
Supervisory Control Theory in System Safety Analysis

Downloaded from: https://research.chalmers.se, 2024-03-13 09:41 UTC

Citation for the original published paper (version of record):
Selvaraj, Y., Fei, Z., Fabian, M. (2020). Supervisory Control Theory in System Safety Analysis.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 12235: 9-22. http://dx.doi.org/10.1007/978-3-030-55583-2_1

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Supervisory Control Theory in System

Safety Analysis

Yuvaraj Selvaraj1 ,2(18l), Zhennan Fei1, and Martin Fabian2

1 Zenuity AB, Gothenburg, Sweden
{yuvaraj.selvaraj,zhennan.fei}©zenuity.com

2 Chalmers University of Technology, Gothenburg, Sweden
fabian©chalmers.se

Abstract. Development of safety critical systems requires a risk man­
agement strategy to identify and analyse hazards, and apply necessary
actions to eliminate or control them as malfunctions could be catas­
trophic. Fault Tree Analysis (FTA) is one of the most widely used meth­
ods for safety analysis in industrial use. However, the standard FTA is
manual, informal, and limited to static analysis of systems. In this paper,
we present preliminary results from a model-based approach to address
these limitations using Supervisory Control Theory. Taking an example
from the Fault Tree Handbook, we present a systematic approach to
incrementally obtain formal models from a fault tree and verify them in
the tool Supremica. We present a method to calculate minimal cut sets
using our approach. These compositional techniques could potentially
be very beneficial in the safety analysis of highly complex safety critical
systems, where several components interact to solve different tasks.

Keywords: Fault tree analysis · Supervisory control theory · Formal
methods · System safety · Autonomous driving

1 Introduction

Software development in safety critical systems necessitates a risk management
strategy to identify and analyse risks, and to apply the necessary actions to
eliminate or control them. The objective of safety analyses, performed during
various development phases, is to ensure that the risk of safety violations due to
the occurrence of different faults is sufficiently low.

Fault Tree Analysis, FTA [16], is one of the most common methods for safety
analysis in various industries. While standard fault trees are simple and informa­
tive, they are not free from limitations [3]. Standard FTA is primarily a manual
process based on an informal model, i.e., the process relies on the system ana­
lysts and domain experts to systematically think about all risks and their possible
causes. The lack of formal semantics makes it difficult to verify the correctness of

Supported by FFI, VINNOVA under grant number 2017-05519, Automatically Assess­

ing Correctness of Autonomous Vehicles-Auto-GAV.

The final authenticated version is available online at https:/ / doi.org/ 10.1007 /978-3-030-55583-2_1

Y. Selvaraj et al.

the safety analysis, especially for rapidly evolving industries like the autonomous
driving industry where new edge cases are continuously identified. In complex
industrial software controlled systems, safety models must capture many pos­
sible interactions between system components, where different interleavings of
failure events can either result in a failure or operational state. Standard fault
trees are not suitable for modelling temporal, sequential and state dependencies
of events. Another notable shortcoming with standard FTA for large and com­
plex systems is the need for safety analyses to be intuitive and compositional.
This is crucial in projects where the system of interest comprises interacting
sub-systems, possibly delivered by different teams or suppliers.

Though several limitations exist, FTA is one of the widely used safety anal­
ysis methods. Different extensions to standard fault trees [10] have been pro­
posed to address some of the limitations. Research on using formal logic in
FTA [2, 15, 17] address the limitation of informal and manual FTA process.
Extensions like dynamic fault trees [1], state-event fault trees [4], and tempo­
ral fault trees [8] address inability of standard fault trees to model dynamic
behaviour. The most widely used extension to include temporal sequence infor­
mation is dynamic fault trees [1, 10]. Over the years, research on the development
of model-based dependability analysis (MBDA) [12] techniques have enabled
automated dependability analysis. In [12], such emerging MBDA techniques are
classified into two paradigms. The first paradigm, termed failure logic synthesis
and analysis focuses on automatic construction of failure analyses and the sec­
ond paradigm, termed behavioural fault simulation focuses on formal verification
based techniques. Despite this research, challenges remain in addressing the lim­
itations with standard fault trees and safety analysis [10, 12]. Thus any progress
in addressing these limitations is helpful. The preliminary results presented in
this paper is part of an ongoing endeavour to address the aforementioned limi­
tations by a model-based approach based on Supervisory Control Theory (SCT)

[9].
The formal models used in the SCT framework can describe dynamic

behaviour, which is often needed to analyse modern and complex safety crit­
ical systems. The compositional abstraction based algorithms used in SCT allow
automated synthesis and verification of safety models for large and complex sys­
tems. These features of the SCT framework makes it possible to define a complete
model-based safety analysis approach with automated analysis. To ensure suffi­
cient detail of explanation and some degree of familiarity, we do not present a
complex example in this paper; instead we describe our approach using a rather
simple example from the Fault Tree Handbook [16].

We make three main contributions in this paper. First, we address the issue
of informal description of standard fault tree analysis by presenting a systematic
approach to incrementally obtain formal models from a fault tree. Second, we
present a method to analyse the fault trees using the SCT tool Supremica [5].
Finally, we present a method to calculate minimal cut sets using our approach.
An advantage of our work is the compositional approach to modelling and veri­
fication that is beneficial in reasoning about large fault trees for highly complex

Supervisory Control Theory in System Safety Analysis

systems. To the best of our knowledge, SCT has not previously been used in the
context of fault tree analysis.

The paper begins with a brief introduction to FTA and SCT in Sect. 2 and
Sect. 3, respectively. Section 4 discusses modelling and analysis in Supremica with
an example from the Fault Tree Handbook [16]. The paper is concluded with a
brief discussion on future extensions in Sect. 5. Our work is successfully inte­
grated with a model-based systems engineering tool [14], that is widely used in
the automotive industry.

2 Fault Tree Analysis

Fault Tree Analysis (FTA) [16] is a top-down deductive safety analysis tech­
nique, where an undesired safety-critical failure of a system is specified, and
then analysed in the context of its operational environment to find all possible
ways in which the specified failure can occur.

A fault tree is a graphical model of various combinations of faults that cause
the safety critical failure, represented as a top level failure event at the root of the
fault tree. From this root event, the fault tree is constructed from a predefined
set of symbols [16], which results in a set of combinations of component failures
that can cause the top level failure. Note that the fault tree is not a model of
all possible causes for system failure, but given a particular failure it depicts the
possible combinations of basic component failures that lead to this failure. Since
FTA is primarily a manual process, the exhaustiveness of the analysis is left to
the assessment of the analyst.

Although several extensions of fault trees have been proposed [10], in this
paper we limit ourselves to the symbols described in the Fault Tree Hand­

book [16]. Broadly, the nodes in the fault tree can be classified into three types:
events, gates, and transfer symbols [16].

2.1 Pressure Tank System

The pressure tank system [16] in Fig.1 describes a control system to regulate a
pump-motor that pumps fluid into the tank. Initially the system is considered to
be dormant and de-energized: switch 81 open, relays Kl and K2 open, and the
timer relay closed. The tank is assumed to be empty in this state and therefore
the pressure switch S is closed. It is also assumed that it takes 60 s to pressurize
the tank, and an outlet valve, which is not a pressure relief valve, is used to drain
the tank.

System operation is started by pressing switch 81. This closes and latches
relay Kl, and subsequently relay K2 to start the pump. When threshold pressure
is reached, the pressure switch opens, causing K2 to open, and consequently the
pump motor to cease operation. The timer allows emergency shut-down in case
the pressure switch fails. Initially, the timer relay is closed and power is applied
to the timer as soon as Kl closes. If the clock in the timer registers 60 s of
continuous power, the timer relay opens and latches, thereby causing a system

Y. Selvaraj et al.

,---- ---- -- - .,

I
I

I•�=
SWITCH

SI

FROM RESERVOIR

PRESSURE

SWITCH S

PRESSURE

TANK

Fig. 1. Pressure tank system from [16], page VIII-1

shut-down. In normal operation, when pressure switch S opens, the timer resets
to Os. When the tank is empty, the pressure switch closes, and the cycle can be
repeated.

Figure 2 shows the basic fault tree from [16] (page VIII-13) for the pressure
tank system. Here, the hazard 'rupture of pressure tank after start of pumping' is
analysed and is represented by the top level failure event, El. The basic events
denoted by circles represent the respective component failures and form the
leaves of the tree. The intermediate events, which are fault events that occur
due to one or more antecedent causes are denoted by rectangles. The process
of obtaining the fault tree following a top down analysis is out of scope of this
paper; we assume a FT is given. A complete description of the example and the
fault tree can be found in [16].

3 Supervisory Control Theory

The Supervisory Control Theory (SCT) [9] provides a framework to model, syn­
thesize and verify control functions for discrete event systems (DES), which are
dynamic systems characterised by the evolution of events causing the system
to transit from one discrete state to another. Given a model of the system to
control, a plant, and a specification describing the desired controlled behaviour,
the SCT provides methods to synthesise a supervisor that dynamically interacts
with the plant in a closed-loop, and restricts the event generation of the plant
such that the specification is satisfied. The supervisor thus ensures a safe control
of the plant by restricting the execution of certain events. However, only events
that are controllable can be restricted by the supervisor, while events that are
uncontrollable cannot be restricted. A dual problem that is of interest here, is

E1

E2. E3, E4, ES

R

s

S1

Kl

K2

T

Supervisory Control Theory in System Safety Analysis

LEGEND: FAUL TS

TOP EVENT

E1

E2

E4

INTERMEDIATE FAULT EVENTS

PRIMARY FAILURE OF TIMER RELAY

PRIMARY FAILURE OF PRESSURE $WITCH

PRIMARY FAILURE OF SWITCH S1

PRIMARY FAILURE OF RELAY Kl

PRIMARY FAILURE OF RELAY K2

PRIMARY FAILURE OF PRESSURE TANK

ES

Fig. 2. Fault tree for pressure tank system in Fig. 1 from [16], page VIII-13

to given a model of a (controlled) plant and a specification, verify whether the
specification is fulfilled or not. So, in this paper we use ideas from SCT to for­
mally verify properties of the plant model, and do not focus on the synthesis of
supervisors.

Y. Selvaraj et al.

To model a fault tree as a DES, we use Extended Finite State Machines
(EFSM) [13], which are finite state machines extended with bounded discrete
variables, guards that are logical expressions over variables, and actions that
assign values to variables on transitions.

Definition 1. An Extended Finite State Machine (EFSM) is a tuple E =

(E, V, L, ---+, li , Lm), where E is a finite set of events, V is a finite set of bounded
discrete variables, L is a finite set of locations, ---+ � L x E x G x A x L is the
conditional transition relation, where G and A are the respective sets of guards
and actions, l i E L is the initial location, and Lm � L is the set of marked
locations.

A state in an EFSM is given by its current location together with the current
values of the variables. The expression lo � li denotes a transition from
location lo to li labelled by event a E E, with guard g E G, and action a E A. The
transition is enabled when g evaluates to true, and on its occurrence, the current
location of the EFSM changes from lo to li , while a updates some of the values
of the variables v E V. EFSMs interact through shared events by synchronous
composition, denoted A1 IIA2 for two interacting EFSM models, A1 and A2. In
synchronous composition, shared events occur simultaneously in all interacting
EFSMs, or not at all, while non-shared events occur independently. Transitions
on shared events with mutually exclusive guards, or conflicting actions will never
occur [13]. In an EFSM, active events are the events that label some transition,
while blocked events do not label any transition. In the synchronous composition
of two EFSMs, the blocked events of the synchronised EFSM, is the union of the
blocked events of the synchronised EFSMs. That is, transitions in one EFSM
labelled by events blocked by the other EFSM, will be removed.

3.1 Nonblocking Verification

Given a set of EFSMs A= {A1, ... , An }, the nonblocking property guarantees
that some marked state can always be reached from any reachable state in the
synchronous composition over all the components Ai . While the monolithic app­
roach to nonblocking verification is explicit, it is limited by the combinatorial
state-space explosion. The abstraction-based compositional verification [7] has
shown remarkable efficiency to handle systems of industrial complexity. This
approach employs conflict-preserving abstractions to iteratively remove redun­
dancy and keeps the abstracted system size manageable. Supremica [6], a tool
for modelling and analysis of DES models, implements the abstraction-based
compositional algorithms (and others) for verification of EFSMs.

4 FTA in Supremica

In this section, we describe how the fault tree in Fig. 2 is modelled into a number
of plant EFSMs. We demonstrate how the model can be validated by verifying

Supervisory Control Theory in System Safety Analysis

typical specifications in Supremica. This section also includes a brief discussion
about computing minimal cut sets using our approach. Both Supremica and the
models of this section are available online1

.

4.1 Modelling

To make the best use of compositionality, we incrementally model different failure
events in a modular way. Given a fault tree, we first model the lowest level and
gradually proceed towards the top level event. For the higher levels, we only
consider the intermediate fault events from the lower levels and hide all other
inner details.

Consider the lowest level of the fault tree in Fig. 2. It consists of two basic
events as inputs to the lowest OR gate leading to the intermediate fault event,
E5. This forms the first level in our modelling hierarchy. Fault event E5 can occur
either due to a primary failure of Kl or a primary failure of R. This behaviour
is modelled in the EFSM as shown in Fig. 3a. The two events Kl and R denote
the corresponding primary failures and when either occurs, the EFSM transits
from its initial location, Ab to location E5

2.

With E5 modelled, we proceed to the next level, the intermediate fault event
E4. From Fig. 2, we see that this can occur either due to a primary failure of
switch Sl or due to the occurrence of E5. This gives us a total of 7 possible
combinations that lead to E4. However, since we have modelled the analysis for
E5 as an EFSM on the previous level, we can use guards to capture this, and
model E4 with just 2 events as shown in Fig. 3b. The guard condition on the
event E5 ensures that the event is enabled only in a situation where the EFSM
in Fig. 3a is in location E5. Here, the guard [Ao == E5] represents that the
current location of the EFSM Ao in Fig. 3a, is E5•

SI

A1:+e:=;0

E5 : [Ao == Es]

(a) EFSM modelling E5 (b) EFSM modelling E4

Fig. 3. EFSMs for intermediate failure events, E4 and E5 of the fault tree

The next level in our modular hierarchy is the output event of the only AND
gate in the fault tree, E3. The two inputs to the AND gate correspond to the
primary failure of the pressure switch S and the analysis resulting from the
intermediate fault E4. Figure 4 shows the model for this fault event E3. Since
the order of events do not matter in an AND gate, there are two possible ways
to reach the failure state as shown in Fig. 4.

1 https://supremica.org https://github.com/yuvrajselvam/FTA_SCT.
2 In this paper, for a fault Ex in the FT, Ex denotes the corresponding event in the

EFSM and Ex denotes the location reached due to the occurrence of the fault.

Y. Selvaraj et al.

Fig. 4. EFSM, A2 for the intermediate failure event E3

The final two levels of the fault tree corresponding to fault events E2 and El
consist of OR gates and are modelled as already shown, see Fig. 5. Note that in
the plant models, the only unmarked location is the initial location in Fig. 5b,
and therefore in the synchronised plant model, which gives the complete fault
tree, the marked locations correspond to the top level failure event El.

K2 T

Aa:+�0 A
4
:+�0

E3 : [A2 == Ea] E2 : [Aa == E2]

(a) EFSM modelling E2 (b) EFSM modelling El

Fig. 5. EFSM for intermediate failure events, E2 and El of the fault tree

For special cases of AND gates, like INHIBIT and PRIORITY-AND, the
models look slightly different. For an INHIBIT gate, where the output is deter­
mined by a single input together with some qualifying condition, we can use a
single event label together with the qualifying condition as a guard to model the
transition to the failure state. For a PRIORITY-AND gate, where the output
occurs only if all inputs occur in a specified ordered sequence, we can model
the specified sequence as a path from the initial state to the failure state. For
example if failure event E3 is at the output of a PRIORITY-AND with the order
specified as E4 before S, then we only have the path At ---+ A� ---+ E3 in Fig. 4
as the corresponding EFSM. This makes it possible to use EFSMs to model
sequential dependencies as required by the PRIORITY-AND gate.

The distinction between inclusive and exclusive-OR gates can be ignored in
the fault tree analysis when dealing with independent, low probability component
failures (see [16], page VII-7). Therefore we do not introduce special approaches
to differentiate them in our method. If a distinction is truly needed, additional
guards and transitions can be introduced on the model.

Algorithm 1 presents a systematic method to construct EFSMs in a modu­
lar way from a given fault tree. Note that the algorithm includes modelling of
two types of gates only, AND and OR. However, it can be extended to include
other types of gates like INHIBIT and PRIORITY-AND as discussed above.

Supervisory Control Theory in System Safety Analysis

In Algorithm 1, lines 9-18 describe the modelling of OR gates and lines 19-30
describe AND gates. The addition of guards on the transitions mentioned in
lines 16 and 28 describe the use of EFSM variables in guard conditions as shown
in Fig. 3b for the OR gate, and in Fig. 4 for the AND gate, respectively.

4.2 Verification

In software controlled complex systems, safety analysis plays a significant role
in formulating the safety requirements for the subsequent system design. Estab­
lishing confidence in the fault tree analysis is typically done manually. This is
a shortcoming as it is error prone and even intractable for large and complex
systems. An automated analysis method is very beneficial in providing sufficient
verification evidence for the safety analysis phase. In this section, we present
how typical specifications are modelled and verified using nonblocking verifica­
tion algorithms in Supremica.

When system operation is started in the pressure tank in Fig. 1, the pump
starts filling fluid into the tank. When the tank is full and the threshold pressure
is reached, pressure switch S opens, causing K2 to open, and consequently the
pump to stop. K2 failing to open would result in continuous pumping beyond the
threshold and may result in the rupture of the tank. Therefore K2 is critical for
safe operation and a primary failure of K2 may result in the top level failure event
El. Ideally, this behaviour should be captured in our FTA and we can verify this.
Figure 6a shows the EFSM modelling this specification. K2 is the only active
event in this EFSM and the other basic events in the fault tree are blocked.
Recall that transitions labelled by blocked events are removed in the synchronous
composition of the specification and the plant models. Therefore, by blocking all
basic events but K2, we ensure that K2 is included in the marked language of the
EFSM whereas other basic events are not. A nonblocking verification performed
on the synchronised model of this specification together with the plant models,
shows that the system is nonblocking, thereby verifying that a primary failure
of K2 is sufficient to cause rupture of the tank, the failure event El.

On the other hand, since we have the timer relay as a backup in the system,
only a failure of the pressure switch, S, should not lead to tank rupture. We can
model this as a specification shown in Fig. 6b. Since we are only interested in
the primary failure of pressure switch S, we block the remaining basic events
in the fault tree. A nonblocking verification of this specification synchronised
with the plant model results in a blocking state, thereby verifying that only S
occurring will not result in the top level failure event El. However, if we also
include the failure of the timer relay R, we get the specification as shown in Fig. 7.
With this specification, we can verify that the system is indeed nonblocking, i.e.,
a failure of both components S and R will lead to the top level failure event
El. Specifications to model the remaining causes leading to the top level event
and/or the intermediate events are done in a similar way as in Figs. 6 and 7.

Y. Selvaraj et al.

Algorithm 1: Modular fault tree modelling

Input: Fault Tree, FT
Output: EFSM set corresponding to the fault tree, FT

Initialisation l declare basic events set, BE
declare variables, Q, curr _node, child

add root (FT) to Q II queue, Q contains elements to be processed

BE:= getBasicEvents (FT)
while Q -=fa 0 do

curr_node:= pop (Q) II get the oldest element in queue

gate:= getGate (curr_node) II retrieve connecting gate of node

if gate is OR then
create initial and terminal locations, lo and ln

foreach child E getChildren (gate) do
if child E BE then II child is a basic event

I addTransition(lo, ln , child)

1

2

3

4

5

6

7

8

9

10

11

12

13

else I I child is an intermediate event 14 l addTransition(lo, ln , child) 15

add guards using automaton variables on the respective transitions 16

add child to Q 17

markLocations (curr _node, root (FT))

else I I node is an AND gate

create initial and terminal locations, lo and ln

children:= getChildren (gate)
create a set of strings, §, by permutation over children
// each string is a path from l o to l n

18

19

20

21

22

foreach string E § do 23

create transitions and locations correspondingly 24

obtain the set of events, lE 25

foreach event E lE do 26 l if event (/_ BE then II it is intermediate event 27 l add guards using automaton variables on respective transitions 28

add event to Q 29

markLocations (curr _node, root (FT))

function markLocations (curr _node, root (FT)) l if curr _node == root (FT) then
I mark the terminal location, ln

else
L mark all locations

function addTransition(la ,lb,event) l add transition between la and lb
label transition with event

30

31

32

33

34

35

36

37

38

Supervisory Control Theory in System Safety Analysis

So:+ Sb BLOCKED: B1: + st BLOCKED:

(a)
El

K2

®
EFSM

T T
s SI
SI Kl

Kl s K2
R R

©
for K2 - (b) EFSM for S----+ El

Fig. 6. EFSM for specifications

R s

BLOCKED:

T
K2
Kl

SI

Fig. 7. EFSM for specification SI\ R----+ El

The type of specifications that we have seen so far are modelled to check
whether certain basic events or combinations of events lead to a failure event.
Given such a specification, SP, and fault tree, FT, Algorithm 2 presents how
EFSM models can be obtained from them.

4.3 Minimal Cut Sets

Our approach is not only useful for verification but also in calculating minimal
cut sets, one of the most prominent qualitative analysis techniques of standard
fault trees. A cut set is a set of component failure events that together lead to
the top level failure. Formally, a minimal cut set is a smallest combination of
component failures which, if they all occur, lead to the top level failure event.
It is smallest in the sense that all failures are needed for the top level event to
occur and if one of them in a cut set does not occur, then the top event will
not occur by that set. For example, the minimal cut sets for the pressure tank
system are {T}, {K2}, {S, S1}, {S, Kl}, {S, R}.

In our modelling approach presented in Sect. 4.1, the marked locations in the
composed model correspond to the top level failure event. This makes it possible
to use the marked language of the plant EFSM to calculate the minimal cut sets.
In our case, a cut set is a set of events that lead to marked locations corresponding
to the top level failure event. Calculating minimal cut sets is then done by finding
the shortest paths in the synchronised plant EFSM from the initial location to
the marked locations, a task typically solved by variants of breadth-first search
algorithms. Algorithm 3 presents one such method to calculate minimal cut sets
by exploiting the marked language of the synchronised EFSM. Lines 11-13 of

Y. Selvaraj et al.

Algorithm 2: Modelling specifications

Input: Fault Tree, FT and Specification, SP
Output: EFSM modelling the specification
Initialisation l declare basic events set, BE

declare active events set, AE
declare blocked events set, BLOCKED

BE:= getBasicEvents (FT)
AE:= getBasicEvents (SP)
create locations lo, li, ... , lN with N = IAEI
make lo the initial location
make ZN the single marked location
for every pair (li-1, li) with i E {1, 2, ... , N} create N transitions
label each transition uniquely from cr E AE
add blocked events, BLOCKED:= BE \ AE

1
2
3
4

5
6
7
8
9

10
11
12

the algorithm adds the basic events that can reach the marked location in the

synchronised EFSM to the output set. Lines 14 and 15 ensure that the same

events are not repeated.

Algorithm 3: Computation of Minimal Cut Sets

Input: EFSM1, . . . , EFSMn modelling the considered FT
Output: Set of minimal cut sets, S
Initialisation l declare variable Q as queue with states to be processed

declare synchronised EFSM A as EFSM 1 11 . . . 11 EFSMn

declare basic event set, BE
declare blocked events set, BLOCKED

BE := getBasicEvents(A)
while :3e E { cr I :3s' s.t. (si, cr, s') E-+ A I\ cr E BE} do

Q.put(si) II Enqueue the initial state si

while Q =/- 0 do
8 := Q.get() II Dequeue state s from Q

if :3s', :3cr s.t. (s, cr, s') E-+ A I\ isMarked(s') then
// Retrieve basic events labelling transitions from si to s

Ee:= getEvents(si, s') n BE
I I E c is one minimal cut set. insert it into S

1
2
3
4
5

6
7
8
9

10
11

12

S.put(Ee) 13
create a single location (marked) EFSMsp

with BLOCKED:= Ee 14
I I Update A by blocking all basic events in E c

A:= A II EFSMsp

break
else
L forall the s' s.t. (s, cr, s') E-+ A do Q.put(s')

15

16

17

18

5 Conclusion

Supervisory Control Theory in System Safety Analysis

We have shown how fault tree analysis can be formalised to be automatically
analysed by modelling techniques from Supervisory Control Theory (SCT) using
the tool Supremica. We present a systematic approach to incrementally obtain
formal models from a given standard fault tree, as summarised in Algorithm 1.
Algorithm 2 describes a method to automatically generate specifications for given
properties of the fault tree, so that these properties can be verified using non­
blocking verification. Finally, Algorithm 3 presented a method to automatically
calculate minimal cut sets from the generated models.

Though our modelling approach can model complex systems with redundant
architectures and dynamic dependencies, we here limit ourselves to the stan­
dard symbols described in the Fault Tree Handbook. Our approach can indeed
be extended to use dynamic gates. The formal model obtained from the app­
roach discussed in this paper, considers only the fault behaviour of the system
as described by a given fault tree and nothing else. While we verify certain prop­
erties on the model to establish confidence in the system, we do not focus on
correctness of the construction of the fault tree in the context of the system's
operational environment. In a behavioural approach, we would formally model
the complete behaviour of the system, i.e., including the nominal operational
behaviour and not only the fault behaviour. This presents a wide range of pos­
sibilities. One possible extension is to adopt a formal approach similar to model
checking [15]. Another notable extension of our work is to use the behavioural
system models and the supervisor synthesis framework provided by SCT to auto­
matically synthesize the fault behaviour. This falls in line with the model-based
dependability analysis [12] approach for safety analysis. In such extensions, the
system model becomes the plant models and the work in this paper can then
be used to obtain formal specifications from a given fault tree. This approach
makes it possible to use such formal models in several stages of a model-based
design process. The state based models that are created can be re-used during
the development of the software programs in the later stages. The work presented
in this paper can provide a solid basis for possible extensions in those areas.

A primary motivation for this work is our current focus on formal verification
of autonomous driving systems where SCT and Supremica have been used to
verify software for autonomous driving systems [11]. We believe our work in this
paper will strongly encourage the application of SCT and Supremica in different
stages of safety critical software development starting from safety analysis in
the early stages to synthesis and verification of the software in the end stages.
Our work in this paper is successfully integrated with a model-based systems
engineering tool [14], that is widely used in the automotive industry.

References

1. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault­
tolerant computer systems. IEEE Trans. Reliab. 41(3), 363-377 (1992)

Y. Selvaraj et al.

2. Hansen, K.M., Ravn, A.P., Stavridou, V.: From safety analysis to software require­
ments. IEEE Trans. Softw. Eng. 24(7), 573-584 (1998)

3. Kabir, S.: An overview of fault tree analysis and its application in model based
dependability analysis. Expert Syst. Appl. 77, 114-135 (2017)

4. Kaiser, B., Gramlich, C., Forster, M.: State/event fault trees-a safety analysis
model for software-controlled systems. Reliab. Eng. Syst. Saf. 92(11), 1521-1537
(2007)

5. Malik, R.: Programming a fast explicit conflict checker. In: 2016 13th International
Workshop on Discrete Event Systems (WODES), pp. 438-443. IEEE (2016)

6. Malik, R., Akesson, K., Flordal, H., Fabian, M.: Supremica-an efficient tool for
large-scale discrete event systems. IFAC-PapersOnLine 50(1), 5794-5799 (2017).
https://doi.org/10.1016/j.ifacol.2017.08.427

7. Mohajerani, S., Malik, R., Fabian, M.: A framework for compositional nonblocking
verification of extended finite-state machines. Discrete Event Dyn. Syst. 26(1), 33-
84 (2015). https://doi.org/10.1007 /s10626-015-0217-y

8. Palshikar, G.K.: Temporal fault trees. Inf. Softw. Technol. 44(3), 137-150 (2002)
9. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event

processes. SIAM J. Control Optim. 25(1), 206-230 (1987)
10. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in

modeling, analysis and tools. Comput. Sci. Rev. 15, 29-62 (2015)
11. Selvaraj, Y., Ahrendt, W., Fabian, M.: Verification of decision making software

in an autonomous vehicle: an industrial case study. In: Larsen, K.G., Willemse,
T. (eds.) Formal Methods for Industrial Critical Systems, pp. 143-159. Springer
International Publishing, Cham (2019). https://doi.org/10.1007 /978-3-030-27008-
7 _9

12. Sharvia, S., Kabir, S., Walker, M., Papadopoulos, Y.: Model-based dependabil­
ity analysis: state-of-the-art, challenges, and future outlook. In: Software Quality
Assurance, pp. 251-278. Elsevier (2016)

13. Skoldstam, M., Akesson, K., Fabian, M.: Modeling of discrete event systems using
finite automata with variables. In: 2007 46th IEEE Conference on Decision and
Control, pp. 3387-3392. IEEE (2007)

14. SYSTEMITE: Systemweaver. https://www.systemweaver.se/. Accessed 09 May
2020

15. Thums, A., Schellhorn, G.: Model checking FTA. In: Araki, K., Gnesi, S., Man­
drioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 739-757. Springer, Heidelberg
(2003). https://doi.org/10.1007 /978-3-540-45236-2-40

16. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault tree handbook.
Technical report, Nuclear Regulatory Commission Washington DC (1981)

17. Xiang, J., Ogata, K., Futatsugi, K.: Formal fault tree analysis of state transition
systems. In: Fifth International Conference on Quality Software (QSIC 2005), pp.
124-131. IEEE (2005)

