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Abstract

In this paper we present a study of global optimality

conditions for Point Set Registration (PSR) with missing

data. PSR is the problem of aligning multiple point clouds

with an unknown target point cloud. Since non-linear rota-

tion constraints are present the problem is inherently non-

convex and typically relaxed by computing the Lagrange

dual, which is a Semidefinite Program (SDP).

In this work we show that given a local minimizer the

dual variables of the SDP can be computed in closed form.

This opens up the possibility of verifying the optimally, us-

ing the SDP formulation without explicitly solving it. In

addition it allows us to study under what conditions the re-

laxation is tight, through spectral analysis. We show that if

the errors in the (unknown) optimal solution are bounded

the SDP formulation will be able to recover it.

1. Introduction

Point Set Registration (PSR) is a problem with several

applications in the area of computer vision [4, 20, 14, 21,

29, 5, 2, 11, 24], which consists of estimating transforma-

tions that align two or more sets of 3D points. The instance

of PSR with only two views related by a rigid transforma-

tion is a particular case which has been been intensively

studied and that can be solved in closed form [3]. But as the

number of view increases, and incomplete observations are

taken in consideration, the problem becomes more complex

due to the constraints on the rotations.

In this work we focus on the registration of multiple

point clouds to a global coordinate system. The point clouds

correspond to observations of subsets of n points from m lo-

cal coordinate systems. These observations, besides incom-

plete, can be noisy and are related through unknown rigid

transformations. Assuming that sparse correspondences

between 3D points are known, the aim of such problem

is not only to estimate the unknown transformations from

the m local coordinate systems to a global coordinate sys-

tem, but also the global coordinates of the original set of n
points. Solutions or approximated solutions to this problem

are not exactly new, as shown in [7], whereby we aim at

study global optimality conditions when solving PSR using

Semidefinite Programming (SDP) [26].

Global optimization over the manifold of rotations have

previously been studied by a number of papers. A classical

result is that of Horn et al. [13] which showed that regis-

tration of two point sets under a Euclidean transformation

can be solved globally optimally using singular value de-

composition. In [18] a similar problem where the point-to-

point correspondences were replaced by point-to-plane cor-

respondences was considered. It was shown how to apply

Lagrangian duality to achieve orthogonality or the transfor-

mation matrix. The relaxation was tightened in [6], which

introduced orientation constraints on the columns of the ro-

tation matrix and added redundant rotation constraints to

strengthen the lower bound provided by the dual problem.

Yang et al. [28] also applies Lagrangian duality to obtain a

quaternion-based certifiably optimal solution to the Wahba

problem.

A problem that has received lots of attention in recent

years due to it usefulness in structure from motion and

SLAM applications is that of rotation averaging [9, 1, 30,

19, 8] One of the first attempts at solving this problem

was presented in [10] where the unit norm constraint was

dropped to achieve a linear solution strategy. Fredriksson et

al. [9] showed how to incorporate the norm constraint using

duality. Martinec and Pajdla [16] used the matrix param-

eterization but dropped the orthogonality and determinant

constraints and extracted an approximate solution from the

eigenvalues corresponding to the three smallest eigenvalues

of the system matrix. Eriksson et al. [8] recently showed

that despite the non-convexity of the problem, applying La-

grangian duality allows to enforce orthonormality and de-

terminant constraints exactly under very generous noise lev-

els. In [12] convexity properties of the single rotation aver-

aging problem are studied. As far as we know these results
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do not generalize to the case of multiple rotations.

From an application point of view the work that is the

closest to ours is that of Chaudhury et al. [7]. This work

introduced a spectral and a SDP relaxation that turns global

registration of point clouds into a convex problem, which

can be solved in polynomial time using a proposed algo-

rithm. The authors also present sufficient conditions on the

problem for exact recovery using the proposed algorithm,

as well as a detailed stability analysis.

Motivated by [8], and even though it starts from a similar

formulation, this work differs from [7] by proposing a cer-

tificate and studying the conditions in terms of the estimated

point cloud, global pose and missing data that assures global

optimality of a candidate primal solution, using Lagrangian

duality and spectral analysis. The main contributions of the

paper are:

• application of Lagrangian duality to the Point Regis-

tration Problem, that given a candidate solution to the

primal problem allow us to obtain the corresponding

dual variable in closed form. This allows verifying the

global optimality of a local minimizer without solv-

ing the SDP (Lemma 1), which leads to a significant

speedup;

• derivation of certificates/bounds (Theorems 1 and 2)

on reconstruction errors that, if fulfilled, are sufficient

to guarantee global optimality of a candidate primal

solution;

• analysis and evaluation of the certificates as function

of missing data and spatial distribution of the estimated

3D scene, using synthetic and real data.

1.1. Notation

Throughout the paper we use lower-case letters to repre-

sent scalars and vectors, and upper-case letters for matrices.

An element of a matrix A at position (i, j) is referred as

{A}i,j , while Ai,j ∈ R
n,m corresponds to a block of the

matrix A with dimensions n ×m. We use ‖A‖ as the op-

erator 2-norm of a matrix A, and A† as its Moore–Penrose

pseudoinverse. We denote λi(A) as the i:th eigenvalue of

a matrix A ∈ R
n×n, such that λ1(A) ≤ λ2(A) ≤ . . . ≤

λn(A).

2. Problem Statement

The Point Set Registration (PSR) problem consists of es-

timating m transformations, i.e. pairs of rotations and trans-

lations, that align m observed point sets w.r.t. a global co-

ordinate system, along with an “average” point set. The m
observed point sets and the “average” point set are usually

also called source point sets and target point set, respec-

tively. The problem assumes known correspondences be-

tween point sets, and it can have missing data in the sense

that a source set might lack observations of some points in

the target set. The goal is to minimize the distance between

the transformed source sets to the target set, and the corre-

sponding optimization problem is usually formulated as

min
y,R,t

∑

i,j

wi,j‖yi − (Rjxi,j + tj) ‖
2

subject to Rj ∈ SO(3), j = 1, . . . ,m

, (1)

where Rj and tj are the rotation and translation from frame

j to the global frame, yi the i:th point of the target set, xi,j

the observation of the i:th point of the j:th source set, and

wi,j = {0, 1} determines if point i is observed in the j:th

source set. We assume that the target set has n points and

there are m source sets, so i = 1, . . . , n and j = 1, . . . ,m.

Each term of (1) can be written in more compact form using

trace notation as follows

‖yi − (Rjxi,j + tj) ‖
2 =

= tr





[

yi tj Rj

]





1 −1 −xT
i,j

−1 1 xT
i,j

xi,j xi,j −xi,jx
T
i,j









yTi
tTj
RT

j







 ,

(2)

and if we assume that each source set has zero mean, i.e.
∑

i wi,jxi,j = 0, by summing over i and j the total cost in

(1) becomes

tr





[

Y T R
]





A −W −XT

−WT B 0
−X 0 C









Y T

TT

RT







 (3)

where Y = [y1 . . . yn], T = [t1 . . . tm], R =
[R1 . . . Rm], {W}i,j = wi,j , A and B are diagonal ma-

trices with {A}i,i =
∑

j wi,j and {B}j,j =
∑

i wi,j ,

C is a block diagonal matrix with 3 × 3 blocks Cj,j =
∑

i wi,jxi,jx
T
i,j , and X =

[

XT
1 , . . . , X

T
m

]T
with Xj =

[

w1,jx1,j . . . wn,jxn,j

]

. The cost function defined in (3)

depends on R, Y and T . If we fix R the remaining vari-

ables are unconstrained with a least squares objective and

we can therefore compute the optimal Y and T in terms of

R, which eliminates Y and T . Another way to write (3) is

tr
(

Y AY T − 2YWTT − 2Y XTRT + TBTT +RCRT
)

,
(4)

where the term RCRT can be dropped since RRT is con-

stant along its 3 × 3 blocks diagonal. From the stationary

conditions for the gradient of (4) with respect to the T , we

get that −2YW + 2TB = 0 ⇔ T = YWB−1 and by

replacing T in (4)

tr
(

Y LY T − 2Y XTRT
)

. (5)

The matrix L = A − WB−1WT is the Laplacian of a

weighted graph, with n nodes, each corresponding to a 3D
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point from Y . A similar type of graph was studied by

Mieghem et al. [25]. Graph Laplacians have some well

known properties: 1) they are positive semidefinite; 2) for

non-degenerative cases, they have a unique zero eigenvalue,

which corresponds to the eigenvector ✶n, that is a vector of

all ones. For simplicity of notation we let P = L†. By con-

sidering the eigenvalue decompositions of L and P it is easy

to see that the same is true for P , and that non-zero eigen-

values of P can be obtained from the eigenvalues of L as

λk(P ) = 1/λn−k+2(L), k = 2, . . . , n. Alternatively, one

can write L =
∑

k Θk, where Θk = diag(Wk)−
1
nk

WT
k Wk

and Wk is row k of W . Note that for source point sets

with zero mean, we have that tk =
∑

i
wi,kyk∑
i
wi,k

= 1
nk

YWT
k ,

where nk =
∑

i wi,k. This means that Tk can be ob-

tained from Y as Tk = 1
nk

YWT
k Wk, and consequently

Yk −Tk = Y
(

diag(Wk)−
1
nk

WT
k Wk

)

= YΘk. Each Θk

is an orthogonal projection, which means Θ2
k = Θk = ΘT

k ,

and it can be interpreted as an operator that selects the set

of points of Y that are observed in the point set k and

makes it zero-meaned by subtracting its average. For a com-

plete source point set, Wk is a all-ones vector and we have

Θ = In −
1
n
✶n, and as so ΘP = PΘ = P .

To eliminate Y from the expression (5) we again use the

stationary point conditions, now using the gradient with re-

spect to Y , which gives

2Y L− 2RX = 0⇔ Y = RXP +Q, (6)

where Q is an arbitrary matrix that fulfills QL = 0. The

matrix Q, who’s rows are in the nullspace of L, must have

constant rows. Since the columns of XT have zero mean it

is clear that QXT = 0 and therefore substituting (6) into (5)

we can write our cost function as−tr
(

RXPXTRT
)

. Since

Q has no influence on the cost function, we can choose Q =
0 and as so Y = RXP . We define our primal problem (P )
as minimizing the cost function over the rotation matrices

group, i.e.,

(P ) min
R

− tr
(

RXPXTRT
)

subject to Rj ∈ SO(3), j = 1, . . . ,m.
(7)

In the following we let M = −XPXT .

3. Duality and Optimality Conditions

This section will focus on sufficient conditions, in terms

of the dual variables, for which there is no duality gap be-

tween the primal problem (7) and its dual problem. Then, in

the next section, we will analyze these conditions in terms

of the input data, noise level and missing data.

Eriksson et al. [8] have studied these conditions for

the dual problem applied to the rotation averaging prob-

lem. The reasoning and main conclusions, given the similar

structure of the primal problem, can also be directly apply-

ing for the semidefine program to the PSR problem. In this

section we give a brief review of this analysis. For addi-

tional details we refer to [8].

3.1. Relaxation of the Primal Problem

For a solution R∗ to be a minimum of the primal problem

(P ) it has to fulfill KKT conditions. If we relax the primal

by removing the determinant constraint (det(Rj) = 1, j =
1, . . . ,m), the Lagrangian of the problem is

L(R,Λ) = tr
(

R(Λ +M)RT
)

− tr (Λ) , (8)

where Λ = diag(Λ1, . . . , Λm) and Λj are 3×3 symmetric

matrices. From the gradient of (8) we get that the KKT

conditions are

(Λ∗ +M)R∗T = 0,

R∗ ∈ SO(3)m.
(9)

The first equation of (9) allow us to get a closed form so-

lution for Λ∗ as a function of R∗, where each block Λ∗
i is

given by

Λ∗
i =

∑

j

XiPXT
j R

∗
j
TR∗

i , i = 1, . . . ,m. (10)

From (10), and by defining MΛ = Λ∗ +M , we get that

(MΛ)i,j =

{

∑

k 6=i XiPXT
k R

∗
k
TR∗

i , i = j

−XiPXT
j , otherwise

. (11)

The result from (11) will be used in later sections.

3.2. Sufficient Global Optimality Conditions

In this section we will define the dual problem of (P ) and

state conditions in terms of MΛ which guarantee that there

is no duality gap between the primal and the dual problems.

From (8) we can write the dual (D) problem of (P ) as

max
MΛ�0

min
R

L(R,Λ). (12)

Note that we get

min
R

L(R,Λ) =

{

−tr(Λ), MΛ � 0

−∞, otherwise
, (13)

which gives the dual problem

(D) max
MΛ�0

tr(Λ). (14)

The following lemma relates the KKT conditions to the

dual problem and forms the basis of our approach:
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Lemma 1 If R∗ is a KKT point with corresponding La-

grange multiplier Λ∗ then R∗ is globally optimal and there

is no duality gap between (P) and (D) if MΛ � 0.

If the dual variable Λ∗ can be computed by other means

than solving the SDP then M∗
Λ � 0 can be used as a certifi-

cate of optimality. Hence this gives us a way of verifying

optimality of a local solution for the PSR problem.

4. Spectral Analysis of MΛ

In this section we investigate under what conditions we

can ensure that MΛ � 0 for a KKT point R∗. Our goal is to

understand why these problems often give tight relaxations

even for relatively high noise levels (see Section 6).

4.1. Decoupling into Noisefree and Noisy Data

We will start by defining DR as a block diagonal matrix

with (DR)i,i = R∗
i . Since DR is an orthogonal matrix, we

have that if DRMΛD
T
R is positive semidefinite, then MΛ is

positive semidefinite as well. From (11), we get that each

3× 3 block of DRMΛD
T
R is given by

(

DRMΛD
T
R

)

i,j
=

{

∑

k 6=i R
∗
iXiPXT

k R
∗
k
T , i = j

−R∗
iXiPXT

j R
∗
j
T , otherwise

(15)

From now on we will again drop the (.)∗ notation for

simplicity. In the absence of noise, RkXk = YΘk,

we get that the block elements outside of the diagonal of

DRMΛD
T
R become−YΘiPΘjY

T and the diagonal blocks

become
∑

k 6=i YΘiPΘjY
T . This results in a positive

semidefinite matrix DYΘΦD
T
YΘ, where

DYΘ =







YΘ1 03×n . . .
03×n YΘ2 . . .

...
...

. . .






(16)

and each n× n block of Φ is given by

Φi,j =

{

I − P, i = j

−P, otherwise
. (17)

To the difference between DRMΛD
T
R and DYΘΦD

T
YΘ we

will call ∆, which consist of a matrix that captures the noise

dependence of DRMΛD
T
R. As so, we have DRMΛD

T
R =

DYΘΦD
T
YΘ +∆.

4.2. Spectral Analysis of the Decoupled Data

The matrix DRMΛD
T
R is positive semidefinite if and

only if the eigenvalues of DRMΛD
T
R are greater or equal

to zero. Using Weyl’s eigenvalue inequality and our noise-

free and noisy decomposition of DRMΛD
T
R, we can write

that

λ1

(

DRMΛD
T
R

)

≥ λ1(DYΘΦD
T
YΘ)− |λmax(∆)| ≥ 0.

(18)

Note that, according to (15),
∑

j

(

DRMΛD
T
R

)

i,j
= 0,

meaning that any matrix µN = µ[I I . . .]T , with ar-

bitrary µ belongs to the null space of DRMΛD
T
R. For a

large enough µ, we have that λ1

(

DRMΛD
T
R + µNNT

)

=

λ4

(

DRMΛD
T
R

)

. The exact same reasoning can be applied

to DYΘΦD
T
YΘ, resulting in λ1

(

DYΘΦD
T
YΘ + µNNT

)

=

λ4

(

DYΘΦD
T
YΘ

)

. And so, by adding µNNT to both sides

we get

λ4(DRMΛD
T
R) ≥ λ4(DYΘΦD

T
YΘ)− |λmax(∆)| ≥ 0.

(19)

We will use the result from (19) as a lower bound to

λ4(DRMΛD
T
R), meaning that if we get λ4(DYΘΦD

T
YΘ) ≥

|λmax(∆)| then MΛ is positive semidefinite and the KKT

point is the global minimum of (P ).
Now, as stated in [8], we have that |λmax(∆)| ≤

∑

j ‖∆i,j‖, where ∆i,j = YΘiPΘjY
T − RiXiPXT

j R
T
j

for i 6= j, and ∆i,i = −
∑

i 6=j ∆i,j . By defining

η := max
i 6=j

m‖YΘiPΘjY
T −RiXiPXT

j R
T
j ‖ (20)

we can conclude that |λmax(∆)| ≤ 2
∑

i 6=j ‖∆i,j‖ ≤

2m−1
m

η. As so, from (19) we obtain a sufficient condition

for global optimality.

Theorem 1 Given a candidate solution R∗ that fulfills (9),

there is no duality gap between (P ) and (D) if

ǫ :=
η

λ4(DYΘΦDT
YΘ)

≤
m

2(m− 1)
. (21)

No missing data case For the particular case of no miss-

ing data, we have that λ4(DYΘΦD
T
YΘ) can be simplified.

Note that, in this case, DY ΦD
T
Y = (mIm−✶m)⊗ 1

m
Y Y T .

The eigenvalue property of the Kronecker product tells us

that the eigenvalues of DY ΦD
T
Y are given by λi(mIm −

✶m)λj(
1
m
Y Y T ) with i = 1, . . . ,m and j = 1, 2, 3. The

matrix mIm − ✶m has m eigenvalues, where λ1(mIm −
✶m) = 0 and λk(mIm − ✶m) = m, k = 2, . . . ,m. This

means that the smallest non-zero eigenvalue of DY ΦD
T
Y is

given by λ4(DY ΦD
T
Y ) = λ1(Y Y T ). The upper bound of

|λmax(∆)| can also be simplified since now we have

η0 := max
i 6=j

‖Y Y T −RiXiX
T
j R

T
j ‖ (22)

and consequently a sufficient condition for global optimal-

ity for no missing data is obtained.

Corollary 1.1 (No Missing Data) If all points are visible

in all views, i.e., wi,j = 1, ∀i, j, then, given a candidate

solution R∗ that fulfills (9), there is no duality gap between

(P ) and (D) if

ǫ0 :=
η0

λ1(Y Y T )
≤

m

2(m− 1)
. (23)
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4.3. Interpretation and Evaluation

The results Theorem 1 and specially Corollary 1.1 al-

low us to obtain some interpretation about the (sufficient)

conditions for global optimality. For the no missing data

case, one can see that global optimality is guaranteed when

the ratio between the biggest eigenvalue of the noise depen-

dent η0 and the smallest eigenvalue is smaller than m
2(m−1) .

The η0 encapsulates the noise in the problem by quantify-

ing the difference between the covariance matrix of Y and

the cross-correlation matrix of each pair of point sets, over

i 6= j. Note that in the noise-free case we have η0 = 0.

A similar interpretation can be extended to the general case

with missing data, where the covariance and correlation ma-

trices in (20), as well as the clean data in λ4(DYΘΦD
T
YΘ),

are weighted based on the observed data through P .

To evaluate the duality gap and the results from Theo-

rem 1 and Corollary 1.1, we will generate several (100) in-

stances of PSR problems for different noise levels, percent-

age of missing data, and spatial distribution of the target

point cloud. Each instance has n = 250 points and m = 10
rotations and translations, generated from a Gaussian distri-

bution. The noise in the source point sets is also generated

from a Gaussian distribution with standard deviation from

0 to 4 times the standard deviation of the instance’s point

cloud. For the missing data, we randomly remove p% of

the n points, with p = {0, 25, 50}. Since ǫ depends on

λ4(DYΘΦD
T
YΘ), we also change the instance’s point cloud

covariance, such that
λ1(Y Y T )
λ3(Y Y T )

= q, with q = {0.1, 0.5, 1}.

Note that if q = 0, the point cloud is contained in a 2D-

plane. Regarding the duality gap of the SDP relaxation, we

solve the SDP problem similarly to what Eriksson et al. [8]

do, and then look at the rank of the obtained solution. If the

rank is superior to 3 then the relaxation is non-tight.

For these two experiments, the average rank of ǫ and of

the SDP solution over the PSR problem instances are shown

in Figure 1 and 2, respectively, and we have sufficient con-

ditions for global optimality when ǫ < m
2(m−1) = 0.56.

Since ǫ can only be evaluated for KKT points, when the

SDP gives a solution with rank higher than 3, we project

it to a rank 3 solution and then perform local optimization

(see Section 6.1 for more details about this).

One of the main things to note is the high amount of

noise that the SDP relaxation allows before there is dual-

ity gap. We can also see that the tightness of the relax-

ation is highly affected by changes in p and q. In particu-

lar, from our experiments it is clear that the bound in The-

orem 1 gets looser as λ1(Y Y T ) → 0, and consequently

λ4(DYΘΦD
T
YΘ) → 0, resulting in a reduced usefulness

for real problems when the estimated point cloud is close

to planar. To improve this, one has to find an alternative

decoupling in which the noise-free component does not de-

pend on the point cloud spatial distribution.

Figure 1: Evaluation of the result from Theorem 1 for 0%,

25% and 50% of missing data and under different noise

levels. The plotted data points correspond to the average

over the generated problem instances. For this experiment,
λ1(Y Y T )
λ3(Y Y T )

= q is fixed as 1.

Figure 2: Evaluation of the result from Theorem 1 for

q = {0.1, 0.5, 1} and under different noise levels. The plot-

ted data points correspond to the average over the generated

problem instances. For this experiment, we set p = 0 (no

missing data).

5. An Alternative Spectral Analysis

In order to find a better noise-free/noisy data decompo-

sition we go back to the matrix DRMΛD
T
R defined in (15).

This matrix can also be written as DRMΛD
T
R = D1 −

D2PDT
2 where D1 = blkdiag(R1X1Y

T , . . . , RmXmY T )
and D2 = DRX . This means that DRMΛD

T
R is the Schur

complement Q \ L of a matrix

Q =

[

D1 D2

DT
2 L

]

. (24)

From the Schur complement properties, it follows that if

L � 0 (which is true since it is the Laplacian of a weighted

graph as stated in Section 2), then DRMΛD
T
R � 0 iff Q �

0. The matrix Q has other Schur complement, Q \ D1 =
L−DT

2 D
−1
1 D2 and similarly, we have that if D1 � 0, then

Q � 0 iff L − DT
2 D

−1
1 D2 � 0. This means that finding
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the sufficient conditions for DRMΛD
T
R � 0 is equivalent to

doing the same for D1 � 0 and Q \ D1 � 0. Since D1 is

a block diagonal matrix, D1 � 0 iff RkXkY
T � 0, for all

k = 1, . . . ,m.

The matrix Q \D1 has rank n− 4, and its null-space its

spanned by a all-ones vector ✶ and Y . Note also that ✶ and

Y are orthogonal since Y T
✶ = 0.

5.1. Decoupling into Noisefree and Noisy Data

The procedure for decoupling Q\D1 into noise-free and

noisy matrices is similar to the one followed in Section 4.1.

In a noise-free situation, we have that Q \ D1 becomes

L−
∑

i ΘiY
T C̃−1

i YΘi with C̃i = YΘiY
T . Note that this

matrix shares the same rank and null space as Q \D1.

The noisy matrix, here denominated as ∆′, can be ob-

tained by subtracting L−
∑

i ΘiY
T C̃−1

i YΘi from Q\D1,

which results in

∆′ =
∑

i

ΘiY
T C̃−1

i YΘi −XT
i R

T
i C

−1
i RiXi (25)

where C−1
i = (RiXiY

T )−1.

5.2. Spectral Analysis of the Decoupled Data

Just as in Section 4.2, we apply the Weyl’s eigenvalue

inequality to our decoupled data, and use the 4-dimensional

null space of Q \D1(and L −
∑

i ΘiY
T C̃−1

i YΘi) to con-

sider the smallest non-zero eigenvalues, resulting in the in-

equality

λ1(Q\D1) ≥ λ5(L−
∑

i

ΘiY
T C̃−1

i YΘi)−η
′ ≥ 0, (26)

where we define

η′ := |λmax(∆
′)| =

= ‖
∑

i

ΘiY
T C̃−1

i YΘi −XT
i R

T
i C

−1
i RiXi‖.

(27)

From the eigenvalue inequality (26) we are able to draw a

new sufficient condition for global optimality.

Theorem 2 Given a candidate solution R∗ that fulfills (9),

if RkXkY
T � 0 for all k = 1, . . . ,m, then there is no

duality gap between (P ) and (D) if

ǫ′ :=
η′

λ5(L−
∑

i ΘiY T C̃−1
i YΘi)

≤ 1. (28)

No missing data case In the absence of missing data, we

have L = mI − ✶n, YΘi = Y and C̃i = C̃ = Y Y T . In

this case we are able to obtain a closed-form solution for

λ5(L −
∑

i ΘiY
T C̃−1

i YΘi) that does not depend on the

point cloud spatial distribution, as desired. Since ✶n = ✶✶
T

and ✶ belongs to the null space of the noise-free matrix, we

get that, for the no missing data case,

λ5(L−
∑

i

ΘiY
T C̃−1

i YΘi) = λ4(m(I − Y T C̃−1Y ))

(29)

The term Y T C̃−1Y has eigenvalues {0, . . . , 0 1, 1, 1},
which means that m(I − Y T C̃−1Y ) will have eigenvalues

{0, 0, 0,m, . . . ,m}. Recall that we have shown that Y be-

longs to the null-space of the noise-free matrix, by adding

µY TY we get that the eigenvalues of m(I − Y T C̃−1Y ) +
µY TY will be {m, . . . ,m, ?, ?, ?}, where by ? we represent

the eigenvalues of µY TY for a sufficiently large µ. This

means that the smallest non-zero eigenvalue will be

λ5(L−
∑

i

ΘiY
T C̃−1

i YΘi) = m. (30)

The expression for (27) also simplifies as

η′0 := ‖mY T C̃−1Y −
∑

i

XT
i R

T
i C

−1
i RiXi‖, (31)

resulting in the following corollary.

Corollary 2.1 (No Missing Data) If all points are visible

in all views, i.e., wi,j = 1, ∀i, j, given a candidate solution

R∗ that fulfills (9), if RkXkY
T � 0 for all k = 1, . . . ,m,

then there is no duality gap between (P ) and (D) if

ǫ′0 :=
η′0
m
≤ 1. (32)

5.3. Interpretation and Evaluation

By comparing the results from Theorem 2 and Corol-

lary 2.1 with Theorem 1 and Corollary 1.1, respectively,

one can draw some connections. First, and as desired, the

noise-free component has now no dependence on the point

cloud distribution. Second, while in Theorem 1 we have

η as the difference between correlation matrices, weighted

by P (graph of observable data), in Theorem 2 we have η′

as the difference between the Gram matrices of Y and the

source point sets, normalized by the correlation matrices C̃i

and Ci respectively.

To evaluate the result from Theorem 2 we apply it to the

PSR problem instances generated in Section 4.3, under the

same noise, missing data and point cloud covariance con-

ditions. The results of the two experiments with the gener-

ated data are shown in Figures 3 and 4. We have sufficient

conditions for global optimality of the candidate solution if

ǫ′ ≤ 1 and since the bound is tight, we also plot the maxi-

mum ǫ′ over the instances for each noise level (red triangles)

to clarify that in some instances we got ǫ′ > 1 even though

the average is below 1.
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(a) p = 0 (b) p = 0.25 (c) p = 0.5

Figure 3: Evaluation of the result from Theorem 2 under the same conditions as in Figure 1. The continuous red line shows

the average of ǫ′ over the instances and the red triangles the maximum ǫ′ obtain for each noise level.

(a) q = 1 (b) q = 0.5 (c) q = 0.1

Figure 4: Evaluation of the result from Theorem 2 under the same conditions as in Figure 2. The continuous red line shows

the average of ǫ′ over the instances and the red triangles the maximum ǫ′ obtain for each noise level.

Figure 5: Comparison between the running time of our local

optimizer and solving the SDP using SeDuMi [23].

As desired, the result from Theorem 2 is more robust to

changes in the target point cloud’s shape, giving a tighter

bound on ǫ′. Additionally, there is also some improvement

in terms of the tightness of the bound for different miss-

ing data percentages when compared with the result from

Lemma 1.

6. Experiments

Given Lemma 1 and Theorems 1, and 2 we will now

apply it to real data. We also give a brief explanation of the

local optimizer used for obtaining the candidate solutions.

6.1. Local Optimization

One of the main applications of our results is enabling

the test for global optimality of a local minimum obtained

through some local optimization algorithm. This is particu-

larly advantageous since local optimization provides faster

convergence compared to solving the SDP. Figure 5 shows a

comparison between the running time of the local optimiza-

tion method using in our experiments and solving the SDP,

for increasing values of m (number of source point sets).

In our simple local optimizer, we linearize rotations as

R ≈ (I + a1S1 + a2S2 + a3S3)R, with

S1 =





0 −1 0

1 0 0

0 0 0



 , S2 =





0 0 −1

0 0 0

1 0 0



 , S3 =





0 0 0

0 0 −1

0 1 0



 .

(33)

and where a1, a2, and a3 parameterize each rotation. We

update the parameters of each rotation independently using

the gradient of the linearized cost function of the primal (P),

and then project the solution into SO(3) using the exponen-

tial map R ← ea1S1+a2S2+a3S3R. As a stopping criterion,

we used a threshold on the average magnitude of the gra-

dient. Note that this is a simplistic local optimizer for this

problem, and that more efficient methods can (and should)

be used to solve it.
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(a) (b)

Figure 6: (a) Evaluation of our results in the fr1/teddy sequence of the TUM RGB-D dataset (m = 47, n = 3606). The

solution obtained with the local optimizater is the global minimum of (P) since it resulted in a psd MΛ and ǫ′ = 0.1769. We

also got ǫ = 2.0963; (b) Evaluation of our results in the fr3/teddy sequence of the TUM RGB-D dataset (m = 50, n = 2812).

The solution obtained with the local optimizater resulted in a non-psd MΛ, ǫ = 2157.6 and ǫ′ = 714.84.

6.2. Evaluation of Results using Real Data

In order to show that the results from Lemma 1 and The-

orems 1 and 2 can be applied to real problems, we use the

local optimizer to reconstruct part of two sequences of the

TUM RGB-D dataset [22]: fr1/teddy and fr3/teddy. The

correspondences between images in each sequence are ob-

tained by matching SIFT features [15], using MATLAB

[17] and VLFeat library [27]. Three of the images used and

two different points of view of the reconstruction scene are

shown in Figures 6a and 6b.

For the fr1/teddy sequence we use the first 47 images

to get the point clouds and correspondences, resulting in

n = 3606 points. The result obtained by using our local

optimizer resulted in MΛ � 0, which by Lemma 1 directly

implies that it is a global maximum of (P). We also evaluate

the results from Theorems 1 and 2, which give ǫ = 2.0963
and ǫ′ = 0.1769, respectively, and the latter also provide

sufficient conditions for global optimality of the candidate

solution. The fact that the sufficient condition related to ǫ
is not fulfilled shows, even though valid, how sensible this

condition is to missing data and spatial distribution of the

point cloud.

For the fr3/teddy sequence we take 1 in every 6 images,

perform the SIFT matching and end up with n = 2812
points. For our candidate solution obtained with the lo-

cal optimizer we got a non-psd MΛ, ǫ = 2157.6 and

ǫ′ = 714.84. We also solved the SDP and the solution ob-

tained had rank 4, which shows that the SDP relaxation for

this sequence is non-tight. This sequence differs from the

previous by having more movement and flow of points, re-

sulting in more missing data and less shared points between

source point sets, and as it is possible to see in Figure 1 and

2 these factors make the SDP relaxation less tight for lower

amounts of noise.

7. Conclusions

In this paper we study global optimality conditions for

the Point Set Registration problem through SDP relaxation.

We use Lagragian duality to determine a sufficient condi-

tion, Lemma 1, that guarantee that a candidate solution is

a global minimum of the primal problem. Then, through

spectral analysis, we decouple the problem into noise-free

and noisy components, and define bounds (Theorems 1 and

2) that can also be used to test for global optimality of a

candidate solution. In particular, for the no missing data

scenario, we present Corollaries 1.1 and 2.1 that can be ef-

ficiently computed.

The experiments show that the SDP relaxation is tight for

relatively high amounts of noise in the source point sets, but

it degrades as the target point cloud becomes close to planar

and as we increase the amount of missing data in the prob-

lem. This restricts the use of SDP relaxation for PSR from

scenarios where the reconstructed scene is roughly planar

or where there are few shared points between several source

points sets.

However, for scenarios where most of the points are ob-

servable, the SDP relaxation is tight and our results can be

applied as a certificate for global optimality of a candidate

solution.
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