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A B S T R A C T   

Cellulose–lignin composite carbon fibers have shown to be a potential environmentally benign alternative to the 
traditional polyacrylonitrile precursor. With the associated cost reduction, cellulose–lignin carbon fibers are an 
attractive light-weight material for, e.g. wind power and automobile manufacturing. The carbon fiber tenacity, 
tensile modulus and creep resistance is in part determined by the carbon content and the molecular orientation 
distribution of the precursor. This work disassociates the molecular orientation of different components in cel
lulose–lignin composite fibers using rotor-synchronized solid-state nuclear magnetic resonance spectroscopy and 
X-ray scattering. Our results show that lignin is completely disordered, in a mechanically stretched cellulo
se–lignin composite fiber, while the cellulose is ordered. In contrast, the native spruce wood raw material dis
plays both oriented lignin and cellulose. The current processes for fabricating a cellulose–lignin composite fiber 
cannot regain the oriented lignin as observed from the native wood.   

1. Introduction 

There is currently a growing aspiration of producing inexpensive 
carbon fibers, mainly to achieve a suitable light-weight material for the 
automotive and wind power industry (Mainka et al., 2015). As of now, 
carbon fibers are mainly produced from polyacrylonitrile (PAN), an 
expensive and fossil-based precursor, which limits extensive use of 
composites reinforced with carbon fibers (Baker & Rials, 2013). 
Therefore, alternative precursor materials are continuously being 
investigated. Frank, Steudle, Ingildeev, Spörl, and Buchmeiser (2014) 
have summarized the properties that are required of a polymer to be 
considered as a good precursor for carbon fiber production, including 
high carbon content and preexisting molecular orientation in the fiber 
prior to carbonization. Composite fibers of regenerated cellulose and 
lignin (Bengtsson, Bengtsson, Sedin, & Sjöholm, 2019; Bengtsson et al., 
2018; Ma et al., 2015) can provide carbon fibers with an acceptable yield 
(Byrne, De Silva, Ma, Sixta, & Hummel, 2018) and a life-cycle assess
ment by Das has shown that a lignin-based fiber is a more 

environmentally benign precursor alternative than PAN (Das, 2011). 
However, quantitative assessment of molecular orientation of cellulo
se–lignin composite materials is what we claim to address. 

A handful of techniques have been developed to investigate molec
ular orientation, such as: rotor synchronized magic-angle spinning 
(ROSMAS) NMR spectroscopy (Gabriëlse, Gaur, & Veeman, 1996; 
Gabriëlse, van Well, & Veeman, 1995; Geen & Titman, 2002; Harbison & 
Spiess, 1985; Harbison, Vogt, & Spiess, 1986; Henrichs, 1987; Schreiber, 
Veeman, Gabriëlse, & Arnauts, 1999; Song et al., 1997; Svenningsson, 
Sparrman, Bialik, Bernin, & Nordstierna, 2019; Titman, de Lacroix, & 
Spiess, 1993; Tzou, Desai, Abhiraman, & Huang, 1995; Wilhelm, de 
Lacroix, Titman, Schmidt-Rohr, & Spies, 1993), DECODER NMR spec
troscopy (Chmelka, Schmidt-Rohr, & Spiess, 1993; Schmidt-Rohr, Hehn, 
Schaefer, & Spiess, 1992), X-ray scattering (Hermans, Hermans, & 
Weidinger, 1946; Krässig, 1993; Lafrance, Pézolet, & Prud’homme, 
1991; Northolt et al., 2001; Wanasekara et al., 2016), polarized Raman 
spectroscopy (Bower, 1972; Citra, Chase, Ikeda, & Gardner, 1995; Frisk, 
Ikeda, Chase, & Rabolt, 2004; Richard-Lacroix & Pellerin, 2013; 
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Svenningsson, Lin, Karlsson, Martinelli, & Nordstierna, 2019; Yang & 
Michielsen, 2002, 2003), birefringence (Dawkins, 1983; Northolt et al., 
2001), and infrared dichroism (Ward, 1997). The experimentally 
measured molecular orientation can potentially be obscured by chemi
cal modification or composite additives for which a plethora of selected 
methods can be used to avoid pitfalls. This work accrues on previous 
investigation on regenerated cellulose by Svenningsson, Sparrman, et al. 
(2019), where ROSMAS solid-state NMR spectroscopy and wide angle 
X-ray scattering (WAXS) were used to determine the molecular orien
tation in comparison to polarized Raman spectroscopy Svenningsson, 
Lin, et al. (2019). The excellent chemical selectivity of NMR spectros
copy and ability to filter out non-oriented signals, motivates its use here. 
The results are also compared to WAXS and birefringence 
measurements. 

Previous studies have reported lignin-based carbon fibers produced 
with wet-, dry-, and melt-spinning (Baker & Rials, 2013; Bengtsson 
et al., 2018; Zhang & Ogale, 2014). Lignin in itself can be meltspun, 
however the time required for stabilization of such fibres is not indus
trially compatible (Baker, Gallego, & Baker, 2012). If fibers are prepared 
from lignin blended with another polymer, wet spinning can be per
formed and the stabilization time can be reduced (Byrne et al., 2018; 
Kubo & Kadla, 2005; Liu, Chien, Newcomb, Liu, & Kumar, 2015; Liu 
et al., 2019). 

Föllmer et al. (2019) presented a study with the ambition to induce a 
preferred orientation in lignin by adding graphene oxide to the spinning 
dope solution. They found an increased orientation with graphene oxide 
concentration, though they could not distinguish if lignin contributed to 
the anisotropy, neither could the combination of lignin and graphene 
oxide be used to produce continuous fibers. 

The ability to perform continuous spinning and the application of a 
draw ratio higher than 1 are essential features to achieve high molecular 
orientation of a regenerated cellulose fiber (Michud, Hummel, & Sixta, 
2016). The tensile modulus of a 50 wt% softwood lignin cellulose–lignin 
composite fiber have been reported to increase with an increased draw 
ratio (Bengtsson, Jedvert, Köhnke, & Theliander, 2019). However, if the 
enhanced modulus is solely a result of more oriented cellulose was not 
identified. Existence of possible oriented lignin has been reported in the 
secondary cell wall in wood (Atalla & Agarwal, 1985; Salmen, Olsson, 
Stevanic, Simonovic, & Radotic, 2011). The cause for orientation is still 
debated, but recent studies using DNP-NMR show that the lignin binds to 
xylan in a possible cellulose–xylan–lignin system (Kang et al., 2019). Is 
lignin, which is chemically bound to oriented hemicellulose or cellulose, 
acting as scaffold? Is it possible to induce any molecular orientation 
preference to the lignin molecules in synthetic conditions? These are 
both questions that concern the work herein. 

2. Experimental 

2.1. Materials 

Softwood Kraft lignin (SKL) was received from Bäckhammar Pilot 
Plant (Bäckhammar, Sweden) where it was isolated with the LignoBoost 
method using industrial black liquor. Before use, SKL was at 60 ◦C at 
100 mbar for 15 h and passed through a 0.5 mm sieve. A softwood Kraft 
dissolving pulp (DKP) with an intrinsic viscosity of 465 mL/g (measured 
according to ISO 5351:2010) was purchased from Georgia Pacific Cel
lulose. Pulp sheets were chopped, ground and dried for 15 h at 40 ◦C 
prior to dissolution. The solvent, 1-ethyl-3-methylimidazolium acetate 
(EMIMAc, Aldrich 95%), was used as received. A European spruce 
sample was obtained by turn milling a wood cylinder 45◦ against the 
wood grains. 

2.2. Dissolution 

Lignin and cellulose were dissolved simultaneously in neat EMIMAc 
at 70 ◦C, respectively, for 1 h in a closed reactor with overhead stirring at 

30 rpm. Solutions were prepared with 8–24 wt% solid content, with 8 wt 
% cellulose and 0–16 wt% lignin, i.e. 0–67 wt% lignin to cellulose ratio 
in the solution, see Table 1 for the complete sample matrix. Complete 
dissolution was confirmed by observing the solutions in light micro
scopy, Nikon Eclipse Ci-POL (Nikon Instruments, Tokyo, Japan), using 
crossed polarizers. Deaeration was performed at 60 ◦C and below 
100 mbar pressure for 15 h. 

2.3. Rheology of solutions 

The solutions were analyzed through oscillating rheometry on CS 
Rheometer (Bohlin Instruments, Cirencester, UK) equipped with a cone/ 
plate-geometry (250 mm/5◦) to obtain the temperature-viscosity rela
tion for each spinning solution. Rheology measurements were used as a 
control to facilitate fiber spinning. 

2.4. Air-gap spinning 

The solution was spun using bench-scale spinning equipment, 
customized by RISE, consisting of a piston pump, a coagulation bath 
(7 L) and a take-up roll. The temperature of solution was set to either 40 
or 70 ◦C. The spinneret had 33 orifices with a diameter of 150 μm and L/ 
D 3. The solution was filtered through a 5 μm metal fleece filter and 
extruded with a fixed extrusion velocity (ve) of 4 m/min. The extruded 
filaments were led via an air-gap of 1 cm into a coagulation bath of 
deionized water at a temperature of 2–5 ◦C. Take-up speed (vt) during 
spinning was set to either 8, 24 or 40 m/min to achieve draw ratios of 2, 
6 and 10. 

2.5. Characterization of spun filaments 

Tensile testing (Vibroskop/Vibrodyn, Lenzing Instruments, Austria) 
was performed on conditioned filaments at 20 ± 2 ◦C and 65 ± 3% RH 
with an extension rate of 20 mm/min and a gauge length of 20 mm. 

Birefringence was measured with Nikon Eclipse Ci POL, polarized 
light microscope with a 3λ Berek compensator. The thickness of the fiber 
was calculated from the linear density in dtex, density of the fiber and 
assuming a circular cross section. The pure cellulose fibers were 
assumed to have a density of 1.5 g/cm3 (Sixta et al., 2015), the density of 
the fibers with 67% lignin was measured with a He-pycnometer Accu
PycII 1340 (Micromeritics Instrument, Norcross, USA) at room tem
perature. The density of fibers with other lignin ratio was thereafter 
calculated from a linear regression of these data. The birefringence, Δn, 
was calculated as the ratio between the retardation of the polarized light 

Table 1 
Molecular orientation data from birefringence (Δn) WAXS (P2), and ROSMAS 
NMR (P2) from fibers with varying lignin ratio, draw ratio and solution 
temperature.  

Sample LR DR ◦C Δn  WAXS P2  NMR P2  

L0A 0% 2 40 0.042 ± 0.003  0.37 ± 0.01  0.45 ± 0.01  
L0B 0% 6 40 0.042 ± 0.005  0.46 ± 0.01  – 
L10A 10% 2 40 0.038 ± 0.003  0.37 ± 0.01  – 
L10B 10% 6 40 0.038 ± 0.004  0.44 ± 0.01  0.43 ± 0.02  
L33A 33% 2 40 0.028 ± 0.003  0.34 ± 0.01  – 

L33B 33% 6 40 0.032 ± 0.003  0.39 ± 0.01  – 
L50A 50% 2 40 0.020 ± 0.003  0.26 ± 0.01  – 
L50B 50% 6 40 0.023 ± 0.002  0.36 ± 0.01  – 
L50D 50% 2 70 0.018 ± 0.002  0.24 ± 0.01  0.35 ± 0.02  
L50E 50% 6 70 0.020 ± 0.001  0.33 ± 0.01  0.41 ± 0.02  
L50F 50% 10 70 0.021 ± 0.003  0.35 ± 0.01  0.41 ± 0.03  
L67A 67% 2 70 0.0129 ± 0.0003  0.26 ± 0.01  – 

L67B 67% 6 70 0.0149 ± 0.0004  0.33 ± 0.02  0.39 ± 0.05  
L67C 67% 10 70 0.016 ± 0.001  0.36 ± 0.01  –  
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for maximum darkness divided by the fiber thickness. 

2.6. Solid state NMR spectroscopy 

A bundle of composite cellulose–lignin fibers was spun on a flat spool 
with a thin layer of polystyrene glue applied between wounds. Strips 
were cut out at 45◦ angle from the fiber direction and stacked on top of 
each other so that it fitted a 7 mm rotor. Any additional space was filled 
with silicon dioxide powder for rotational stability. 

NMR measurements were carried out using a Bruker 500 MHz 
Avance III, operating at 125.8 MHz for 13C. The ROSMAS experiment 
was conducted on fibers at ambient temperature and 1500 Hz (±1) rotor 
rotation rate to sufficiently separate a few C1 sidebands from other 
signals. The t1 rotor period was divided in 10 equal steps before initi
ating a cross polarization sequence with a constant 13C rf strength of 
31.25 kHz while 1H rf was ramped from 63 to 120 kHz with SPINAL64 
50 kHz proton decoupling averaged over 512, 1024 and 2048 scans for 
each phase step. A recycle delay of 2 s, cross-polarization time of 1.5 ms 
and acquisition time of 20.27 ms were applied with the 13C chemical 
shift externally referenced against adamantane. The European spruce 
wood cylinder was analyzed with the same settings at 4000 Hz (±1) 
rotation rate and averaged over 3200 scans for each phase step. 4000 Hz 
is beneficial for analysing the CSA of aromatic groups and 1500 Hz is 
better for quantitative determination of cellulose orientation on a 
500 MHz magnet. The quantitative data analysis method of the 2D 
ROSMAS spectrum on regenerated cellulose is used as by Svenningsson, 
Sparrman, et al. (2019) The method describes how the nuclear magnetic 
chemical shift anisotropy tensor (CSA) affects the recorded signal 
depending on molecular orientation in the rotor and MAS rotation 
speed. By applying the Legendre polynomial orientation distribution 
function (ODF), it is possible calculate the order parameters for a linear 
set of calculated sub spectra and the measured experimental data with 
Eq. (1). A background subtraction was performed, as described in the 
Supporting Information: 

(
IM,N

)

exp =
∑∞

ℓ=0

〈Pℓ〉
(
Iℓ,M,N

)

calc (1) 

Regenerated cellulose produced by ionic liquids contains the cellu
lose II crystalline structure, which comprise of two magnetically 
nonequivalent anti-parallel 180◦ helical chains, named the Origin chain 
and the Center chain. Molecular orientation analysis is performed using 
the experimental ROSMAS Origin chain signal and its known CSA. The 
cellulose II CSA was provided by Svenningsson, Sparrman, et al. (2019), 
which employs a DFT approach. The cellulose II CSA has also been 
experimentally evaluated by Hesse and Jäger (2005), combining the 2D 
PASS method (Antzutkin, Shekar, & Levitt, 1995) and Herzfeld–Berger 
analysis (Herzfeld & Berger, 1980). In the ROSMAS experiment, the 
rotational chemical shift sidebands are denounced as N, where N = 0 is 
the isotropic shift. Molecular orientation is expressed in the M dimen
sion, based on the Fourier transform of the rotor phase. We use signals 
from M = 0,N = 0 and M = 1,N = 1 sidebands from the ROSMAS 2D 
spectrum to determine molecular orientation. The P2 order parameter 
was calculated by directly implying a Legendre polynomial orientation 
distribution, calculating linear solution with Eq. (1). In addition, similar 
P2 order parameter values was obtained by exchanging the Legendre 
Polynomial ODF with the wrapped Lorentzian ODF and sequentially 
converting the calculated wrapped Lorentzian ODF solution to an order 
parameter. 

2.7. Wide angle X-ray scattering 

A wide angle X-ray scattering measurement was performed on fiber 
bundles at Chalmers University of Technology with a 0.9 mm beam 
diameter Rigaku 003+ high brilliance microfocus Cu-radiation source at 
130 mm distance with the sample irradiated over 30 min. The cellulose 

II 002 azimuthal scattering signal was curve fitted simultaneously with 
the periodic wrapped Lorentzian function (Eq. (2)) and a flat baseline, 
which has shown to be a good fit for regenerated cellulose fibers 
(Svenningsson, Lin, et al., 2019; Svenningsson, Sparrman, et al., 2019). 
The curve fitting also includes a phase parameter to compensate for 
small miss-alignments of the fiber bundle in the sample holder: 

Fig. 1. CP-MAS NMR spectra at 1.5 kHz rotation rate of regenerated cellulo
se–lignin composite fibers with 0 and 50 wt% lignin. Increased lignin signals are 
shown with up arrows and decreasing cellulose signals are shown with 
down arrows. 

Fig. 2. Photography of three cellulose–lignin fibers. Top: 67, Mid: 33, Bot: 
10 wt% lignin. 

Fig. 3. ROSMAS NMR spectrum of regenerated cellulose and lignin composite 
fibers produced with 50 wt% lignin and draw ratio 2. Rotation rate at 1.5 kHz. 
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wrapped Lorentzian fwL(θ) =
1
π⋅

sinhγ
coshγ − cos2θ

(2)  

3. Results and discussion 

Fig. 1 shows CP-MAS NMR spectra at 1500 Hz rotation rate of cel
lulose–lignin composite fibers with 0 and 50 wt% lignin. Typical spectral 
features indicate the content variations of cellulose and lignin, respec
tively. In this work we do not study the exact cellulose–lignin ratio in the 
fiber. Therefore, lignin content is given from the dissolved material 
composition in the spinning dope solution. The lignin content in similar 
fibers has been previously investigated and only a minor fraction of low 
molecular weight lignin was found to be leached in the coagulation bath 
(Bengtsson et al., 2018; Bengtsson, Jedvert, Hedlund, Köhnke, & The
liander, 2019). Fig. 2 shows fibers with different lignin content, it is 
obvious that fibers spun from a dope with high lignin content also is 
much darker, i.e. contain more lignin. 

Fig. 3 shows the full 2D ROSMAS spectrum of fibers produced with 
50 wt% lignin and draw ratio 2. The isotropic signal, corresponding to a 
non-syncronized CP-MAS spectrum, is located in M = 0. Anisotropic 
signals are located in the M ∕= 0 regions, usually characterized with 
significantly lower signal intensity compared to M = 0 signals. In Fig. 3 
there are no lignin signals observed in M ∕= 0. Considering that the ar
omatic lignin groups have larger chemical shift anisotropy than cellu
lose, which amplifies M ∕= 0 signals in ordered materials, we may 
conclude that softwood kraft lignin, isolated with the LignoBoost 
method, is not molecularly oriented in a mechanically stretched cellu
lose–lignin fiber. There are however some oriented lignin signals from 
the 60–20 ppm region isolated in M =±2. Signals that only show in M =

±2 are molecularly perpendicular to the rotor axis and therefore can 
also be attributed to the rotational forces acting on flexible components 
of the lignin, and therefore the finding is inconclusive. If there exists a 
form of lignin with long range molecular order, ROSMAS is an excellent 
method to detect it. A undergoing discussion suggest that some forms of 
lignin may have a more linear molecular structure, which could have a 
preferred orientation in a fiber (Awal & Sain, 2013; Crestini, Melone, 
Sette, & Saladino, 2011; Hosseinaei, Harper, Bozell, & Rials, 2016; Li 
et al., 2017; Nar et al., 2016). 

The molecular orientation of the fibers, derived from wood products, 
is compared to native wood from spruce. The rotation rate for the wood 
sample is higher, at 4 kHz, to increase the aromatic signals found in 
lignin. Four signals from oriented lignin is observed around 

125–190 ppm in M = − 1 in a spruce solid wood sample, in addition to 
the oriented cellulose in Fig. 4. Atalla and Agarwal first discovered 
oriented lignin near the cell walls using polarized Raman spectroscopy 
(Atalla & Agarwal, 1985). Our study seems to confirm that some ori
ented aromatics from lignin in wood do occur. The ROSMAS NMR 
studies suggest that the oriented lignin seen in wood is not regained in a 
regenerated composite fiber from the same, although modified, raw 
materials. For example, LignoBoost extracted lignin is known to be 
different from native lignin. Recent work by Kang et al., published in 
Nature Communications, showed that lignin is bound to xylans, rather 
than to the cellulose itself in a cellulose–xylan–lignin system (Kang et al., 
2019). Oriented lignin could be formed from the cellulose–xylan–lignin 
bridge, with the cellulose and hemicellulose acting as a scaffold. Our 
study cannot currently investigate a cellulose–xylan–lignin model since 
the relative amounts of xylan in dissolving pulp is much lower compared 
to wood. The xylan to cellulose ratio in dissolving pulp, which is used in 
our fibers, is 36% of the xylan to cellulose ratio of the less pure softwood 
kraft paper grade pulp (Bengtsson et al., 2018). 

Comparable molecular orientation results from NMR, WAXS, and 
birefringence are shown in Fig. 5. All methods reveal an increase in 
molecular order with increased draw ratio in a cellulose–lignin fiber 
with 50 wt% lignin. The same trend of increasing molecular order was 
also consistent for samples where only X-ray scattering and birefrin
gence data was available. There is a difference between the WAXS and 
NMR techniques with regard to what part of the material that is 
measured. NMR can theoretically investigate molecular orientation 
from both crystalline content and non-crystalline content, both of which 
is ordered. In this work, only the order parameters of the crystalline 
cellulose are reliably obtained with NMR. WAXS is usually known to be 
sensitive to crystalline materials, however the non-crystalline cellulose 
is also ordered, which may have its own different contribution. Sven
ningsson et al. previously found little difference in the molecular 
orientation of the crystalline and non-crystalline contributions in a 
highly oriented regenerated cellulose fiber (Svenningsson, Lin, et al., 
2019; Svenningsson, Sparrman, et al., 2019). Our data suggest that the 
crystalline cellulose is already maximally ordered at lower stretching, 
while the non-crystalline material requires additional stretching to be 
maximally ordered. 

It is practically possible to increase the draw ratio when the lignin 
ratio is increased while retaining continuous fiber spinning. The WAXS 
results in Table 1 suggest that a cellulose–lignin fiber could benefit from 
an increased draw ratio, in comparison to a neat cellulose fiber, in order 
to achieve maximal molecular order. Selecting the optimal draw ratio is 
important for the carbon fiber properties, which favors high molecular 
order in the precursor provided by the cellulose. 

Table 1 shows molecular orientation in the form of P2 order 
parameter from WAXS and ROSMAS with regard to lignin content, draw 

Fig. 4. ROSMAS NMR spectra of a European spruce oriented wood sample, cut 
at 45◦ from the grain direction. Rotation rate at 4 kHz. Oriented aromatic lignin 
seen in the 125–190 ppm region. 

Fig. 5. Order parameter (from NMR and WAXS, left y-axis) and birefringence 
(right y-axis) as function of draw ratio of a cellulose–lignin fiber with 50 wt%. 
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ratio, and dope solution temperature. Trends show decreasing orienta
tion with increase in lignin, and also an increase in orientation with 
increasing draw ratio. A P2 order parameter can in theory be calculated 
for birefringence, however it is challenging to correctly determine the 
required maximum birefringence for every new lignin blend, therefore 
only the birefringence values are shown (Northolt et al., 2001). Bire
fringence in a cellulose–lignin fiber is shown in Fig. 6 to be strongly 
dependent on the lignin content. 

Fig. 7 shows the azimuthal plots of the regenerated cellulose–lignin 
fibers studied by WAXS. The normalized plots shows an orientated fiber 
having higher intensity around the 0◦ angle that coincides with the di
rection of the fiber. Qualitative assessments can be made on each fiber, 
for example: Sample L0B have a higher intensity around 0◦ compared to 
sample L0A because of the higher draw ratio of L0B. 

Quantitatively, the curve represents molecular orientation distribu
tion from the 002 reflection of the regenerated cellulose structure, fitted 
with a wrapped Lorentzian and a baseline. As previously noted, the 021 
reflection prevents analysis of the entire range of azimuthal angles. The 
curve fit is therefore performed on data from ±45◦ azimuthal angles. It 
was determined with ROSMAS NMR that the lignin has no significant 
orientation, therefore any possible WAXS lignin signal is filtered out by 

Fig. 6. Birefringence of cellulose–lignin fibers as a function of lignin content.  

Fig. 7. WAXS azimuthal plots of the cellulose–lignin fibers. The curve represents molecular orientation distribution from the 002 reflection of the regenerated 
cellulose structure, fitted with a wrapped Lorentzian and a baseline. Sample names are referenced to Table 1. 
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the baseline in the curve fitting procedure. Tensile modulus decreases 
linearly with lignin content as can be seen in Fig. 8. Studies from Ma 
et al. found similar results (Ma et al., 2015). 

4. Conclusion 

We demonstrate, with a combination of ROSMAS NMR spectroscopy 
and WAXS, disassociation of molecular orientation in a cellulose–lignin 
composite. Aromatic molecular orientation is observed in European 
spruce wood samples with ROSMAS NMR. The orientation of aromatic 
lignin in native wood is not regained in the cellulose–lignin composite 
fibers produced in this work. We reproduced an ionic liquid-produced 
cellulose–lignin composite fiber using 1-ethyl-3-methylimidazolium 
acetate solvent and softwood Kraft lignin. A method that bears simi
larities to the IONCELL strategy (Sixta et al., 2015). ROSMAS NMR 
spectroscopy may prove to be essential tools to predict carbon fiber 
materials properties from the precursor molecular composition and 
arrangement. Future investigations with ROSMAS NMR spectroscopy 
will reveal if the cellulose–xylan–lignin concept can indeed provide 
order of the lignin in various types of cellulose–lignin composite fibers. 
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