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Abstract—Situational awareness in wireless networks refers to
the availability of information on the states of mobile devices
and their propagation environments. Recent studies have shown
that the position, orientation, and clock offset of a mobile device
can be estimated jointly with a map of reflecting or scattering
features in the propagation environment based on the link to a
single base station. Yet, it is unknown how important system
parameters such as the bandwidth, the number of antennas,
and the signal-to-noise ratio affect the estimation accuracy and
hence the feasibility of situational awareness. We address this
open question by studying the Cramér-Rao lower bound of the
joint estimation problem. Particularly, we provide an analytical
expression for the corresponding Fisher information matrix and
inspect the Cramér-Rao lower bound via numerical simulations.
Our results reveal the following insights. First, the reflection loss
of objects in the propagation environment has a profound impact
on the estimation accuracy of the states of mobile devices and
their maps. Second, the massiveness of arrays is a key enabler
for accurate state and map estimation and finally, the geometry
of the scenario affects the estimation accuracy profoundly.

I. INTRODUCTION

New physical (PHY) layers in fifth generation (5G) systems
and beyond will include millimeter wave (mmWave) massive
multiple-input multiple-output (mMIMO) technology [1]. The
combination of wide bandwidth in the mmWave frequency
bands and large number of antennas of mMIMO arrays has the
potential to revolutionize communication-based positioning.
Beyond positioning, systems that employ mmWave mMIMO
technology enable the estimation of other user equipment
(UE) states such as orientation and clock offset. Furthermore,
such systems make it possible to determine the positions of
reflectors and scatterers, resulting in a simultaneous mapping
of the propagation environment [2]–[6]. These capabilities are
unprecedented in the history of communication systems and
the availability of such information will enable situational
awareness in future wireless networks, i.e. geometric infor-
mation on the base station, the UE states, and the propagation
environment will become available and can be harnessed to
assist and improve communications [2], [7].

Recent theoretical studies [8]–[10] already provided insights
into the localization capabilities of mmWave mMIMO sys-
tems. In [8] it was shown that it is possible to localize UEs
with a single base station and [9] investigated the impact of
the transmission mode (uplink or downlink) on the positioning
accuracy. Another important finding was presented in [10],
where it was analytically shown that multipath components
increase the localization accuracy. [8]–[10] assume that the
base station and UE are perfectly synchronized.
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Fig. 1. Joint parameter estimation problem in 5G mmWave mMIMO systems.
The goal is to infer the position p, orientation α, clock offset ε, and points of
incidence sj , j = 1, 2, · · · , NP based on the noisy channel measurements
(AOAs θ̂(j)RX, AODs θ̂(j)TX, and delays τ̂(j), j = 0, 1, · · · , NP) that can be
deduced from the received signal.

In this article we present the closed-form solution of the
Fisher information matrix (FIM) of the joint position, clock
offset, orientation, and map estimation problem in mmWave
mMIMO systems. We study the corresponding Cramér-Rao
lower bound (CRLB) numerically and present novel insights
regarding the feasibility of situational awareness. Our analyses
advance the understanding of joint positioning, synchroniza-
tion, orientation estimation, and mapping by revealing the
following:

• Antenna-array scaling provides larger gains than band-
width scaling in terms of the estimation accuracy.

• High reflection losses incurred on non-line-of-sight
(NLOS) paths can render synchronization and hence
situational awareness infeasible.

Notation: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors and
matrices are denoted by bold lowercase and uppercase letters,
respectively. For example, a random variable and its realization
are denoted by x and x; a random vector and its realization
are denoted by x and x. An estimate of a parameter is
denoted with the superscript hat, e.g. x̂. Furthermore, ‖x‖, xT,
xH denote the Euclidean norm, the transpose, and transpose
conjugate-complex of vector x, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We provide a description of our system model by depicting
the geometry and elaborating on communication chain.



A. Geometric Constellation

An exemplary scenario of the geometry is depicted in Fig.
1. A fixed base station with known but arbitrary position1 q=
[qx qy]T is considered. The base station is serving a mobile UE
which is located at p=[px py]T. The propagation environment
consists of specular reflection points and scattering points. We
use the term point of incidence to summarize both specular
reflection points and scattering points. The total number of
incidence points is L and their positions are denoted by s(j) =

[s
(j)
x s

(j)
y ]T, j=1, 2, · · · , NP. We assume that the UE position

and the points of incidence are static for the duration of a
transmission burst.

B. Transmitter and Receiver Models
We consider downlink transmission from the base station to

the UE, i.e. the base station is the transmitter (TX) and the
UE is the receiver (RX). The base station is equipped with
an array with NTX antennas. The geometry of the array is
arbitrary but known and its array response vector is given by

aTX(θTX) =
1√
NTX

exp(−i∆T
TXk(θTX)), (1)

where i =
√
−1, θTX is the incidence angle, k(θTX) =

2π/λ[cos(θTX) sin(θTX)]T is the wave vector, in which λ
denotes the wavelength. ∆TX ∈ R2×NTX is a matrix that
contains the positions of the antenna elements in its columns,
i.e. ∆TX = [uTX,1 uTX,2 · · ·uTX,NTX

]T and uTX,m is the
position of the mth element of the transmitter array. The
orientation of the transmitter array is denoted by φ. All angles
are measured counter-clockwise with respect to the positive
x-axis of the reference frame. Without loss of generality, we
consider φ = 0.

The receiver is also equipped with an antenna array of
arbitrary but known geometry. This array consists of NRX

antennas. The orientation of the array with respect to the
global reference frame is denoted by α (see Fig. 1). The array
response vector of the receiver can be obtained by considering
(1) and modifying the subscripts.

C. Signal and Channel Models

We consider the transmission of orthogonal frequency divi-
sion multiplexing (OFDM) signals which are modulated on a
mmWave carrier with frequency fc as envisioned for 5G sys-
tems. The transmitted signal contains NSC subcarriers that are
symmetrically spaced around the carrier frequency fc. Hence
the total bandwidth of B=NSC∆f , where ∆f=1/Ts denotes
the subcarrier spacing and Ts is the symbol duration. The base
station transmits NB beams2 fi, i.e. F = [f1 f2 · · ·fNB

] ∈
CNTX×NB . The symbols xi,n transmitted on the nth subcarrier
are known pilot symbols from an arbitrary complex-valued
modulation alphabet with E(|xi,n|2) = 1. They are denoted

1We consider a two-dimensional (2D) system model for the simplicity
of the analysis. Extending our model to three-dimensional (3D) space is
straightforward.

2Our analysis considers fully digital beamforming to study the CRLB. Since
constraints on the choice of the beams fi, ∀i due to hybrid analog-digital
transceiver/receiver architectures will only reduce the estimation accuracy,
our analysis investigates the fundamental limits.

by xn = [x1,n x2,n · · ·xNB,n]T ∈ CNB . The complex-valued
baseband signal is generated via an NSC-point inverse discrete
Fourier transform (IDFT). A cyclic prefix (CP) of length TCP

is added and we assume that the duration of the CP exceeds
the delay spread of the channel. In summary, the baseband
signal of the nth subcarrier can be expressed as

x̃n =

√
ES

NBNSC
Fxn, (2)

where ES is the energy per MIMO-OFDM symbol.
The signal is transmitted over a sparse mmWave mMIMO

channel with NP+1 paths whose transformation matrix in the
equivalent baseband is given by [11]

Hn=

NP∑
j=0

exp

(
− i2πnτ

(j)

NTs

)
h(j)√
γ(j)ρ(j)︸ ︷︷ ︸

,ξ(j)n

aRX(θ
(j)
RX)aH

TX(θ
(j)
TX)

(3)
where h(j), γ(j), ρ(j), τ (j), θ(j)TX, θ(j)RX denote the complex-
valued channel coefficient, path loss, reflection loss, delay,
AOD, and AOA of the jth path, respectively. Without loss of
generality, we assume that the index j = 0 refers to the line-
of-sight (LOS) path and j > 0 are NLOS paths. Obviously,
the LOS path does not incur a reflection loss, i.e. ρ(0) = 1.
Note that (3) assumes a narrow-band array model, meaning
that fc + n∆f ≈ fc for all subcarriers n.

The received signal on the nth subcarrier after CP removal
and discrete Fourier transform (DFT) is given by

rn =

√
ES

NBNSC
HnF︸ ︷︷ ︸

,µn

xn + nn, (4)

in which µn is the noise-free (average) observation on subcar-
rier n and nn = [n1,n · · · n2,n nNRX,n]T is a vector of statis-
tically independent complex-valued zero-mean additive white
Gaussian noise (AWGN) terms nm,n,m = 1, 2, · · · , NRX with
power spectral density N0/2 per real dimension . We use the
following definition of the signal to noise power ratio (SNR):
SNR , E{µH

nµn/(n
H
nnn)}.

Remark: It is worth mentioning that we assume that the
beamformers fb, b = 1, 2, · · · , NB are known to the UE. This
knowledge is a prerequisite for AOD estimation. Moreover,
we assume that the base station and UE are synchronized
with a temporal accuracy sufficing communications, i.e. the
local clock of the UE is aligned with the global clock of the
base station, up to fractions of the symbol duration. However,
a residual clock offset ε exists which needs to be estimated
to obtain precise path delays and hence allow for accurate
ranging.
D. Parameter Spaces

We consider two different parameter spaces that are tightly
coupled with each other: (i) channel parameters and (ii)
position-related parameters. Channel parameters are the delays
τ (j), AODs θ

(j)
TX, AOAs θ

(j)
RX, and complex channel gains

h(j) of all channel paths j = 0, 1, · · ·NP. In the parlance of
this article, the position p, orientation α, clock offset ε, and
points of incidence s(j), j = 1, 2, · · ·NP are position-related



parameters. The mathematical relationship between channel
parameters and position-related parameters is summarized in
the following:

τ (0)(p, ε) =
||q − p||

c
+ ε, (5a)

τ (j)(p, ε, s(j)) =
||q − s(j)||+ ||s(j) − p||

c
+ ε, (5b)

θ
(0)
TX(p) = atan2 (py − qy, px − qx) , (5c)

θ
(j)
TX(s(j)) = atan2

(
s(j)y − qy, s(j)x − qx

)
, (5d)

θ
(0)
RX(p, α) = atan2 (qy − py, qx − px)− α, (5e)

θ
(j)
RX(p, α, s(j)) = atan2

(
s(j)y − py, s(j)x − px

)
− α, (5f)

where atan2(·) is the four-quadrant inverse tangent. For
notational convenience, we summarize all channel parameters
in the vector η̃ whose entries are given by

η̃ , [τT θTTX θ
T
RX h

T
I h

T
Q]T,

in which the delays τ = [τ (0) τ (1) · · · τ (NP)]T, AODs θTX =

[θ
(0)
TX θ

(1)
TX · · · θ

(NP)
TX ]T, AOAs θRX =[θ

(0)
RX θ

(1)
RX · · · θ

(NP)
RX ]T, and

the channel gains hI = [h
(0)
I h

(1)
I · · ·h

(NP)
I ]T and hQ =

[h
(0)
Q h

(1)
Q · · ·h

(NP)
Q ]T are grouped. Moreover, we define the

position-related parameter vector η as

η , [pT α ε s(1)T s(2)T · · · s(NP)T]T.

Our principle question in this study is to understand the
conditions which render situational awareness feasible, i.e. in
which scenarios can we obtain position p, orientation α, clock
offset ε, and map s(j),∀j estimates with reasonable accuracy?
To answer this question, we first note – as may be obvious
to the expert reader – that the problem at hand is a nonlinear
estimation problem under additive noise and we may instead
ask: What is the smallest possible mean squared error (MSE)
that an estimator can provide under specified conditions? The
latter question can be addressed via the concept of Fisher
information and the CRLB, as will be outlined in the next
section.

III. FISHER INFORMATION MATRICES AND ERROR
BOUNDS

We shall use the concept of Fisher information to study
the properties of the estimation problem. First, we will briefly
review the notion of Fisher information and equivalent Fisher
information. We will use both concepts to derive an analytical
expression of the FIM Jη of the position-related parameters. In
the pursuit of deriving this FIM, we first develop the FIM Jη̃

of the channel parameters and subsequently, we apply the con-
cept of equivalent Fisher information to obtain the equivalent
Fisher information matrix (EFIM) Je

η̃1
of the relevant channel

parameters (delays, AODs, and AOAs) that are functions of
the position related-parameters; see (5). Finally, we obtain
the FIM Jη of the position-related parameters (position p,
orientation α, clock offset ε, and points of incidence s(NP), j=
1, 2, · · · , NP) by applying a Jacobian transformation to the
EFIM Je

η̃1
. We conclude this section by defining the error

bounds for the position-related parameters.

A. Fundamentals and Definitions
1) Information Inequality: Let η̂ be an unbiased estimator

of parameter η based on the observation vector r. Then, the
MSE matrix of η̂ satisfies the information inequality [12]–[14]

Er

[
(η̂ − η)(η̂ − η)T

]
< J−1

η , (6)

where Jη is the FIM of η, given by

Jη = Er

[
− ∂2

∂η∂ηT
lnf(r|η)

]
, (7)

in which f(r|η) is the likelihood function of the observation
r conditioned on the parameter vector η.

2) Equivalent Fisher Information: Given a parameter vec-
tor η , [ηT

1 η
T
2 ]T with corresponding FIM

Jη ,

[
Jη1η1

Jη1η2

JT
η1η2

Jη2η2

]
, (8)

the EFIM of η1 is obtained by [15]

Je
η1

, Jη1η1
− Jη1η2

J−1
η2η2

JT
η1η2

. (9)

Intuitively, the fact that the parameters of η2 are not perfectly
known, leads to a loss in information. This loss is quantified
by Jη1η2

J−1
η2η2

JT
η1η2

.

B. Channel Fisher Information Matrix
The general definition of the FIM matrix is given in (7).

However, the properties of the channel parameter estimation
problem allow for some simplifications of the expression in
(7). In case of NSC independent complex-valued observations
rn, n = 1, 2, · · ·NSC obtained on orthogonal subcarriers, the
entry in the kth row and lth column of the channel FIM can
be written as

[Jη̃]k,l ,
Ns∑
n=1

2

N0
R
{
∂µH

n

∂[η̃]k

∂µn
∂[η̃]l

}
, (10)

where R{·} is the real-part operator. Recall that µn is a
function of the channel parameters η̃ (though not explicitly
shown). Considering (10), we observe that the channel FIM Jη̃

is readily obtained from the partial derivatives ∂µH
n/∂[η̃]l,∀l

of the noise-free observation in (4). For convenience of the
reader, we summarize these partial derivatives in Appendix A.

C. Equivalent Channel Fisher Information Matrix
We like to stress that neither the inphase hI nor the quadra-

ture hQ components affect the position-related parameters
directly. However, the uncertainty regarding these parame-
ters decreases the Fisher information of the other channel
parameters (delays, AODs, and AOAs). Hence the complex
channel gains have an indirect impact on the position-related
parameters. We can account for this fact by considering
the concept of equivalent Fisher information as presented in
section III-A2. Introducing the reduced-size channel parameter
vectors η̃1 , [τT θTTX θ

T
RX]T and η̃2 , [hT

I h
T
Q]T, we follow

(9) and obtain the EFIM of η̃1 via
Je
η̃1

= Jη̃1η̃1 − Jη̃1η̃2J
−1
η̃2η̃2

JT
η̃1η̃2

, (11)
where Jη̃1η̃1

, Jη̃1η̃2
, and Jη̃2η̃2

are obtained from the channel
FIM Jη̃ in (10) as outlined by (8).
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Fig. 2. Geometric constellations considered during the numerical analysis.

D. From Channel Parameters to Position-related Parameters
The EFIM in (11) can be studied via the information

inequality in (6) to obtain insights regarding the channel
estimation capabilities. Recall, though, that our main goal is
to investigate the feasibility of joint positioning, orientation
estimation, synchronization, and mapping. In the pursuit of
obtaining the FIM Jη of these position-related parameters,
we apply a Jacobian transformation T to the EFIM in (11).
This transformation can be directly derived from the geometric
relationships between channel parameters and position-related
parameters shown in (5). Particularly, the transformation ma-
trix T is given by T = ∂η̃1/∂η. All non-zero entries of T
are summarized in Appendix B. Finally, we obtain the FIM3

Jη of the position-related parameters via

Jη = TJe
η̃1
TT. (12)

E. Cramér-Rao Lower Bound
Before advancing to the numerical analysis in the next

section, we define the position error bound (PEB), orientation
error bound (OEB), synchronization error bound (SEB), and
mapping error bound (MEB) based on the FIM in (12).

PEB =
√

tr
(
J−1
η (e1eT1 + e2eT2 )

)
, (13a)

OEB =

√
eT3 J

−1
η e3, (13b)

SEB = c

√
eT4 J

−1
η e4, (13c)

MEB =

√
tr
(
J−1
η (e5eT5 + · · ·+ e(2NP+4)e

T
(2NP+4))

)
,

(13d)

where ei is the ith Euclidean basis vector of length 2NP + 4.

IV. NUMERICAL EVALUATION
A. Simulation Parameters

We consider the geometric constellations depicted in Fig. 2
which show an urban corner with reflecting walls illustrated by
solid black lines. Blue and red diamonds depict the positions
of the base station and UE that are both equipped with uniform
linear arrays (ULAs) whose orientations are φ=α= 0. Both
arrays consist of NTX =NRX =20 antennas. Two UE positions
are considered: pC = [10 2.5]Tm and pF = [70 2.5]Tm.
The corresponding specular reflection points are indicated by

3Note that the FIM Jη of the position-related parameters is determined
based on the EFIM Je

η̃1
of the channel parameters and hence can be seen as

an EFIM rather than an FIM. For simplicity and with a slight abuse of the
notation, we call Jη an FIM.

magenta asterisks, pluses, and circles. During the analyses in
the sections IV-B and IV-C, only pF and s(1)F are considered.

We consider NSC = 256 subcarriers with ∆f = 240 KHz
modulated on a carrier with fC = 28 GHz. Pilot symbols
are randomly chosen from a quadrature phase shift keying
(QPSK) alphabet and precoding vectors are chosen such that
fj =aTX(θ

(j)
TX + nθ,f), j ∈ {0, 1}, where nθ,f ∼ N (0, σ2

θ,f) is
a zero-mean Gaussian angular offset with standard deviation
σθ,f = 10◦/NTX. The random variable nθ,f models the
estimation error of the AODs at the transmitter in a simplistic
way. The noise power spectral density is N0 = kTsys with
Tsys = 300 K and k denotes the Boltzmann constant. Path
loss coefficients γ(j),∀j are computed according to the free
space loss equation and reflection loss is ρ(1) =2 unless stated
differently. All results are averaged over NMC = 1000 Monte
Carlo realizations.

B. Parameter Scaling
Here, we scale relevant system parameters by factor κ to

observe their effects on the performance bounds in (13). We
choose ES such that the SNR at κ = 1 is SNR = 0 dB.
Figure 3 depicts the impact of scaling on the error bounds.
We can observe that increasing the number NTX of transmit
antennas improves all error bounds and provides the most
profound reductions of the bounds. Scaling the bandwidth via
the subcarrier spacing ∆f improves the PEB, SEB, and MEB.
For large κ, the reduction due to an increase in bandwidth is
negated by the increased noise power incurred by larger band-
width and hence the curves saturate. Increasing the bandwidth
by scaling the number NSC of subcarriers degrades the PEB,
SEB, and MEB because the bandwidth per carrier remains
constant but the SNR decreases (more noise is accumulated
over the carriers while Es is constant). Bear in mind that, for
fair comparison, we chose constant Es rather than constant
transmit power. Observe that all position-related parameters
can be estimated accurately already for small values of κ.

C. Reflection Loss
The impact of the reflection loss is studied in the case

of known and unknown clock offset ε. We consider the
parameters introduced in IV-A and ES is again chosen such
that the SNR at ρ(1) =1 is SNR=0 dB. The results depicted in
Fig. 4 show the relative increase of the bounds with respect to
the value at ρ(1) =1, e.g. ∆PEB=(PEB(ρ(1))−PEB(ρ(1) =
1))/PEB(ρ(1) = 1). We can observe that the OEB is not
affected since the orientation is predominantly resolved via the
AOD and AOA of the LOS path. However, if ε is unknown, the
PEB, SEB, and MEB increase rapidly as the attenuation of the
NLOS path increases. The main problem is that the channel
parameters of the NLOS path cannot be estimated accurately
if SNR on that path is low. Hence the clock offset cannot be
resolved well, making also positioning and mapping imprecise.
It is worth noting that providing high-accuracy situational
awareness becomes quickly infeasible as the reflection loss
increases if ε is unknown. Practical values of the reflection
loss depend strongly on the material, carrier frequency, etc.
Reported values [16] at fc = 28 GHz range from ρ

(1)
dB ≈ 4 dB
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Fig. 3. PEB, SEB, OEB, and MEB versus scaling of system parameters.

(glass) over ρ(1)dB ≈ 8 dB (concrete and tiles) to ρ(1)dB ≈ 18 dB
(wood).
D. Geometry

We investigate the impact of the geometry on the PEB
(SEB, OEB, and MEB are omitted due to space constraints)
in Fig. 5 and consider the parameters introduced in IV-A.
The geometric constellations are depicted in Fig. 2. Every
marker corresponds to one geometric constellation and the
corresponding ES are chosen such that SNR=0 dB (identical
SNRs). Observe that, in addition to our previous findings,
the geometry of the scenario is also key and certain UE-
reflector-base-station constellations provide poor estimation
accuracy by nature. It is worth noting, however, that in a non-
static tracking application [2], channel measurements from
different geometric constellations can be fused which can
enable accurate situational awareness also in scenarios with
poor geometry.

V. CONCLUSIONS
We investigated the feasibility of situational awareness

in millimeter wave massive multiple-input multiple-output
systems. Particularly, we employed the concept of Fisher

PSfrag replacements

Reflection loss ρ(1) in dB

∆
M

E
B

in
%

∆
S

E
B

in
%

∆
O

E
B

in
%

∆
P

E
B

in
%

ǫ unknown ǫ known

800

800

800

800

600

600

600

600

400

400

400

400

200

200

200

200

0

0

0

0

0

0

0

0

5

5

5

5

10

10

10

10

15

15

15

15

20

20

20

20

Fig. 4. Relative increase ∆PEB, ∆SEB, ∆OEB, and ∆MEB of the error
bounds versus increasing reflection loss ρ(1).

information and the Cramér-Rao lower bound to show that
the achievable accuracy of position, orientation, clock offset,
and map estimation can be greatly improved by increasing
the number of antennas. Moreover, our results highlight that
increasing the number of antennas by a constant factor pro-
vides higher gains in terms of accuracy than increasing the
bandwidth by the same factor. Finally, we emphasize that high
attenuation on non-line-of-sight paths due to reflection losses
degrade the estimation accuracy significantly which can render
joint positioning, synchronization, mapping infeasible.

APPENDIX A
PARTIAL DERIVATIVES OF THE NOISE-FREE OBSERVATION

The partial derivatives ∂µH
n/∂[η̃]l of the noise-free obser-

vations on subcarrier n are given as:

∂µH
n

∂τ (j)
=

(
∂

∂τ (j)
ξ(j)∗n

)
x̃H
nF

HaTX(θ
(j)
TX)aH

RX(θ
(j)
RX), (14a)

∂µH
n

∂θ
(j)
TX

= ξ(j)∗n x̃H
nF

H

(
∂

∂θ
(j)
TX

aTX(θ
(j)
TX)

)
aH
RX(θ

(j)
RX), (14b)

∂µH
n

∂θ
(j)
RX

= ξ(j)∗n x̃H
nF

HaTX(θ
(j)
TX)

(
∂

∂θ
(j)
RX

aH
RX(θ

(j)
RX)

)
, (14c)
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∂µH
n

∂h
(j)
I

=

(
∂

∂h
(j)
I

ξ(j)∗n

)
x̃H
nF

HaTX(θ
(j)
TX)aH

RX(θ
(j)
RX), (14d)

∂µH
n

∂h
(j)
Q

=

(
∂

∂h
(j)
Q

ξ(j)∗n

)
x̃H
nF

HaTX(θ
(j)
TX)aH

RX(θ
(j)
RX). (14e)

The remaining partial derivatives in (14) are readily shown to
be

∂ξ
(j)∗
n

∂τ (j)
= i

2πn

NSCTS
ξ(j)∗n (15a)

∂aTX(θ
(j)
TX)

∂θ
(j)
TX

= −i∆TXk̄(θ
(j)
TX)aTX(θ

(j)
TX) (15b)

∂aH
RX(θ

(j)
RX)

∂θ
(j)
RX

= i∆RXk̄(θ
(j)
RX)aRX(θ

(j)
RX) (15c)

∂ξ
(j)∗
n

∂h
(j)
I

=
ξ
(j)∗
n

h(j)∗
(15d)

∂ξ
(j)∗
n

∂h
(j)
Q

= −i ξ
(j)∗
n

h(j)∗
(15e)

where k̄(θTX) , 2π/λ[− sin(θTX) cos(θTX)]T.
APPENDIX B

PARTIAL DERIVATIVES OF THE TRANSFORMATION

The non-zero partial derivatives of the channel parameters
summarized in the following. Those of delays are given by

∂τ (0)

∂p
=

p− q
c ‖p− q‖ , (16a)

∂τ (j)

∂p
=

p− s(j)
c
∥∥p− s(j)∥∥ , j > 0, (16b)

∂τ (j)

∂s(j)
=

s(j) − q
c
∥∥q − s(j)∥∥ +

s(j) − p
c
∥∥p− s(j)∥∥ , j > 0, (16c)

∂τ (j)

∂ε
= 1, ∀j, (16d)

where c is the speed of light. The corresponding partial
derivatives of AODs and AOAs are given by

∂θ
(0)
TX

∂p
=

(
−e1eT2 + e2e

T
1

)
(p− q)

‖p− q‖2
, (17a)

∂θ
(j)
TX

∂s(j)
=

(
−e1eT2 + e2e

T
1

)
(s(j) − q)∥∥s(j) − q∥∥2 , j > 0 (17b)

and

∂θ
(0)
RX

∂p
=
∂θ

(0)
TX

∂p
, (18a)

∂θ
(j)
RX

∂p
=

(
−e1eT2 + e2e

T
1

)
(p− s(j))∥∥p− s(j)∥∥2 , j > 0 (18b)

∂θ
(j)
RX

∂s(j)
= −∂θ

(j)
RX

∂p
, j > 0 (18c)

∂θ
(j)
RX

∂α
= −1,∀j. (18d)
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