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Abstract—Efficient nonlinearity compensation in fiber-optic
communication systems is considered a key element to go beyond
the “capacity crunch”. One guiding principle for previous work
on the design of practical nonlinearity compensation schemes is
that fewer steps lead to better systems. In this paper, we challenge
this assumption and show how to carefully design multi-step
approaches that provide better performance–complexity trade-
offs than their few-step counterparts. We consider the recently
proposed learned digital backpropagation (LDBP) approach,
where the linear steps in the split-step method are re-interpreted
as general linear functions, similar to the weight matrices in a
deep neural network. Our main contribution lies in an experi-
mental demonstration of this approach for a 25 Gbaud single-
channel optical transmission system. It is shown how LDBP can
be integrated into a coherent receiver DSP chain and successfully
trained in the presence of various hardware impairments. Our
results show that LDBP with limited complexity can achieve
better performance than standard DBP by using very short, but
jointly optimized, finite-impulse response filters in each step. This
paper also provides an overview of recently proposed extensions
of LDBP and we comment on potentially interesting avenues for
future work.

Index Terms—Machine Learning, Deep Learning, Digital Sig-
nal Processing, Low Complexity Digital Backpropagation, Sub-
band Processing, Polarization Mode Dispersion.

I. INTRODUCTION

Mitigating fiber nonlinearity is a significant challenge in
high-speed fiber-optic communication systems. As transmis-
sion power is increased, the nonlinear Kerr effect degrades
the system performance, preventing operation at higher trans-
mission rates, as would be expected in a linear system [1].
This performance gap motivates the development of nonlinear
compensation techniques, whose design is usually based on
analytical models for signal propagation in an optical fiber.
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Digital backpropagation (DBP) based on the split-step
Fourier method (SSFM) [2] theoretically offers ideal com-
pensation of deterministic propagation impairments including
nonlinear effects [3]–[6]. The SSFM is arguably the most
popular numerical method to solve the nonlinear Schrödinger
equation (NLSE) and simulate fiber propagation, while DBP
essentially reverses the SSFM operators. Other digital tech-
niques for nonlinearity compensation include Volterra series
approximations [7]–[10] and recursive perturbation approaches
[11]–[14]. The main challenge for all these nonlinear compen-
sation techniques is to obtain significant performance improve-
ment and a reasonable computational complexity [15]. Indeed,
several authors have highlighted the large computational bur-
den associated with a real-time digital signal processing (DSP)
implementation and proposed various techniques to reduce the
complexity [5], [14], [16]–[23]. In many of these works, the
number of steps (or compensation stages) is used not only
to quantify complexity but also as a general measure of the
quality for the proposed complexity-reduction method. The
resulting message appears to be that fewer steps are better
and provide more efficient solutions.

While previous work has indeed demonstrated that com-
plexity savings are possible by reducing steps [16], [17], [21],
the main purpose of this paper is to highlight the fact that
fewer steps are not more efficient per se. In fact, recent
progress in machine learning suggests that deep computation
graphs with many steps (or layers) tend to be more parameter-
efficient than shallow ones using fewer steps [24]. In this
paper, we illustrate how this insight can be applied in the
context of fiber-nonlinearity compensation in order to achieve
low-complexity and hardware-efficient DBP. The main idea is
to fully parameterize the linear steps in the SSFM by regarding
them as general linear functions that can be approximated
via finite impulse response (FIR) filters. All FIR filters can
then be jointly optimized, similar to optimizing the weight
matrices in a deep neural network (NN) [23], [25]. Complexity
is reduced via pruning, i.e., progressively shortening the filters
during the optimization procedure [26]. This can be seen
as a form of model compression, which is commonly used
in machine learning to reduce the size of NNs [27], [28].
We refer to the resulting approach as learned DBP (LDBP)
[23]. The nonlinear steps in LDBP can also be parameterized
and jointly optimized together with the linear steps [23]. In
this paper, we assume for simplicity that the nonlinear steps
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remain fixed throughout the optimization procedure (similar
to a conventional NN activation function).

This paper is an extension of [29], where we provided
a tutorial-like introduction to LDBP. LDBP was originally
introduced in [23] and the novel technical contribution in this
paper lies in an experimental validation of this approach for
a single-channel optical transmission system. In particular,
it is demonstrated that LDBP with limited complexity can
outperform standard DBP by using very short, but jointly
optimized, FIR filters in each step. During the review process
of this paper, another experimental demonstration of LDBP
was published in [30]. Besides the different system parameters
adopted for the experiments (such as fiber length, symbol
rate, and transmitted constellation), our work differs from
[30] in terms of the methodology followed in the LDBP
pre-optimisation stage: whilst we used experimental data to
optimize only the LDBP parameters, in [30] two MIMO filters
are jointly optimized together with LDBP. In another recent
work, the authors in [31] propose a new training method for
LDBP in the presence of practical impairments such as laser
phase noise. Their approach relies on extracting the relevant
impairment estimates from a standard DSP chain based on
chromatic dispersion (CD) compensation, which is similar to
our approach discussed in Sec. IV-C.

This paper is organized as follows. In Sec. II, we review
the theoretical background behind optical fiber propagation
and DBP. Sec. III introduces LDBP and shows how machine
learning can be applied in the context of fiber nonlinearity
compensation. Sec. IV presents the experimental results and
the comparison between DBP and LDBP. Sec. V provides a
tutorial-style overview of related works and indicates possible
avenues for future work. Finally, Sec. VI concludes the paper.

II. BACKGROUND

In this section, we review the mathematical foundation
for LDBP. The optical field propagating in a fiber can be
represented by a vector function of time t and distance z,
E(t, z) = [Ex(t, z), Ey(t, z)]>, which takes values in C2,
where Ex and Ey are the components of the optical field
over 2 arbitrary orthogonal polarization modes x and y. The
evolution of E in a birefringent optical fiber in the presence
of polarization-mode dispersion (PMD) is described by the
Manakov-PMD equation [32] as

∂E(t, z)

∂z
=

(
−ααα(z)

2
− jβ2

2

∂2

∂t2
−∆β′(z)σσσ(z)

∂

∂t

)
E(t, z)

+ jγ
8

9
|E(t, z)|2E(t, z), (1)

where ααα ∈ R2×2 models the polarization-dependent atten-
uation and amplification effects in a fiber link [33], β2 is
the group-velocity dispersion coefficient, γ is the nonlinear
coefficient, and ∆β′ is the delay per unit length along the
2 local principal states of polarizations whose evolution is
described by the matrix1 σσσ(z) ∈ SU(2). When polarization
dependent attenuation/amplification effects can be neglected,

1SU(2) denotes the special unitary group of degree 2.

then ααα(z) = αI, where α ∈ R is the fibre attenuation
coefficient and I represents the identity matrix.

Although (1) does not have a known closed-form solu-
tion, an approximated solution can be obtained using the
Baker–Campbell–Hausdorff formula [34] as

E(t, z + h) ≈ exp

(∫ z+h

z

D̂(ξ)dξ

)

exp

(∫ z+h

z

N̂(ξ)dξ

)
E(t, z),

(2)

where D̂ and N̂ are the so-called linear and nonlinear opera-
tors, respectively, given by

D̂(z) = −ααα(z)

2
− jβ2

2

∂2

∂t2
−∆β′(z)σσσ(z)

∂

∂t
, (3)

N̂(z) = jγ
8

9
|E(t, z)|2. (4)

The error incurred using (2) as a solution of (1) is vanishingly
small as h decreases [35]. This approximation is the main idea
behind the SSFM, which underpins DBP.

In the SSFM, the linear and nonlinear operators in (2) are
recursively applied in frequency and time domain, respectively.
The exponential of the nonlinear operator in (4) corresponds
instead, in the time-domain, to a multiplication by the term

exp

(
jγ

8

9

∫ z+h

z

|E(t, ξ)|2dξ
)
. (5)

The exponential of the linear operator D̂(ξ) in (3) can be
expressed in the Fourier domain as a (frequency-dependent)
matrix multiplication by

exp

(
−
∫ z+h

z

ααα(ξ)

2
dξ

)
exp

(
jω2 β2

2
h

)
J(ω, z) (6)

where J(ω, z) = exp
(
−
∫ z+h
z

jω∆β′(ξ)σσσ(ξ)dξ
)

is a unitary,
frequency-dependent matrix, commonly referred to as (local)
Jones matrix. For small enough h, the Jones matrix can
be factorized as J(ω, z) = R(z)T(ω, z), where R is a
unitary complex matrix which describes the evolution of the
polarization state of the optical field, and where

T(ω, z) =

 exp
(
−jω τ(z)2

)
0

0 exp
(
jω τ(z)2

)  (7)

with τ(z) = ∆β′(z)h describes the delay over the two
principal states of polarization at section z. Together, R(z)
and T(ω, z) contribute to define the evolution of PMD along
the link.

The conventional DBP algorithm aims to reconstruct the
transmitted field E(t, 0) from the received one E(t, z) using
(2) recursively as2

Ê(t, 0) =

NDBP∏
n=1

exp

(
−
∫ zn+1

zn

D̂′(ξ)dξ
)

exp

(
−
∫ zn+1

zn

N̂(ξ)dξ
)
E(t, z),

(8)

2Here,
∏N

i=1 Ai = A1A2 · · ·AN , in the operator product sense.
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where D̂′ = −α
2
− jβ2

2

∂2

∂t2
, zn and ∆zn = zn − zn−1 for

n = 1, . . . , NDBP are the propagation section and so-called
DBP step size at iteration n, and NDBP is the number of DBP
steps. Like in the SSFM implementation, the two operators in
(8) are typically applied in frequency- and time-domain for the
linear and nonlinear operators, respectively. This is performed
numerically via two fast-Fourier transforms (FFTs).

Comparing (2) with (8), we note that in the conventional
DBP implementation, the operator D̂′ does not exactly invert
D̂ in (2), because D̂′ does not account for the effects of
R(z) and T(ω, z). Including these two matrices in D̂′ is
challenging, since they are stochastically distributed over an
ensemble of fibres and unknown to the receiver. Failing to
invert R(z) and T(ω, z) in a distributed fashion results in
a performance penalty due to the uncompensated interaction
between PMD and the Kerr effect [36], [37]. Combining
DBP (and LDBP) with distributed PMD compensation is
discussed in more detail in Sec. V-B. However, distributed
PMD compensation is not yet integrated into the experimental
demonstration.

III. EFFICIENT MULTI-STEP NONLINEARITY
COMPENSATION USING DEEP LEARNING

For hardware-efficient and low-complexity DBP, the task
is to approximate the solution of the NLSE using as few
computational resources as possible. As described in the
previous section, the SSFM computes a numerical solution by
alternating between linear filtering steps (accounting for CD
and attenuation) and nonlinear phase rotation steps (accounting
for the optical Kerr effect). It was observed in [23] that this is
indeed quite similar to the functional form of a deep NN,
where linear (or affine) transformations are alternated with
pointwise nonlinearities. In this section, we illustrate how this
observation can be exploited by applying tools from machine
learning, in particular deep learning.

A. Supervised Learning and Neural Networks

We start by reviewing the standard supervised learning
setting for feed-forward neural networks (NNs). A feed-
forward NN with M layers defines a mapping ŷ = fθ(x)
where the input vector x ∈ X is mapped to the output
vector ŷ ∈ Y by alternating between affine transforma-
tions z(i) = W (i)x(i−1) + b(i) and pointwise nonlinearities
x(i) = φ(z(i)) with x(0) = x and x(M) = ŷ. The
parameter vector θ comprises all elements of the weight
matrices W (1), . . . ,W (M) and vectors b(1), . . . , b(M). Given
a training set S ⊂ X ×Y that contains a list of desired input–
output pairs, training proceeds by minimizing the empirical
loss LS(θ) , 1

|S|
∑

(x,y)∈S `
(
fθ(x),y), where `(ŷ,y) is a

real number that, given a pair (x,y) ∈ S, determines the
performance of the prediction ŷ = fθ(x) when y is the correct
output target. We call ` the loss function. In our case, x is a
vector of received samples after fiber propagation and some
impairments compensations, y is the vector of transmitted
symbols, ŷ is the estimated symbol vector, and ` is the
mean-squared error (MSE) function `(ŷ,y) = ‖ŷ − y‖2,

where ‖·‖ is the Euclidean norm. When the training set is
large, one typically optimizes θ using a variant of stochastic
gradient descent (SGD). In particular, mini-batch SGD uses
the parameter update θt+1 = θt − α∇θLBt

(θt), where α is
the step size and Bt ⊆ S is the mini-batch used in the t-th
step.

Supervised machine learning is not restricted to NNs and
learning algorithms such as SGD can be applied to other func-
tion classes as well. In this paper, we do not further consider
NNs, but instead focus on approaches where the function
fθ results from parameterizing a model-based algorithm, in
particular the SSFM. In fact, prior to the current revolution in
machine learning, communication engineers were quite aware
that system parameters (such as filter coefficients) could be
learned using SGD. It was not at all clear, however, that
more complicated parts of the system architecture could be
learned as well. For example, in the linear operating regime,
PMD can be compensated by choosing the function fθ as the
convolution of the received signal with the impulse response of
a linear multiple-input multiple-output (MIMO) filter, where
θ corresponds to the filter coefficients. For a suitable choice
of the loss function `, applying SGD then maps into the
well-known constant modulus algorithm (CMA) [38]. For the
experimental investigation in this paper, the CMA is used as
part of our receiver DSP chain as an adaptive equalizer (see
Sec. IV-A).

B. Learned Digital Backpropagation

Real-time DBP based on the SSFM is widely considered to
be impractical due to the complexity of the FFTs commonly
used to implement frequency-domain (FD) CD filtering. To
address this issue, time-domain (TD) filtering with finite
impulse response (FIR) filters has been suggested in, e.g.,
[5], [22], [39], [40]. In these works, either a single filter or
filter pair is designed and then used repeatedly in each step.
However, using the same filter multiple times is suboptimal
in general and all the filter coefficients used by the DBP
algorithm should be optimized jointly. To that end, it was
proposed in [23] (see also [25]) to apply supervised learning
based on SGD by letting the function fθ be the SSFM, where
the linear steps are now implemented using FIR filters. In this
case, θ corresponds to the filter coefficients used in all steps.
The resulting method is referred to as LDBP.

The complexity of LDBP can be reduced by applying model
compression, which is commonly used in ML to reduce the
size of NNs [27], [28]. In this paper, we use a simple pruning
approach where the FIR filters are progressively shortened
during SGD [26]. Our main finding is that the filters can
be pruned to remarkably short lengths without sacrificing
performance. As an example, consider single-channel DBP
of a 10.7-Gbaud signal over 25 × 80 km of standard single-
mode fiber (SSMF) using the SSFM with one step per span
(StPS). For this scenario, Ip and Kahn have shown that 70-
tap filters are required to obtain acceptable accuracy [5]. This
assumes that the filters are designed using FD sampling and
that the same filter is used in each step. The resulting hardware
complexity was estimated to be over 100 times larger than for
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Fig. 2. DSP chain applied to the digitized fiber output detected by the coherent receiver and analog-to-digital converter as shown in Fig. 1.

linear equalization. On the other hand, with jointly optimized
filters, it was previously demonstrated that one can achieve
similar accuracy by alternating between filters that are as
short as 5 and 3 taps [25]. This reduces the complexity by
almost two orders of magnitude, making it comparable to
linear equalization in this case.

At first glance, it may not be clear why multi-step DBP
can benefit from joint optimization of the filters. After all,
the standard SSFM applies the same CD filter many times in
succession, without the need for any elaborate optimization.
The explanation is that in the presence of practical imper-
fections such as finite-length filter truncation, applying the
same imperfect filter multiple times can be detrimental because
it magnifies any weakness. To achieve a good combined
response of neighboring filters and a good overall response,
the truncation of each filter needs to be delicately balanced.
For a more detailed discussion, we refer readers to [25], [41].

IV. EXPERIMENTAL RESULTS

For the experimental results presented in this section, our
focus is on single-channel DBP of a polarization-multiplexed
(PM) 25 Gbaud signal over 1500 km of SSMF. To obtain the
results, we proceed in three steps:

1) Pre-train LDBP using data from split-step simulations
and apply filter pruning to obtain short FIR filters in
each step.

2) Fine-tune the model using pre-processed experimental
data traces.

3) Test the fully-trained model on raw experimental data
traces, by integrating LDBP into the receiver DSP chain.

The pre-processed experimental data traces mentioned in step
2 are obtained using the procedures described in Sec. IV-C.
This pre-processing is necessary in order to provide LDBP
with an estimation of effects such as phase noise and state of
polarization. The raw experimental data traces in step 3 are the
digital domain samples of the fiber output. These raw traces
are processed by a different DSP chain, described in Sec. IV-A.

In the following, we discuss each step in more detail, starting
with the experimental testbed and DSP algorithms used for
the experimental validation. Effective SNR is used throughout
this section as the main figure of merit. We also note that
the training procedure described in Sec. IV-B and Sec. IV-C
is performed only once, since we only consider static effects,
i.e., chromatic dispersion and fiber nonlinearities. Moreover,
the trained model is independent of the transmitted power, as
described in more detail below.

A. Recirculating Loop Setup and DSP Chain

A schematic of the experimental recirculating loop setup
is depicted in Fig. 1. A total of 851 traces were captured
in the launch power range of −5 dBm to 6 dBm with steps
of 0.5 dBm, accounting for 37 traces per launch power. For
each trace, we generate offline a sequence of 216 symbols,
using the Permuted Congruential Generator XSL RR 128/64
random number generator [42]. A new random seed is used
for each sequence. The sequences are pulse-shaped using
a root-raised cosine (RRC) filter with 1% roll-off, digitally
pre-compensated for transmitter bandwidth limitations and
uploaded to a 100-GSa/s digital-to-analog converter (DAC).
The 193.4 THz carrier is generated by an external cavity laser
(ECL), modulated by a dual-polarization IQ-modulator (DP-
IQM) and amplified using an erbium doped fiber amplifier
(EDFA). Using acousto-optic modulators (AOMs), the optical
signal is circulated in a recirculating loop consisting of a loop-
synchronised polarization scrambler (LSPS), a 75-km span of
SSMF, an EDFA and an optical tunable filter (OTF) for gain
equalization.

At the receiver, the optical signal is amplified with an EDFA,
filtered using a 50 GHz optical bandwidth wavelength selec-
tive switch (WSS) and detected using an intradyne coherent
receiver consisting of a local oscillator (LO), 90-degree hybrid
and 4 balanced photodiodes with 43 GHz electrical bandwidth.
The resulting electrical signal is digitized by an 80-GSa/s real-
time oscilloscope with an electrical bandwidth of 36 GHz.
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The receiver DSP consists of seven blocks, which are ap-
plied sequentially as represented in Fig. 2. Orthonormalization
using blind moment estimation is applied to the signal for re-
ceiver optical front-end IQ compensation (gain imbalance and
offset angle between the in-phase and quadrature components).
Rational resampling to 2 samples per symbol is then applied.
The next step is frequency-offset estimation and compensation
to correct effects such as frequency difference between the
local oscillator and the signal laser and frequency offsets intro-
duced by the AOMs. After frequency-offset compensation, we
apply either electronic dispersion compensation (EDC), DBP,
or LDBP. The signal is then adaptively equalized and phase
noise compensated. Here we use a MIMO equalizer trained
with MSE metric. The MIMO equalizer is used to recover
the signal state of polarization and partially compensate for
other impairments, such as PMD. Within the update loop of
the equalizer, blind phase search using the known transmitted
symbols removes phase noise. The equalized signal is then
downsampled to 1 sample per symbol and aligned with the
transmitted sequence. Finally, the effective SNR is estimated.

B. Pre-Training and Filter Pruning

Simulations are used for pre-training where the simulation
parameters are closely matched to the experimental setup.
In particular, we assume single-channel transmission of a 25
Gbaud signal (PM 16-QAM, 1% RRC) over 20× 75.484 km
of fiber (α = 0.2 dB/km, β2 = −20.87 ps2/km, γ = 1.3
rad/W/km), where EDFAs (noise figure 5.0 dB) compensate
for attenuation after each span. Forward propagation is sim-
ulated with 300 logarithmic StPS and 100 GHz simulation
bandwidth. No PMD or other hardware impairments are
included in the simulations. At the receiver, the signal is
low-pass filtered (30 GHz bandwidth) and downsampled to
2 samples/symbol for further processing. LDBP is applied
first, followed by a matched filter3 (MF) and phase-offset
correction. LDBP is based on the symmetric SSFM using
3 StPS and a logarithmic step size. When combining the
adjacent linear half-steps, the overall model has 61 linear steps.
MSE is the loss function employed for training all FIR filters,
defined as

∑
p∈{x,y}‖yp − ŷp‖2/2, where yp and ŷp are the

transmitted and estimated symbol vectors of the p-polarization
after the phase-offset correction, respectively. We assume that
the filters are symmetric and that different filters are used in
each polarization. This is essentially the same methodology as
described in earlier work [23], [25].

Compared to most prior work on complexity-reduced DBP,
it should be stressed that our goal is not to reduce the
number of steps, but instead to reduce the per-step complexity.
This is accomplished by employing filter pruning. All FIR
filters are initialized with constrained least-squares CD coef-
ficients according to [43]. The approach in [43] minimizes
the frequency-response error of the FIR filter with respect to
an ideal CD compensation filter within the signal bandwidth,
while constraining the out-of-band filter gain. The initial filter
lengths are chosen large enough to ensure good performance.

3For the experimental setup, matched filtering is implicitly performed by
the MIMO equalizer.

The filters are then progressively pruned to a given target
length by forcing the outermost taps to zero at certain iterations
during SGD [26]. The zero forcing is done using a masking
operation in TensorFlow. The iterations where pruning occurs
are predefined before the training begins. For the considered
scenario, the targeted model consisted of 22 filters with 7
taps and 39 filters with 9 taps. Training is performed for
50000 iterations using the Adam optimizer [44], learning rate
0.0007, and batch size 50, which took around two hours on our
machine. In principle, the number of iterations (and, hence, the
training time) could be reduced, for example by setting a more
aggressive learning rate. However, we observed that larger
learning rates can sometimes lead to diverging MSE losses
and numerical instabilities in our implementation. The filters
are trained considering data from different launch powers,
randomly chosen from the set P = {1, 1.5, 2, 2.5, 3} dBm,
resulting in a single model that tolerates changes in the input
power.

C. Fine-Tuning with Experimental Data

The next step is to fine-tune the pre-trained and pruned
LDBP model using experimental data traces. The key chal-
lenge when training with experimental data is the presence of
various hardware impairments and time-varying effects such
as PMD and carrier phase noise. Our approach is to first
estimate these impairments using the conventional DSP chain
and then properly pre-process the data. The actual training
is then performed with the resulting pre-processed data. In
particular:

• The received data samples are pre-processed by applying
receiver front-end compensation and frequency-offset
compensation. The frequency offset is estimated from the
standard DSP chain. DBP is then applied to the resulting
signal to improve the estimation of phase noise and the
SOP.

• The data symbols used for supervised learning are
circular-shifted for alignment with the data samples.4

These data symbols are pre-processed using the estimated
phase noise process to de-rotate the symbols. More
precisely, let eφ̂i for i = 1, . . . , N be the estimated
phase noise process, where N is the length of the data
trace. Then, training is performed using the pre-processed
symbols e−φ̂ixi, i = 1, . . . , N , where xi are the true data
symbols.

• Finally, the filter taps for the adaptive MIMO equalizer
after the first 60000 symbols are extracted and saved for
each data trace. The equalizer is then assumed to be static
for the rest of the trace. During LDBP training, the MIMO
equalizer is integrated as a static DSP component after
the MF, where the saved filter coefficients are loaded and
applied. Note that the MIMO filter taps are not updated
during the fine tuning of LDBP.

4In principle, LDBP with asymmetric FIR filters could learn to recover a
circular shift. However, due to the use of symmetric filters, a manual shift has
to be applied. For the pre-training in Sec. IV-B, no circular shift is necessary
since the sequences are already perfectly aligned.
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Fig. 3. Experimental results for single-channel transmission of a 25Gbaud
signal with PM 16-QAM over 1500 km.

Fine-tuning using the above approach is performed for an
additional 5000 iterations using a learning rate 0.0007, and
batch size 50. For training, we only consider 19 out of the 37
available traces for each launch power in the set P , where the
remaining traces are reserved for testing.

D. Testing

After fine-tuning is completed, the obtained model can then
be used as a static nonlinear equalizer in the standard DSP
chain described in Sec. IV-A (see middle block in Fig. 2).
During the testing phase, all DSP blocks are operated normally
and the raw (i.e., not pre-processed) experimental data is used.
The obtained performance is shown in Fig. 3 with circle and
diamond markers for EDC, standard DBP (3 StPS), and LDBP
(3 StPS). For DBP, a well-known issue is that the nonlinearity
parameter γ is usually not known precisely and needs to be
estimated [45]. We performed a simple grid search over γ,
jointly with β2, in order to optimize performance. For DBP
with 3 StPS, the optimization was done at 2.5 dBm launch
power, which led to an optimal value of γ = 1.21 rad/W/km
and β2 = −20.90 ps2/km. The latter is close to the experi-
mentally estimated β2 = −20.87 ps2/km. Similar to γ and β2,
the fiber length is also usually not precisely determined. We
already had an estimated measure of 75.484 km for the span
length, which was confirmed to be optimum after a grid search.
The optimum attenuation coefficient for DBP was α = 0.19
dB/km, the same as in the fiber specifications. DBP with 3
StPS achieves a peak-SNR gain of 2.1 dB over EDC. The
peak-SNR gain obtained by DBP is similar to those reported
in prior experimental studies on single-channel DBP [46], [47].
DBP also improves the optimum launch power with respect to
EDC by 4 dB, from −1.5 dBm to 2.5 dBm. By using LDBP,
the peak-SNR gain is slighly increased with respect to DBP.
Further increasing the number of StPS or filter taps for LDBP
did not improve performance. The optimum launch power for
LDBP remains the same as the one for DBP. We also repeated
the same procedure assuming 1 StPS for both DBP and LDBP,
in which case the LDBP model uses 21 filters per polarization,

where 12 filters are pruned to 23 taps and 9 filters to 21 taps.
The results in Fig. 3 (square markers) show that in this case
LDBP achieves a performance improvement of around 0.35
dB with respect to DBP. For DBP with 1 StPS, the optimum
values for γ and β2 were found to be γ = 1.21 rad/W/km and
β2 = −21.41 ps2/km.

In terms of complexity, it has been shown that the power
consumption and chip area for time-domain DBP [48] and
LDBP [26] are dominated by the linear steps, whereas the
nonlinear steps have efficient hardware implementations using
a Taylor expansion. Therefore, we focus on the linear steps for
simplicity. As a simple surrogate measure for complexity, we
use the overall impulse response length of the entire LDBP
model, which is defined as the length of the filter obtained by
convolving all LDBP subfilters. Since the same filter lengths
are used in both polarizations, one may focus on a single
polarization. For the 3-StPS model, we have 22 filters of
length 7 and 39 filters of length 9. Hence, the overall impulse
response length is 2(22 · (7−1)/2 + 39 · (9−1)/2) + 1 = 445
taps. For the 1-StPS model, the overall impulse response
length is 2(12 · (23 − 1)/2 + 9 · (21 − 1)/2) + 1 = 445,
i.e., the same as the 3-StPS model. Thus, even though the
number of steps is reduced by a factor of 3 and performance
decreases by around 0.3 dB (see the inlet figure in Fig. 3), the
expected hardware complexity of the two models is roughly
comparable. Moreover, the overall impulse response lengths
should be compared to the memory that is introduced by
CD. To estimate the memory, one may use the fact that CD
leads to a group delay difference of 2π|β2|∆fLtot over a
bandwidth ∆f and transmission distance Ltot. Normalizing
by the sampling interval T , this confines the memory to
roughly (2π|β2|∆fLtot)/T samples. For our scenario, we have
β2 = −20.87 ps2/km, Ltot ≈ 1510 km, and 1/T = 50
GHz. The bandwidth ∆f depends on the baud rate, the pulse
shaping filter, and the spectral broadening during propagation.
In order to obtain an estimate for ∆f , we quantified the
effect of spectral broadening in an ideal noiseless simulation
environment for the same parameters as listed in Sec. IV-B.
The bandwidth percentage (with respect to 1/T ) that contained
99.9% of the received signal power was found to vary between
51% for P = −4 dBm and 77% for P = 6 dBm. With
these numbers, the CD memory varies between 253 and 381
taps, which is comparable to the impulse response length of
LDBP. This is a major improvement compared to previous
work where the filter lengths in DBP are significantly longer
than the CD memory, sometimes by orders of magnitude [5],
[49]. We also note that it is possible to further prune the filters
at the expense of some performance loss. To illustrate this, we
further pruned the 3-StPS model to 22 filters of length 5 and
39 filters of length 7. This gave a peak-SNR penalty of 0.32
dB (see Fig. 3), making the performance comparable to the
1-StPS model, while at the same time reducing the overall
impulse response length to only 323 taps.

V. OUTLOOK AND FUTURE WORK

In this section, we give an overview of related work on
LDBP that has previously appeared in the literature and also
comment on potentially interesting avenues for future work.
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A. Sparse MIMO Filters for Subband Processing

The complexity of DBP with TD filtering is largely dom-
inated by the total number of required CD filter taps in all
steps and this increases quadratically with bandwidth, see,
e.g., [50], [51]. Thus, efficient TD-DBP of wideband signals
is challenging. One possible solution is to employ subband
processing and split the received signal into S parallel signals
using a filter bank [50]–[57]. A theoretical foundation for
DBP based on subband processing is obtained by inserting
the split-signal assumption u =

∑S
i=1 ui into the NLSE. This

leads to a set of coupled equations which can then be solved
numerically. We focus on the modified SSFM proposed in
[58] which is essentially equivalent to the standard SSFM
for each subband, except that all sampled intensity waveforms
|u1|2, . . . , |uS |2 are jointly processed with a MIMO filter prior
to each nonlinear phase rotation step. This accounts for cross-
phase modulation between subbands but not four-wave mixing
because no phase information is exchanged.

The MIMO filters for subband processing can be relatively
demanding in terms of hardware complexity. As an example,
in [57] we considered a scenario where a 96-Gbaud signal
is split into S = 7 subbands. For a filter length of 13, the
MIMO filter in each SSFM step can be represented as a 7×
7 × 13 tensor with 637 real coefficients which is shown in
Fig. 4 (left). The resulting complexity per step and subband
would be almost 6 times larger than that of the CD filters
used in [57]. The situation can be improved significantly by
decomposing each MIMO filter into a cascade of sparse filters
as shown in Fig. 4 (right). For a cascade of 3 filters, it was
shown that a simple L1-norm regularization applied to the
filter coefficients during SGD leads to a sparsity level of round
8%, i.e., 92% of the filter coefficients can be set to zero with
little performance penalty. Note that this filter decomposition
happens within each SSFM step. In other words, complexity
is reduced by further increasing the depth of the multi-step
DBP computation graph.

B. Distributed PMD Compensation

Different techniques have been proposed in previous works
to embed the distributed compensation of PMD in the DBP
algorithm, when the knowledge of the PMD evolution in the
link is missing [36], [37], [59]. In this section, we describe how
distributed PMD compensation can be combined with LDBP
in a hardware-efficient manner.

As discussed in Sec. II, PMD can be modeled by dividing
a fiber link of length Ltot into M = Ltot/h sections, where

for large enough M the link Jones matrix JLink(ω) can be
factorized as

JLink(ω) , exp

(
−jω

∫ Ltot

0

∆β′(ξ)σσσ(ξ)dξ

)
=

M∏
i=1

R(i)T(i)(ω)

(9)
where R(i) , R(ih) and T(i)(ω) , T(ih, ω) for i =
1, 2, . . . ,M . PMD compensation (and polarization demulti-
plexing) then amounts to finding and applying the inverse
J−1Link(ω) to the received signal. This is typically performed
after CD compensation, e.g., using an L-tap MIMO filter
that tries to approximate J−1Link(ω). Fig. 5 (left) shows the
corresponding tensor representation assuming a real-valued
4× 4 filter that is applied to the separated real and imaginary
parts of both polarizations [60].

An efficient multi-step decomposition of this filter is de-
picted in Fig. 5 (right), which essentially mimics (9) in a
reverse fashion. Here, the matrices T(i)(ω) are approximated
with two real-valued fractional-delay (FD) filters employing
symmetrically flipped filter coefficients for different polar-
izations. The FD filters can be very short provided that
the expected DGD per step is sufficiently small (i.e., many
steps are used). In [61], it was shown how to integrate the
decomposed filter structure into LDBP. The resulting multi-
step PMD architecture can be trained effectively using SGD.
An important feature compared to previous work is the fact
that the employed approach does not assume any knowledge
about the particular PMD realizations along the link, nor any
knowledge about the total accumulated PMD. However, more
research is needed to fully characterize the training behavior,
e.g., in terms of convergence speed for adaptive compensation.

C. Coefficient Quantization and ASIC Implementation

Fixed-point requirements and other DSP hardware imple-
mentation aspects for DBP have been investigated in [22], [26],
[48], [49], [62]. A potential benefit of multi-step architectures
is that they empirically tend to have many “good” parameter
configurations that lie relatively close to each other. This
implies that even if the optimized parameters are slightly
perturbed (e.g., by quantizing them) there may exist a nearby
parameter configuration that exhibits similarly good perfor-
mance to mitigate the resulting performance loss due to the
perturbation.

Numerical evidence for this phenomenon can be obtained
by considering the joint optimization of CD filters in DBP
including the effect of filter coefficient quantization. This has
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been studied in [26] and the approach relies on applying so-
called “fake” quantizations to the filter coefficients, where
the gradient computations and parameter updates during SGD
are still performed in floating point. Compared to other
quantization methods, this jointly optimizes the responses of
quantized filters and can lead to significantly reduced fixed-
point requirements. For the scenario in [26], it was shown
for example that the bit resolution can be reduced from
8-9 coefficient bits to 5–6 bits without adversely affecting
performance. Furthermore, hardware synthesis results in 28-
nm CMOS show that multi-step DBP based on TD filtering
with short FIR filters is well within the limits of current ASIC
technology in terms of chip area and power consumption [26],
[48].

VI. CONCLUSIONS

We have illustrated how machine learning can be used to
achieve efficient fiber-nonlinearity compensation. Rather than
reducing the number of steps (or steps per span), it was
highlighted that complexity can also be reduced by carefully
designing and optimizing multi-step methods, or even by
increasing the number of steps and decomposing complex
operations into simpler ones, without losing performance. We
also avoided the use of neural networks as universal (but
sometimes poorly understood) function approximators. In-
stead, the considered learned digital backpropagation relied on
parameterizing the split-step method, i.e., an existing model-
based algorithm. We have performed an experimental demon-
stration of this approach, which was shown to outperform
standard digital backropagation with limited complexity. Some
extensions of the approach and steps towards possible future
works were also presented, showing that there is a possibility
for further performance improvements in these systems.
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