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Towards wind modelling for sustainable building/urban 
design  

Krystyna Pietrzyk 
Division of Building Design, Department of Architecture and Civil Engineering, Chalmers 
University of Technology, Sven Hultins gata 6, SE412-96 Gothenburg, Sweden 

Abstract. In view of climate change and resource depletion the analysis of wind impact on built 
environment could be used for conscious building/urban design protecting humans against high 
winds but also taking advantage of wind forces in terms of ventilation of spaces or production 
of wind-driven energy. There is a strong need of developing the modelling technology that would 
enable predictive studies in this field. Climate change mitigation and adaptation became the point 
of departure to introduce the notions of risk/chance analysis that could help to examine the 
architectural/urban design from the holistic perspective. The need of addressing different parts 
of wind velocity spectrum is acknowledged. The steps forming the process of design for 
sustainable wind environment are listed. Both the necessary test activities, and the simulation 
ones, as well as, the ones leading to the application of risk/chance assessment are discussed. 
Wind thresholds referring to different aspects, levels and scales of studies should be examined. 
They constitute the boundary of the uncertain set of expected acceptable solutions. In some cases, 
probabilistic model of thresholds could be considered. Joint project within the Digital Twin 
Cities Centre (DTCC) at Chalmers is referenced, where the newly established Vinnova Centre 
of Competence could offer the platform for the development of new modelling technology. 

1. Introduction 

In view of climate change and resource depletion the analysis of wind impact on built environment could 
be used for conscious building/urban design protecting humans against high winds but also taking 
advantage of wind forces in terms of ventilation of spaces or production of wind-driven energy. 
Proper building/urban design must ensure structural stability and wellbeing of people both indoors and 
outdoors. Climate is the important factor (see figure 1). The actual wind condition is a result of wind 
interaction with all sorts of obstacles, also building structures (see figure 2). It is dependent on the wind 
speed and direction for various levels above the ground and the shape of obstacles (architectural form, 
physical plan), theirs air tightness (or permeability) and location in relation to adjacent buildings (urban 
plan). Modification of wind speed in the space between buildings can be achieved by choosing a proper 
location in relation to the natural morphology of the terrain, by conscious designing of a building shape, 
arrangement of adjacent buildings, and windbreaks.  
     The important issue is, which predictive models and tools are available to support building/urban 
design. Researchers at Chalmers within the DTCC [1] are working on wind simulations and visualization 
based on the fluid solver developed by Fraunhofer-Chalmers Research Centre, IBOFlow [2,3]. The work 
has become the part of the Centre’s platform a big project aiming to analyse/communicate/visualize 
tangible and intangible city layers and flows. Starting from raw cadastre data [4], the ongoing research 
and development work follows the application needs and tries to respond to the research challenges, 
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both on the district and the city level. Part of the plethora applications envisioned/planned by the Centre 
is wind simulations for sustainable building design and urban planning. 

2. Risk/chance perspective on climate change mitigation and climate change adaptation 

According to many sources climate change threatens life on our planet. In view of high uncertainty 
qualitative or semi-quantitative risk analysis based on the different scenarios is often applied and the 
needs for the reduction of the risk of climate change are formulated.  Risk describes a state of uncertainty 
where some possible outcomes have an undesired effect or cause significant loss [5].  Following the 
quantitative definition of risk, it can be expressed in terms of adverse consequences scaled by the 
probabilities of undesired outcomes:  

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑃𝑃[ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 (1) 

𝑃𝑃[ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] is the probability of occurrence of undesired events leading to possible 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 
characterised by loss, injury, and discomfort.  

     Risk reduction could be accomplished by decreasing the probability of undesired event as well as 
diminishing the scale of adverse consequences. Risk reduction of climate change and its consequences 
can be accomplished by climate change mitigation (decrease of the probability of climate change) or 
climate change adaptation (decrease of the adverse consequences of climate change). The following 
definitions have been applied:  

• Climate change mitigation – ‘it consists of actions to limit the magnitude and/or rate of long-
term climate change [6]. It generally involves reductions in human (anthropogenic) emissions 
of greenhouse gases’ [7].  

• Climate change adaptation – ‘anticipating the adverse effects of climate change and taking 
appropriate action to prevent or minimize the damage they can cause or taking advantage of 
opportunities that may arise’ [8]. 

Within the concept of climate change adaptation, the opportunities created by the climate change that 
may arise for some parts of the system could be acknowledged. Then, concept of Chance is introduced 
as a state of uncertainty where some possible outcomes have a desired effect or significant gain. It can 
be expressed in terms of positive consequences scaled by the probabilities of desired outcomes. It means 
that chance could be analysed in terms of the risk of positive/desired outcomes.  Building/urban design 
for sustainable development can be approached using risk analysis tools. To minimalize the risk of 
undesired consequences while increasing the chance to enhance the quality of life becomes the basic 
design objective.  
     Climate adaptation of buildings/cities in the context of comfort and safety but also of low-energy 
operation can be evaluated from the perspective of sustainable development goals. It responds to at least 
3 of them as listed by United Nations. There are: goal 7 – affordable and clean energy, and goal 3 – 
good health and well-being. Goal 13 – climate action is realized by climate change mitigation as “energy 
is the dominant contributor to climate change, accounting for around 60% of the global greenhouse gas 
emissions”.  Designing for the integration of the building form and structure with its external 
environment in order to use natural forces to secure comfort (passive strategies) is an example of 
activities towards mitigation of climate change. If it is supported by prediction of a local climate it can 
be viewed from the climate adaptation perspective too.     

3. Risk assessment as a tool supporting design of buildings  

Evaluation of building performance under uncertain wind conditions could be a tool to negotiate the 
final (re)design of buildings considering many performance aspects (see table 1), that are influenced by 
wind. The method for the quantification of building performance in terms of probability of poor 
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performance (failure) and probability of satisfactory performance is presented in [9,10]. Probability is 
treated as a measure of uncertainty about future events.  Probability of a certain performance of a 
building/environment system depends on the theoretical model used and the variability of the 
influencing parameters. The epistemic uncertainty about the models applied together with the aleatory 
uncertainty coupled to the randomness of important phenomena contribute to the outcome. The needs 
for risk reduction related to the hazards introduced by climate change becomes an important boundary 
condition in the modelling of building/environment system to support building design. Following the 
definition of risk described by equation (1), adverse consequences could be presented in terms of money, 
number of affected people etc. If they are only indicated as existing or not existing {yes=1, no=0}, the 
probability P(hazard) becomes the discriminating factor for comparison of different design solutions 
[10]. It means that certain design could be chosen based on the comparison of probability of 
unsatisfactory performance or reliability, approximated for a set of alternative design proposals.  
     Figure 1 proposes a systemic perspective on building/environment performance. Designed object 
usually offers passive and active controls over the interior and outdoor climate. A passive control 
creates an extra climate-comfort loop [11]. Architectural interventions modifying air flow around and 
inside a building could be consciously introduced using holistic perspective on risk and chances 
supported by CFD simulations.   

                  
        Figure 1. Comfort and safety in low-energy built environment – systems approach with focus 
        on designing with wind (modified from [11]). 

     Climate adapted building or city provides comfort with the maximized contribution of the sun driven 
renewable energy sources. One of them is wind. Modification of wind speed in the space between 
buildings could be designed to minimize risk of pedestrian danger and discomfort caused by strong or 
polluted airflow, but also to take a chance of producing wind energy or designing for natural ventilation. 
The holistic view over risks and chances of the specific design followed by predictive modelling of wind 
properties in the city environment could support urban/building design. The risks and chances listed in 
table 1 are general ones and their pattern should be derived from the real case and context.  

       Table 1. The risks and the chances for designing with wind  

Risks Chances 
wind-induced noise  pollutant dispersion around buildings 
wind load or wind-induced vibrations partial control of urban thermal environment  
wind- driven rain on building facades improving overall energy performance of 

buildings (passive/hybrid strategies) 
extended heat losses through building 
facades  

wind resource assessment for modelling of 
wind energy    

pedestrian wind danger and discomfort  creating building performance for the outdoor 
environment (kinetic architecture etc.) 

interior draughts  
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Additionally, there is a tendency in Sweden to introduce more high-rise buildings. The effect of such 
changes in urban skyline on the wind conditions at the pedestrian level should be carefully studied. 
Urban aerodynamics seeks to help town planners and designers improve comfort in outdoor spaces, 
create urban microclimates and reduce the negative effects of wind on sustainability.  

4. Properties of wind in built environment 

Mean wind velocity profile close to the ground (interfacial layer) is governed by the pressure differences 
caused by the presence of buildings, vegetation and topography. The nature of obstacles regulates the 
level of turbulence. When the wind velocity is greater than 10m/s, the influence of surface friction is 
predominant in distorting and generating a turbulent flow [12]. The characteristics of wind may be 
described by studying the mean wind velocity profile and the intensity of turbulence present in the flow. 
For practical reason, the mean wind velocity profiles are constructed by assuming exponentially 
increasing velocity or simplified log laws. 
 

        
Figure 2. Velocity profiles over the smooth surface (see) and over the rough terrain, types of surface 
roughness. 
 
Disturbance of the flow depends on the shape and height of the obstacles. Wind does not reach full speed 
(called gradient wind Vg) until a certain height off the ground; this height depends on the local 
obstructions and is referred to surface roughness. The roughness of the ground surface changes the mean 
wind speed and its turbulent characteristics and is described by the surface roughness height 
(aerodynamic roughness length) denoted z0 (see figure 2). Roughness height depends on the mean 
element height of the roughness field. The results of laboratory measurements show that the value of z0 
is approximately equal to 1/30 of the height of the roughness elements. The surface roughness and 
obstacles usually decrease the wind speed but can also have speed up effect on wind. It happens when 
airflow is driven through a smaller cross section (for ex. passage through a building). It can also happen 
near to high rise buildings.                                                                                                                                           
     Horizontal wind-speed spectrum at Brookhaven National Laboratory at about 100-m height, fS(f) 
against frequency f from Van der Hoven [13] is given in Figure 3. It describes the turbulent energy of 
wind over a frequency range.  A big part is allocated in the atmospheric turbulence characterized by low 
frequency and large cycles. Atmospheric conditions and the building environment complicate the air 
flow. The separated flow on the roof and the leeward sides of the building is created by eddies of short 
duration. Their scale is less than that of the atmospheric turbulence (see figure 3). The spectral gap 
between the modes of spectrum - between 10 min. and 2 hours - indicates that the wind speed measured 
during this period can be regarded as steady. Therefore, for the common wind simulations 1-hour mean 
wind speed data, based on 10-min mean wind speed data measured at meteorological stations can be 
applied. High frequency turbulence generated by topography and structures is the main region of interest 
for dynamic response of wind turbines. Fluctuations of wind speed above the hourly average for certain 
turbulence intensity and the response time of the wind turbine can have negative effects on wind turbine 
performance. Wind energy spectrum could be also considered in the evaluation of wind-driven air 
exchange in buildings [14]. 
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Figure 3. Wind energy spectrum. Wind turbulence atmospheric (large scale), topography generated, 
and structure generated (modified from [13,15]). 

5. Wind modelling 

Modelling of wind speeds in the vicinity of buildings was traditionally assisted by full-scale 
measurements and by wind tunnel tests. A serious problem with wind tunnel testing was related to the 
generation of atmospheric flow conditions. Nowadays, numerical simulations based on CFD are popular 
as a tool for supporting evaluation of airflow around buildings [16]. The solution provides the field 
distribution of air velocity and turbulence. Local wind speed at the boundary of the site investigated 
with the help of CFD simulations depends on climate and morphology of upstream terrain (aerodynamic 
surface roughness). Local wind modelling accounting for upstream terrain conditions includes surface 
roughness modelling in an atmospheric boundary layer [9,10].  
     Unfortunately, even in the case of CFD simulations the recreation of the atmospheric wind conditions 
with the proper velocity profile, velocity spectrum and spatial correlation is often neglected, and the 
simplified approach based on Reynolds-averaged Navier-Stokes simulations (RANS) with simple inlet 
conditions is used. Applying Large Eddy Simulation (LES) technique gives opportunity to account for 
the properties of atmospheric wind. LES provides deeper insight into unsteady flow phenomena. On the 
other hand, LES simulations are much more demanding in terms of computing resources. Many cases 
interesting to urban planning applications, still today seem to be beyond the reach of such simulations.    
     According to Blocken [16] RANS remains very popular in research applications, especially within 
areas of wind comfort, pollutant dispersion, urban thermal environment, natural ventilation and indoor 
airflow. Moreover, the capacity and performance of computer systems, as well as, the accessibility of 
powerful High-Performance Computing servers is constantly increasing. It allows for simulations of 
larger and more complex problems with RANS. Attempts of using LES to solve practical problems are 
also reported. Tolias et al [17] have studied the structure of the turbulent flow in the city area using LES. 
The velocity frequency distributions and energy spectra were evaluated. This kind of output is valuable 
for planning of location of the wind-power installations [18]. The results were compared to the scale 
experiment carried out in a wind tunnel. The simulations took several weeks per case, using hundreds 
of computers. Still, it is worth noting that such studies are beginning to appear in the literature.    
     Based on the simulation results of wind conditions in the urban area, the wind performance analysis 
for some aspects of sustainability could be carried out (see figure 4). The holistic analysis of risks and 
chances of wind modification in built environment would lead to setting up program of relevant 
simulations to prioritize the most effective solutions. Wind thresholds referring to different aspects, 
levels and scales of studies should be examined. They constitute the boundary of the uncertain set of 
expected acceptable solutions. In some cases, probabilistic model of thresholds could be considered 
[19,20]. Pedestrian wind comfort and safety is the most common issue to be analysed at the early stage 
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of architectural/urban design process. Air infiltration and ventilation studies could be added, in order to 
investigate the feasibility of passive strategies.  
 

 
Figure 4.   Wind in built environment for sustainable design. 

The strategy for addressing the wind modelling could follow the outline below:  

1. Wind data processing - synoptic wind, full-scale data for specific locations. 

2. Architectural design – geometry, arrangements of buildings. Examples of urban solutions resulting 
in wind discomfort of pedestrians should be studied.  The area of a building complex chosen for case 
study should be described as 3-D object in the database system.  

3. Wind field modelling. Modelling of the local wind accounting for upstream terrain conditions. It 
includes derivation of statistical measures for local wind accounting for differences in surface 
roughness between the meteorological site and terrain surrounding the building complex [9]. 
Modelling of the airflow around the building complex - using CFD tools for various (including 
extreme) wind conditions. Validation data collected in full-scale measurements or laboratory scale 
models (wind tunnel) should be used to validate obtained results. Full-scale experimental data are to 
be preferred, due to the issues with recreating atmospheric turbulence in the scale experiments. 

5. Wind performance criteria for sustainable development. Thresholds towards sustainability: e.g. 
against pedestrian discomfort, for wind safety etc., should be developed. For deterministic thresholds 
– analysis of the research results is sufficient. Thresholds for physical aspects of wind could be also 
determined using probabilistic approach because of uncertainty of human perception [11].  

6. Wind performance analysis. The analysis of the performance of wind environment around the 
buildings in the selected aspects of sustainability should be carried out. It includes development of the 
model for quantification of a probability of undesired effects of air movement based on simulated wind 
field data and stochastic performance criterion. Risk analysis of undesired conditions caused by wind 
in urban environment should be carried out.  
6. Architectural remedial measures. Modification of wind speed in the space between buildings can 
be achieved by choosing a proper location in relation to the natural morphology of the terrain, by 
conscious design of a building shape, arrangement of adjacent buildings, windbreaks, etc. Design of 
investigated building site should be improved in order to mitigate undesired consequences of winds 
based on comparison of the results obtained for different architectural and urban design, as well for 
different climate scenarios. 
7. Guidelines toward sustainability should be developed from larger number of case studies. It could 
be understood as an interpretive interface based on the systems approach to design object as including 
broad environmental context, and risk/chance analysis of the chosen set of performance aspects.  

The results of the simulations carried out within the DTCC platform can be aimed towards investigating 
sustainable solutions of building and urban design. Moreover, some other tools for climate assessment 
in built environment, e.g. analysis of solar radiation exposure of different surfaces should be integrated 
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with the 3D system and coordinated in order to facilitate architectural/urban design responding to 
building/urban climatology [21]. Generally, urban physics issues, including wind could give a broader 
picture of factors influencing design process where environmental context would be put in centrum as 
one of the most important for form generation. Links between grand societal challenges and urban 
physics focus areas are presented in [22,23]. 

6. Conclusions 

Sustainability issues should be discussed in relation to the environmental and climate conditions of the 
site both at the building scale and at the urban one. The modelling approach and the wind simulation 
tools should be consciously chosen according to their suitability to handle specific aspects of sustainable 
urban solutions. Eventually, a holistic approach to risk and chances of wind modification in the built 
environment should be applied in respect to different scenarios of climate change. Wind thresholds 
referring to different aspects, levels and scales of studies should be examined. They constitute the 
boundary of the uncertain set of expected acceptable solutions. In some cases, probabilistic model of 
thresholds could be considered.   
     Architects/urban planners could be much more effective in using the last decade’s research results 
on wind energy and wind comfort and safety, for sustainable urban planning. Guidelines toward 
sustainability should be elaborated. It could be understood as an interpretive interface (wind 
simulations/design decision) based on systems approach and risk/chance analysis of the selected design 
in terms of chosen performance aspects. Guidelines should be developed from the larger number of case 
studies performed by other researchers as well as from the before mentioned activities within Chalmers 
University of Technology and DTCC. The Centre’s platform CFD module is based on the Immersed 
Boundary Method powered by IBOFlow, running Reynolds Averaged Navier-Stokes (RANS) 
simulations with various turbulence and roughness models. The approach based on RANS could require 
refinement with more explicit turbulence modelling, especially when trying to resolve higher 
frequencies. Still, RANS could be applied for the chosen built environment and for different wind 
climate scenarios up to the extreme wind conditions. This could help to evaluate consequences of 
different designs in terms of climate change mitigation and adaptation. The knowledge gained through 
prospective case studies could be incorporated when developing new building codes/recommendations 
in view of climate change. Contribution of practicing architects and urban planners in above 
investigations is important, but it requires some basic understanding of fluid mechanics, computational 
techniques [16] and wind engineering.  
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