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ABSTRACT
Inspired by the high performance in image-based medical analysis, this paper explores the use of advanced seg-
mentation techniques for industrial Microwave Tomography (MWT). Our context is the visual analysis of moisture
levels in porous foams undergoing microwave drying. We propose an automatic segmentation technique—MWT
Segmentation based on K-means (MWTS-KM) and demonstrate its efficiency and accuracy for industrial use.
MWTS-KM consists of three stages: image augmentation, grayscale conversion, and K-means implementation.
To estimate the performance of this technique, we empirically benchmark its efficiency and accuracy against two
well-established alternatives: Otsu and K-means. To elicit performance data, three metrics (Jaccard index, Dice
coefficient and false positive) are used. Our results indicate that MWTS-KM outperforms the well-established
Otsu and K-means, both in visually observable and objectively quantitative evaluation.

Keywords
Image Segmentation, Otsu, K-means, Microwave Tomography.

1 INTRODUCTION

1.1 Image segmentation and MWT
Image segmentation is one of the most commonly used
methods to classify the pixels of an image correctly
in decision oriented applications. Due to its capability
for distinguishing various features [1], it is able to di-
vide an image into a number of discrete regions such
that the pixels have high similarity within and high
contrast between regions [2]. It has been well proven
that segmentation is widely beneficial to a range of to-
mographic systems especially Computed Tomography
(CT) [3, 4, 5, 6, 7]. For example, applications like
segmenting different tissue types—e.g., lungs, kidneys,
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prior specific permission and/or a fee.

livers—in a CT image are reliable for accurate and pre-
cise diagnoses. There are many application areas for
tomographic systems. For instance, while the adop-
tion of image segmentation has been successful on a
Microwave Tomography (MWT) system, this is mainly
concerning medical usage. This paper focuses on lever-
aging state-of-the-art segmentation methods to MWT
images for specific physical attribute detection in an in-
dustrial process setting.

MWT is a non-ionizing imaging technique that pro-
vides a quantitative image of the dielectric profile of
the object of interest (OI) [8, 9]. In this paper, we
focus on using MWT to observe a specialized indus-
trial process—microwave drying for porous foams. An
important physical parameter—moisture level of the
foam—is measured throughout the whole drying pro-
cess. The moisture level is regarded as the measure of
a complete drying process. Depending on the imaging
techniques used, a reconstructed tomographic images
can display either the location of the moisture through
the foam as an OI or a map of the dielectric proper-
ties of the moisture value both commonly referred to as
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MWT techniques [10, 11]. In our setup, the foam to be
dried is measured and characterized by MWT sensors
processed by a series of imaging techniques. After im-
age reconstruction, the dielectric properties of the foam
represents a moisture level, depicted in Figure 1, which
is an example of reconstructed images using the MWT
system. Hence, with the aid of mixing rule techniques
[12], an ad hoc mapping is defined to obtain the mois-
ture level of the foam.

After a drying process, some regions of the foam may
not be completely dry. It is obvious that dry parts have
less moisture, hence the amplitude (moisture or dielec-
tric level) of these areas is lower than in the non-dry re-
gions. The difference between dry and non-dry is repre-
sented by allocating different colors to each region (Fig-
ure 1) where the blue parts stand for good/low-moisture
and the yellow parts stand for bad/high-moisture. Dark
blue parts are drier than yellow areas. The colours be-
come more yellow when there is more moisture. It is
critical for operators and practitioner to precisely assess
the low moisture areas of the material so as to gauge the
success of a drying process.

There are some efficient MWT systems that produce
high-quality images for industrial processes [11, 9]. In
our drying process, the measurement of the foams is
also performed by MWT, whose detailed design is be-
yond the scope of this paper. We address the segmen-
tation for visualizing the blue regions representing low
moisture. Thus, we propose an automatic segmentation
method called MWT Segmentation based on K-means
(MWTS-KM) for processing the images reconstructed
by an MWT in our experiment. This algorithm is fully
automatic and the user only has a verification role [1].
Next, we report on how we carried out experiments in
practical settings to validate the proposed segmentation
method, including how we successfully validated its ro-
bustness, performance and reliability.

1.2 Contributions
As the full version of our recently published work [13],
this paper possesses two main outcomes. Firstly, we
propose to visualize the moisture area, more precisely
the low moisture area for porous foams using image
segmentation methods on MWT images, on the premise
that many segmentation methods have demonstrated
satisfactory utilization in tomographic systems but not
desirable success in the context of MWT. Secondly,
a state-of-the-art MWTS-KM segmentation method is
proposed to visualize the low moisture area of an im-
age. As a novel integrated algorithm, it is compared
with two alternative segmentation algorithms that have
been used widely in related application areas.

The organization of this paper is as follows. The re-
lated works section briefly presents parts of the current

Figure 1: Example of an MWT image (input image) in
our study. Blue means lower moisture, yellow means
higher moisture.

research situation in segmentation methods used in to-
mographic images; mostly from the medical applica-
tion areas. The proposed algorithm and another two
common algorithms for comparison are presented in
Section 3. Section 4 elaborates the basic experimental
setup and the results including evaluation. Discussions
and conclusions are given in Sections 5 and 6 respec-
tively.

2 RELATED WORK
Significant research efforts have been invested into the
topic of tomographic image segmentation and related
areas of application. Sharma et al. [14] provided a
review of a set of automated segmentation methods
ranked by applicability and suitability in the context
of tomographic images; especially CT images. Shoaib
et al. [15] used the Otsu algorithm [16] to propose
a method including thresholding to prove a successful
segmentation in lungs using CT. Likewise, Dorgham [1]
deployed an automatic segmentation method on the ba-
sis of GrabCut [17] to detect human body Regions of
Interest (RoI) from CT images. Wu et al. [18] also
proposed an automatic segmentation algorithm named
AUGC in ultrasound tomography images for breast can-
cer screening and pathological quantification. This
method was also established on GrabCut as well, ad-
dressing incomplete labeling and speeding up multicore
parallel programming. Moreover, Jose et al. [4] ef-
fectively detected and identified the exact location of a
brain tumor through K-means clustering and fuzzy c-
means algorithms by segmentation CT images. Shep-
pard et al. [19] utilized a combination algorithm con-
taining active contours [20] and watershed transforma-
tion [21] to implement segmentation for porous mate-
rials in industrial tomographic images, resulting in su-
perb quality results. Rashno et al. [22] developed a
fully automated algorithm to segment fluid-filled and
cyst regions in optical coherence tomography (OCT)
retina images, segmented by combining a neutrosophic
transformation and a graph-based shortest path method.
Venhuizen et al. [23] developed a fully automatic seg-
mentation system for segmenting retina in optical co-
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herence tomography (OCT) through using a Convo-
lutional Neural Network (CNN), proving reliable effi-
ciency. Similarly, another variant end-to-end Deep De-
convolutional Neural Network (DDNN) was presented
by Men et al. [6] for multi-target segmentation in na-
sopharyngeal cancer.

Concerning practical MWT, Wang et al. [7] employed
a comparative study on MWT image segmentation
for breast cancer detection. They used a K-Nearest
Neighbor (KNN) algorithm and Gaussian Mixture
Model (GMM) in their research, and showed that
KNN outperformed GMM when segmenting Region of
Interest (RoI) when using the Mathew Correlation Co-
efficient (MCC). Another concrete comparative study
was presented by Mahmood et al. [5], who demon-
strated that MWT image segmentation is even capable
of ameliorating the accuracy of image reconstruction
using several automated segmentation methods. Joseph
et al. [24] integrated image segmentation with their
inverse scattering algorithm called Forward- Backward
Time-Stepping (FBTS) to apply on microwave imaging
for brain tumors. From the retrospective work, we
determine to deploy two well-known approaches as
pre-study to support our methodology.

2.1 Otsu Algorithm
The Otsu algorithm is an unsupervised method which
can be used to select a threshold automatically from
a gray level histogram and deal with the problem of
selecting the thresholds in images [16]. This method
plays an important role in the image segmentation be-
cause of its advantages of simple implement and time
performance [25] such as the documented image seg-
mentation based on the Otsu method [26, 15] and in-
frared image segmentation based on the improved Otsu
method [27]. It is a widespread methodology used in di-
viding images into two categories of pixels; foreground
and background. In this paper, this method is employed
to segment the MWT image into two subcategories ac-
cording to different levels of moisture. The description
of how to segment the MWT image using the Otsu al-
gorithm is explained as follows:

1. Calculate the histogram and probability of each in-
tensity level.

2. Set up the initialωi(0) and ui(0).

3. Traverse the threshold values from t=155 to 255, up-
dateωi and ui, and compute the variance σb

2.

The segmentation threshold of the different moisture
levels is denoted by t. The proportion of pixels belong-
ing to a particular moisture level of the MWT image is
recorded as ω0(t), with the average gradation of µ0(t).
Moreover, the ratio of pixels in another moisture level

isω1(t), and has an average gradation of µ1(t). The av-
erage gradation of the entire MWT image is denoted by
µ(t), the variance between classes is annotated by σb

2.
Assuming the size of MWT image is M (width) * N
(height), the number of pixels in which the gray value
is lower than the threshold T in the corresponding im-
age is N0. The number of pixels in which the gray value
is above the threshold T is N1. Thus, we have:

ω0 =
N0

M ∗N
(1)

ω1 =
N1

M ∗N
(2)

N0+N1=M*N (3)

ω0+ω1=1 (4)

µ=ω0*µ0+ω1*µ1 (5)

σb
2=ω0(µ0-µ)2+ω1(µ1-µ)2 (6)

σb
2=ω0ω0(µ0-µ1)2 (7)

The boundaries between the low moisture areas and
other areas will be found due to the values in these two
sets of pixels through MWT images.

2.2 K-means Algorithm
The K-means algorithm is a method of cluster anal-
ysis in data mining [28] which can also be used in
image segmentation. This genre of unsupervised ma-
chine learning algorithm aims to minimize the sum of
squared distances between all points and the cluster
center [29, 30]. K denotes the number of centers we
choose depending on the number of categories we in-
tend to classify. In image segmentation, the K-means
algorithm will help cluster images based on color and
the minimum square Euclidean distance. In our study,
this method is simultaneously used to find the bound-
ary between the low moisture and other areas in MWT
images. The value of K is chosen as two, as expected.

MWT pixel values range from 0 to 255; the size of the
image is M (width) * N (height). Assuming that the
matrix of pixels in this image is [X11, X12, ..., XM-1,N,
XM,N] while the value of K is two, the total pixel val-
ues in this matrix will be divided into two parts ran-
domly. The first sets are S1=[W1, W2, ..., WN] and the
second sets are S2=[V1, V2, ..., VM] separately. The
overview and basic schematics of how the K-means
method works in our study are elaborated as below:
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1. Choose two samples randomly from the dataset
D=[X11, X12, ..., XM-1,N, XM,N] as the initial
centroid vector: u1, u2 and the first set is S1 and the
another set is S2.

2. Calculate the distance between the element of
dataset xi from first set S1 and second set S2 and the
centroid uj: dij=||xi-uj||2. If di1>di2, xi will belong to
S1 otherwise xi will belong to S2.

3. Output the classification S=S1, S2.

The boundaries between different levels of moisture
will be found according to the values in these two sets
of pixels in the MWT image.

2.3 Performance Evaluation
The accuracy is chosen for gauging the performance
in this paper. To evaluate the accuracy obtained from
our segmentation algorithms, the similarity and false
positive are measured by jointly applying three criteria:
Jaccard index, Dice coefficient and false positive:

• Jaccard index: This is a commonly used metric to
derive the similarity and diversity of finite sample
sets. We choose this statistic to gauge our study as it
has been extensively applied in the context of image
segmentation [3, 18]. In our paper, it indicates the
pixel-level similarity of input and output image. The
input MWT image is referred as ground-truth while
the output image represents the segmented image.
The mathematical form of the Jaccard index is de-
fined as (In this article, G and S annotate the input
ground-truth image and the output segmented image
respectively amid this denotation [18].):

Jaccard index =
|G∩S|
|G∪S|

(8)

• Dice coefficient: This is another well-known param-
eter to measure the similarity between two samples.
In our case, it will also result in pixel-level similarity
between input and output. It differs from the Jaccard
index which only calculate true positives once. The
Dice coefficient normalizes the number of true pos-
itives to the average size of the two segmented areas
[3]. It’s defined as:

Dice coefficient = 2× |G|∩ |S|
|G|+ |S|

(9)

• False positive: This is the expectancy of the false
positive ratio. This rate is the ratio between the num-
ber of negative samples falsely classified as positive

and the total number of negative samples. Low val-
ues indicate high accuracy. A false positive mani-
fests in the form of:

False positive =
|S|− |G∩S|
|G|

(10)

The performance metrics yield values ranging from
zero to one. Reaching higher Jaccard and Dice values
close to one represents a desirable segmentation result
with high accuracy while a value approaching to zero
of false positives achieves nearly perfect segmentation
performance.

2.4 Otsu VS K-means
The designed pre-study is to compare the functional-
ity between Otsu and K-means. Hence, we imple-
ment the same segmentation principles by using these
two renowned approaches with our total 30 MWT im-
ages. Due to the limited space and better interpreta-
tion, we randomly select four samples as presentation.
The outcomes are shown in Figure 2. In addition, the
metric-driven quantitative evaluation among Jaccard in-
dex, Dice coefficient, and false positive is illustrated in
Figures 3-5. From the results obtained, it is noteworthy
that the K-means evidently outperforms Otsu method in
most samples. Therefore, this inspiration enables us to
develop our proposed state-of-the-art algorithm.

3 METHOD
This section presents our proposed algorithm while
Otsu and K-means algorithms are chosen for the
comparative evaluation of the proposed algorithm in
terms of segmentation performance because of their
proven reliability and success over the past few years.

3.1 Overview of MWTS-KM
We have demonstrated that K-means exceeds Otsu in
our context from the conventional methods’ perspec-
tive. The K-means algorithm is the one of the simplest
clustering algorithms and is computationally faster than
the hierarchical clustering. It can also work for a large
number of variables. [2]. As a type of unsupervised ma-
chine learning algorithm, it is widely used in the realm
of image segmentation due to its simplicity and effi-
ciency. Many researchers have tried to combine it with
other techniques to increase its performance, such as in-
tegrating with fuzzy c-means algorithms [4] and partial
stretching enhancement [2]. Following such a strategy
of combination, our proposed algorithm—MWT Seg-
mentation based on K-means (MWTS-KM)—is estab-
lished based on the basic K-means algorithm. It inte-
grates image augmentation, grayscale image conversion
and conventional K-means into our proposed automatic
algorithm. This integrative strategy of our method is
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Figure 2: The comparison among Otsu and K-means. The first row shows the input images. The second row results
from applying the Otsu algorithm on the input images while the third row results from K-means Algorithm.

Figure 3: Jaccard index (0=low to 1=high) evaluation of
Otsu and K-means algorithms for our 30 MWT images.

Figure 4: Dice coefficient (0=low to 1=high) evaluation
of Otsu and K-means algorithms for our 30 MWT im-
ages.

derived after considerable and objective test cases. The
pipeline diagram shown in Figure 6 illustrates its struc-
ture and components; the pipeline stages 2, 3, and 4 are
explained next.

3.2 Image augmentation (Stage 2)
The purpose of this step is to enhance the contrast and
detect the boundaries displayed in our MWT images for

Figure 5: False positive (0=high to 1=low) evaluation of
Otsu and K-means algorithms for our 30 MWT images.

the foams we use. Image sharpening and removing blur
as well as reducing noise are common image process-
ing tasks [19]. After repeated trials, we find that simply
using the contrast adjustment function with the same
level factor for all images greatly helped segmentation
with k-means later. The edges become sharper and with
much less noise. Basically, this operation highlights the
boundaries of different color pixels which represent dif-
ferent levels of moisture pertaining to foams. The con-
trast enhancement can be easily observed when used in
grayscale conversion.

3.3 Grayscale conversion (Stage 3)
Grayscale images are distinct from purely black and
white images in that they can represent several shades
of gray in between. They are frequently used where
each pixel is a single sample indicating intensity
information only. A great number of segmentation
methods have been successfully implemented in
grayscale rather than ordinary RGB images in tomo-
graphic systems [1]. The segmentation contributes the
desirable consequences through grayscale tomographic
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Figure 6: The pipeline of proposed MWT Segmenta-
tion based on K-means (MWTS-KM) algorithm. (Step
2 and step 3 are explained in Figure 8)

images while segmenting for porous materials [19].We
use the Python Imaging Library (PIL) to execute
the grayscale conversion. The comparison between
the input MWT and grayscale images (after contrast
adjustment/augmentation), and between just con-
trast adjustment/augmentation and grayscale applied
afterwards are displayed in Figure 8.

3.4 K-means implementation (Stage 4)
A K-means algorithm is used as the final step of our
proposed algorithm to execute the segmentation stage.
A fuller introduction in the following section describes
how the conventional K-means algorithm is used in this
paper for the purpose of comparison.

4 SETUP AND RESULTS
Microwave tomography mainly consists of two steps:
collecting scattered electric field data around an object,
and applying inversion algorithms on the scattered field

data to get information of the object properties like di-
electric distribution. As for the setup, the object un-
der testing is surrounded by an array of antennas acting
as transceivers. The scattered field data is collected so
that each antenna is separate in the source mode, and
it is assumed that it cannot receive data while acting as
a source. A schematic picture proposed for the MWT
is shown in Figure 7, where the antenna array is mod-
elled as 2D line sources and a perfectly matched layer
is placed over the truncated free-space.

Figure 7: Model used for benchmarking purposes. The
light blue box is the porous foam; green circles repre-
sent the antenna modelled as a 2D line source.

Here, the object is a piece of porous foams. Detailing
the reconstruction method for estimating the moisture
distribution is beyond the scope of this paper. Instead,
we study automatic segmentation methodologies for the
purpose of visualizing the low moisture area displayed
in the MWT reconstructed images. In this study, we
gather a total of 30 MWT images reconstructed from
the data obtained from the sensors characterizing 30
distinct processes. The reconstructed images are all in
RGB mode, and their size are kept constant throughout
augmentation, grayscale conversion and three distinct
segmentation phases.

4.1 Results
We conduct segmentation in all the 30 images gained
from different microwave drying processes as afore-
mentioned. In our analysis, the segmentation task is
a binary classification to distinguish the foreground and
the background in images. Accordingly, we intend to
categorize our MWT image into two parts; low mois-
ture area and other area. The whole segmentation pe-
riod for 30 images lasts around three hours. We run
all the python scripts in the full-fledged IDE–Jupyter
Notebook. As aforementioned, we randomly choose 4
of those 30 samples to be shown in this paper (Figures
8 and 9) for readability and understanding due to the
given limited space. The blue areas in the MWT images
represent low moisture areas. Figure 8 shows a part of
the pipeline of MWTS-KM, comparing the input MWT
images, augmented MWT images and grayscale MWT
images in which it is easy to differentiate low moisture
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Figure 8: The comparison among input MWT images, augmented images and grayscale images. The first row
stands for input MWT image, second row for augmented images and third row for grayscale images.

Figure 9: The comparison among three segmentation results. The first row shows the input images. The second
row results from applying the Otsu algorithm on the input images. The third row results from using conventional
K-means Algorithm while the last row shows output images from the MWTS-KM algorithm.

areas and other areas. The exhaustive segmentation re-
sults are shown in Figure 8 with the respect of MWTS-
KM, Otsu and K-means algorithms. Dark areas in these
images denote the low moisture areas that are the desir-
able consequences we want.

4.2 Evaluation
As Figure 9 depicts, the Otsu and K-means algorithms
are not capable to visualize the low moisture areas after
segmentation while MWTS-KM precisely visualized
those designated areas. More specifically, there is
almost no evident difference observed between the seg-
mentation results from Otsu and K-means algorithms,
both of which are ineffective in obtaining desirable

consequences. However, compared to ground-truth
images which are input MWT images, our proposed
MWTS-KM achieves excellent accuracy in visualizing
low moisture areas in terms of perception. Therefore,
we provide another more convincing quantitative
evaluation.

The complete quantitative evaluation output for the 30
samples is shown in Table 1, presenting the Jaccard in-
dex, Dice coefficient and false positive across all three
algorithms. In terms of performance of each algorithm,
MWTS-KM exceeds Otsu and K-means remarkably in
each metric. While K-means performs better than Otsu
in most cases, it is outperformed by MWTS-KM. In
terms of the Jaccard index, Otsu produces values fluc-
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Table 1: Jaccard index, Dice coefficient, false positive: Comprehensive performance comparison between 3 seg-
mentation algorithms for 30 samples.

Jaccard index Dice coefficient False positive
MWTS-KM Otsu K-means MWTS-KM Otsu K-means MWTS-KM Otsu K-means

1© 0.997 0.319 0.766 0.999 0.484 0.868 0.003 0.682 0.234
2© 0.998 0.834 0.823 0.999 0.909 0.903 0.002 0.168 0.178
3© 0.995 0.458 0.799 0.997 0.628 0.888 0.005 0.544 0.201
4© 0.995 0.291 0.939 0.998 0.450 0.969 0.005 0.711 0.061
5© 0.997 0.370 0.757 0.998 0.540 0.862 0.003 0.631 0.243
6© 0.995 0.476 0.752 0.998 0.645 0.858 0.005 0.527 0.248
7© 0.994 0.320 0.887 0.997 0.484 0.940 0.006 0.682 0.114
8© 0.998 0.606 0.589 0.999 0.754 0.741 0.002 0.395 0.412
9© 0.995 0.358 0.832 0.998 0.527 0.908 0.005 0.644 0.168

10© 0.995 0.427 0.821 0.998 0.599 0.902 0.005 0.575 0.179
11© 0.999 0.552 0.536 0.999 0.712 0.698 0.001 0.448 0.464
12© 0.999 0.272 0.291 0.999 0.428 0.451 0.001 0.728 0.709
13© 0.999 0.567 0.543 0.999 0.724 0.704 0.001 0.433 0.458
14© 0.999 0.714 0.576 0.999 0.833 0.731 0.001 0.286 0.425
15© 0.999 0.317 0.790 0.999 0.482 0.882 0.001 0.683 0.211
16© 0.999 0.377 0.721 0.999 0.547 0.838 0.001 0.624 0.279
17© 0.999 0.522 0.740 0.999 0.686 0.851 0.001 0.479 0.260
18© 0.999 0.501 0.779 0.998 0.667 0.876 0.002 0.500 0.221
19© 0.999 0.434 0.840 0.998 0.605 0.913 0.001 0.566 0.161
20© 0.999 0.510 0.743 0.998 0.676 0.853 0.002 0.490 0.257
21© 0.999 0.461 0.813 0.999 0.631 0.897 0.001 0.540 0.187
22© 0.999 0.475 0.771 0.997 0.644 0.870 0.001 0.526 0.230
23© 0.999 0.728 0.694 0.998 0.843 0.819 0.001 0.272 0.307
24© 0.999 0.437 0.819 0.999 0.608 0.901 0.001 0.563 0.181
25© 0.999 0.661 0.703 0.999 0.796 0.825 0.001 0.339 0.297
26© 0.998 0.424 0.834 0.999 0.595 0.909 0.001 0.577 0.166
27© 0.997 0.544 0.737 0.998 0.704 0.848 0.001 0.457 0.263
28© 0.999 0.510 0.754 0.998 0.675 0.860 0.001 0.490 0.247
29© 0.999 0.423 0.869 0.997 0.594 0.930 0.002 0.578 0.131
30© 0.998 0.274 0.881 0.995 0.430 0.937 0.001 0.727 0.119

Figure 10: Jaccard index accuracy (0=low to 1=high)
evaluation of MWTS-KM, Otsu, K-means segmenta-
tion algorithms for tested 30 MWT images.

tuating around 0.50 for 30 samples while K-means pro-
duces a cluster of values around 0.80. Similarly, Otsu
obtains these Dice coefficients oscillating close to 0.60

Figure 11: Dice coefficient accuracy (0=low to 1=high)
evaluation of MWTS-KM, Otsu, K-means segmenta-
tion algorithms for test 30 images.

but K-means has a series of Dice values in proximity of
about 0.82. When considering false positive, Otsu al-
ways has a higher value compared to K-means, which
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Figure 12: False positive (0=high to 1=low) evalua-
tion of MWTS-KM, Otsu, K-means segmentation al-
gorithms for test 30 images.

also confirms the above results. The visual and straight-
forward comparisons are displayed in Figures 10, 11,
and 12.

MWTS-KM in particular outperforms Otsu and
K-means exceedingly according to our sensitivity
analysis. In fact, Otsu even has superior performance
compared to K-means in a few experimental cases in
line with quantitative evaluation. Overall, these two
well-established approaches are disadvantageous in our
context. It is worthwhile to observe that MWTS-KM
achieves nearly one of both Jaccard index and Dice
coefficient in the whole 30 segmentation results.
Furthermore, the false positive values for MWTS-KM
attain almost zero in each trial, which would be
pertained to exceptional performance.

5 DISCUSSIONS
To summarize, we implement image segmentation tech-
nology in 30 MWT images obtained from the spe-
cialized microwave drying processes. The proposed
MWTS-KM algorithm is applied to segment images
to visualize the areas indicating low moisture level for
porous foams in relevant context. We compare MWTS-
KM with another two commonly used methods and ap-
praise them thoroughly. K-means algorithm surpasses
Otsu in general cases even though there is only a mod-
erate difference between them. As shown in Figures 9,
10 and 11, there exists some intersections among Otsu
and K-means in their performance line-plots. For ex-
ample, in samples 12, 13 and 23, the Otsu algorithm
is superior to K-means algorithm whereas it is disad-
vantageous compared to K-means algorithm in other
samples. However, the red lines representing MWTS-
KM indicate that our proposed algorithm has the high-
est Jaccard indexes and Dice coefficients with the low-
est false positive values as a tremendously acceptable
result.

Overall, our proposed MWTS-KM algorithm performs
better than Otsu and K-means algorithms in both per-
ceived and quantitative evaluation in MWT image seg-

mentation, especially outperforming them dominantly
in each case we experimented.

6 CONCLUSIONS
In this paper, firstly we prove the mature segmentation
methods which have been widely used in tomographic
systems are considerably suitable for MWT image seg-
mentation. In our study, this technique is an intuitive
and innovative method for visualizing the low mois-
ture areas of foams. We have developed an entirely
automatic methodology named MWTS-KM to conduct
the MWT image segmentation, validating its high ef-
ficiency and high accuracy after practical experiments.
This method is able to meticulously visualize the low
moisture areas for foams in MWT images. Further-
more, its performance is superior to two other preem-
inent methods.

We acknowledge that there still are some inefficiencies
in our algorithm, such as inadequate samples and lack
of more complete pre-processing steps. Therefore, fu-
ture work will mainly concentrate on adding more pre-
processing techniques as well as testing more sample
trials to enhance the robustness of the algorithm. For in-
stance, thresholding could be a promising add-on. Ad-
ditionally, we will incorporate human perception into
the study, such as by changing the color schemes to
compare the task performance.
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