing

which is shown as separate steps in the proposed data pipeline

model. They suggested it is good to have separate storage at

each step of the data pipeline. There should be a provision

to stop sending alarms continuously to the team whenever the

issue persists for a longer duration.

IX. THREATS TO VALIDITY

This study was based on existing data pipelines developed

by different teams from the same company located in various

parts of the world to reduce the bias of operating with a single

team within the same organization. To address internal validity

threat, one of the authors who has in-depth knowledge about

the data process in the company, was asked to validate the

findings. Also, the findings were validated with other teams in

the company who were not involved in the study. Furthermore,

the study was validated again by external companies from

different domains.

X. CONCLUSION

In the immediate future, it will be inexorable that the daily

analysis will not be able to keep up with the daily influx

of data. Along with the increased popularity of data and its

products, challenges associated with it also increased. Data

scientists and other practitioners working with data spend a

considerable amount of time combating with those challenges.

The proposed data pipeline model can either solve or alleviate

several data management challenges with limited human inter-

vention. However, data pipelines need to be carefully designed

so that data-flow can be monitored, managed and maintained.

Therefore, fully automated, fault-tolerant and traceable data

pipelines are gaining importance. The conceptual data pipeline

model proposed in this paper has nodes and connectors which

perform the activities in the data workflow. The conceptual

model is validated using an exploratory case study where

a total of 20 practitioners from three different companies

participated. All of them agreed with the necessity of data

pipelines in the organization, they liked the structuring of the

conceptual model and the automation of monitoring, alarming

and mitigation. They also gave a few suggestions for the

improvement of the model. As future work, description on

mitigation strategies at each step, the physical realization of

the conceptual model will be done and the results will be

analyzed.
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