
Limit theorems for multi-type general branching processes with population
dependence

Downloaded from: https://research.chalmers.se, 2024-03-13 07:03 UTC

Citation for the original published paper (version of record):
Yen Fan, J., Hamza, K., Jagers, P. et al (2020). Limit theorems for multi-type general branching
processes with population dependence. Advances in Applied Probability, 52(4): 1127-1163.
http://dx.doi.org/10.1017/apr.2020.35

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Adv. Appl. Prob. 52, 1127–1163 (2020)
doi:10.1017/apr.2020.35

 Applied Probability Trust 2020

LIMIT THEOREMS FOR MULTI-TYPE
GENERAL BRANCHING PROCESSES
WITH POPULATION DEPENDENCE

JIE YEN FAN,∗, ∗∗ AND

KAIS HAMZA ,∗ Monash University
PETER JAGERS,∗∗∗ Chalmers University of Technology and University of Gothenburg
FIMA C. KLEBANER,∗ Monash University

Abstract

A general multi-type population model is considered, where individuals live and
reproduce according to their age and type, but also under the influence of the size and
composition of the entire population. We describe the dynamics of the population as a
measure-valued process and obtain its asymptotics as the population grows with the envi-
ronmental carrying capacity. Thus, a deterministic approximation is given, in the form
of a law of large numbers, as well as a central limit theorem. This general framework is
then adapted to model sexual reproduction, with a special section on serial monogamic
mating systems.
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1. Introduction

Classical stochastic population dynamics (branching processes of various degrees of gen-
erality) assume independently acting individuals, usually in stable circumstances, whereas
deterministic approaches, while paying attention to the feedback loop between a population
and its environment, tend to sweep dependence among individuals under the carpet. In a series
of papers, branching processes with population size dependence have been studied, first in
the discrete-time Galton–Watson case [25, 26], and more recently also for single-type general
processes [9, 12, 13, 20, 21]. The papers [9] and [12] can be viewed as single-type compan-
ion papers to the present work; [12] investigated the law of large numbers and [9] the central
limit theorem. A first approach to general multi-type processes, comprising sexual reproduc-
tion under a specific model, was made in [22], where the law of large numbers was discussed.
The papers [13] and [20] looked at how long a population lives before extinction.

In this paper, we introduce a general model where an individual is characterised by its age
and type. Reproduction and death may depend on these as well as on the environment (the size
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and composition of the whole population). This is achieved by describing the population as a
measure-valued process, as done in [9]. The dependence on the composition of the population
could be, for instance, on the sizes of subpopulations of different types or ages. The resulting
general model has a high level of flexibility and can be adapted to the dynamics of quite diverse
biological populations. Such complex models are beginning to be used in cancer modelling
(e.g. [4]).

In an ecological community, species interact; reproduction and death depend on the compo-
sition of the community. This complex structure can be approached in our set-up. In particular,
in predator–prey models, species can be viewed as types, and in food webs (e.g. [33]), many
complex interactions occur, where age, sex, and other types are important.

Another example is the modelling of cell proliferation and differentiation, which has been
studied via multi-type branching processes (e.g. [15], [32]). One particular phenomenon is that
of the formation of oligodendrocytes: progenitor cells dividing into new progenitor cells, dif-
ferentiating into oligodendrocytes, or dying. Here a detailed description of the cell population
and its evolution can be given, for high cell densities.

This paper starts with model set-up and the statement of limiting results for a general multi-
type population model, in Section 2. Section 3 gives a special case of sexual reproduction,
where couple formation is considered in a (serial) monogamy system. In nature such systems
can have quite varying forms, from season-long couples to lifelong couples, which persist until
the death of one of the partners. The approach can be adapted to different strategies of couple
formation. Proofs for Section 2 will be given in Section 4 and proofs for Section 3 in Section 5.

Naively speaking, our object of study is the process describing how the number of
individuals SK

t (B × A), with ages in an interval A and types in a set B, evolves as time t ! 0
passes, for large K > 0. Here, K is historically the habitat carrying capacity, more generally
interpretable as a system size parameter. The process is supposed to start from a measure SK

0 ,
the total mass of which is of the order of K, and the evolution of SK

t is governed by birth
and death intensities that depend on individual age and type, population structure, and K. K is
typically large and in this paper is made to increase to infinity.

Throughout this paper, we will use the letter c, with or without subscript, to denote generic
constants, independent of K. The proofs in this paper are compressed for the requirement of
publication; a longer version with more detailed proofs can be found on the arXiv [8].

2. Multi-type population structure dynamics

2.1. The model set-up
The population model is defined as in [9], but with some additional characteristics. It builds

upon the Ulam–Harris family space, with type inherited from mother to child, as described in
[19]. An individual x = x1x2 · · · xn is thought of as the xnth child of · · · of the x2th child of
the x1th ancestor, and

I :=
∞⋃

n=1

Nn

denotes the set of possible individuals. In particular, xj denotes the jth child of individual x.
Each individual x born into the population is characterised by its type, κx, and birth

time, τx, which is recursively defined as the birth time of its mother plus her age at the
bearing of the individual; cf. [14, 18, 19]. Let λx denote the lifespan of x and write σx =
τx + λx for the death time. Then at each time τx " t < τx + λx the individual will be in state
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General, size-dependent populations 1129

sx(t) = (κx, t − τx) ∈K×A=: S. We write K for the set of possible types, assumed to be finite,
and A for the set of possible ages, assumed to be a bounded interval [0, ω] with ω < ∞ denot-
ing the maximal age (following classical demographic notation), which in the present case will
be defined in Section 2.2.

The composition of the population at time t can be represented by the measure

St(di, dv) =
∑

x∈I

1τx!t<σxδ(κx,t−τx)(di, dv), (1)

where δs denotes the Dirac measure at s, assigning unit mass to s. Thus, St is a measure with
unit mass at the state of each individual that is alive at time t. In this section and later we allow
ourselves to suppress writing the dependence upon carrying capacity K and often also upon
time t. We shall denote the set of finite nonnegative measures on S, with its weak topology, by
M(S), or M for short. Thus St ∈M for each t. Here S has the product topology of discrete
and Euclidean topology, of course.

The initial population S0 is assumed to be finite and deterministic. Suppose that bearing
and death times are stochastically given by type-, age-, and population-dependent rates. An
individual of state s in a population composition S gives birth at rate bS(s) until it dies, with
the death intensity being hS(s). At each birth event, a random number ξ̌ i

S(s) of offspring of type
i ∈K is generated, with distribution depending on i, s, and S. Similarly, a random number
ξ̂ i

S(s) of offspring of type i may be born at the death of the mother (splitting) with distribution
depending on i, s, and S. We reiterate that the suffix S represents the population compo-
sition, which could include population size and other aspects of the population structure.
Alternatively, the reproduction process could have been given as an integer-valued random
measure on S, as in [19], disintegrated into a stream of events and a random mass at each
event. The variables ξ̌ i

S(s) then have the Palm distribution, given a birth event at s ∈ S [17, 24].
Those pertaining to the same mother but at different s are also assumed independent.

Remark 1. Indeed, the birth rate pertaining to each individual x with τx < ∞ gives rise to a
point process of bearings by x at ages 0 < α1

x < α2
x < . . . < λx. (For simplicity, we disregard the

possibility of immediate bearing at birth [18]. Births at death (splitting) are handled separately
in this paper.) The random variable

ξ̌ x,i
S

(τx+α
j
x)−

(
κx, αj

x
)
,

which stands for the number of type i children borne by x at time τx + α
j
x, then follows the

distribution of ξ̌ i
S(s), with S = S(τx+α

j
x)− and s = (κx, α

j
x). A corresponding remark is valid for

the number of children generated at death. We shall not enter into the awkward details of
this but refer to the construction in [19]. At the individual level, the construction there is,
however, more general than the present not only through a richer type space but also since
earlier reproduction history may influence the propensity to give birth.

The population model can be described in either of two ways: through the generator of the
process (as in [20] and [22]), or through the evolution equation of the process (as in [9]). Here
we give the second approach; see Section 4.1. Before giving the dynamic equation, we clarify
the concepts of differentiation and integration on S. Derivatives of a function on S refer to the
derivatives with respect to the second, continuous variable, i.e. age. In particular, for f : S→R
and s = (i, v), we write f (j) to mean

f (j)(s) = f (j)(i, v) = ∂ j
vf (i, v),
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1130 J. Y. FAN ET AL.

where ∂
j
v denotes the jth derivative with respect to the variable v. We also use f ′ for f (1). If µ is

a Borel (positive or signed) measure on S, then for f : S→R, we write

(f , µ) =
∫

S
f (s)µ(ds) =

∫

K×A
f (i, v)µ(di × dv) =

∑

i∈K

∫

A
f (i, v)µ({i} × dv).

For nonnegative integers j, we write Cj(S) for the space of functions on S with continuous
derivatives (with respect to the age variable) up to order j. Since we only consider a compact
domain S, functions in Cj(S) are bounded, and so are the j derivatives. We can define the norm

‖ f‖Cj(S) = max
0!ι!j

sup
s∈S

|f (ι)(s)| = max
0!ι!j

sup
i∈K,v∈A

|f (ι)(i, v)|,

and will use ‖·‖C0 and ‖·‖∞ interchangeably.
We write m̌i

S(s) =E[ξ̌ i
S(s)|S], i ∈K, for the expectation of the number of type i progeny at

the birth event in question, given population size and composition, and the individual’s state at
that time. Note that the expectation is that of a random variable having the specified conditional
distribution and that the conditional covariances of the number of children borne by the same
mother at two different bearing events vanish. Similarly, we write

γ̌
i1i2
S (s) =E

[
ξ̌

i1
S (s)ξ̌ i2

S (s)|S
]
, i1, i2 ∈K,

and define m̂i
S(s) and γ̂

i1i2
S (s) for ξ̂ in a similar vein. Then the mean intensity of births of an

individual of state s at time t is
∑

i

m̌i
St

(s)bSt(s) +
∑

i

m̂i
St

(s)hSt(s).

The dynamic equation can be obtained in the form of a semimartingale, similar to that given
in [9] and [22]. For f ∈ C1(S),

(f , St) = (f , S0) +
∫ t

0
(LSuf , Su)du + Mf

t , (2)

where
LSf = f ′ − hSf +

∑

i∈K
f (i, 0)

(
bSm̌i

S + hSm̂i
S

)

and Mf
t is a locally square-integrable martingale with predictable quadratic variation

〈
Mf 〉

t =
∫ t

0

( ∑

i1∈K

∑

i2∈K
f (i1, 0)f (i2, 0)

(
bSu γ̌

i1i2
Su

+ hSu γ̂
i1i2
Su

)

+ hSuf 2 − 2
∑

i∈K
f (i, 0)hSum̂i

Su
f , Su

)
du.

For simplicity of notation, we shall write

ni = bm̌i + hm̂i and wi1i2 = bγ̌ i1i2 + hγ̂ i1i2

from here onwards.
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The differential equation for a specific characteristic of the population can be obtained by
choosing an appropriate test function f (and F). For example, if f = 1, the result is the popu-
lation size; taking f (i, v) = v yields the sum of the ages of the population. It is also possible to
count individuals of a certain type; for instance, taking f (i, v) = 1i=1, we have the size of the
subpopulation of type 1, and similarly the average age of individuals of a type can be obtained.

Remark 2. As is done in [9], the above results can be extended to test functions on S×T,
where T is a time interval [0, T]. Consider test functions f (s, t) ≡ f (i, v, t) on S× T. We shall
write ft(s) to mean f (s, t) and use the two forms of notation interchangeably. For such f , ∂1f
refers to the derivative with respect to the variable s (or v in this case), and ∂2f refers to the
derivative with respect to t. For f ∈ C1,1(S×T),

(
ft, St

)
=

(
f0, S0

)
+

∫ t

0

(
∂1fu + ∂2fu − fuhSu +

∑

i∈K
fu(i, 0)ni

Su
, Su

)
du + Mf

t ,

where Mf
t is a martingale with the predictable quadratic variation

〈
Mf 〉

t =
∫ t

0

( ∑

i1∈K

∑

i2∈K
fu(i1, 0)fu(i2, 0)wi1i2

Su
+ hSuf 2

u

− 2
∑

i∈K
fu(i, 0)hSum̂i

Su
fu, Su

)
du. (3)

Remark 3. Using the same argument as in [9, Section 5.2], we can show that, for f ∈ C0(S),
Mf

t = (f , Mt) with measure

Mt(ds) =
∑

i∈K
δ(i,0)(ds)

(
B̌i((0, t]) −

∫ t

0
(bSum̌i

Su
, Su)du

)

+
∑

i∈K
δ(i,0)(ds)

(
B̂i((0, t]) −

∫ t

0
(hSum̂i

Su
, Su)du

)

−
( ∑

x∈I

δ(κx,λx)(ds)1σx!t −
∫ t

0

∑

x∈I

δ(κx,u−τx)(ds)hSu(s)1τx!u<σxdu
)

.

Considering
∫ t

0 ϕ(u)d(g, Mu) for g ∈ C0(S) and ϕ ∈ C0(T), and using the monotone class theo-
rem (e.g. [6, I.22.1]), we can then show that

∫ t
0 f (·, u), dM̃u) exists for f ∈ C0,0(S× T) and is a

martingale with predictable quadratic variation (3).

2.1.1 Applications: sexual reproduction. A simple application of the stochastic process intro-
duced above, where individual life can be influenced by many factors, such as individual
type and age, population size, and population structure, is to model sexual reproduction. Let
K= {1, 2} ≡ {!,"} with type 1 (denoted by !) representing females (the reproducing type)
and type 2 (denoted by "), representing males, so that bS(", v) = 0 for any S ∈M(S) and
v ∈A; also, for m = m̌, m̂, γ = γ̌ , γ̂ , and i, i1, i2 = !,", mi

S(", v) = γ
i1,i2
S (", v) = 0. Write

m̂i
S(v) = m̂i

S(!, v), ni
S(v) = ni

S(!, v), and wi1i2
S (v) = wi1i2

S (!, v). Taking f (i, v) = f!(v)1i=! in (2)
and writing S!(dv) = S({!}, dv) gives the age structure of the female subpopulation:

(f!, S!t ) = (f!, S!0) +
∫ t

0

(
f ′
! − hSu(!, ·)f! + f!(0)n!Su

, S!u
)
du + M!

t
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with
〈
M!〉

t =
∫ t

0

(
f!(0)2w!!

Su
+ hSu(!, ·)f 2

! − 2f!(0)hSu(!, ·)m̂!
Su

f!, S!u
)
du;

whereas taking f (i, v) = f"(v)1i=" in (2) and writing S"(dv) = S({"}, dv) gives the dynamics
of the male subpopulation:

(f", S"t ) = (f", S"0 ) +
∫ t

0

(
f ′
" − hSu(", ·)f", S"u

)
du + f"(0)

∫ t

0

(
n"Su

, S!u
)
du + M"

t

with
〈
M"〉

t = f"(0)2
∫ t

0

(
w""

Su
, S!u

)
du +

∫ t

0

(
hSu(", ·)f 2

", S"u
)
du.

This approach is different from the so-called bisexual branching process, where individuals
mate to form couples, which then reproduce as in a Galton–Watson-type process in discrete
time. Bisexual branching processes were introduced by Daley [5] and have been studied by
many others (cf. [30] and references therein). A (pseudo-)continuous-time bisexual branching
process was given in [31], with mating supposed to occur at the events of a point process
and individuals borne by couples having independent and identically distributed lifespans. As
opposed to that, our model is individual-based, and females reproduce with an intensity which
may depend on the availability of males, among other things. Sexual reproduction without
couple formation, as in fish, as well as asexual reproduction, can be easily handled within this
framework. Couple formation and sexual reproduction with mating, as in many higher animals,
can be captured, to some extent, by careful choice of rates and offspring distribution.

2.2. The limit theorems
We consider a family of population processes as above, indexed by some parameter

K ! 1, which, as mentioned, arises from the notion of carrying capacity of the habitat and can
often be interpreted as some size where a population tends neither to increase nor to decrease
systematically. However, it need not play such a role, and can be viewed as just a natural sys-
tem scaling parameter, since we consider starting populations whose size is of the order of K.
The purpose is to establish the asymptotic behaviour as K increases, under the assumption that
the dynamics of the population depends on K through the reproduction parameters. For nota-
tional consistency with limits, we write the parameters in the form qK

S/K(s), for q = b, h, m, γ .
The conditions stated for m and γ are to be satisfied by all m̌i, m̂i, γ̌ i1i2 , and γ̂ i1,i2 for any
i, i1, i2 ∈K.

We consider a finite time interval T= [0, T]. Thus, to obtain a bounded age space A, it
suffices to assume that the age of the oldest individual over the family of processes at time 0,
denoted by a∗, is finite:

a∗ := sup
K"1

sup
i∈K

(
inf{v > 0 : SK

0 (i, (v, ∞)) = 0}) < ∞.

Then the age of the oldest individual in the population at time t cannot exceed t + a∗, and we
can take A= [0, ω] with ω = T + a∗ as the age space, and S=K×A as the individual state
space.

Specifically, we establish the law of large numbers and the central limit theorem asso-
ciated with our age and type structure process. For a simple case of sexual reproduction
(cf. Section 2.1.1) the law of large numbers was stated in [22], without proof. Here, we give
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and prove results for more general cases. The law of large numbers is stated in Section 2.2.1
with proof in Section 4.2, and the central limit theorem is stated in Section 2.2.3 with proof in
Section 4.3.

2.2.1 Law of large numbers. Denote by S̄K
t = SK

t /K the density of the population. ‘Density’
here refers to the population size as compared to the carrying capacity. For any f ∈ C1(S) and
t ∈T,

(f , S̄K
t ) = (f , S̄K

0 ) +
∫ t

0

(
LK

S̄K
u

f , S̄K
u

)
du + 1

K
Mf ,K

t , (4)

where
LK

S f = f ′ − hK
S f +

∑

i∈K
f (i, 0)ni,K

S (5)

and Mf ,K
t is a locally square-integrable martingale with predictable quadratic variation

〈
Mf ,K 〉

t =
∫ t

0

( ∑

i1∈K

∑

i2∈K
f (i1, 0)f (i2, 0)wi1i2,K

S̄K
u

+ hK
S̄K

u
f 2 − 2

∑

i∈K
f (i, 0)hK

S̄K
u

m̂i,K
S̄K

u
f , SK

u

)
du.

The next theorem gives the law of large numbers when the population process is demographi-
cally smooth, i.e. satisfies the following conditions:

(C0) The model parameters b, h, m, and γ are uniformly bounded; i.e., for q = b, h, m, γ ,
sup qK

µ(s) < ∞, where the supremum is taken over s ∈ S, K ! 1, and µ ∈M(S).

(C1) The model parameters b, h, and m are normed uniformly Lipschitz in the follow-
ing sense: for q = b, h, m, there exists c > 0 such that for all K ! 1, ‖qK

µ − qK
ν ‖∞ "

c‖µ − ν‖, with ‖µ‖ := sup‖ f ‖∞!1,f continuous |(f , µ)|.
(C2) For q = b, h, m, the sequence qK converges (pointwise in µ and uniformly in s) to

q∞
µ (s) := limK→∞ qK

µ(s).

(C3) S̄K
0 converges weakly to S̄0 and supK (1, S̄K

0 ) < ∞; that is, the process stabilises initially.

Theorem 1. Under the smooth demography conditions (C0)–(C3), the measure-valued pro-
cess S̄K converges weakly in the Skorokhod space D(T,M(S)), as K → ∞, to a deterministic
measure-valued process S̄ satisfying

(f , S̄t) = (f , S̄0) +
∫ t

0

(
L∞

S̄u
f , S̄u

)
du, (6)

where
L∞

S f = f ′ − h∞
S f +

∑

i∈K
f (i, 0)ni,∞

S (7)

for any f ∈ C1(S) and t ∈ T.

2.2.2 Relevant spaces and embeddings. Before stating the central limit theorem, we introduce
the following Sobolev spaces on S and the corresponding duals, where the convergence will
take place. The compactness of the space S allows us to work with classical Sobolev spaces,
instead of the weighted Sobolev spaces as is done by other scholars (e.g. [3, 28, 29]).
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For j ∈N0, let Wj(S) be the closure of C∞(S) with respect to the norm

‖ f‖Wj(S) =
( j∑

ι=0

∑

i∈K

∫

A

(
f (ι)(i, v)

)2dv
)1/2

,

where the f (ι) are the (weak) derivatives of f . In other words, Wj(S) is the set of functions f on
S such that f and its weak derivatives up to order j have a finite L2(S) norm

‖ f‖L2(S) =
( ∑

i∈K

∫

A
f (i, v)2dv

)1/2

.

The space Wj(S) is a Hilbert space. As in [9], we have the following embeddings:

Cj(S) ↪→ Wj(S), Wj+1(S) ↪→ Cj(S), and Wj+1(S) ↪→
H.S.

Wj(S),

where H.S. stands for Hilbert–Schmidt embedding.
In particular, for the dual spaces C−j(S) and W−j(S) of Cj(S) and Wj(S) respectively,

we have
C−0(S) ↪→ C−1(S) ↪→ W−2(S) ↪→ W−3(S) ↪→

H.S.
W−4(S).

The Hilbert–Schmidt embedding plays an important role, since with this, a ball in the smaller
space (W−3) is precompact in the larger space (W−4). This fact renders it possible to prove the
coordinate tightness of the fluctuation process. The other embeddings are required because of
the derivative in the definition of the operator LK

S .
For ease of notation, we will suppress writing (S) for the spaces: we write Wj and Cj to

mean Wj(S) and Cj(S). Further, L∞ denotes the set of all bounded measurable functions on
S=K×A with its natural product sigma-algebra B(S).

2.2.3 Central limit theorem. Let ZK =
√

K
(
S̄K − S̄

)
. Then, for any f ∈ C1 and t ∈T,

(
f , ZK

t
)
=

(
f , ZK

0
)
+

√
K

∫ t

0

(
LK

S̄K
u

f − L∞
S̄u

f , S̄u

)
du +

∫ t

0

(
LK

S̄K
u

f , ZK
u

)
du + M̃f ,K

t , (8)

where LK
S and L∞

S are defined as in (5) and (7), and M̃f ,K
t is a square-integrable martingale with

predictable quadratic variation

〈
M̃f ,K 〉

t =
∫ t

0

( ∑

i1∈K

∑

i2∈K
f (i1, 0)f (i2, 0)wi1i2,K

S̄K
u

+ hK
S̄K

u
f 2 − 2

∑

i∈K
f (i, 0)hK

S̄K
u

m̂i,K
S̄K

u
f , S̄K

u

)
du.

In addition to (C0)–(C3), we impose the following assumptions:

(A0) The conditions (C1) and (C2) hold also for q = γ .

(A1) / := supi,s,S,K ξ̌ i,K
S (s) ∨ supi,s,S,K ξ̂ i,K

S (s) is square-integrable.

(A2) The reproduction parameters bK
S (s), hK

S (s), and mK
S (s) and their limits (in the sense

of (C2)) are in the space C4 (in the argument s) with convergence in C4. Moreover,√
K supµ ‖qK

µ − q∞
µ ‖∞ → 0 as K → ∞, supK,µ ‖qK

µ‖C3 < ∞, and supµ ‖q∞
µ ‖C4 < ∞,

for q = b, h, m.
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(A3) The limiting parameters (seen as functions of S) are Fréchet differentiable at every S.
That is, for q = b, h, m, for every µ, there exists a continuous linear operator
∂Sq∞

µ : W−4 → L∞ such that

lim
‖ν‖W−4 →0

1
‖ν‖W−4

‖q∞
µ+ν − q∞

µ − ∂Sq∞
µ (ν)‖∞ = 0.

Moreover, supµ ‖∂Sq∞
µ ‖L−4 " c, where L−4 = L(W−4, L∞) denotes the space of con-

tinuous linear mappings from W−4 to L∞.

(A4) ZK
0 converges to Z0 in W−4 and supK ‖ZK

0 ‖W−2 < ∞.

The next theorem states that under these conditions the fluctuation process ZK converges.

Theorem 2. Under the assumptions (C0)–(C3) and (A0)–(A4), as K → ∞, the process (ZK
t )t∈T

converges weakly in D(T, W−4) to (Zt)t∈T satisfying, for f ∈ W4 and t ∈ T,

(f , Zt) =(f , Z0) +
∫ t

0

(
− ∂Sh∞

S̄u
(Zu)f +

∑

i∈K
f (i, 0)∂Sni,∞

S̄u
(Zu), S̄u

)
du

+
∫ t

0

(
f ′ − h∞

S̄u
f +

∑

i∈K
f (i, 0)ni,∞

S̄u
, Zu

)
du + M̃f ,∞

t , (9)

where M̃f ,∞
t is a continuous Gaussian martingale with predictable quadratic variation

〈
M̃f ,∞〉

t =
∫ t

0

( ∑

i1∈K

∑

i2∈K
f (i1, 0)f (i2, 0)wi1i2,∞

S̄u
+ h∞

S̄u
f 2 − 2

∑

i∈K
f (i, 0)h∞

S̄u
m̂i,∞

S̄u
f , S̄u

)
du.

For each t, the limit Zt takes value in W−4. Under certain conditions, its expectation
corresponds to a signed measure. This is made precise in the following proposition.

Proposition 1. Suppose that ∂Sh∞
µ (B)(s) is of the form (gh(µ, s, ·), B) where gh(S, s, ·) ∈ W4

with supS,s ‖gh(S, s, ·)‖W4 < ∞, and similarly, ∂Sni,∞
µ (B)(s) is of the form (gn,i(µ, s, ·), B)

where gn,i(S, s, ·) ∈ W4 with supS,s ‖gn,i(S, s, ·)‖W4 < ∞. Then for each t, νt : W4 , f -→
E[(f , Zt)] defines a signed measure on (S,B(S)).

We give the proofs in Section 4: that of Theorem 1 in Section 4.2, that of Theorem 2 in
Section 4.3, and that of Proposition 1 in Section 4.4.

Loosely speaking, the law of large numbers gives the first-order approximation to the
population when it is large; the central limit theorem gives the second-order approximation.
Quantities of interest, such as the population size or the number of individuals of a certain
type within a certain age interval, can be computed simply by choosing the appropriate test
functions. In specific cases, where explicit model parameters are available, more information
can be obtained and inferences can be made from observations.

2.2.4 Applications: sexual reproduction, revisited. We continue from Section 2.1.1, revising
the notation slightly, writing parameters in the form qK

S̄
(s). Suppose that all the conditions

(C0)–(C3) and (A0)–(A4) are satisfied, so that the law of large numbers and the central limit
theorem hold. For example, q may take the form q

(
i, v, (1, S̄), (g, S̄)

)
with g(i, v) = 1i=!. Then

the limiting parameters have the same form, and the Fréchet derivatives are

∂Sq∞
µ (B)(i, v) = ∂3q

(
i, v, (1, µ), (g, µ)

)
(1, B) + ∂4q

(
i, v, (1, µ), (g, µ)

)
(g, B).
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In this case, the conditions on the parameters are satisfied if sup ∂
j
2q(i, x, y, z) < ∞ for

j = 0, 1, . . . , 4, sup ∂3q(i, x, y, z) < ∞, and sup ∂4q(i, x, y, z) < ∞, where the supremum is
taken over all i, x, y, z.

The limiting population density (6) can be decomposed into two equations, for the limiting
female and male measures:

(f!, S̄!t ) = (f!, S̄!0) +
∫ t

0

(
f ′
! − h∞

S̄u
(!, ·)f! + f!(0)n!,∞

S̄u
, S̄!u

)
du;

(f", S̄"t ) = (f", S̄"0 ) +
∫ t

0

(
f ′
" − h∞

S̄u
(", ·)f", S̄"u

)
du + f"(0)

∫ t

0

(
n",∞

S̄u
, S̄!u

)
du.

In the case where these measures have densities (with respect to Lebesgue measure), namely
s!(v, t) for S̄!t and s"(v, t) for S̄"t , the densities resemble the McKendrick–von Foerster
equations, as pointed out in [22]: for #= !,",

( ∂

∂ t
+ ∂

∂v

)
s#(v, t) = −h∞

S̄t
(#, v)s#(v, t), s#(0, t) =

∫ t+a∗

0
n#,∞

S̄t
(v)s!(v, t)dv.

The upper limit in these integrals is due to s!(v, t) = 0 for v > t + a∗.
The fluctuation limit (9) can be decomposed as follows, with Z!(dv) = Z({!}, dv) and

Z"(dv) = Z({"}, dv):

(f!, Z!t ) = (f!, Z!0 ) +
∫ t

0

(
− ∂Sh∞

S̄u
(Zu)(!, ·)f! + f!(0)∂Sn!,∞

S̄u
(Zu), S̄!u

)
du

+
∫ t

0

(
f ′
! − h∞

S̄u
(!, ·)f! + f!(0)n!,∞

S̄u
, Z!u

)
du + M̃!

t ,

where
〈
M̃!〉

t =
∫ t

0

(
f!(0)2w!!,∞

S̄u
+ h∞

S̄u
(!, ·)f 2

! − 2f!(0)h∞
S̄u

(!, ·)m̂!,∞
S̄u

f!, S̄!u
)
du;

and

(f", Z"t ) = (f", Z"0 ) +
∫ t

0

(− ∂Sh∞
S̄u

(Zu)(", ·)f", S̄"u
)
du + f"(0)

∫ t

0

(
∂Sn",∞

S̄u
(Zu), S̄!u

)
du

+
∫ t

0

(
f ′
" − h∞

S̄u
(", ·)f", Z"u

)
du + f"(0)

∫ t

0

(
n",∞

S̄u
, Z!u

)
du + M̃"

t ,

where
〈
M̃"〉

t =
∫ t

0

(
f"(0)2w"",∞

S̄u
, S̄!u

)
du +

∫ t

0

(
h∞

S̄u
(", ·)f 2

", S̄"u
)
du.

The McKendrick–von Foerster equations in their turn may take many special forms in dif-
ferent situations, dependent upon the varying fertilisation, reproduction, and survival patterns,
as well as the role of the carrying-capacity-type parameter. It is, however, important that such
modelling be done in close relationship to the biological circumstances at hand. In this broad
context, we content ourselves with the remark that typically female fertility will increase with
the abundance of males, while mortality on the whole will tend to increase with competition
and, thus, population size. We shall not enter into the intricate details of this, such as different
forms of Allee effects, about which there is a rich literature, e.g. [7] and [11].
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3. Sexual reproduction in the serial monogamy mating system

Our framework has been applied directly to model sexual reproduction in Sections 2.1.1
and 2.2.4. However, in those sections mating was not taken into account. In this section, we
adapt our framework to model a population with serial monogamy. In other words, a female
and a male form a couple either for life or for some period of time, such as a breeding
season.

3.1. The model
Although we do not restrict the model to human populations, for convenience of terminol-

ogy we refer to the formation of a couple as ‘marriage’. Consider a population consisting of
individuals of three types; type 1 (denoted by !) refers to single females, type 2 (denoted by
") refers to single males, and type 3 (denoted by $) refers to ‘married’ couples. An individual
from type ! and an individual from type" can form a couple (get married) and becomes a type
$. A couple lasts for a period of random length interrupted by the death of one of the mates,
at which point the survivor becomes single and available for mating again.

A type $ gives birth at random times to random numbers of type ! and type " offspring.
We assume also the possibility that a type ! may give birth. The lifetime of each individual is
random.

Let % (resp. &) denote the set of all females (resp. males), single or married. Let cx,y denote
the time at which individuals x and y become a couple, cj

x the time of the jth ‘marriage’ of
individual x, and dj

x the time at which x becomes a ‘widow’ from its jth marriage. To accom-
modate the three types in the population, females, males and couples, the notion of age has to
be changed. For couples, it will consist of two quantities, the ages of the two individuals in the
couple. For a single female or male individual, we assign an additional index taking value ∞.
Then the age structures at time t of the three types are given by

S!t (di, dv, dw) =
∑

x∈%
1τx!t!σx

(
1t!c1

x
+ 1d1

x!t!c2
x
+ 1d2

x!t!c3
x
+ · · ·

)
δ(!,t−τx,∞),

S"t (di, dv, dw) =
∑

y∈&
1τy!t!σy

(
1t!c1

y
+ 1d1

y!t!c2
y
+ 1d2

y!t!c3
y
+ · · · )δ(",∞,t−τy),

S$t (di, dv, dw) =
∑

x∈%

∑

y∈&
1τx!t!σx 1τy!t!σy1cx,y!tδ($,t−τx,t−τy),

and the structure of the entire population is St(di, dv, dw) = ∑
i=!,",$ S!t (di, dv, dw).

Let bS(v, w) denote the bearing rate of a couple with a female at age v and a male at age
w, when the population composition is S. At each birth, the number of females and the num-
ber of males born have the distributions ξ

!
S (v, w) and ξ"S (v, w) respectively. Write mi

S(v, w) =
E[ξ i

S(v, w)] and γ
ij
S (v, w) =E[ξ i

S(v, w)ξ j
S(v, w)]. These quantities with w = ∞ correspond to

those of single females.
Let ρS(v, w) be the rate at which a single female of age v and a single male of age w marry

each other. In other words, for x ∈ % and y ∈&, with d0
x := 0 =: d0

y ,

1cx,y!t −
∫ t∧cx,y

0
ρSu(u − τx, u − τy)1τx!u<σx1τy!u<σy

∑

j"0

1dj
x!u!cj+1

x

∑

k"0

1dk
y!u!ck+1

y
du
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is a martingale by compensation. Suppose that marriage lasts for a random length of time
and breaks at rate h$S (v, w), dependent upon the ages of the mates as well as the population
composition.

We write h!S(v, w) (resp. h"S (v, w)) for the death rate of a female (resp. male) when she (resp.
he) is at age v (resp. w) and her (resp. his) partner is at age w (resp. v), when the population
composition is S. For single females and males, the death rates are h!S(v, ∞) and h"S (∞, w),
respectively.

Consider test functions f : K×A ∪ {∞} ×A∪ {∞} →R, with K= {!,",$}, such that
f ($, v, w) = f$(v, w), f (!, v, w) = f (!, v, ∞) = f!(v) and f (", v, w) = f (", ∞, w) = f"(w), for
any v, w ∈A, for some functions f$, f!, and f". For compactness of notation, we denote sim-
ple additions or subtractions of the functions by subscripts. For instance, f!−$(v, w) means
f (!, v, ∞) − f ($, v, w), which arises on widowing when a male partner dies, and f$−!−"(v, w)
means f ($, v, w) − f (!, v, ∞) − f (", ∞, w), which arises in the event of biological coupling.
Assume also that f (i, v, w) is differentiable with respect to v and w, and ∂wf (!, v, ∞) =
∂vf (", ∞, w) = 0.

If µ and ν are measures of the form µ(di, dv, dw) = δ!(di)µ̃(dv)δ∞(dw) and ν(di, dv, dw) =
δ"(di)δ∞(dv)ν̃(dw), then for a function f on A∪ {∞} ×A∪ {∞}, we write (f , µ ⊗ ν) to mean∫ ∫

f (v, w)µ̃(dv)ν̃(dw) ≡ ((f (•, ∗), µ)•, ν)∗. We also write
∑

# to mean
∑

#=!,".
Then S has the following semimartingale representation (see Section 5.1):

(f , St) = (f , S0) +
∫ t

0

(
∂vf + ∂wf , Su

)
du +

∫ t

0

(∑
#f#(0)m#

Su
bSu, S$u + S!u

)
du

−
∫ t

0

∑
#(f#h#Su

, S#u )du +
∫ t

0

(
f"−$h!Su

+ f!−$h"Su
+ f!+"−$h$Su

, S$u
)
du

+
∫ t

0

(
f$−!−"ρSu, S!u ⊗ S"u

)
du + Mf

t , (10)

where Mf is a martingale with predictable quadratic variation

〈
Mf

〉

t
=

∫ t

0

([
f 2
! (0)γ !!

Su
+ f 2

"(0)γ ""
Su

+ 2f!(0)f"(0)γ !"
Su

]
bSu, S$u + S!u

)
du

+
∫ t

0

{∑
#(f 2

#h#Su
, S#u ) + (f 2

"−$h!Su
+ f 2

!−$h"Su
+ f 2

!+"−$h$Su
, S$u )

}
du

+
∫ t

0

(
f 2
$−!−"ρSu, S!u ⊗ S"u

)
du.

Populations, while having complex evolution, follow simple rules, such as those arising from
births, deaths and marriages. Our model captures these. The mathematical model, while
tedious, contains relatively straightforward terms. For example, the third term on the right-
hand side of (10) corresponds to a birth (! or ") by a couple ($) or a single female (!); the
fourth term is due to the death of a single female (!) or a single male ("); the fifth term comes
from widowing ($ becomes " or !) and from separation or divorce of a couple ($ becomes
!+"); the sixth term is due to marriage (!+" becomes$). These can be read off by looking
at the indexing of S, indicating the ‘source’ and the reproduction parameters, together with the

�""�!���%%%����� ������ ���� ��"� �!���""�!�������� ������������ �������

��%��������� ����""�!���%%%����� ������ ���� �������!�����$� !�"&������������������"��������	��!#����"�"��"������ ������ ��"� �!����#!����$���������"



General, size-dependent populations 1139

indexing of f , indicating how the f values are changing. For instance, (f"−$h!Su
, S$u ) accounts

for the death of a female (with rate h!) from a couple (S$), and measures the impact such an
event has on the metric f" − f$.

Considering a family of the population processes indexed by K ! 1 and writing the
reproduction parameters in the form qK

S/K(·), we obtain the asymptotics as K → ∞.

3.2. Law of large numbers
Let S̄K

t = SK
t /K. Then the scaled process satisfies

(f , S̄K
t ) = (f , S̄K

0 ) +
∫ t

0

(
∂vf + ∂wf , S̄K

u
)
du +

∫ t

0

(∑
#f#(0)m#,K

S̄K
u

bK
S̄K

u
, S̄$,K

u + S̄!,Ku
)
du

−
∫ t

0

∑
#(f#h#,K

S̄K
u

, S̄#,Ku )du +
∫ t

0

(
f"−$h!,K

S̄K
u

+ f!−$h",K
S̄K

u
+ f!+"−$h$,K

S̄K
u

, S̄$,K
u

)
du

+
∫ t

0

(
f$−!−"KρK

S̄K
u
, S̄!,Ku ⊗ S̄",K

u
)
du + M̄f ,K

t ,

with

〈
M̄f ,K

〉

t
= 1

K

∫ t

0

{([
f 2
! (0)γ !!,K

S̄K
u

+ f 2
"(0)γ "",K

S̄K
u

+ 2f!(0)f"(0)γ !",K
S̄K

u

]
bK

S̄K
u
, S̄$,K

u + S̄!,Ku
)

+ ∑
#(f 2

#h#,K
S̄K

u
, S̄#,K

u ) +
(
f 2
"−$h!,K

S̄K
u

+ f 2
!−$h",K

S̄K
u

+ f 2
!+"−$h$,K

S̄K
u

, S̄$,K
u

)

+ (
f 2
$−!−"KρK

S̄K
u
, S̄!,Ku ⊗ S̄",K

u
)}

du.

For the convergence of the sequence of processes S̄K , we need conditions like (C0)–(C3),
with conditions on ρ as well:

(C0′) In addition to (C0), KρK is bounded.

(C1′) (C1) holds also for qK being KρK .

(C2′) (C2) holds, and limK→∞ KρK
µ =: ρ∞

µ .

(C3′) Same as (C3).

Theorem 3. Under the smooth demography conditions (C0’)–(C3’), the scaled process S̄K

converges weakly in the Skorokhod space D(T,M(S)), as K → ∞, to a deterministic measure-
valued process S̄ satisfying

(f , S̄t) = (f , S̄0) +
∫ t

0

(
∂vf + ∂wf , S̄u

)
du +

∫ t

0

(∑
#f#(0)m#,∞

S̄u
b∞

S̄u
, S̄$u + S̄!u

)
du

−
∫ t

0

∑
#(f#h#,∞

S̄u
, S̄#u )du +

∫ t

0

(
f"−$h!,∞

S̄u
+ f!−$h",∞

S̄u
+ f!+"−$h$,∞

S̄u
, S̄$u

)
du

+
∫ t

0

(
f$−!−"ρ∞

S̄u
, S̄!u ⊗ S̄"u

)
du. (11)
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From this, we obtain a system of partial differential equations for the age densities of the
three subpopulations. Suppose a!(v, t), a"(w, t), and a$(v, w, t) are the densities (in v and w)
of S̄i

t, i = !,",$, respectively. Then the densities satisfy the following:

∂ta!(v, t) + ∂va!(v, t) = −h!,∞
S̄t

(v, ∞)a!(v, t)

+
∫ (

h",∞
S̄t

(v, w) + h$,∞
S̄t

(v, w)
)
a$(v, w, t)dw −

∫
ρ∞

S̄t
(v, w)a"(w, t)dwa!(v, t),

∂ta"(w, t) + ∂wa"(w, t) = −h",∞
S̄t

(∞, w)a"(w, t)

+
∫ (

h!,∞
S̄t

(v, w) + h$,∞
S̄t

(v, w)
)
a$(v, w, t)dv −

∫
ρ∞

S̄t
(v, w)a!(v, t)dva"(w, t),

∂ta$(v, w, t) + ∂va$(v, w, t) + ∂wa$(v, w, t) =
−

(
h!,∞

S̄t
(v, w) + h",∞

S̄t
(v, w) + h$,∞

S̄t
(v, w)

)
a$(v, w, t) + ρ∞

S̄t
(v, w)a!(v, t)a"(w, t),

with boundary conditions a$(0, w, t) = 0, a$(v, 0, t) = 0, and, for #= !,",

a#(0, t) =
∫ ∫

m#,∞
S̄t

(v, w)b∞
S̄t

(v, w)a$(v, w, t)dvdw +
∫

m#,∞
S̄t

(v, ∞)b∞
S̄t

(v, ∞)a!(v, t)dv.

This is comparable to the system given by Fredrickson in [10].

3.3. Central limit theorem
Let ZK =

√
K(S̄K − S̄). Then, for any f ∈ C1 and t ∈ T,

(f , ZK
t ) = (f , ZK

0 ) +
∫ t

0

(
∂vf + ∂wf , ZK

u
)
du

+
∫ t

0

√
K

(∑
#f#(0)

[
m#,K

S̄K
u

bK
S̄K

u
− m#,∞

S̄u
b∞

S̄u

]
, S̄$u + S̄!u

)
du

+
∫ t

0

(∑
#f#(0)m#,K

S̄K
u

bK
S̄K

u
, Z$,K

u + Z!,Ku

)
du

−
∫ t

0

√
K

∑
#
(
f#

[
h#,K

S̄K
u

− h#,∞
S̄u

]
, S̄#u

)
du −

∫ t

0

∑
#
(
f#h#,K

S̄K
u

, Z#,K
u

)
du

+
∫ t

0

√
K

(
f"−$

[
h!,K

S̄K
u

− h!,∞
S̄u

]
+ f!−$[h",K

S̄K
u

− h",∞
S̄u

] + f!+"−$
[
h$,K

S̄K
u

− h$,∞
S̄u

]
, S̄$u

)
du

+
∫ t

0

(
f"−$h!,K

S̄K
u

+ f!−$h",K
S̄K

u
+ f!+"−$h$,K

S̄K
u

, Z$,K
u

)
du

+
∫ t

0

√
K

(
f$−!−"

[
KρK

S̄K
u

− ρ∞
S̄u

]
, S̄!u ⊗ S̄"u

)
du +

∫ t

0

(
f$−!−"KρK

S̄K
u
, Z!,Ku ⊗ S̄"u

)
du

+
∫ t

0

(
f$−!−"KρK

S̄K
u
, S̄!u ⊗ Z",K

u

)
du + M̃f ,K

t , (12)
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where M̃f ,K
t is a square-integrable martingale with predictable quadratic variation

〈
M̃f ,K

〉

t
=

∫ t

0

([
f 2
! (0)γ !!,K

S̄K
u

+ f 2
"(0)γ "",K

S̄K
u

+ 2f!(0)f"(0)γ !",K
S̄K

u

]
bK

S̄K
u
, S̄$,K

u + S̄!,Ku

)
du

+
∫ t

0

{∑
#
(
f 2
#h#,K

S̄K
u

, S̄#,Ku
) + (

f 2
"−$h!,K

S̄K
u

+ f 2
!−$h",K

S̄K
u

+ f 2
!+"−$h$,K

S̄K
u

, S̄$,K
u

)}
du

+
∫ t

0

(
f 2
$−!−"KρK

S̄K
u
, S̄!,Ku ⊗ S̄",K

u

)
du.

For the central limit theorem, we need to include the additional parameter ρ in conditions
(A0)–(A4):

(A0′) Same as (A0).

(A1′) Same as (A1).

(A2′) In addition to (A2), the same holds for qK being KρK and q∞ being ρ∞.

(A3′) (A3) holds for q = b, h, m, ρ.

(A4′) Same as (A4).

Theorem 4. Under the assumptions (C0′)–(C3′) and (A0′)–(A4′), the process (ZK
t )t∈T

converges weakly in D(T, W−4), as K → ∞, to the process (Zt)t∈T that satisfies, for f ∈ W4

and t ∈ T,

(f , Zt) = (f , Z0) +
∫ t

0

(
∂vf + ∂wf , Zu

)
du +

∫ t

0

(∑
#f#(0)∂S

(
m#,∞

S̄u
b∞

S̄u

)
(Zu), S̄$u + S̄!u

)
du

+
∫ t

0

(∑
#f#(0)m#,∞

S̄u
b∞

S̄u
, Z$u + Z!u

)
du −

∫ t

0

∑
#
(
f#∂Sh#,∞

S̄u
(Zu), S̄#u

)
du −

∫ t

0

∑
#(f#h#,∞

S̄u
, Z#u )du

+
∫ t

0

(
f"−$∂Sh!,∞

S̄u
(Zu) + f!−$∂Sh",∞

S̄u
(Zu) + f!+"−$∂Sh$,∞

S̄u
(Zu), S̄$u

)
du

+
∫ t

0

(
f"−$h!,∞

S̄u
+ f!−$h",∞

S̄u
+ f!+"−$h$,∞

S̄u
, Z$u

)
du

+
∫ t

0

(
f$−!−"∂Sρ

∞
S̄u

(Zu), S̄!u ⊗ S̄"u
)

du

+
∫ t

0

(
f$−!−"ρ∞

S̄u
, Z!u ⊗ S̄"u

)
du +

∫ t

0

(
f$−!−"ρ∞

S̄u
, S̄!u ⊗ Z"u

)
du + M̃f ,∞

t , (13)

where M̃f ,∞ is a continuous Gaussian martingale with predictable quadratic variation

〈
M̃f ,∞

〉

t
=

∫ t

0

([
f 2
! (0)γ !!,∞

S̄u
+ f 2

"(0)γ "",∞
S̄u

+ 2f!(0)f"(0)γ !",∞
S̄u

]
b∞

S̄u
, S̄$u + S̄!u

)
du

+
∫ t

0

{∑
#
(
f 2
#h#,∞

S̄u
, S̄#u

)
+

(
f 2
"−$h!,∞

S̄u
+ f 2

!−$h",∞
S̄u

+ f 2
!+"−$h$,∞

S̄u
, S̄$u

)}
du

+
∫ t

0

(
f 2
$−!−"ρ∞

S̄u
, S̄!u ⊗ S̄"u

)
du.
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4. Proofs for Section 2

The proofs are similar in spirit to those in [9].

4.1. Proofs on the model set-up

Recall the representation of St in (1). We can write (f , St) = ∑
i∈K (f (i, ·), S(i)

t ), with

S(i)
t (dv) = St({i}, dv) =

∑

x∈I

1τx!t<σx1κx=iδt−τx (dv)

being the age structure of the subpopulation of type i individuals. Let

Bi(t) =
∑

x∈I

1κx=i1τx!t

be the number of individuals of type i born by time t, including those that were alive before
time 0, and write Bi((0, t]) = ∫ t

0 Bi(du) = Bi(t) − Bi(0). Let

D((i, v), t) =
∑

x∈I

1κx=i1λx!v1σx!t

be the number of individuals of type i who died by time t and whose lifespan was not greater
than v. Using the single-type equation in [9, Proposition 1] and summing over the types, we
obtain, for f ∈ C1(S),

(f , St) = (f , S0) +
∫ t

0
(f ′, Su)du +

∑

i∈K
f (i, 0)Bi((0, t]) −

∫

S×[0,t]
f (s)D(ds, du). (14)

We then obtain (2) by compensating the last two terms in (14).
For each i,

MB̌i,f (t) := f (i, 0)
(
B̌i((0, t]) −

∫ t

0
(bSum̌i

Su
, Su)du

)

is a martingale with predictable quadratic variation

〈
MB̌i,f

〉
t = f 2(i, 0)

∫ t

0
(bSu γ̌

ii
Su

, Su)du,

with B̌ denoting the number of individuals born through bearings of mothers by time t. We sum
over i to obtain the compensated process

MB̌,f (t) :=
∑

i∈K
f (i, 0)

(
B̌i((0, t]) −

∫ t

0

(
bSum̌i

Su
, Su

)
du

)

as a martingale with the predictable quadratic variation

〈
MB̌,f

〉
t =

∑

i1∈K

∑

i2∈K
f (i1, 0)f (i2, 0)

∫ t

0

(
bSu γ̌

i1i2
Su

, Su
)
du. (15)

Note that [
MB̌i1 ,f , MB̌i2 ,f

]
t =

∑

u!t

1MB̌i1 ,f (u)1MB̌i2,f (u).
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For i1 1= i2, the product of jumps

1MB̌i1 ,f (u)1MB̌i2 ,f (u)

is nonzero precisely when there are births of both types, in which case it is equal to

∑

x∈I

f (i1, 0)f (i2, 0)1σx>u

( ∑

j∈N
1τxj=u1κxj=i1

)( ∑

j∈N
1τxj=u1κxj=i2

)
.

Thus,
〈
MB̌i1 ,f , MB̌i2 ,f

〉
t = f (i1, 0)f (i2, 0)

∫ t

0

(
bSu γ̌

i1,i2
Su

, Su
)
du

is a compensator of
[
MB̌i1 ,f , MB̌i2 ,f

]
t, and since

〈
MB̌,f

〉
t =

∑

i1∈K

∑

i2∈K

〈
MB̌i1 ,f , MB̌i2 ,f

〉
t,

(15) follows. In a similar manner, with B̂ denoting the number of individuals generated through
splitting by time t,

MB̂,f (t) :=
∑

i∈K
f (i, 0)

(
B̂i((0, t]) −

∫ t

0

(
hSum̂i

Su
, Su

)
du

)

is a martingale with

〈
MB̂,f

〉
t =

∑

i1∈K

∑

i2∈K
f (i1, 0)f (i2, 0)

∫ t

0

(
hSu γ̂

i1i2
Su

, Su
)
du,

and MD,f (t) :=
∫
S×[0,t] f (s)D(ds, du) −

∫ t
0 (hSuf , Su)du is a martingale with

〈
MD,f

〉
t =

∫ t

0

(
hSuf 2, Su

)
du.

Now, let Mf
t = MB̌,f (t) + MB̂,f (t) − MD,f (t). Analysing cross-terms and adding them

together, we have, since
〈
MB̌,f , MB̂,f

〉
t = 0 and

〈
MB̌,f , MD,f

〉
t = 0, that

〈
Mf 〉

t =
〈
MB̌,f

〉
t +

〈
MB̂,f

〉
t +

〈
MD,f

〉
t − 2

〈
MB̂,f , MD,f

〉
t

=
∫ t

0

( ∑

i1∈K

∑

i2∈K
f (i1, 0)f (i2, 0)wi1i2

Su
+ hSu f 2 − 2

∑

i∈K
f (i, 0)hSum̂i

Su
f , Su

)
du.

In fact, it can further be shown that, for f , g on S,

〈
Mf , Mg〉

t =
∫ t

0

( ∑

i1∈K

∑

i2∈K
f (i1, 0)g(i2, 0)wi1i2

Su
+ hSu fg

−
∑

i∈K

(
f (i, 0)g + g(i, 0)f

)
hSum̂i

Su
, Su

)
du.
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4.2. Proof of the law of large numbers
This is done by checking the tightness of the scaled sequence S̄K and the uniqueness of the

limiting process. By Jakubowski [23, Theorem 4.6], {S̄K} is tight in D(T,M) if the following
hold:

(J1) For each η > 0, there exists a compact set Cη ∈M such that

lim inf
K→∞

P
(
S̄K

t ∈ Cη ∀t ∈T
)
> 1 − η.

(J2) For each f ∈ C1, {(f , S̄K)} is tight in D(T,R).

In terms of the semimartingale decomposition (f , S̄K
t ) = V̄f ,K

t + M̄f ,K
t , (J2) reduces to the

following Aldous–Rebolledo criteria:

(J2a) For each t ∈T, (f , S̄K
t ) is tight; that is, for each ε > 0, there exists δ > 0 such that for all

K, P
(
|(f , S̄K

t )| > δ
)
< ε.

(J2b) For each ε1, ε2 > 0, there exist δ > 0 and K0 ! 1 such that for every sequence of stopping
times τK " T,

sup
K>K0

sup
ζ<δ

P
(
|V̄f ,K

(τK+ζ )∧T − V̄f ,K
τK | > ε1

)
< ε2, (i)

sup
K>K0

sup
ζ<δ

P
(∣∣〈M̄f ,K 〉

(τK+ζ )∧T −
〈
M̄f ,K 〉

τK

∣∣ > ε1

)
< ε2. (ii)

4.2.1 Preliminary estimates. Recall the operator LK
S defined in (5). Let

L̂K
S f = −hK

S f +
∑

i∈K
f (i, 0)ni,K

S , (16)

so that LK
S f = f ′ + L̂K

S f . Define also the operator 5K
S such that

5K
S f =

∑

i1∈K

∑

i2∈K
f (i1, 0)f (i2, 0)wi1i2,K

S + hK
S f 2 − 2

∑

i∈K
f (i, 0)hK

S m̂i,K
S f ,

so that
〈
Mf ,K 〉

t =
∫ t

0

(
5K

S̄K
u

f , SK
u
)
du.

Proposition 2. Suppose (C0) holds. Then, for any f ∈ C0,

|5K
S f |" c‖ f‖2

C0 and |L̂K
S f |" c‖ f‖C0 ,

and for any f ∈ C1,
|LK

S f |" c‖ f‖C1 .

In particular, |5K
S 1|" c and |LK

S 1| = |L̂K
S 1|" c.

Proof. This is due to the boundedness of the parameters and the definition of ‖ f‖Cj . #
Proposition 3. Suppose (C0) and (C3) hold. Then

E
[(

1, S̄K
t
)]
"

(
1, S̄K

0
)
ect (17)
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and
sup
K"1

E
[

sup
t!T

(
1, S̄K

t
)]

< ∞. (18)

Proof. From (4) and Proposition 2,

(
1, S̄K

t
)
" (1, S̄K

0 ) + c1

∫ t

0
(1, S̄K

u )du + 1
K

M1,K
t . (19)

Taking the expectation and applying Gronwall’s inequality, we establish the first statement.
For the second statement, from (19), taking the supremum and applying (17), followed by

Doob’s inequality and Proposition 2, we arrive at

E
[

sup
t!T

(
1, S̄K

t
)]

" (1, S̄K
0 )(1 + c1ec1TT) + 1√

K
c2(1, S̄K

0 )1/2ec3T T1/2,

which is bounded in K by (C3). #
4.2.2 Tightness of S̄K.
Proposition 4. Assume (C0) and (C3). Then the sequence S̄K is tight in D(T,M).

Proof. First, we show that (J1) holds. From Markov’s inequality and (18), we have
P
(

supt!T
(
1, S̄K

t
)
> δ

)
" c

δ and the existence of δη such that P(supt!T
(
1, S̄K

t
)
> δη) " η. Let

C(δ) = {µ ∈M : (1, µ) " δ}. Then C(δ) is compact and for any η > 0, lim infK→∞ P
(
S̄K

t ∈
C(δη) ∀t ∈ T

)
> 1 − η.

Next, we show that (J2a) and (J2b) hold. The condition (J2a) is immediate from Markov’s
inequality and by using (17). For (J2b), note that Proposition 2 gives

|V̄f ,K
(τK+ζ )∧T − V̄f ,K

τK |" c1‖ f‖C1

∫ ζ

0
(1, S̄K

(τK+u)∧T )du" c1‖ f‖C1δ sup
t!T

(1, S̄K
t ),

and with the same trick,
∣∣〈M̄f ,K 〉

(τK+ζ )∧T −
〈
M̄f ,K 〉

τK

∣∣" c2‖ f‖2
C1δ

1
K

sup
t!T

(1, S̄K
t ).

Taking the expectation in each and using (18), we can establish (J2b)(i) and (J2b)(ii) with
Markov’s inequality. #
Remark 4. From the proof of Proposition 4, we can see that the martingale M̄f ,K = 1

K Mf ,K is
tight for any f ∈ C1. Moreover, it converges to 0 as K tends to infinity, since the predictable
quadratic variation vanishes.

4.2.3 Convergence of S̄K and the limiting process. Tightness implies the existence of a subse-
quence that converges. We now identify the limit of S̄K and show the uniqueness of the limiting
process.

Proposition 5. Suppose (C0)–(C3) hold. Every limit point S of the sequence S̄K satisfies the
equation

(f , St) = (f , S0) +
∫ t

0

(
L∞
Su

f , Su
)
du (20)

for any f ∈ C1 and t ∈T, where L∞
S f is as defined in (7).
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Proof. From Remark 4, the martingale sequence M̄f ,K vanishes as K tends to infinity. Given
this together with the convergence of S̄K

0 by (C3), it remains to show the convergence of

∫ t

0

(
LK

S̄K
u

f , S̄K
u
)
du

to ∫ t

0

(
L∞
Su

f , Su
)
du.

Note that, by (C1) and (C2),

‖hK
S̄K

u
− h∞

Su
‖∞ " ‖hK

S̄K
u

− hK
Su

‖∞ + ‖hK
Su

− h∞
Su

‖∞ → 0,

and similarly for the other model parameters. Thus, ‖LK
S̄K

u
f − L∞

Su
f‖∞ → 0 and

∫ t

0

∣∣(LK
S̄K

u
f − L∞

Su
f , S̄K

u
)∣∣du"

∫ t

0

∣∣∣∣LK
S̄K

u
f − L∞

Su
f
∣∣∣∣

∞
(
1, S̄K

u
)
du → 0

by the dominated convergence theorem and Proposition 3. Note also that, for any f ∈ C1,
|L∞

S f |" ‖ f ′‖∞ + c1‖ f‖∞ " c2‖ f‖C1 . Thus,

∫ t

0

∣∣(L∞
Su

f , S̄K
u − Su

)∣∣du"
∫ t

0
‖L∞

Su
f‖∞‖S̄K

u − Su‖du" c2‖ f‖C1

∫ t

0
‖S̄K

u − Su‖du

vanishes as K → ∞. Hence,
∣∣∣∣

∫ t

0

(
LK

S̄K
u

f , S̄K
u
)
du −

∫ t

0

(
L∞
Su

f , Su
)
du

∣∣∣∣

"
∫ t

0

(∣∣(LK
S̄K

u
f − L∞

Su
f , S̄K

u
)∣∣ +

∣∣(L∞
Su

f , S̄K
u − Su

)∣∣
)

du

converges to zero. #
It remains to show the uniqueness of the solution to (20). To do this, we introduce an

alternative representation to (20).

Proposition 6. For φ ∈ C1, define the shift operator Θ̂r such that for each r ∈T and s = (i, v),
v ∈ [0, ω − r], Θ̂rφ(s) = Θ̂rφ(i, v) = φ(i, v + r) and Θ̂rφ ∈ C0 with ‖Θ̂rφ‖C0 " c‖φ‖C0 . (This
is possible by reflecting φ about v = ω − r, in which case ‖Θ̂rφ‖C0 " ‖φ‖C0 .) Then (20) is
equivalent to the following: for φ ∈ C1,

(φ, St) = (Θ̂tφ, S0) +
∫ t

0

(
− h∞

Su
Θ̂t−uφ +

∑

i∈K
Θ̂t−uφ(i, 0)ni,∞

Su
, Su

)
du. (21)

Proof. This can be shown by writing an equation for (g(·, t), St) with g of the form g(s, t) =
f (s)ϕ(t), where f and ϕ are functions in C1(S) and C1(T) respectively. We then apply the
monotone class theorem to extend it to g ∈ C1,1(S×T). Next, fixing t ∈T and φ ∈ C1(S), we
take g(s, u) = Θ̂t−uφ(s) = φ(i, v + t − u) for s ∈ S and u ∈ [0, t]; (21) follows.

�""�!���%%%����� ������ ���� ��"� �!���""�!�������� ������������ �������

��%��������� ����""�!���%%%����� ������ ���� �������!�����$� !�"&������������������"��������	��!#����"�"��"������ ������ ��"� �!����#!����$���������"



General, size-dependent populations 1147

From (21), we can also recover (20) by noting that Θ̂t−uφ(s) = φ(s) +
∫ t

u Θ̂w−uφ
′(s)dw and

applying Fubini’s theorem. #
Now, we can show the uniqueness of the solution to (20) by showing the uniqueness of the

solution to (21).

Proposition 7. If S1 and S2 both satisfy (21) with S1
0 = S2

0, then S1 = S2.

Proof. Let
L̂∞

S f = −h∞
S f +

∑

i∈K
f (i, 0)ni,∞

S ,

so that (21) becomes

(φ, St) = (Θ̂tφ, S0) +
∫ t

0

(
L̂∞
Su

Θ̂t−uφ, Su
)
du.

We have, for φ ∈ C1,

|(φ, S1
t − S2

t )|"
∫ t

0

∣∣(L̂∞
S1

u
Θ̂t−uφ − L̂∞

S2
u
Θ̂t−uφ, S1

u
)∣∣ +

∣∣(L̂∞
S2

u
Θ̂t−uφ, S1

u − S2
u
)∣∣du

"
∫ t

0
‖L̂∞

S1
u
Θ̂t−uφ − L̂∞

S2
u
Θ̂t−uφ‖∞(1, S1

u) + ‖L̂∞
S2

u
Θ̂t−uφ‖∞‖S1

u − S2
u‖du.

Now, by (C1),

‖h∞
µ − h∞

ν ‖∞ " ‖h∞
µ − hK

µ‖∞ + c1‖µ − ν‖ + ‖hK
ν − h∞

ν ‖∞;

taking the limit as K → ∞ on both sides, we obtain ‖h∞
µ − h∞

ν ‖∞ " c1‖µ − ν‖. A similar
argument applies for other model parameters. Thus, ‖L̂∞

µ f − L̂∞
ν f‖∞ " c2‖ f‖∞‖µ − ν‖. We

also have by (C0) and (C2) that ‖L̂∞
µ f‖∞ " c3‖ f‖∞. Finally, since ‖Θ̂rφ‖C0 " c‖φ‖C0 for any

r ∈T and (1, S1
u) " (1, S1

0)ec6u by Gronwall’s inequality, we have

|(φ, S1
t − S2

t )|"
∫ t

0

(
c4‖φ‖C0 ‖S1

u − S2
u‖(1, S1

u) + c5‖φ‖C0‖S1
u − S2

u‖
)
du

" c7‖φ‖C0
(
1 + (1, S1

0)ec6T) ∫ t

0
‖S1

u − S2
u‖du. (22)

Note that for any φ ∈ C0, there exists a sequence {φn} such that φn ∈ C1 and φn con-
verges uniformly to φ. Thus, (22) holds for any φ ∈ C0, and ‖S1

t − S2
t ‖ = 0 by Gronwall’s

inequality. #
Putting all this together, we have established the convergence of S̄K as stated in Theorem 1.

4.3. Proof of the central limit theorem
This is again done in the classical way, by showing the tightness of ZK and the uniqueness

of the limiting process. ZK is tight in D(T, W−4) if the following conditions are satisfied:

(T1) For every t ∈ T, (ZK
t )K"1 is tight in W−4; that is, for every ε > 0, there exists a compact

set Cε such that P(ZK
t ∈ Cε) > 1 − ε for all K ! 1, or equivalently, P(ZK

t /∈ Cε) " ε for all
K ! 1.
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(T2) Suppose ZK
t = ṼK

t + M̃K
t . For each ε1, ε2 > 0, there exist δ > 0 and K0 ! 1 such that for

every sequence of stopping times τK " T,

(T2a) supK>K0
supζ<δ P(‖ṼK

(τK+ζ )∧T − ṼK
τK ‖W−4 > ε1) < ε2, and

(T2b) supK>K0
supζ<δ P

(∣∣〈〈M̃K 〉〉
(τK+ζ )∧T − 〈〈

M̃K 〉〉
τK

∣∣ > ε1
)
< ε2,

where
〈〈

M̃K
〉〉

is defined so that
(‖M̃K

t ‖2
W−4 − 〈〈

M̃K 〉〉
t

)
t"0

is a martingale.

4.3.1 Alternative representation. We start by giving an alternative representation of ZK
t , which

is used in establishing the convergence of ZK .

Remark 5. As in [9], we take Θrφ as the function on S such that for each r ∈ T and s = (i, v),
v ∈ [0, ω − r], Θrφ(s) = Θrφ(i, v) = φ(i, v + r) and, whenever φ ∈ Wj, then Θrφ ∈ Wj with

‖Θrφ‖Wj " c‖φ‖Wj . (23)

The existence of such a function was proved in [9].

Equation (8) can be extended to test functions dependent on t, that is, for f ∈ C1,1(S×T).
Then, for fixed t, by taking f (s, u) = Θt−uφ(s) for u" t, we have the following equation.

Proposition 8. For φ ∈ C1 and t ∈ T,
(
φ, ZK

t
)
=

(
Θtφ, ZK

0
)

+
√

K
∫ t

0

(
−

(
hK

S̄K
u

− h∞
S̄u

)
Θt−uφ +

∑

i∈K
Θt−uφ(i, 0)

(
ni,K

S̄K
u

− ni,∞
S̄u

)
, S̄u

)
du

+
∫ t

0

(
− hK

S̄K
u
Θt−uφ +

∑

i∈K
Θt−uφ(i, 0)ni,K

S̄K
u
, ZK

u

)
du +

∫ t

0

(
Θt−uφ, dM̃K

u
)
, (24)

where M̃ = 1√
K

M, and M is the measure defined in Remark 3.

Proof. This can be proved by the monotone class theorem in a similar fashion to
Proposition 6; see also [9, Section 5.2]. #
4.3.2 Preliminary estimates. Recall the operator L̂K

S defined in (16) and its limit L̂∞
S .

Proposition 9. Assume (A2) and (A3). Then, for any f ∈ Wj, j ∈N, and t ∈ T,
∣∣∣∣√K

(
L̂K

S̄K
t

− L̂∞
S̄t

)
f
∣∣∣∣

∞ " c
(
1 + ‖ZK

t ‖W−4
)
‖ f‖Wj . (25)

Proof. The triangle inequality and the assumptions give a bound of c(1 + ‖ZK
t ‖W−4) on

√
K‖hK

S̄K
t

− h∞
S̄t

‖∞

and √
K‖ni,K

S̄K
t

− ni,∞
S̄t

‖∞

for any i ∈K; (25) then follows immediately. See also [9, Propositions 16–17]. #
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Notice that the operator LK
S maps a function from Wj to Wj−1, because of the derivative f ’.

We shall write Lj,j′ = L(Wj, Wj′) for the space of linear operators from Wj to Wj′ . Then we
have the following results.

Proposition 10. Suppose (A2) holds. Then we have

sup
K,S

‖L̂K
S ‖Lj,j " c, j " 3; (i)

sup
K,S

‖LK
S ‖Lj,j−1 " c, 2" j " 4. (ii)

Proof. First, note that if f ∈ Cj and g ∈ Wj, then ‖ fg‖Wj " c‖ f‖Cj‖g‖Wj . The triangle
inequality then yields

‖L̂K
S̄K

t
f‖Wj " ‖hK

S̄K
t
‖Cj‖ f‖Wj + ‖ f‖∞

∑

i∈K
‖ni,K

S̄K
t

‖Wj " c1‖ f‖Wj

by (A2) and embedding. Thus, ‖L̂K
S̄K

t
‖Lj,j " c1, and (i) follows. For (ii),

‖LK
S f‖Wj−1 = ‖ f ′‖Wj−1 + ‖L̂K

S f‖Wj−1 " ‖ f‖Wj + c1‖ f‖Wj−1 " c2‖ f‖Wj,

by (i) and again embedding. #
Now, define the operator 8K

t as

8K
t f =

√
K

((
L̂K

S̄K
t

− L̂∞
S̄t

)
f , S̄t

)
+

(
LK

S̄K
t

f , ZK
t
)
.

Then Propositions 9 and 10 imply the following.

Corollary 1. Suppose that (A2) and (A3) hold. Let 2 " j " 4. For t ∈T,

‖8K
t ‖W−j " c1

(
1 + (1, S̄0)ec2t)(1 + ‖ZK

t ‖W−(j−1)
)
.

Proof. By Propositions 9 and 10(ii), we have

|8K
t f |"

(
|
√

K
(
L̂K

S̄K
t

− L̂∞
S̄t

)
f |, S̄t

)
+

∣∣∣∣LK
S̄K

t
f
∣∣∣∣

Wj−1‖ZK
t ‖W−(j−1)

" c1
(
1 + ‖ZK

t ‖W−4
)
‖ f‖Wj(1, S̄t) + c2‖ f‖Wj−1‖ZK

t ‖W−(j−1)

" c3
(
1 + ‖ZK

t ‖W−(j−1)
)
‖ f‖Wj(1, S̄0)ec4t + c2‖ f‖Wj‖ZK

t ‖W−(j−1),

where the last inequality is due to embeddings and the bound (by Gronwall’s inequality)

(1, S̄t) " (1, S̄0)ect. (26)

Rearranging and noting that x " 1 + x for any x completes the proof. #
Now, define the operator 9K

t as

9K
t f =

(
5K

S̄K
t

f , S̄K
t
)

=
( ∑

i1∈K

∑

i2∈K
f (i1, 0)f (i2, 0)wi1i2,K

S̄K
t

+ hK
S̄K

t
f 2 − 2

∑

i∈K
f (i, 0)hK

S̄K
t

m̂i,K
S̄K

t
f , S̄K

t

)
, (27)

and let (pj
l)l"1 be a complete orthonormal basis of Wj.
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Proposition 11. Let j ∈N. Suppose (C0) holds. Then, for t ∈T,

∣∣∣
∑

l"1

9K
t pj

l

∣∣∣" c(1, S̄K
t ), (28)

and for u " t,
∣∣∣
∑

l"1

9K
u Θt−upj

l

∣∣∣" c(1, S̄K
u ). (29)

Proof. First, note that

sup
s1∈S

sup
s2∈S

∣∣∣
∑

l"1

pj
l(s1)pj

l(s2)
∣∣∣" c. (30)

This can be seen by considering the operator Hs : f -→ f (s) on Wj. The Riesz representation
theorem and Parseval’s identity yield ‖Hs‖2

W−j =
∑

l"1 (pj
l(s))2 on the one hand, and |Hsf | =

|f (s)|" ‖ f‖C0 " c1‖ f‖Wj gives ‖Hs‖W−j " c1 on the other hand. Thus,
∑

l"1 (pj
l(s))2 " c2 for

all s ∈ S. Now, for any s1 ∈ S and s2 ∈ S,

∣∣∣
∑

l"1

pj
l(s1)pj

l(s2)
∣∣∣
2
" c3

∣∣∣
∣∣∣
∑

l"1

pj
l(s1)pj

l

∣∣∣
∣∣∣
2

Wj
= c3

∑

l"1

(pj
l(s1))2 " c4.

Thus, (30) follows. By this and (C0), (28) follows immediately from (27).
For (29), observe that by (C0),

∣∣∣
∑

l"1

9K
u Θt−upj

l

∣∣∣" c5

( ∑

i1∈K

∑

i2∈K

∣∣∣
∑

l"1

Θt−upj
l(i1, 0)Θt−upj

l(i2, 0)
∣∣∣

+
∣∣∣
∑

l"1

(Θt−upj
l)

2
∣∣∣ +

∑

i∈K

∣∣∣
∑

l"1

Θt−upj
l(i, 0)Θt−upj

l

∣∣∣, S̄K
u

)
,

and

sup
s1∈K×[0,u+a∗]

sup
s2∈K×[0,u+a∗]

∣∣∣
∑

l"1

Θt−upj
l(s1)Θt−upj

l(s2)
∣∣∣

= sup
i1∈K,w1∈[0,u+a∗]

sup
i2∈K,w2∈[0,u+a∗]

∣∣∣
∑

l"1

pj
l(i1, w1 + t − u)pj

l(i2, w2 + t − u)
∣∣∣

" sup
s1∈K×[t−u,t+a∗]

sup
s2∈K×[t−u,t+a∗]

∣∣∣
∑

l"1

pj
l(s1)pj

l(s2)
∣∣∣,

which is finite by (30). Hence, (29) follows. #
4.3.3 Bounds on the norm of ZK.
Proposition 12.

sup
t!T

sup
K"1

E
[‖ZK

t ‖W−2
]
< ∞.
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Proof. For this, we use the alternative representation of ZK as given in Proposition 8 with
φ ∈ W2. Applying Propositions 9 and 10, then (26) and (23), we arrive at

|(φ, ZK
t )|" c3‖φ‖W2

{
‖ZK

0 ‖W−2 + (1, S̄0)ec4tt

+
(
1 + (1, S̄0)ec4t)

∫ t

0
‖ZK

u ‖W−2du +
∣∣∣
∣∣∣
∫ t

0
Θ∗

t−udM̃K
u

∣∣∣
∣∣∣
W−2

}
,

where we write
∫ t

0 Θ∗
t−udM̃K

u for the operator such that
(

f ,
∫ t

0
Θ∗

t−udM̃K
u

)
=

∫ t

0
(Θt−uf , dM̃K

u ).

This gives an expression for ‖ZK
t ‖W−2 . Furthermore, the Riesz representation theorem and

Parseval’s identity yield, for r " t,

E
[∣∣∣

∣∣∣
∫ r

0
Θ∗

t−udM̃K
u

∣∣∣
∣∣∣
2

W−2

]
=E

[ ∑

l"1

( ∫ r

0

(
Θt−up2

l , dM̃K
u
))2

]
=

∑

l"1

E
[ ∫ r

0
9K

u Θt−up2
l du

]
,

which is bounded by c5(1, S̄K
0 )ec6rr thanks to (29) and (17). Finally, using Gronwall’s

inequality, with (C3) and (A4), we establish the boundedness of E
[
‖ZK

t ‖W−2
]
. #

Proposition 13.
sup
K"1

E
[

sup
t!T

‖ZK
t ‖W−3

]
< ∞.

Proof. This relies on the bound in Proposition 12. From (8), we have for f ∈ W3 that

|(f , ZK
t )|" ‖ f‖W3‖ZK

0 ‖W−3 + c1‖ f‖W3(1, S̄0)ec2t
∫ t

0
(1 + ‖ZK

u ‖W−2 )du

+ c3‖ f‖W3

∫ t

0
‖ZK

u ‖W−2du + ‖ f‖W3‖M̃K
t ‖W−3,

by Propositions 9 and 10, (26), and embedding. This gives a bound on supt!T ‖ZK
t ‖W−3 .

By the Riesz representation theorem and Parseval’s identity again, now along with Doob’s
inequality as well as (28) and (17), we have

E
[

sup
t!T

‖M̃K
t ‖2

W−3

]
=E

[
sup
t!T

∑

l"1

(
M̃

p3
l ,K

t

)2
]
" c5(1, S̄K

0 )ec6TT. (31)

(C3), (A4), and Proposition 12 then complete the proof. #
4.3.4 Tightness of ZK.
Proposition 14. Both the sequences ZK and M̃K are tight in D(T, W−4).

Proof. (T1) follows from Proposition 12. Let

BW−2(R) = {µ ∈ W−2 : ‖µ‖W−2 " R}.
Since W−2 is Hilbert–Schmidt-embedded in W−4, BW−2(R) is compact in W−4. From
Proposition 12, for any ε > 0, there exists R such that P(ZK

t /∈ BW−2(R))" ε for all K ! 1,
since

P(ZK
t /∈ BW−2(R)) = P(‖ZK

t ‖W−2 > R)" 1
R
E
[‖ZK

t ‖W−2
]
.
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For (T2a) and (T2b), we check the stronger conditions established in [9, Theorem 11]: there
exists a K0 ! 1 such that

(T2a′) supK"K0
E
[

supt!T ‖8K
t ‖W−j

]
" cT , and

(T2b′) supK"K0
E
[

supt!T | ∑l"1 9K
t pj

l|
]
" cT ,

where (pj
l)l"1 is a complete orthonormal basis of Wj.

From Corollary 1, we obtain

E
[

sup
t!T

‖8K
t ‖W−4

]
" c1

(
1 + (1, S̄0)ec2T)(

1 +E
[

sup
t!T

‖ZK
t ‖W−3

])
,

and (T2a′) holds as a result of Proposition 13; (T2b′) is a result of (28) and (18).
The tightness of M̃

K
follows from (31) and (T2b′). #

We can further show that ZK and M̃K are C-tight; that is, the two sequences are tight and all
limit points of the sequences are continuous.

Proposition 15. Both the sequences ZK and M̃K are C-tight; all limit points are elements of
C(T, W−4).

Proof. As in [9], for C-tightness of ZK , we show (see e.g. [16, Proposition VI 3.26(iii)])
that, for all u ∈ T and ε > 0,

lim
K→∞

P
(

sup
t!u

‖1ZK
t ‖W−4 > ε

)
= 0.

Note that ZK jumps when SK jumps, which occurs when there is a birth or a death. We have
‖1ZK

t ‖W−4 " c√
K

(1 + /), since for f ∈ W4, by (A1),

|(f , 1ZK
t )|" 1√

K

( ∑

i∈K
sup
s∈S

∣∣ξ̌ i,K
S̄K

t
(s)f (i, 0)

∣∣ +
∑

i∈K
sup
s∈S

∣∣ξ̂ i,K
S̄K

t
(s)f (i, 0) − f (s)

∣∣
)

" c√
K

‖ f‖W4 (1 + /).

Hence,

P
(

sup
t!u

‖1ZK
t ‖W−4 > ε

)
" 1

ε
E
[

sup
t!u

‖1ZK
t ‖W−4

]
" 1

ε

c√
K

(
1 +E[/]

)

converges to zero as K tends to infinity.
Observing that ZK and M̃K have the same discontinuities, i.e. 1ZK

t = 1M̃K
t , we conclude

that M̃K also satisfies the conditions of being C-tight. #
4.3.5 Convergence of M̃K and ZK. We now give the final steps in establishing the convergence
of ZK .

Proposition 16. The sequence M̃K converges weakly to M̃∞ such that for any f ∈ W4, M̃f ,∞
t ≡

(f , M̃∞
t ), t ∈T, is a continuous Gaussian martingale with

〈
M̃f ,∞〉

t =
∫ t

0

( ∑

i1∈K

∑

i2∈K
f (i1, 0)f (i2, 0)wi1i2,∞

S̄u
+ h∞

S̄u
f 2 − 2

∑

i∈K
f (i, 0)h∞

S̄u
m̂i,∞

S̄u
f , S̄u

)
du.

(32)
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Proof. Similarly to [9], this can be achieved by showing that M̃f ,K converges to a continuous
Gaussian martingale M̃f ,∞ with predictable quadratic variation (32). In view of the tightness
of M̃K , M̃K converges to M̃∞. #
Proposition 17. The limiting process Z of the sequence ZK satisfies (9) for any f ∈ W4 and
t ∈T.

Proof. Every limit point Z of the sequence ZK satisfies, for φ ∈ W4 and t ∈ T,

(φ, Zt) = (Θtφ, Z0) +
∫ t

0

(
− ∂Sh∞

S̄u
(Zu)Θt−uφ +

∑

i∈K
Θt−uφ(i, 0)∂Sni,∞

S̄u
(Zu), S̄u

)
du

+
∫ t

0

(
− h∞

S̄u
Θt−uφ +

∑

i∈K
Θt−uφ(i, 0)ni,∞

S̄u
,Zu

)
du +

∫ t

0
(Θt−uφ, dM̃∞

u ). (33)

This can be established by showing the convergence of each and every term of (24).
Furthermore, by showing that if Z1 and Z2 both are solutions to (33) with Z1

0 =Z2
0, then

‖Z1
t −Z2

t ‖W−4 = 0 for t ∈T, we have the uniqueness. Lastly, we note that (33) is equivalent
to (9), which follows from Fubini’s theorem and the fact that Θt−uφ(s) = φ(s) +∫ t

u Θw−uφ
′(s)dw. #

We have thus proved the central limit theorem (Theorem 2).

4.4. Proof of Proposition 1
Proof. Using the representation (33) and noting that E

[∫ t
0 (Θt−uφ, dM̃∞

u )
]
= 0, with

νt : f -→ E[(f , Zt)] we have for φ ∈ W4 that

(φ, νt) = (Θtφ, ν0) +
∫ t

0

(
− (gh

S̄u,∗, νu)Θt−uφ +
∑

i∈K
Θt−uφ(i, 0)(gn,i

S̄u,∗, νu), S̄u

)

∗
du

+
∫ t

0

(
− h∞

S̄u
Θt−uφ +

∑

i∈K
Θt−uφ(i, 0)ni,∞

S̄u
, νu

)
du. (34)

Thus, under the assumptions in the statement and (A2),

‖νt‖W−4 " ‖ν0‖W−4 + c1
(
1 + (1, S̄0)ec2t)

∫ t

0
‖νu‖W−4du.

Gronwall’s inequality then gives

‖νt‖W−4 " ‖ν0‖W−4ec1

(
1+(1,S̄0)ec2T

)
T .

Now, let (φm)m be a sequence of functions in C∞ converging to φ ∈ C0. By the domi-
nated convergence theorem, each term in (34) with φm converges. Thus, (34) holds for φ ∈ C0.
Moreover, νt is a bounded linear operator. Therefore, νt ∈ C−0; in other words, νt defines a
signed measure. #

5. Proofs for Section 3

5.1. Semimartingale representation of the serial monogamy mating system
To obtain an equation for the population structure in the serial monogamy mating system,

we need to define a few more terms. Let R(v, w, t) be the number of marriages by time t between
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females at ages not greater than v and males at ages not greater than w. Let Q−!(v, w, t) (resp.
Q−"(v, w, t)) be the number of cases by time t in which female (resp. male) partners have died
at ages not greater than v when their male (resp. female) partners were at ages not greater than
w, and let Q−$(v, w, t) count the number of events by time t in which couples have separated
while both of the mates were alive and with ages not greater than v and w. We also let D!(v, t)
(resp. D"(v, t)) be the number of single females (resp. males) who have died by time t at ages
not greater that v, and we let B!(t) (resp. B"(t)) be the number of females (resp. males) born
by time t. Then, for test functions f as specified in Section 3.1, we have

(f!, S!t ) = (f!, S!0) +
∫ t

0
(∂vf!, S!u)du + f!(0)B!((0, t]) −

∫

A×[0,t]
f!(v)D!(dv, du)

+
∫

A×A×[0,t]
f!(v)Q−"(dv, dw, du) +

∫

A×A×[0,t]
f!(v)Q−$(dv, dw, du)

−
∫

A×A×[0,t]
f!(v)R(dv, dw, du),

(f", S"t ) = (f", S"0 ) +
∫ t

0
(∂wf", S"u )du + f"(0)B"((0, t]) −

∫

A×[0,t]
f"(w)D"(dw, du)

+
∫

A×A×[0,t]
f"(w)Q−!(dv, dw, du) +

∫

A×A×[0,t]
f"(w)Q−$(dv, dw, du)

−
∫

A×A×[0,t]
f"(w)R(dv, dw, du),

(f$, S$t ) = (f$, S$0 ) +
∫ t

0
(∂vf$ + ∂wf$, S$u )du −

∫

A×A×[0,t]
f$(v, w)Q−!(dv, dw, du)

−
∫

A×A×[0,t]
f$(v, w)Q−"(dv, dw, du) −

∫

A×A×[0,t]
f$(v, w)Q−$(dv, dw, du)

+
∫

A×A×[0,t]
f$(v, w)R(dv, dw, du).

Compensating the birth, death, and marriage terms, we obtain a semimartingale representation
for each of the three types, which can be combined and written as (10). In particular, the
following processes are local martingales:

Bi((0, t]) −
∫ t

0
(bmi, S$u + S!u)du,

∫

A×[0,t]
g(v)Di(dv, du) −

∫ t

0
(ghi, Si

u)du,

∫

A×A×[0,t]
g(v, w)R(dv, dw, du) −

∫ t

0
(gρ, S!u ⊗ S"u )du,

∫

A×A×[0,t]
g(v, w)Q−i(dv, dw, du) −

∫ t

0
(ghi, S$u )du.

The predictable quadratic variation of the martingale can also be obtained in the usual way as
in Section 4.1.
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5.2. Total population size in the serial monogamy mating system
Before we proceed to establish the convergence of {S̄K

t }, we first consider the total popu-
lation size, by taking the test function f (i, v, w) = 1!(i) + 1"(i) + 21$(i). This gives a simple
dynamics equation that can be easily analysed and controlled, the results of which will be
useful in establishing the tightness of {S̄K

t }.
With a slight abuse of notation, write Xt = (1! + 1" + 21$, St) and X̄K

t = XK
t /K. Note that

we have

X̄K
t = X̄K

0 +
∫ t

0

(∑
#m#,K

S̄K
u

bK
S̄K

u
, S̄$,K

u + S̄!,Ku

)
du

−
∫ t

0

{∑
#
(
h#,K

S̄K
u

, S̄#,Ku
) + (∑

#h#,K
S̄K

u
, S̄$,K

u
)}

du + M̄X,K
t , (35)

with

〈
M̄X,K 〉

t =
∫ t

0

1
K

([
γ
!!,K
S̄K

u
+ γ "",K

S̄K
u

+ 2γ
!",K
S̄K

u

]
bK

S̄K
u
, S̄$,K

u + S̄!,Ku

)
du

+
∫ t

0

1
K

{∑
#
(
h#,K

S̄K
u

, S̄#,Ku
) + (∑

#h#,K
S̄K

u
, S̄$,K

u
)}

du.

Since the reproduction parameters are bounded, by Gronwall’s inequality, we haveE[X̄K
t ]"

X̄K
0 ect and thus supK E[X̄K

t ] < ∞. In fact, we can further show that

sup
K

E
[

sup
t∈T

X̄K
t

]
< ∞. (36)

From (35), noticing that (1, S̄K
u ) " X̄K

u , we have

E
[

sup
t∈T

X̄K
t

]
" X̄K

0 + c1

∫ T

0
E
[
X̄K

u
]
du +E

[
sup
t∈T

M̄X,K
t

]
.

Dealing with the last term by Jensen’s and Doob’s inequalities, together with the bound on
E[X̄K

u ], we obtain (36).

In a similar way, we can bound E[(X̄K
t )2] and show that supK E

[
supt∈T (X̄K

t )2
]

< ∞.

5.3. Proof of the law of large numbers (serial monogamy mating system)

Proposition 18. The sequence {S̄K
t } is tight in D(T,M).

Proof. The tightness is obtained by establishing (J1) and (J2). By Markov’s inequality and
(36), for each η, there exists δη such that P( supt∈T

(
1, S̄K

t
)
> δη) " η. Therefore (J1) holds with

the compact set C(δη) = {µ ∈M : (1, µ) " δη}.
For (J2a), we have from the semimartingale representation of (f , S̄K

t ) that

E
[
(f , S̄K

t )
]
" c1‖ f‖C1,1

{
(1, S̄K

0 ) +
∫ t

0

(
E
[
(1, S̄K

u )
]
+E

[
(1, S̄K

u )2]
)

du +E
[
|M̄f ,K

t |
]}

and

E
[|M̄f ,K

t |]2 "E
[〈

M̄f ,K 〉
t

]
" c2‖ f‖2

C1,1
1
K

∫ t

0

(
E
[
(1, S̄K

u )
] +E

[
(1, S̄K

u )2]
)

du.
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Notice also that E
[
(1, S̄K

u )
]
+E

[
(1, S̄K

u )2]"E
[
X̄K

u
]
+E

[
(X̄K

u )2]" cT from the previous sec-
tion. (J2a) then follows by Markov’s inequality.

Now, let ζ " δ and let τK be a sequence of stopping times bounded by T. As in Section 4.2
we define V̄ by the decomposition (f , S̄K

t ) = V̄f ,K
t + M̄f ,K

t . We have

E
[
|V̄f ,K

(τK+ζ )∧T − V̄f ,K
τK |

]
" c3‖ f‖C1,1E

[ ∫ (τK+ζ )∧T

τK

(
(1, S̄K

u ) + (1, S̄K
u )2)du

]
,

and in a similar fashion as in the proof of Proposition 4,

E
[ ∫ (τK+ζ )∧T

τK

(
(1, S̄K

u ) + (1, S̄K
u )2)du

]
"

∫ ζ

0

(
E
[

sup
r!T

(1, S̄K
r )

]
+E

[
sup
r!T

(1, S̄K
r )2

])
du

"
∫ ζ

0

(
E
[

sup
r!T

X̄K
r

]
+E

[
sup
r!T

(X̄K
r )2

])
du " cTδ,

where the last inequality follows from the results in the previous section. Similarly,

E
[
|
〈
M̄f ,K 〉

(τK+ζ )∧T −
〈
M̄f ,K 〉

τK |
]

" c4‖ f‖2
C1,1

1
K
E
[ ∫ (τK+ζ )∧T

τK

(
(1, S̄K

u ) + (1, S̄K
u )2)du

]
" c′

Tδ
1
K

‖ f‖2
C1,1 .

(J2b) thus follows by Markov’s inequality. #
We see also that the martingale M̄f ,K converges to 0, since its predictable quadratic variation

vanishes.

Proof of Theorem 3––law of large numbers. Suppose that S is a limit point of S̄K . Note that
for any bounded function f and reproduction parameter q = h!, h", h$, bm!, bm",

|(fqK
S̄K

u
, S̄K

u ) − (fq∞
Su

, Su)|" |(f (qK
S̄K

u
− q∞

Su
), S̄K

u )| + |(fq∞
Su

, S̄K
u − Su)|

" ‖ f‖∞‖qK
S̄K

u
− q∞

Su
‖∞(1, S̄K

u ) + ‖ f‖∞‖q∞
Su

‖∞‖S̄K
u − Su‖ (37)

converges to zero as in the proof of Proposition 5, thanks to (C1′) and (C2′). Similarly,

∣∣(gKρK
S̄K

u
, S̄!,Ku ⊗ S̄",K

u
)
−

(
gρ∞

Su
, S!u ⊗ S"u

)∣∣

"
∣∣(gKρK

S̄K
u
, S̄!,Ku ⊗ S̄",K

u
)
−

(
gρ∞

Su
, S̄!,Ku ⊗ S̄",K

u
)∣∣

+
∣∣(gρ∞

Su
, S̄!,Ku ⊗ S̄",K

u
)
−

(
gρ∞

Su
, S!u ⊗ S̄",K

u
)∣∣

+
∣∣(gρ∞

Su
, S!u ⊗ S̄",K

u
)
−

(
gρ∞

Su
, S!u ⊗ S"u

)∣∣

" ‖g‖∞‖KρK
S̄K

u
− ρ∞

Su
‖∞(1, S̄K

u )2 + ‖g‖∞‖ρ∞
Su

‖∞‖S̄K
u − Su‖(1, S̄K

u )

+ ‖g‖∞‖ρ∞
Su

‖∞(1, Su)‖S̄K
u − Su‖,

which can be shown to vanish as K → ∞. Thus the limit point of S̄K satisfies (11).
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It remains to show that the limit is unique. This is done by considering (11) with test func-
tions depending also on time, f (i, v, w, t). Now, fix t ∈T, and for u" t, take f of the form
f (i, v, w, u) = φ(i, v + t − u, w + t − u) = :̂t−uφ(i, v, w) as in Proposition 6. Then S is shown
to satisfy the following equation:

(φ, St) = (:̂tφ, S0) +
∫ t

0

(∑
#:̂t−uφ#(0)m#,∞

Su
b∞
Su

, S$u + S!u

)
du −

∫ t

0

∑
#
(
:̂t−uφ#h#,∞Su

, S#u
)
du

+
∫ t

0

(
:̂t−uφ"−$h!,∞Su

+ :̂t−uφ!−$h",∞
Su

+ :̂t−uφ!+"−$h$,∞
Su

, S$u

)
du

+
∫ t

0

(
:̂t−uφ$−!−"ρ∞

Su
, S!u ⊗ S"u

)
du. (38)

The uniqueness of the limit is then proved by considering processes S1 and S2 that are both
solutions to (38) with the same initial point S1

0 = S2
0, and showing that |(φ, S1

t − S2
t )| is bounded

by cT‖φ‖∞‖S1
u − S2

u‖; then S1 = S2 by Gronwall’s inequality. #

5.4. Proof of the central limit theorem (serial monogamy mating system)
The mechanism in proving the central limit theorem in this serial monogamy mating system

would be slightly different from that in Section 4.3 because of the iterative bracket coming from
the coupling. To overcome the issue arising from the coupling, we need the stopping times

τK
N = inf{t ∈ T : X̄K

t > N}. (39)

As before, we obtain an alternative representation equation for ZK . This is done by extend-
ing (12) to accommodate a test function depending on time, and then, with fixed t, taking
f (i, v, w, u) = φ(i, v + t − u, w + t − u) = :t−uφ(i, v, w) for u " t and φ ∈ W−4 as in 5. We
then have

(φ, ZK
t ) = (:tφ, ZK

0 ) +
∫ t

0

√
K

(∑
#:t−uφ#(0)[m#,K

S̄K
u

bK
S̄K

u
− m#,∞

S̄u
b∞

S̄u
], S̄$u + S̄!u

)
du

+
∫ t

0

(∑
#:t−uφ#(0)m#,K

S̄K
u

bK
S̄K

u
, Z$,K

u + Z!,Ku

)
du

−
∫ t

0

√
K

∑
#
(
:t−uφ#[h#,K

S̄K
u

− h#,∞
S̄u

], S̄#u
)
du −

∫ t

0

∑
#
(
:t−uφ#h#,K

S̄K
u

, Z#,K
u

)
du

+
∫ t

0

√
K

(
:t−uφ"−$[h!,K

S̄K
u

− h!,∞
S̄u

] + :t−uφ!−$[h",K
S̄K

u
− h",∞

S̄u
]

+ :t−uφ!+"−$[h$,K
S̄K

u
− h$,∞

S̄u
], S̄$u

)
du

+
∫ t

0

(
:t−uφ"−$h!,K

S̄K
u

+ :t−uφ!−$h",K
S̄K

u
+ :t−uφ!+"−$h$,K

S̄K
u

, Z$,K
u

)
du

+
∫ t

0

√
K

(
:t−uφ$−!−"[KρK

S̄K
u

− ρ∞
S̄u

], S̄!u ⊗ S̄"u
)

du

+
∫ t

0

(
:t−uφ$−!−"KρK

S̄K
u
, Z!,Ku ⊗ S̄"u

)
du

+
∫ t

0

(
:t−uφ$−!−"KρK

S̄K
u
, S̄!u ⊗ Z",K

u

)
du +

∫ t

0

(
:t−uφ, dM̃K

u
)
, (40)
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where M̃ is the measure such that (f , M̃K
t ) = M̃f ,K

t . This representation helps establish the next
result, which is in turn used in proving the tightness of ZK .

Proposition 19. For any ε > 0, there exists R > 0 such that for all K,

P(‖ZK
t ‖W−2 > R) " ε.

Proof. Let N > supt∈T X̄∞
t , where X̄∞

t = (1! + 1" + 21$, S̄t). With τK
N as in (39),

P(‖ZK
t ‖W−2 > R) = P(‖ZK

t ‖W−2 > R, τK
N > T) + P(‖ZK

t ‖W−2 > R, τK
N " T)

" 1
R
E[‖ZK

t ‖W−21τK
N >T ] + P(τK

N " T). (41)

Observe that

P(τK
N " T) = P

(
sup
t!T

X̄K
t > N

)
" 1

N
E
[

sup
t!T

X̄K
t

]
;

therefore, by (36), for any ε, there exists N such that P(τK
N " T) " ε/2 for all K.

For the first term in (41), we proceed from the representation in (40). For φ ∈ W2, as
‖:rφ‖W2 " c‖φ‖W2 for r ∈T, we have the following:

• |(:tφ, ZK
0 )|" ‖:tφ‖W2‖ZK

0 ‖W−2 " c‖φ‖W2‖ZK
0 ‖W−2 ,

•
√

K
∣∣(:t−uφ(qK

S̄K
u

− q∞
S̄u

), S̄u
)∣∣" ‖:tφ‖∞‖

√
K(qK

S̄K
u

− q∞
S̄u

)‖∞(1, S̄u)

" c‖φ‖W2 (1 + ‖ZK
u ‖W−4 ) " c′‖φ‖W2 (1 + ‖ZK

u ‖W−2 ),

•
∣∣(:t−uφqK

S̄K
u
, ZK

u
)∣∣" ‖:t−uφ‖W2‖qK

S̄K
u
‖C2‖ZK

u ‖W−2 " c‖φ‖W2‖ZK
u ‖W−2 ,

•
√

K
∣∣(:t−uφ$−!−"(KρK

S̄K
u

− ρ∞
S̄u

), S̄!u ⊗ S̄"u
)∣∣" c‖φ‖W2 (1 + ‖ZK

u ‖W−4 )(1, S̄u)2

" c′‖φ‖W2 (1 + ‖ZK
u ‖W−2 )|,

•
∣∣(:t−uφ$−!−"KρK

S̄K
u
, Z!,Ku ⊗ S̄"u

)∣∣" c‖:tφ‖W2‖KρK
S̄K

u
‖C2‖ZK

u ‖W−2(1, S̄u)

" c′‖φ‖W2‖ZK
u ‖W−2 ,

•
∣∣(:t−uφ$−!−"KρK

S̄K
u
, S̄!,Ku ⊗ Z",K

u
)∣∣ =

∣∣(:t−uφ$−!−"KρK
S̄K

u
, Z",K

u ⊗ S̄!,Ku
)∣∣

" c‖φ‖W2‖ZK
u ‖W−2 (1, S̄K

u ),

•
∫ t

0 (:t−uφ, dM̃K
u ) " ‖φ‖W2

∣∣∣∣ ∫ t
0 :∗

t−udM̃K
u

∣∣∣∣
W−2 ,

where
∫ t

0 :∗
t−udM̃K

u is defined by

(
f ,

∫ t

0
:∗

t−udM̃K
u

)
=

∫ t

0
(:t−uf , dM̃K

u ).

Therefore,

‖ZK
t ‖W−2 " c

(
‖ZK

0 ‖W−2 +
∫ t

0

(
1 + ‖ZK

u ‖W−2
(
1 + (1, S̄K

u )
))

du
)

+
∣∣∣
∣∣∣
∫ t

0
:∗

t−udM̃K
u

∣∣∣
∣∣∣
W−2

.
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Multiplying this by 1τK
N >T and taking expectations, we obtain

E
[
‖ZK

t ‖W−21τK
N >T

]
" c2

(
‖ZK

0 ‖W−2 + t + (1 + N)
∫ t

0
E
[
‖ZK

u ‖W−21τK
N >T

]
du

)

+E
[∣∣∣

∣∣∣
∫ t

0
:∗

t−udM̃K
u

∣∣∣
∣∣∣
W−2

]
,

as (1, S̄K
u ) " X̄K

u , which is less than N on the set {τK
N > T}. The martingale term is also bounded,

since, using (30) and the results in Section 5.2, for r " t we have

E
[∣∣∣∣

∫ r

0
:∗

t−udM̃K
u

∣∣∣∣2
W−2

]
=E

[ ∑

l"1

( ∫ r

0
(:t−up2

l , dM̃K
u )

)2
]

"
∑

l"1

E
[〈 ∫ ·

0
(:t−up2

l , dM̃K
u )

〉

r

]
"E

[
c
∫ r

0

(
(1, S̄K

u ) + (1, S̄K
u )2)du

]
" cT

(recall that(pj
l)l"1 denote a complete orthonormal basis of Wj). Hence,

E[‖ZK
t ‖W−21τK

N >T ] " c3

(
‖ZK

0 ‖W−2 + T + (1 + N)
∫ t

0
E
[‖ZK

u ‖W−21τK
N >T

]
du + 1

)
,

and by Gronwall’s inequality,

E[‖ZK
t ‖W−21τK

N >T ] " c3
(‖ZK

0 ‖W−2 + T + 1
)
ec3(1+N)T " cT (N). (42)

Thus, for any ε and N, there exists R such that

1
R
E[‖ZK

t ‖W−21τK
N >T ] " ε/2

for all K. #
The assertion then follows.

Proposition 20. Let N > supt∈T X̄∞
t , where X̄∞

t = (1! + 1" + 21$, S̄t), and let τK
N be as in

(39). Then
E
[

sup
t∈T

‖ZK
t ‖W−31τK

N >T

]
" cT (N).

Proof. Let f ∈ W3. From (12), take the absolute value and bound each term on the right-hand
side, similarly as in Proposition 19. With the inclusions of the spaces W−2 ↪→ W−3 ↪→ W−4

and the boundedness of the model parameters, we have

|(f , ZK
t )|" ‖ f‖W3

(
‖ZK

0 ‖W−3 + c1

∫ t

0

(
1 + ‖ZK

u ‖W−2
(
1 + (1, S̄K

u )
))

du + ‖M̃K
t ‖W−3

)
.

This gives a bound on ‖ZK
t ‖W−3 , and it follows that

E
[

sup
t∈T

‖ZK
t ‖W−31τK

N >T

]
" ‖ZK

0 ‖W−3

+ c1

(
T + (1 + N)

∫ T

0
E
[
‖ZK

u ‖W−21τK
N >T

]
du

)
+E

[
sup
t∈T

‖M̃K
t ‖W−3

]
.
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The assertion then follows using (42) and the fact that

E
[

sup
t∈T

‖M̃K
t ‖W−3

]
=E

[
sup
t∈T

∑

l"1

(M̃
p3

l ,K
t )2

]
"

∑

l"1

E
[

sup
t∈T

(M̃
p3

l ,K
t )2

]

" 4
∑

l"1

E
[〈

M̃p3
l ,K

〉
T

]
" c

∫ T

0
E
[
(1, S̄K

u ) + (1, S̄K
u )2]du" cT . #

Proposition 21. The sequence ZK is tight in D(T, W−4).

Proof. To prove tightness, we show (T1) and (T2). In a similar way as in Proposition 14,
(T1) follows from Proposition 19.

For (T2a), observe that

P
(
‖ṼK

(τK+ζ )∧T − ṼK
τK ‖W−4 > ε1

)
" P

(
‖ṼK

(τK+ζ )∧T − ṼK
τK ‖W−4 > ε1, τK

N > T
)
+ P(τK

N " T).

As shown in the proof of Proposition 19, for any ε2, there exists N such that P(τK
N " T) < ε2/2.

Using similar techniques as before, we can also show that

E
[
‖ṼK

(τK+ζ )∧T − ṼK
τK ‖W−41τK

N >T

]
" c

(
ζ + (1 + N)E

[ ∫ ζ

0
‖ZK

(τK+u)∧T‖W−3du1τK
N >T

])

" c
(

ζ + (1 + N)
∫ ζ

0
E
[

sup
u!T

‖ZK
u ‖W−31τK

N >T

]
du

)
,

which is bounded by cT (N)δ thanks to Proposition 20. Therefore, by Markov’s inequality,

P(‖ṼK
(τK+ζ )∧T − ṼK

τK ‖W−4 > ε1, τK
N > T) " cT (N)δ

ε1
,

and for any ε1, ε2, and N, there exists δ such that the probability does not exceed ε2/2. (T2a)
thus follows.

Now,

‖M̃K
t ‖2

W−4 =
∑

l"1

(M̃
p4

l ,K
t )2

and 〈〈
M̃K 〉〉

t =
∑

l"1

〈
M̃p4

l ,K 〉
t,

so

E
[∣∣〈〈M̃K 〉〉

(τK+ζ )∧T −
〈〈

M̃K 〉〉
τK

∣∣] =E
[∣∣∣∣

∑

l"1

〈
M̃p4

l ,K
〉
(τK+ζ )∧T −

∑

l"1

〈
M̃p4

l ,K
〉
τK

∣∣∣∣

]

"E
[

c
∫ (τK+ζ )∧T

τK

(
(1, S̄K

u ) + (1, S̄K
u )2)du

]
" cδ

(
E
[

sup
u!T

(1, S̄K
u )

]
+E

[
sup
u!T

(1, S̄K
u )2

])
,

which is bounded by cTδ. Markov’s inequality then gives (T2b). #
Proposition 22. ZK and M̃K are C-tight; that is, all limit points of ZK and M̃K are in
C(T, W−4).
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Proof. Note that ZK jumps when SK jumps, which happens when there is an event associated
with birth, death, or marriage. Let f ∈ W4. Then, assuming that the number of offspring is
bounded by / which has finite mean and variance,

|(f , 1ZK
t )| = 1√

K
|(f , SK

t − SK
t−)|

" 1√
K

(
|f (1, 0, ∞)|/ + |f (2, ∞, 0)|/ + sup

v
|f (1, v, ∞)| + sup

w
|f (2, ∞, w)| + sup

v,w
|f (3, v, w)|

)

" 1√
K

c‖ f‖∞(1 + /),

and E
[

supt!u ‖1ZK
t ‖W−4

]
" c√

K
(1 +E[/]). It follows that, for any u and ε > 0,

P
(

sup
t!u

‖1ZK
t ‖W−4 > ε

)
" c

ε
√

K
(1 +E[/]),

which converges to zero as K tends to infinity. This, together with the tightness of ZK , shows
that the sequence is C-tight (see e.g. [16, Proposition VI.3.26]).

Similarly, M̃K is C-tight, since M̃K has the same jumps as ZK . #
Proposition 23. M̃K converges in D(T, W−4) to M̃∞, defined so that for each f ∈ W4,
(f , M̃∞) = M̃f ,∞ is a martingale with predictable quadratic variation (32).

Proof. See proof of Proposition 16. #
Finally, Theorem 4 can be proved.

Proof of Theorem 4. Every limit point Z of ZK satisfies, for φ ∈ W4,

(φ,Zt) = (:tφ, Z0) +
∫ t

0

(∑
#:t−uφ#(0)∂S(m#,∞

S̄u
b∞

S̄u
)(Zu), S̄$u + S̄!u

)
du

+
∫ t

0

(∑
#:t−uφ#(0)m#,∞

S̄u
b∞

S̄u
,Z$u +Z!u

)
du

−
∫ t

0

∑
#
(
:t−uφ#∂Sh#,∞

S̄u
(Zu), S̄#u

)
du −

∫ t

0

∑
#
(
:t−uφ#h#,∞

S̄u
,Z#u

)
du

+
∫ t

0

(
:t−uφ"−$∂Sh!,∞

S̄u
(Zu) + :t−uφ!−$∂Sh",∞

S̄u
(Zu)

+ :t−uφ!+"−$∂Sh$,∞
S̄u

(Zu), S̄$u
)

du

+
∫ t

0

(
:t−uφ"−$h!,∞

S̄u
+ :t−uφ!−$h",∞

S̄u
+ :t−uφ!+"−$h$,∞

S̄u
, Z$u

)
du

+
∫ t

0

(
:t−uφ$−!−"∂Sρ

∞
S̄u

(Zu), S̄!u ⊗ S̄"u
)

du +
∫ t

0

(
:t−uφ$−!−"ρ∞

S̄u
, Z!u ⊗ S̄"u

)
du

+
∫ t

0

(
:t−uφ$−!−"ρ∞

S̄u
, S̄!u ⊗Z"u

)
du +

∫ t

0
(:t−uφ, dM̃∞

u ). (43)

The proof is completed by showing the uniqueness of the solution to (43) and proving that (43)
is equivalent to (13). #
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