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Abstract—The most important way to achieve higher perfor-
mance in computer systems is through heterogeneous computing,
i.e., by adopting hardware platforms containing more than one
type of processor, such as CPUs, GPUs, and FPGAs. Several
types of algorithms can be executed significantly faster on
a heterogeneous platform. However, migrating CPU-executable
software to other types of execution platforms poses a number
of challenges to software engineering. Significant efforts are re-
quired in such type of migration, particularly for re-architecting
and re-implementing the software. Further, optimizing it in
terms of performance and other runtime properties can be very
challenging, making the process complex, expensive, and error-
prone. Therefore, a systematic approach based on explicit and
justified architectural decisions is needed for a successful refac-
toring process from a homogeneous to a heterogeneous platform.
In this paper, we propose a decision framework that supports
engineers when refactoring software systems to accommodate
heterogeneous platforms. It includes the assessment of important
factors in order to minimize the risk of recurrent problems
in the process. Through a set of questions, practitioners are
able to formulate answers that will help in making appropriate
architectural decisions to accommodate heterogeneous platforms.
The contents of the framework have been developed and evolved
based on discussions with architects and developers in the
automotive domain.

Index Terms—heterogeneous computing, software engineering,
refactoring, architectural decisions

I. INTRODUCTION

As technology advances and software applications become

widespread, the requirements for multiple functionalities in-

crease at a fast rate. In the automotive industry, high-end

products nowadays embed more than 100 million lines of

code that realize a variety of functions. From robust safety

features to increased comfort in the cabin, the role of software

has taken as much importance as the mechanical integrity of

the vehicles. The industry now has a clear focus on artificial

intelligence (AI) applications that handle very large amounts of

data. Mainly due to such large amounts of data, most time and

development efforts in this domain are spent on understanding,

preparing, monitoring, and logging of data, rather than actually

implementing the machine learning algorithms and models [1].

Such high demands on software can only be realized through

mechanisms that allow for increased hardware performance

and energy efficiency at a reasonable cost.
Currently, the most important way to increase performance

of computer systems is by using heterogeneous platforms,

i.e., hardware platforms containing more than one type of

processor, like CPUs, GPUs, and FPGAs. In the context

of heterogeneous platforms, the processing of data can be

parallelized, and different types of data can be assigned to

specialized processors. For instance, GPUs are known to be

more efficient than CPUs when executing tasks that require

multiple parallel processes. A typical example is computer

vision, which processes image data obtained from sensors to

create an accurate world model. Heterogeneous computing,

however, poses a number of challenges of software engineer-

ing, mainly due to the inherently different characteristics of

the hardware processing units. It is typically very difficult to

optimize the processing of data with respect to non-functional

requirements such as performance, energy consumption, and

real-time constraints.

In most industrial cases, new products are developed from

existing software. The challenges are not only related to the

deployment of software onto a heterogeneous platform, but

also to the refactoring of existing software for it to be executed

on a new platform. This scenario posses a number of new

challenges particularly to the software architecture design –

which have not been addressed in literature, to the best of our

knowledge. However, we have identified through our industrial

partners a major need for a systematic approach to support

decision-making during such migration process – from CPU-

centric to heterogeneous platforms.

In this paper, we propose a reasoning framework that spec-

ifies a set of considerations supporting the decision-making

process in refactoring software systems when migrating from

CPU-centric to heterogeneous platforms. We provide means

for reasoning about different aspects that practitioners must

address when refactoring software-intensive systems. Our pro-

posal is based on a series of in-depth discussions with our

industrial partners in the automotive industry.

The remainder of this paper is organized as follows. A

motivational example is presented in Section II. In Section

III, we present the research methodology that was used in this

study. In Section IV, we describe our approach to refactoring

systems for heterogeneous platforms. We discuss validation

of the proposed framework in Section V. In Section VI, we

present the related work. Finally, in Section VII, we present

the conclusion and future work.
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II. MOTIVATIONAL EXAMPLE

The automotive industry provides an illustrative example of

architectural evolution of a system deploying heterogeneous

computing.

A current state of practice for system and software archi-

tecture for vehicular control systems, working well in the

last 25 years, is a distributed system consisting of many

computational units (a.k.a. Electronic Control Units – ECUs)

with embedded software, typically including a control loop

that receives signals from sensors, performs computation, and

produces signals to the connected actuators that control the

electromechanical parts of the vehicle. For the communication

between ECUs, a common bus (typically a standard Controller

Area Network (CAN)) is used. This modular and component-

based approach, like AUTOSAR [2], enables efficient evolu-

tion of the system: to introduce a new service, a new ECU

is added with its embedded software. ECUs use simple CPUs

and are dimensioned to maximally utilize the computational

and memory resources that are automotive grade.

In recent years, the development of new software and hard-

ware technologies has enabled significant improvements in the

automotive industry. The main and disruptive changes are the

transformation to electrical vehicles, autonomous driving, and

connectivity. Examples of new functionality include different

elements of autonomous driving, optimized engine control, and

improved behavior in risk-full situations.

The new functions being introduced are typically computa-

tion intensive, with extensive parallel computing, processing

large amounts of data in real-time, and have major require-

ments on system performance. The new technologies include

the use of machine learning, parallel computing, intensive

communication in real time, cloud computing and edge-

computing, etc. This requires that many strategically important

architectural decisions need to be made with respect to (i)

system and software architecture; and (ii) business-oriented

decisions on development and deployment processes.

Fig 1 shows a new architecture of an automotive system

that provides architectural prerequisites for new functions and

enables a continuous transformation from the old architecture

to the new architecture.

Fig. 1. Example of vehicular control system architecture

The basic architecture is the same – distributed systems

connect via a bus, but the node structure is changing. Instead

of nodes optimized for low computational and storage capac-

ity, the nodes (ECUs) become heterogeneous computational

platforms: (i) CPUs are getting more powerful, and in some

cases replaced by multi-core CPUs, (ii) FPGAs are being

included on the platforms for specialized computation, in

particular processing input data from sensors (such as camera

and radars). Further, the sensors are equipped with compu-

tational platforms (typically CPU + FPGA), enabling direct

data processing and significant reduction in the amount of data

for further processing. Additionally, the computing power is

concentrated on a new, centralized, powerful computational

platform that includes (multi-core) CPUs and GPUs, and in

this way, many functions from distributed ECUs can be moved

to it. Thus, the most-intensive computational services can be

performed in real-time. This computation altogether can be

seen as edge computing in respect to the cloud computing to

which the automotive system is connected, but not necessarily

continuously. The cloud computing resources are used for

additional services that do not have hard real-time require-

ments. Additionally, the cloud computing resources are used

for further development of the system, including the training

of machine learning models and analysis of the data provided

by the monitoring and logging functions of the vehicles.

Refactoring to heterogeneous platforms requires rewriting

the code. The following code snippet illustrates the type of

code changes that is required [3]. The example depicts a simple

function in C++ using the CUDA framework [4] that adds

the elements of two arrays. Compared to plain C++ code, the

add function must be transformed into a function that can be

executed on the GPU by adding the global specifier. Then, the

memory must be explicitly allocated in a location that can be

accessible by the GPU. In this example, the memory space

is accessible by both the CPU and the GPU. Finally, with a

number of changes to the syntax, the “add” function is invoked

on the GPU using multiple parameters. CUDA programming

demands explicit management of several aspects, such as

device memory, data transfer between memories, and the

synchronization of data access. For instance, the CPU must

be told to wait for the GPU to finish the job before accessing

the data in a shared memory.

The aforementioned example setting shows the complexity

of the process, which raises important questions related to

the process of refactoring software. The affected areas include

evaluation, design, testing and deployment operations. Some

of these challenges are listed next.

• Process-related decisions:

– What is the process of refactoring of the system

architecture?

– What is the process of refactoring of existing code

from a platform (CPU) to a heterogeneous platform

(e.g., GPU, or FPGA)?

– What are the implications of deployment of new

architectures on the overall system’s properties (re-
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#include <iostream>
#include <math.h>
// Kernel function to add the elements of two arrays

global
void add( int n, float *x, float *y)
{

for ( int i = 0; i < n; i++)
y[ i ] = x[ i ] + y[ i ];

}

int main(void)
{

int N = 1<<20;
float *x, *y;

// Allocate Unified Memory −− accessible from CPU or GPU
cudaMallocManaged(&x, N*sizeof(float)) ;
cudaMallocManaged(&y, N*sizeof(float)) ;

// initialize x and y arrays on the host
for ( int i = 0; i < N; i++) {

x[ i ] = 1.0f ; y[ i ] = 2.0f ;
}

// Run kernel on 1M elements on the GPU
add<<<1, 1>>>(N, x, y);

// Wait for GPU to finish before accessing on host
cudaDeviceSynchronize();

// Check for errors ( all values should be 3.0f )
float maxError = 0.0f ;
for ( int i = 0; i < N; i++)

maxError = fmax(maxError, fabs(y[ i]−3.0f)) ;
std :: cout << ”Max error: ” << maxError << std::endl;

// Free memory
cudaFree(x) ; cudaFree(y) ;

return 0;
}
Listing 1. Example code written in C++ using the CUDA framework, showing
the implications of the migration in terms of syntax and architecture decisions.

source utilization, overall system performance, de-

velopment and production costs, etc.)?

• Deployment of a new architecture:

– How to transform the existing architecture into the

new architecture?

– How to distribute services in the new architecture,

and ensure quality properties related to real-time

requirements, performance, resource utilization, etc?

These questions have many sub-questions and require many

decisions of different types. Additionally, the decisions are in-

terdependent. For this reason, it is very challenging to success-

fully manage software refactoring in such setting. Based on the

aforementioned topics, and considering the level of complexity

involved in the process of refactoring, a systematic approach

that defines the decision process and its implementation is

needed.

III. RESEARCH METHODOLOGY

This study was conducted with basis on the design science

methodology [5]. In summary, design science research (or

constructive science research) aims to establish and opera-

tionalize research when the desired goal is an artifact or a

recommendation. The procedures of design science research

culminate in new ideas or a set of analytical techniques

that enable the development of research [6]. The proposed

framework was created based on two different perspectives:

the state-of-the-art and the experiences of practitioners in large

industrial contexts.

First, we studied the available literature on the topics of

software deployment [7] and software architectures [8] for

heterogeneous platforms in order to obtain an overview of the

research area and identify the challenges, concerns, and gaps in

research. In this stage, we identified a number of approaches to

realize software architecture when a heterogeneous platform is

available. In summary, the architectural approaches can be or-

ganized into two main categories: architectural principles, and

architectural styles (or patterns). These different techniques

were studied and incorporated into our proposed approach as

software architecture design alternatives (see IV-C).

Then, we iteratively identified the gaps between theory and

practice in discussions with multiple partners in industry, cap-

turing their practices, and analyzing their perspectives in trying

to meet different challenges [7]. We sketched the first versions

of the framework and held multiple discussions among the

authors for adjustments. When it had reached a certain level

of maturity, we scheduled face-to-face meetings with our

industrial partners in order to present it. These meetings were

conducted in the form of workshops, in which we presented

the framework and gave the attendants the opportunity to

discuss topics of interest.

Finally, we validated the approach through a questionnaire

that was sent out electronically to multiple companies. It

was designed to capture the practitioners’ impressions of the

framework through explicit, open questions. The responses

were qualitatively analyzed and the suggestions incorporated

into the framework.

IV. REFACTORING FOR HETEROGENEOUS PLATFORMS

In this section we describe the framework, which consists

of four steps that are explained in detail below. The steps are,

namely: A. “Determining the impact on the software architec-
ture”; B. “Mapping software and hardware”; C. “Determining
the overall architecture design”; and D. “Refactoring software
components”. Within each step we elaborated activities and

questions that should be answered by the system engineers in

order to obtain a set of considerations of different perspectives.

Finally, the answers to these questions will help the engineers

to make appropriate architectural decisions.

A. Determining the impact on the software architecture

When introducing a new processing unit, the software

architecture must be adapted to accommodate the changes.

In particular, issues related to communication and memory

management become relevant.

A1: Examine the existing data pipeline. As first step, engi-

neers must examine the existing software architecture in order

to obtain an understanding of the current design. In particular,

the communication between components should be revisited
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as the data pipeline will be changed with the introduction

of a heterogeneous platform. In this stage, a reassessment

of the system’s documentation might be useful, given that

there is consistency between the documentation and the actual

implementation. Engineers should run measurements to obtain

a “default” performance of the system prior to refactoring.

A2: Determine the expected performance gains. Then, the

engineers specify which non-functional properties are intended

to be improved, according to the system’s requirements. One

should particularly take into account the additional commu-

nication demands that will be present in such a distributed

system. In the case of automotive applications, there are sub-

stantial constraints in terms of resources that can be utilized.

This issue is partially addressed if engineers have the liberty

to first design software – putting software functionalities in the

focus – and then proceed to determine the embedded hardware

components that will be utilized. The assessment can include

several considerations related to non-functional properties con-

cerning runtime (e.g., timing issue, power consumption), life-

cycle (e.g., development process, maintainability), or business

models (e.g., development and production costs) [9].

A3: Elicit the changes in the software architecture. Engi-

neers must then elicit the necessary changes in the software

architecture according to the predefined non-functional re-

quirements. The communication between components become

relevant to the performance of the overall system, due to

the inherent characteristic of heterogeneous systems to pass

over messages to components deployed on accelerators. For

instance, one decision in this stage may indicate that the

messages required by computationally heavy functionalities

will need to be forwarded to the newly introduced software

component to be deployed on the heterogeneous platform.

Therefore, the message passing infrastructure must ensure the

adequate capabilities for such communication to occur.

Determining the impact on the software architec-
ture
Q1: What is the current status of the data pipeline?

Q2: What are the expected gains in performance?

Q3: What changes are necessary in the architecture?

B. Mapping software and hardware

Determining the mapping between software and hardware

can be very challenging, typically requiring several rounds of

experimentation and prototyping.

B1: Identify the functionalities to be accelerated. The ac-

celerated portions of the software will most likely be the

ones identified as the most computationally intensive tasks.

In the case of automotive applications using AI technology,

for instance, the training of the machine learning algorithms

are strong candidates for execution on the accelerator(s).

These algorithms typically include the processing of multi-

dimensional matrices that are suitable for execution on GPUs.

B2: Experiment and measure performance. Well-established

frameworks, such as CUDA, typically embed a useful tool for

assessing portions of code in terms of execution time, namely

“profiling”. With this tool, practitioners can experiment with

different portions of code prior to determining the mapping

between software and hardware. This step allows engineers

to assess the performance of potential configurations and

compare them to the default benchmark obtained with the

original CPU-centric software.

B3: Establish a configuration that is suitable. A number

of approaches have been proposed in literature to tackle the

mapping between software and heterogeneous platforms. In

[10] for instance, the authors used a genetic algorithm to find

a locally optimal solution in respect to a defined cost function.

The model proposed in the paper takes into consideration both

the system constraints and user-defined architectural decisions.

The latter might include, for instance, a requirement that two

particular components are not allowed to be allocated to the

same processing unit. All constraints are accounted for in

a cost function, representing the overall performance of the

system given a certain allocation configuration. The result of

the proposed method is a system deployment configuration that

is (at least) nearly optimal for the overall system performance.

Additionally, dynamic deployment mechanisms can be cre-

ated in order to allow different components to be executed

depending on the current status of runtime. There is plenty

of literature that defines the mapping procedure [7] – most

often in selecting particular concerns and defining a cost

function, attempting to find its minimum in respect to a

given component distribution. There are some approaches that

enable the specification of many requirements and/or resource

constraints, as well as the communication capacity required

for interaction between the components, attempting to find

a local optimum for a set of components [10], [11]. These

approaches may be challenging as they require a lot of effort

to provide data which are results of analysis, simulations,

measurements, and estimations. A complementary approach is

the architectural reasoning that leads to a particular decision.

For example, processing visualization data can be deliberate

put on a sensor if such sensor includes an FPGA. In all cases,

the process of mapping can be done in an iterative manner, in

particular when fine-tuning optimization is required.

Mapping software and hardware
Q4: Which functionalities will be executed by the

accelerator(s)?

Q5: How do the potential configurations perform?

Q6: What will be the mapping between software

components and processing units?

C. Determining the overall architecture design

In this stage, the engineers analyze the requirements and

constraints that were previously defined and begin to fit them

into an organization that supports the system’s requirements.

Aspects to consider include: (i) similarities and proximity

between software components; (ii) the amount of data that

is transferred between components; and (iii) the use of stan-
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dardized design solutions based on the type of system that is

being implemented.

There are multiple architectural design options that can

be used in order to support the organization of software-

intensive systems containing heterogeneous platforms. One

example of such solution is the standard proposed by the

HSA foundation [12]. An HSA-compliant architecture meets

the requirements for enabling heterogeneous programming

models for computing platforms using standardized interfaces,

processes, communication protocols, and memory models.

When elaborating the overall software architecture design of

such systems, communication and computation rise as the main

aspects to be properly addressed.

C1: Address the communication aspect. The communication

aspect is known to play an important role in heterogeneous

systems since they are inherently distributed. In the case of

automotive applications, there are two main characteristics

that influence communication performance: the resource con-

straints of the embedded hardware, and the high demands on

reliability that are connected to such safety critical domain.

In AI-base systems, for instance, the processing of large

amounts of data is an inherent characteristic, typically includ-

ing activities to understand, structure, process and monitor

information. An architecture design containing AI components

must allow for the appropriate communication structures to

fulfil the increasing requirements on the system. There are

still few systematic methods for designing such systems, but

they will be of high importance as the domain of AI advances.

As shown in Section II, computation in vehicles may be

centralized, requiring access to be granted across multiple

nodes. The architecture typically allows for seamless access

of data, either by streaming, or on demand, in order to provide

software components with the necessary means to realize

functionalities. Further, there is typically a clear distinction be-

tween components that realize the training of models, and the

ones realizing the execution of the models. These components

must communicate, raising a number of questions, regarding

e.g., the execution of these components (local, or parallel),

and the re-distribution of trained models to the components

that requested them.

One way to practically address the communication topic is

through the separation of concerns technique, setting “com-

munication” and “computation” as main concerns in the center.

Components that exchange messages are placed closer in the

architecture, as well as components that are executed by the

same processor. Another possibility is to establish three main

concerns in the architecture: “application model”, “platform

model”, and “mapping between application and platform”, as

presented in [13]. The application specification should contain

the non-functional requirements formally encoded. The plat-

form model should specify redundancy and replaceability of

computation, as well as I/O components. The mapping should

bind the application to the hardware resources according to

the non-functional requirements.

Another practical possibility is to design the architecture in

layers, including a communication layer that allows different

processors to communicate, as shown in [14]. Such standard-

ized channel of communication between different processing

units allows for developers to avoid explicit handling of

the low-level memory copying. Further, it is also possible

to design a dedicated layer for constant monitoring of the

resources, providing status information to a deployment layer.

C2: Address the computation aspect. The computation as-

pect must also be addressed, as the distribution of computa-

tional load has direct influence on the system’s performance.

As the prices of hardware components decrease, the op-

portunity to distribute computation between the cloud and

the edge arises as an alternative to architectures based on

cloud-only or edge-only computation. As mentioned earlier

in Section II, there is a trend in the automotive industry to

move from simple CPU-based computation to smart sensors

that contain powerful, heterogeneous computational nodes on

the edge. The main motivation is the large amounts of data

to be processed, which can be partially handled already on

the edge. The important decisions in this context are related

to the analysis of locality or globality of data, real-time and

performance requirements, and similar concerns. For instance,

certain types of data can be pre-processed already in the

vehicle, while the training of models, storage of data, and

execution of computationally intensive tasks can be done in

the cloud.

In practice, a pipelined architecture [15] allows the software

to be represented as general data flow graphs, with particular

focus on the performance. The approach bases the allocation

strategy on the simulation of executing these graphs. The

pipelined architecture is a reasonable candidate architectural

style when there is a clear separation between the component

functionality and the processing data. Part of the processing

can be placed on different processing units, then the transfer

of data can be defined through communication rules.

Alternatively, and most commonly, engineers can implement

a master-slave architecture in order to take advantage of

the inherent characteristics of heterogeneous platforms which

contain, typically, one main processor (CPU for procedural

tasks), and one or more accelerators (e.g., GPU for highly

parallelized and dynamic tasks). On AI-based systems, for

instance, the main application flow may be processed by a

CPU (master) while the training of the model is performed by

the GPU, the accelerator (slave).

Further, aspect-oriented architecture [16] can be used in the

context of building components that are executable in different

processing units – the portions in the design that are platform-

specific can be treated as aspects in the overall architectural

design. A typical example of realizing it is through conditional

compilation, where the conditions are connected with the

different processing units that are available. The approach

can be used for automatic generation of code specific for a

given platform, for example in creating connectors for data

communication between different execution platforms [17].
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Determining the overall architecture design
Q7: How high are the communication demands?

Q8: How to address the distributed computation as-

pect?

D. Refactoring software components

Finally, the design of the individual components must be

sketched and implemented according to the previously defined

characteristics of the overall architecture.

D1: Determine the new set of software components. In this

step, engineers analyze the current architecture design and

determine which components will be refactored, and which

ones will be created. There might exist a number of constraints

to refactoring or creating new software components due to

limited hardware resources, time constraints, or increased

complexity of the system. However, it is important to precisely

determine the changes that will occur to every software

component. Components that have migrated from one platform

to another must comply with the characteristics and limitations

of the target hardware architecture. Therefore, the efforts for

refactoring them must be considered, as it may occur that an

extensive re-design has to be performed.

D2: Design and implement the software components. In

this step, the engineers will determine how the software

components will be either designed or refactored. This stage

is crucial to architectural decisions, since the adaptation of

a component to be executed on an accelerator typically re-

quires communication structures to be created. In practice,

a component that is developed for execution on CPU is

likely to be turned into two components due to the nature of

heterogeneous platforms. CPU remains as the host processor

and executes the main flow of the application, while the most

computationally intensive portion is offset to the accelerator.

This scenario demands robust solutions for the communication

between portions running on different processing units. As

shown in the code snippet in Section II, the simplest solution

is to designate a shared memory accessible by both units. For

complex algorithms with large amounts of data, this solution

might create deficiencies in performance due to the data

transfer between memory spaces from dedicated to shared.

The concept of flexible software components can be used

in order to create software components that can be executed

in any of the available processing units. Support for this type

of component design has been proposed earlier in the context

of GPUs [18]. Flexible software components allow develop-

ers to focus on implementing functions, while mechanisms

(namely adapters) automatically transfer data between com-

ponents, taking into consideration the platform specifications.

Creating flexible components results in higher flexibility in

the architecture, allowing several execution algorithms to be

implemented (e.g., round-robin, first deadline first). However,

the implementation of flexible components typically includes

computation overhead using adapters that is not negligible,

due to the additional code transformations that are needed for

execution by any processor.

Refactoring software components
Q9: Which will be the new component set?

Q10: How will components be refactored or created?

The presented stages suggest a sequential decision process

along the attached activities. In practice, however, the process

is iterative with revisions of specific questions. For example,

a decision of mapping components may lead to changes in

the overall architecture, in the architectural styles, or in the

type of communication (e.g., the communication between two

components can be changed from serial communication over

the bus to using shared memory).

V. VALIDATION

A. Validation procedure

One main aspect of this framework is that we included

practitioners from industrial contexts in the loop of creating

the approach. Then, we conducted a set of steps in order

to evaluate whether or not the proposed design approach is

appropriate for its purpose, meets all constraints and will

perform as expected.

In total, we presented the framework to six companies

that were in different stages in accommodating heterogeneous

platforms into their processes. We presented the proposed

approach and the rationale behind every step in the process.

The group then discussed the initiated topic and expressed

agreements and/or disagreements to every aspect that was

shown. The basis for argument were typically their day-

to-day activities at work and their own views on how the

refactoring process should occur. After several iterations with

different partners, we adjusted the framework and sent it back

to the them. We also sent out a questionnaire in order to

capture the respondents’ background information along with

their impressions of the framework. We have received written

feedback from two large organizations that are market leaders

in their respective industries.

The two companies we have received replies from are briefly

described next. Company A is a large, globally distributed

manufacturer of busses, trucks and construction equipment

with strong focus on technology and innovation. It is a key

player in the vehicles market and has made significant invest-

ments in the development of self-driving vehicles technology.

Company B is a recent subsidiary of the automotive group

that Company A is inserted in. It mainly addresses software

development projects with focus on autonomous driving and

driver assistant systems.

The respondents come from different backgrounds and

have slightly different work assignments and experiences with

heterogeneous computing. The employees of Company A are

based in India and have focus on research projects related to

heterogeneous computing. They are a part of mainly works on

programming models to facilitate software development across

different types of processors. The employee of Company B

has a software development role and is currently working on

computer vision algorithms, with focus on object detection.

1539

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on December 30,2020 at 10:03:05 UTC from IEEE Xplore.  Restrictions apply. 



The employee reported some experience on high performance

computing, although limited expertise on heterogeneous plat-

forms. Both companies develop embedded systems in the

automotive domain, and utilize GPUs for acceleration.

B. Received feedback

The questionnaire that was sent out contained three ques-

tions regarding the professionals’ backgrounds and experience,

followed by a general open question about the proposed

framework. Then, two questions were added regarding their

opinions about adding or removing aspects of the framework.

Finally, there were questions about the architectural decisions

that are typically made in the context of their work.

We received feedback that was complementary to the dis-

cussions which occurred during the meetings, and they are

presented as follows.

Feedback loops: One main aspect that was reported was

the need for feedback loops between the different steps,

particularly during the “software and hardware mapping” step,

in which mechanisms like “profiling” are necessary prior to

determining the best configuration according to a given set of

requirements. The changes are typically constant and iterative,

allowing smaller changes to occur at each iteration.

Continuous refactoring: Refactoring is regularly conducted

due to constantly changing requirements, despite the high com-

plexity of the projects. Therefore, the process should include

careful analysis and assessment of the current architecture

prior to making changes into effect.

Priority to software: The projects typically put software in

the center, and later on evaluate which types of hardware are

needed for execution. The functionalities that entail applica-

tions are the main focus for the development of the systems.

Dependency analysis: In Company A, the refactoring pro-

cess includes an analysis of dependencies to be conducted

on the components that are meant to be executed on the

accelerator(s) (in this case, GPUs). Since components are typ-

ically developed for execution on CPUs, and CPUs are inher-

ently serial in their execution method, developers must check

whether there are any dependencies that prevent algorithms

from running in parallel, due to the parallel execution nature

of GPUs. When there are no dependencies, the component

can easier be transformed into GPU-runnable code. Otherwise,

when there are dependencies, the core functionality within the

component must be changed in order to make it parallel.

Refactoring procedure: The following procedure is followed

in Company A in order to refactor. The CPU-oriented program

is used as baseline for performance measurement. Once the

algorithm is modified into code that can be executed on an

accelerator (GPU in their case), the execution time is again

measured and compared with the performance of the CPU

code. The changes in the execution time is then thoroughly

analyzed, followed by a process to determine whether or

not such deviation is acceptable. In case the trade-offs are

approved, the developer proceeds to port code to the GPU.

Execution policy: Company A has reported that their usual

policy to determining the execution of software components

is heavily based on profiling. Typically, the functions that take

more time to execute are selected as guidelines to determine

software and hardware mapping.

VI. RELATED WORK

As identified in a literature reviews [7], [19], there is a large

amount of literature addressing heterogeneous computing. In

particular, the software deployment stage is highlighted as

one of the most challenging aspects of applying this tech-

nology. Several concerns and approaches were identified in

[7], primarily addressing the problems of scheduling, software

quality, and software architecture pointing to the challenges in

establishing a design that balances the workload between units

properly. Moreover, it was mentioned through some studies the

importance of a solid communication strategy, as well as the

efficient management of memory spaces.

Twenty-eight studies discussing concerns of software ar-

chitectures for heterogeneous computing were identified pre-

viously in [8]. These studies typically propose solutions to

specific problems, rather than a holistic framework to aid in

the process of migrating to heterogeneous platforms. Some of

them are described next.

In [20], the authors tackle the problem of workload distri-

bution according to the characteristics of both the load and

the processing unit. The approach identifies hotspots in the

code, and then means to generate binary code depending on

the processing units that are available. The proposed architec-

ture contains one component (called orchestrator) to perform

resource allocations at runtime and monitor the system.

The problem of resource allocation is also addressed in

[21], which the authors propose an approach that inputs a

standard UML/MARTE model and explores different alloca-

tion possibilities for software components. From a number of

different models, the proposed approach generates the software

infrastructure required to connect different memory spaces

using communication libraries. Another example is presented

in [22], in which the authors propose a GPU interface to

identify race conditions through simulations.

Other papers simply present an architecture design that

includes heterogeneous platforms. In [23], for instance, the

authors propose an architecture design for a CPU-GPU-FPGA-

based hardware platform that is used for applications in the

health domain. The solution uses the pipelined architectural

style, processing images from a camera feed.

VII. CONCLUSION & FUTURE WORK

Heterogeneous platforms, i.e., hardware containing pro-

cessing units like CPUs, GPUs and FPGAs are now reach-

ing accessible costs, making a reasonable case for adopting

such alternative. In this sense, heterogeneous computing has

emerged as a viable option to satisfy increasing system re-

quirements, such as performance, energy consumption, and

time constraints. However, the process of accommodating such

hardware into the system may be challenging in a number

of different aspects. One of such aspects is the software
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architecture design, which is very likely to be adapted for the

software take full advantage of the underlying hardware.

In this paper, we proposed a framework that supports the

refactoring of software systems when migrating from CPU-

based projects to execution on heterogeneous platforms. Such

migration poses a number of challenges to the software

architecture design, in particular the allocation of resources

and management of memory spaces and communication. The

framework is divided into four steps that architects should

follow in order to make architectural decisions that support

the newly added hardware capabilities. The steps are, namely:

A. “Determining the impact on the software architecture”;

B. “Mapping software and hardware”; C. “Determining the
overall architecture design”; and D. “Refactoring software
components”. Within the refactoring process, the engineers are

guided through a set of questions that allow for considerations

for re-design, focusing on architectural decisions.

The research methodology conducted as follows. First, we

studied the literature and identified the common approaches

for software architecture when heterogeneous platforms are

available. Then, we included our expert industrial partners

in the loop by conducting face-to-face workshops in order

to obtain their in-practice perspectives on the matter and

iteratively evolve our proposed framework. Finally, we sent

out questionnaires and obtained written feedback from the

participants in order to improve the approach.

As future work, we will refine and extend the proposed

approach to include further considerations to the migration

problem, both prior to and after the re-architecting stage. We

intend to provide in-depth analysis of each step in the same

way that we have done for the refactoring stage presented in

this work. Further, we will evaluate the technical feasibility

of the complete framework in collaboration with our partners.

Then, we intend to investigate the impact of business decisions

on the architectural decisions connected to the refactoring of

systems to accommodate heterogeneous platforms.
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