THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Approximation and Compression Techniques to
Enhance Performance of Graphics Processing Units

ALEXANDRA ANGERD

Division of Computer Engineering
Department of Computer Science & Engineering
Chalmers University of Technology
Goteborg, Sweden, 2020

APPROXIMATION AND COMPRESSION TECHNIQUES TO ENHANCE PERFOR-
MANCE OF GRAPHICS PROCESSING UNITS
Alexandra Angerd

© Alexandra Angerd, 2020
Goteborg, Sweden, 2020
ISBN 978-91-7905-425-0

Doktorsavhandlingar vid Chalmers tekniska hogskola
Ny serie nr 4892
ISSN 0346-718X

Technical Report No. 192D

Department of Computer Science & Engineering
Division of Computer Engineering

Chalmers University of Technology

SE-412 96 Goteborg

Sweden

Telephone: +46 (0)31-772 1000

Printed by Chalmers Digitaltryck
Chalmers Tekniska Hogskola
Goteborg, Sweden 2020

Approximation and Compression Techniques to
Enhance Performance of Graphics Processing Units

Alexandra Angerd
Department of Computer Science and Engineering
Chalmers University of Technology

Thesis for the Degree of Doctor of Philosophy

Abstract

A key challenge in modern computing systems is to access data fast enough to
fully utilize the computing elements in the chip. In Graphics Processing Units
(GPUs), the performance is often constrained by register file size, memory
bandwidth, and the capacity of the main memory. One important technique
towards alleviating this challenge is data compression. By reducing the amount
of data that needs to be communicated or stored, memory resources crucial for
performance can be efficiently utilized.

This thesis provides a set of approximation and compression techniques
for GPUs, with the goal of efficiently utilizing the computational fabric, and
thereby increase performance. The thesis shows that these techniques can
substantially lower the amount of information the system has to process, and are
thus important tools in the process of meeting challenges in memory utilization.

This thesis makes contributions within three areas: controlled floating-point
precision reduction, lossless and lossy memory compression, and distributed
training of neural networks. In the first area, the thesis shows that through
automated and controlled floating-point approximation, the register file can be
more efficiently utilized. This is achieved through a framework which establishes
a cross-layer connection between the application and the microarchitecture layer,
and a novel register file organization capable of leveraging low-precision floating-
point values and narrow integers for increased capacity and performance.

Within the area of compression, this thesis aims at increasing the effective
bandwidth of GPUs by presenting a lossless and lossy memory compression
algorithm to reduce the amount of transferred data. In contrast to state-of-
the-art compression techniques such as Base-Delta-Immediate and Bitplane
Compression, which uses intra-block bases for compression, the proposed
algorithm leverages multiple global base values to reach a higher compression
ratio. The algorithm includes an optional approximation step for floating-point
values which offers higher compression ratio at a given, low, error rate.

Finally, within the area of distributed training of neural networks, this thesis
proposes a subgraph approximation scheme for graph data which mitigates
accuracy loss in a distributed setting. The scheme allows neural network
models that use graphs as inputs to converge at single-machine accuracy, while
minimizing synchronization overhead between the machines.

Keywords: Floating-Point Precision, GPU, Approximate Computing, Mi-
croarchitecture, Compression, Register File, Machine Learning

ii

iii

List of Publications

This thesis is based on the work contained in the following papers:

I. Alexandra Angerd, Erik Sintorn, and Per Stenstrom. “A Framework
for Automated and Controlled Floating-Point Accuracy Reduction in
Graphics Applications on GPUs”, ACM Transactions on Architecture
and Code Optimization (TACO), Volume 14 Issue 4, December 2017 .

I1. Alexandra Angerd, Erik Sintorn, and Per Stenstrom. “A GPU Regis-
ter File using Static Data Compression”, ICPP’20: 49th International
Conference on Parallel Processing, Edmonton, AB, Canada (Virtual
Conference). August 2020.

ITI. Alexandra Angerd, Erik Sintorn, and Per Stenstrom. “GBDI: Going
Beyond Base-Delta-Immediate Compression using Global Bases”, under
submission since December 2020.

IV. Alexandra Angerd, Keshav Balasubramanian, and Murali Annavaram.
“Distributed Training of Graph Convolutional Networks using Subgraph
Approximation”, under submission since October 2020.

Part of the contributions resulted in an invention:

e Alexandra Angerd, Angelos Arelakis, Erik Sintorn, and Per Stenstrom.
”Systems, Methods and Devices for Exploiting Value Similarity in Com-
puter Memories”, P138180009 BA, submitted to Swedish Patent and
Registration Office (PRV), December 1st 2020.

Other publications by the author, not included in the thesis:

e Alexandra Angerd, Erik Sintorn, and Per Stenstrém. ” A Framework
for Automated and Controlled Floating-Point Accuracy Reduction in
Graphics Applications on GPUs”, MCC2017: 10th Nordic Workshop on
Multi-Core Computing, Uppsala, Sweden, November 2017.

e Alexandra Angerd, Erik Sintorn, and Per Stenstrom. ” A Register File
Organization to Support Variable Floating-Point Precision in GPUSs”,
MCC2018: 11th Nordic Workshop on Multi-Core Computing, Gothenburg,
Sweden, November 2018.

iv

Contents

Abstract
List of Publications
Acknowledgments

1 Introduction

1.1 Problem Statement oL
1.2 Thesis Contributions
1.3 Thesis Organization
2 Summary of Papers
2.1 Paperl e
2.1.1 Summary
2.2 PaperIl
2.2.1 Summary
2.3 Paper IIT
2.3. 1 Summary
2.4 Paper IV e
241 Summary

3 Concluding Remarks and Future Work

References

10
10
13
13
16
16

19

21

vi

CONTENTS

CONTENTS vii

Acknowledgments

”You can, you should, and if you're brave enough to start, you will”. Stephen
King, On writing: A Memoir of the Craft. To me, pursuing a PhD is about being
brave. It’s about being brave enough to meet challenges, hold presentations, be
judged, be rejected, speak your mind, try new things, learn new things, believe
in yourself. It’s about exposing yourself to the unknown, and be brave, until
rejections turns into accepts and scary turns into exciting. When I first started
on this journey, I thought that would happen in about a year. Now I know
better, but now I also hope that I always have to be brave, because I've come
to believe that’s the most exciting (and rewarding!) way forward.

Luckily, T was not alone in this endeavour. Many people have supported
me, in different ways, to tread the path that lead me to finish this thesis.

First, I want to cordially thank my advisor Professor Per Stenstrém for his
immense support throughout these years. He has taught me everything I know
about research, for which I am extremely grateful. Per has also supported me
in realizing personal goals, such as to go on a research visit, attend summer
schools, and challenge my stage fright. Per’s passion and contagious enthusiasm
for research and innovation have been great motivators for me, and he has
truly inspired me to be brave and believe in myself.

I also would like to thank my co-advisor Dr. Erik Sintorn. We have
collaborated closely in most of the projects I've been involved in, and I have
really enjoyed our sessions of understanding, breaking down, and solving
problems (not necessarily in that order). Also, his sense of humour is as ” great”
as mine, which has elevated many moments.

Further, I want to thank Dr. Lars Svensson for encouraging and inspiring
me to apply for a PhD position. I don’t believe I would have considered the
opportunity without him. Thanks to my examiner Dr. Fredrik Dahlgren, for
his support and feedback during the years, and to Professor Murali Annavaram
at University of Southern California, for accepting me as a visiting researcher
in his group and advising me during my time in Los Angeles.

I am also grateful to all my, past and present, colleagues at Chalmers:
Nadja, Christoffer, Lena, Dan, Sverker, Roc, Ulf, Viktor, Mads, Boel, Victor,
Erik, Angelos, Madhavan, Bhavi, Fatemeh, Behrooz, Dmitry, Monica, Jan,
Rolf, Miquel, Pedro, Andreas, Niklas, Per, and others. Thank you for the great
discussions, coffee breaks, lunches, and laughs.

I also want to thank my friends outside of Chalmers, especially Kristina
and Mia, who have shared my ups and downs happily and patiently.

Finally, I want to express my deepest gratitude to wonderful family: Sven-
Ake, Marie, Catharina, my love and fiancé Calle, and Angstrom. They have
always been supportive and believed in me through all my decisions in life,
even when I have not been so sure myself. For that, I am forever grateful.

This research was funded by the Swedish Research Council (VR-2014-06221
and VR-2019-04929), and The Osher Endowment supported my research visit.

\
\ |

A
/ﬁ

Molndal, December 2020

viii CONTENTS

Chapter 1

Introduction

Since the beginning of the information age, the amount of created data has
grown exponentially. According to IDC’s forecast on data growth, the total
amount of data created, captured, copied, and consumed worldwide in the year
of 2020 is around 59 zettabytes (102! bytes), and is projected to grow to 149
zettabytes by 2024 [18].

This explosion of data is an invaluable source of information, which helps
us to learn more about the world. For example, large sets of scientific data
let us explore space, make new medical discoveries, predict our own impact
on the environment, and find new elementary particles. Also, big data is a
fundamental requirement of many new inventions and applications in areas
such as Al the internet of things, the entertainment industry, manufacturing,
and healthcare.

An important prerequisite to harness the information embedded within the
data is to have enough computing power to process it in a reasonable amount of
time. However, while the amount of available information explodes, the future
of computational performance growth is uncertain due to a number of barriers
in technology. Historically, the increase in computational performance was
mainly driven by transistor and clock frequency scaling according to Moore’s
law and Dennard scaling [10]. However, as Dennard scaling reached the end
of the road more than a decade ago due to increased current leakage in the
increasingly smaller transistors, architectural innovations based on thread level
parallelism (TLP) such as chip multiprocessors and GPUs have paved the path
forward.

TLP-based approaches, such as GPUs, also pose challenges. One key
challenge is accessing memory fast enough to feed the computational circuits.
As technology has progressed, the advances in improvement of memory access
time and bandwidth have fallen behind the improvements in computational
performance. This is commonly known as the memory wall [43]. For example,
GPUs offer a high computational throughput by designating a large part of
the die area to computational circuits, which can be individually accessed by
parallel threads. The challenge is to balance the use of resources in such a way
that the computational fabric is fully utilized.

2 CHAPTER 1. INTRODUCTION

To reach peak performance, three main conditions, all related to memory,
have to be met:

1. Enough threads are available to fill the pipeline and hide memory latency.
The number of available threads is limited by the size of the register file
and shared memory.

2. Enough data is fed from the device memory to the chip. This is limited
by memory bus width and memory speed.

3. The application data fits in device memory. This is, naturally, limited by
the size of the main memory.

One important technique towards alleviating the effects of the memory
wall is data compression. By reducing the amount of information that needs
to be communicated and stored, memory resources crucial for performance
can be efficiently utilized. To this end, many compression algorithms directed
towards the memory hierarchy have been proposed. The algorithms can be
divided into two categories: lossless and lossy, where lossless algorithms are
the most important, because loss of information in an uncontrolled way is not
acceptable [37].

Lossless techniques aim at compressing data without any loss of information.
Lossless compression algorithms are usually either temporal-value based or
spatial-value based [37]. In temporal-value based algorithms, frequently occur-
ring values are encoded using smaller code words. Examples include Huffman
coding [17], Frequent Value Compression [44], Lempel-Ziv [45], and Run-Length
Encoding. In contrast, spatial-value based compression techniques leverage that
values tend to cluster around a base value, and that values can be efficiently
compressed as small deviations from a base value (e.g. Base-Delta-Immediate
(BPC) [32], Bitplane Compression (BPC) [23], and Thesaurus [11]).

In contrast to lossless techniques, a lossy compression algorithm returns an
approximated version of the original data. Lossy compression can be applied to
applications in which a small deviation of the output is acceptable. This is often
the case in domains such as real-time rendering, deep learning training and
inference, multimedia, and physics simulations, among others. Some examples
of lossy compression techniques include down-sampled textures in graphics
applications, precision-reduction of floating-point values [38], quantization of
neural networks (e.g. Deep Compression [15]), and storing approximately
similar memory blocks [28].

Common for most compression techniques, lossless or lossy, are that they are
carried out in one level only of the computer abstraction layer, typically within
the microarchitecture, to provide low-latency compression. However, for lossy
compression techniques, this results in complications: how much deviation from
the exact answer is tolerable must be established at the application-level. Hence,
for the produced output to be usable, the lossy compression algorithm has to
be aware of how much approximation the application can tolerate through an
error bound. At the same time, system- and architectural support is needed
to translate the error bound into efficient performance gains. Clearly, lossy
compression techniques and cross-layer frameworks aimed at controlling the
amount of approximation are required to fully utilize the potential of lossy
compression algorithms.

1.1. PROBLEM STATEMENT 3

This thesis aims at providing a set of controlled compression and approxima-
tion techniques for GPUs, with the goal of efficiently utilizing the computational
fabric, and thereby increase performance. As will be shown in this thesis, con-
trolled approximation can substantially lower the amount of information the
system has to process while providing high output quality, and is thus an
important tool in the process of debricking the memory wall.

1.1 Problem Statement

This thesis builds upon the work presented in Papers I-IV. The addressed
problems aim at exploring approximation as a way of decreasing the amount
of processed information in GPU systems, while still returning a result which
is sufficiently accurate.

The first problem investigated in this thesis is related to the precision
of floating-point values. Reducing the precision of floating-point values by
narrowing the bitwidth is an efficient technique to reduce the information
needed to be handled by the computer system, and can be leveraged to design
systems with higher performance [19] and higher energy-efficiency [20, 39].

However, reducing the floating-point precision in a controlled manner, which
guarantees that the output of the application stays within an acceptable error
bound, needs support across many of the abstraction layers. First, at the
application level, the error bound has to be established, which is how much
the produced output is allowed to deviate from the exact output. Next, at
the assembly language level, each floating-point value has to be annotated
with a precision which guarantees the error bound. At last, compiler and
architectural support is needed to translate the floating-point annotations into
efficient resource utilization. To this end, the thesis attempts to answer the
following questions: How can a connection, which guarantees that the output
is within a certain specified error bound, be established across the computer
abstraction levels? Next, if such a connection can be established, how can it be
leveraged to design microarchitecture features which translate approximations
into increased performance? These questions are investigated in Papers I and
I1.

Another problem, which is explored in paper III, involves compression
of floating-point values. While precision reduction is efficient in decreasing
processed information, it does not exploit the dimension of value locality which
is often present in sets of data [37]. However, floating-point values are known
to be more challenging to compress than other data types, for example integers,
due to how they are stored in bit space [2]. Thus, questions arise: how can
floating-point values be compressed efficiently, and how can approximations
further increase compression while keeping the output error low?

Finally, this thesis also seeks answers to a problem related to processing of
very large datasets, common in the domain of training deep neural networks. If
application data do not fit in GPU device memory, the system has to wait for
data to be loaded from elsewhere (storage or CPU RAM). Since the data is not
readily available, this results in performance degradation. A common solution
for applications such as Convolutional Neural Networks (CNNs) is to distribute
the training across a cluster of multiple GPU-equipped machines. This is

4 CHAPTER 1. INTRODUCTION

done by dividing the dataset into a number of chunks, and let each machine
train a local model on its assigned data chunk. A single global model can be
constructed by aggregating the model parameters across the machines [9].

Although this approach is efficient for CNNs, that may operate on inde-
pendent pieces of input data such as images, data-parallel distributed training
is more challenging for other types of neural networks. For example, recent
efforts in research have adapted CNNs to operate directly on data modelled as
graphs [5, 14, 13]. This type of neural network is called Graph Convolutional
Networks (GCNs). However, splitting a large graph into smaller, independent
subgraphs requires removing the edges between the subgraphs, which causes
accuracy problems since information about the data is lost. To this end, Paper
IV seeks the answer to the question: is it possible to adapt data-parallel
distributed training to GCNs while maintaining a high accuracy?

1.2 Thesis Contributions

This thesis considers three areas: controlled floating-point precision reduction,
lossless and lossy memory compression, and distributed training of GCNs.

In the first area, this thesis shows that through automated and controlled
floating-point approximation, the number of threads available to the GPU
computation units can be increased by efficiently utilizing the register file
resources. This is achieved through two contributions:

e A heuristic for automating the process of selecting the precision of each
floating-point value given a certain output quality threshold. The worst-
case complexity of the heuristic is bounded by O(an) as opposed to
O(an?) in previous work [36], where a is the number of floating-point
precision levels and n is the number of analyzed values (Paper I).

e A novel register file organization and microarchitectural implementation
(Paper IT) together with a register file allocation algorithm (Paper I) that
together can leverage a lower precision of floating-point numbers, as well
as narrow integers, for increased capacity and performance. Evaluations
show that up to twice as many threads can be active simultaneously
which translates to a performance improvement of up to 79%, 18.6% on
average, when allowing for a slight output quality loss.

Within the second area, Paper ITI aims at increasing the effective bandwidth
of GPUs by presenting a lossless and lossy memory compression algorithm to
reduce the amount of transferred data. While state-of-the-art techniques such
as BDI and BPC build on the hypothesis that intra-block values are similar
and can be encoded efficiently using an intra-block base value, Paper III makes
the observation that this is not always true. Rather, values tend to cluster
around a small number of global base values. Based on this observation, Paper
III makes the following contributions:

e A lossless compression scheme, GBDI, for read-only data which uses
multiple global base values to achieve a higher compression ratio than
BPC. The evaluation shows that lossless GBDI offers a substantially

1.3. THESIS ORGANIZATION 5

higher geometric mean compression ratio (3.34x) than BPC (2.51x) across
both integer and float benchmarks.

e A new controlled approximation technique for floating-point values that
offers even higher compression ratio than lossless GBDI for floating-point
benchmarks, if controlled approximation is allowed. At a given error rate,
this technique offer a higher compression ratio than mantissa truncation.

Finally, Paper IV makes contributions in the third area. It explores
GCN training in a distributed setting, and observes that training on mutually
exclusive subgraphs results in a substantially lower accuracy than what full-
graph training on a single machine would yield. To mitigate accuracy loss in a
distributed setting, Paper IV makes the following contribution:

e A subgraph approximation scheme for graph data which mitigates the
accuracy loss and allows training of GCNs in a distributed setting to
converge at single-machine accuracy, while minimizing synchronization
overhead between the machines.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides brief sum-
maries of Papers I-IV. Chapter 3 makes concluding remarks and outlines future
work.

CHAPTER 1. INTRODUCTION

Chapter 2

Summary of Papers

This chapter provides summaries of Papers I to I'V. All papers are provided as
appendices to the thesis.

2.1 Paper I

This section provides an extended abstract of Paper I titled ” A Framework
for Automated and Controlled Floating-Point Accuracy Reduction in Graphics
Applications on GPUs” and published in ACM Transactions on Architecture
and Code Optimization (TACO), Volume 14 Issue 4, December 2017.

2.1.1 Summary

Reducing the precision of floating-point values is a technique which can be used
to both achieve higher performance [19] and higher energy-efficiency [20, 39].
This is especially true for GPUs, since many of its common tasks, for example
image-rendering, are in domains in which the output is inherently insensitive to
precision-reduction [33]. Since values with low floating-point precision can be
expressed with fewer bits, a substantially lower precision can open up for many
optimization approaches such as more resource-efficient register files [26], data
paths [38], functional units [31], and cache subsystems [19]. In order to leverage
microarchitectural support for narrow floating-point values, the operands have
to be annotated with a suitable precision at the instruction level.

The aim of Paper I is to propose a framework which provides instruction-
level annotations in an automated and controlled manner. Automated means
that the framework automatically, and transparently to the programmer, sets an
appropriate precision for each floating-point value in the program. Controlled
refers to guaranteeing that the quality of the output does not undercut a certain
quality threshold which is defined by the programmer at the application level.

Previous efforts have been made to provide a framework for automated
precision tuning. For example, Precimonius [35] automatically selects among
IEEE754-compliant data types for each source-level floating-point variable.
However, the approximation levels in Precimonius are constrained to IEEE754-
compliant data types, and the optimization targets source-level variables rather
than instruction-level floating-point operands. Furthermore, the scalability of

7

8 CHAPTER 2. SUMMARY OF PAPERS

the algorithm is limited (O(pn?), where p is the number of precision levels and
n is the number of floats to tune).

Another work which targets automated precision tuning is Chisel [29], but
like Precimonius, it does not target instruction-level floats. In addition, Chisel
employs a static interval analysis, which gives an upper bound on the required
precision, resulting in conservative bitwidths.

Unlike previous work, Paper I presents a data-driven method for automated
precision tuning which operates directly on compiled and optimized assembly
code. The proposed algorithm has a lower computational complexity than
Precimonius, with a worst-case computational complexity bounded by O(pn).
This is important, since Paper I targets virtual registers in Single Static
Assignment (SSA) form, of which there can be hundreds or thousands. The
goal of the proposed algorithm is to identify which floating-point registers can
be represented by lower precision formats and how much the precision can be
lowered, while still meeting the specified quality threshold. To find the optimal
set of all values and all precisions, an exhaustive search is required. Since
such a solution would not be practically viable (with a complexity of (O(p™)),
Paper I proposes a heuristic algorithm which empirically returns good results.

To show the benefits of floats with reduced precision, Paper I also sketches
the specification of a register file organization with the capability of storing
floats of variable precision densely. The register file is of particular interest
in GPU architectures. This is because GPUs hide latency by keeping a large
number of threads in flight simultaneously, and schedule a new thread whenever
a running thread stalls on a memory operation. Context switches happen at
the cycle level, which means that each active thread has to keep its state readily
available in the register file until it terminates. Hence, the size of the register
file has a direct impact on how many threads can be active simultaneously, and
thus affects performance.

The proposed register file organization stores variable-precision values
densely by dividing each physical register into slices, and allocate as many slices
as needed for each value. This makes it possible to store multiple values within
the same physical registers. The slices are accessed through an indirection
table, where pointers to the slices are stored for each value. Since the size of
each value is known at compile time, the indirection table can be configured
by the register allocator at compile time. To bridge the gap between the value
annotations and the register file, Paper I also proposes a register allocation
algorithm which is aware of the width of each value.

The contributions are evaluated on five graphics kernels. First, they are
compiled into a hardware-independent assembly format (LLVM IR [25]). Then,
instructions are injected that make it possible to dynamically set the precision
of each floating-point value. Next, the proposed precision-tuning heuristic
is applied to annotate each floating-point with a precision. The annotations
are then used by the width-aware register allocation algorithm to place the
values into the sliced register file. The output from the register allocation step
corresponds to the register pressure, that is, how many register resources are
used by each thread.

The evaluation compares three different low-precision floating-point formats:
IEEE754-compliant, mantissa truncation, and IEEE754-style. The IEEE7T54-
compliant format considers the approximation levels provided by the IEEE754

2.1. PAPERI 9

standard (32-bit single-precision , and 16-bit half-precision). The mantissa
truncation format assumes a single-precision floating-point value where the
mantissa bits are dropped to a lower precision, but the exponent bits are kept
as is. The IEEE754-style format dynamically decreases the width of both
the exponent and mantissa fields, but keeps the ratio between these fields
approximately the same as in the IEEE754 standard. For both the mantissa
truncation and ITEEET754-style format, seven precision levels are considered (32
to 8 bits, in steps of 2).

The results show that the fine-grained formats, IEEE754-style and mantissa
truncation, enable the framework to remove more bits than the IEEE754-
compliant format does, at the same quality threshold. Furthermore, IEEE754-
style outperforms mantissa truncation in terms of removed bits.

In summary, if the IEEET54-style format is used, the register pressure can
be reduced up to 48%, 27% on average, while still maintaining a high output
quality. The results indicate that it is possible to considerably increase the
number of in-flight threads in GPUs by accepting a small loss of output quality,
and use the quality threshold as a knob to control the number of threads in
flight.

10 CHAPTER 2. SUMMARY OF PAPERS

2.2 Paper II

This section provides an extended abstract of Paper II titled ”A GPU Register
File using Static Data Compression” and published in the proceedings of
ICPP’20: 49th International Conference of Parallel Processing, Edmonton, AB,
Canada. August 2020.

2.2.1 Summary

As mentioned in Section 2.1, GPUs use large register files to achieve high
throughput and enable latency hiding of memory accesses. The trend is to
rely on increasingly larger register files in order to further increase thread-level
parallelism (TLP) [30]. However, large register files are power hungry, which
makes it important to seek for new approaches to improve their utilization.

Paper I showed that precision-reduction of floating-point values has the
potential of substantially lower the register pressure of each thread, while
still maintaining a high-quality output. However, Paper I only assumes the
existence of a register file with support for low-precision floats and does not
present any microarchitectural design of such a register file, nor how it could
be integrated into a GPU pipeline. Additionally, Paper I does not evaluate the
potential performance improvement given by such a register file.

Furthermore, Paper I does not investigate any other data types than floats.
However, studies have shown that a large portion of the integer operands stored
in the GPU register file are narrow [12, 41], meaning that they require less
than the width of a standard register of 32 bits. Support for narrow integers
could further lower the register pressure of each thread.

Previous work in the area [12, 41, 3] propose register file organizations which
pack operands by establishing their bitwidth at run time. This is achieved by
using zero/one-detection logic to remove redundant sign bits. However, this
approach does not work for floating-point data. In addition, the precision of
floating-point operands cannot be decided at run time, since it is not possible
to know what impact the precision-reduction of a specific operand would have
on the end result.

Paper II proposes a register file organization capable of storing operands
at a fine granularity regardless of operand type. This is achieved through
a compiler-assisted approach which annotates the precision needed for each
operand at compile time. Narrow integers are detected by leveraging static
range analysis [34], while the precision of each float is determined using the
framework presented in Paper I. The annotations are taken into consideration to
achieve a dense register allocation using the allocation algorithm from Paper I.
At run time, the proposed register file uses a configurable indirection table to
store the location of each operand.

The design of the proposed register file implies three main challenges, which
are addressed in Paper II. First, the indirection table is on the critical path,
since it has to be consulted for each register lookup. Hence, it is important that
the latency of the indirection table is low. Second, the indirection table also has
to handle multiple accesses per cycle, since several registers have to be read in
parallel. Third, the proposed register file is designed to support the IEEE754-
style format presented in Paper I, which means that conversions has to be

2.2. PAPER II 11

carried out between full-precision floats and the low-precision formats which is
used to densely store the floats in the register file. Paper IT mitigates these
challenges by presenting an indirection table which matches the throughput of
the register file, as well as conversion units capable of carrying out the float
conversion in one processor cycle.

The proposed design is evaluated by modifying the cycle-accurate GPU
simulator GPGPU-Sim [4] to include the added microarchitectural components.
GPGPU-Sim simulates NVIDIA’s instruction set PTX, so the framework from
Paper I is modified to annotate each PTX register with a bitwidth. The
framework outputs the indirection table contents which points to the location
of each operand, which is then uploaded to GPGPU-Sim. In practise, a small
ISA extension could be employed to load the data into the indirection table.
This needs to be carried out only once per kernel launch, since the register
allocation is static.

The extended GPU pipeline is evaluated on eleven GPU kernels from various
application domains, in which the theoretical number of threads in flight is
limited by register pressure. The first four kernels are the graphics kernels
evaluated in Paper I. The other kernels are from benchmarks in the Rodinia
benchmark suite [6].

To tune the float precision, each kernel is coupled with a quality metric
suitable for its output. The graphics kernels output images and uses Structural
Similarity Index [42] as metric, while the Rodinia benchmarks use either
percentage of deviation from the correct output (six kernels) or a binary metric
of either correct or wrong (one kernel). Note that the choice of quality metric
has a large impact on how efficiently the framework can remove bits, as well as
the usability of the output. Ideally, the quality metric should be established by
domain experts. In Paper II, the coupled quality metrics are used to show the
potential of the work. Other quality metrics could be used without any other
change in methodology.

The kernels are evaluated in terms of register pressure, occupancy (the ratio
of active threads to the maximum number of threads supported by the core),
and performance in terms of Instructions Per Clock (IPC). The results show
that it is necessary to consider both narrow integers and precision-reduced
floats to achieve a substantial register pressure reduction across all benchmarks.
This register pressure reduction increases the occupancy, which leads to an IPC
increase by up to 79%, 18.6% on average, when allowing for a slight output
quality degradation. While register pressure reduction leads to an average
increase in IPC, the results also show that this is not always the case. It is
important to note that, while TLP is a prerequisite for high performance in
GPUs, a higher occupancy does not always lead to increased performance due
to the overall system complexity [40]. For example, the pipeline might already
be fully utilized, or the increased number of threads might cause contention in
caches.

In addition to the performance evaluation, Paper II also presents area and
power overhead analyses. The area overhead analysis uses transistor count
as a proxy to estimate area of the added microarchitectural structures and
finds that the total area increase is less than 1% of the transistor budget of
the baseline architecture. The power overhead is estimated analytically, and
shows that the proposed design increases power less than what a twice as big a

12 CHAPTER 2. SUMMARY OF PAPERS

register file would do. This comparison is interesting since for some kernels,
the proposed design more than double the number of active thread blocks.

In summary, Paper II proposes a new concept for efficient register-packing,
which combines static integer and float compression with a novel GPU register
file organization capable of lowering the register pressure. It presents a mi-
croarchitectural implementation of the proposed organization, together with
an evaluation as well as overhead estimations for area and power. The results
show that the IPC of the investigated kernels can be increased by up to 79%,
18.6% on average, when allowing for a slight output quality degradation.

2.3. PAPER III 13

2.3 Paper III

This section provides an extended abstract of Paper III titled ” GBDI: Going
Beyond Base-Delta-Immediate Compression using Global Bases”. At the time
of this writing, the paper is under submission.

2.3.1 Summary

The performance of many GPU applications are limited by the available memory
bandwidth [40]. One approach to make more bandwidth available is to employ
compression of the transmitted data, which increases the amount of information
that can be communicated each clock cycle.

While many general compression techniques exist [37], compression in the
memory hierarchy has to incur a low latency since memory reads are on the
critical path. Thus, compression algorithms tailored for the memory hierarchy
are typically less complex than algorithms targeted for purposes such as storage.

One recently proposed compression technique to increase bandwidth in
GPUs is Bitplane Compression (BPC) [23]. It is built upon Base-Delta-
Immediate (BDI) compression [32], in which a block of data values is compressed
by utilizing data similarity within the block. This is done by selecting one of
the values as a base, and encode the other values as a difference (delta) from
that base.

The effectiveness of BDI-based compression relies on the hypothesis that
the delta can be compactly encoded because the values within the block are
similar. However, Paper III makes the observation that this is not always
the case. This is especially true for floating-point values, since the IEEE754
standard, where the bits in a value is split into three regions (sign, exponent,
and mantissa) results in that numbers that are perceived as numerically similar
cannot always be encoded compactly by using deltas.

Paper III observes that values tend to cluster around a few base values,
and these that clusters are spread across multiple value blocks. Based on this
observation, the paper proposes a lossless compression algorithm for read-only
data, called GBDI, that uses global bases shared by all input data, instead of
intra-block bases as in BDI. GBDI compresses the read-only data offline, and
decompresses the data at runtime.

The idea of GBDI is to use a small number of global bases across blocks to
minimize deltas, where each value is compressed as a global base pointer and a
delta. The global base values are stored in a small indexed lookup table. GBDI
takes a block of values as an input. For each value, it locates the closest global
base value, and computes the delta. Then, for each value, the delta and global
base pointer are concatenated into one data array. These data arrays are then
further compressed using the same approach as BPC: the matrix consisting of
the data arrays are transposed such that each row represents one bit position
of each data array, called bitplanes. These bitplanes are compared against a
frequent pattern table, and encoded with a small pattern representation if a
match is found.

The main challenge of GBDI is to find suitable global base values. An
intuitive approach is to locate value clusters through a standard clustering
technique such as kmeans [27]. However, such clustering techniques usually

14 CHAPTER 2. SUMMARY OF PAPERS

minimize the distance between the cluster center (base) and the values. Pa-
per ITI makes the observation that this approach is suboptimal for BDI-based
compression. Rather, what should be minimized is the number of bits needed
to encode the distance. Paper III shows that finding an optimal base b among
M values in a set of values x; € X is equivalent to minimizing the function
f() = Zij\ial log2(1 4+ |b— z;|), and that the global minimum is in one of the
values ;.

Kmeans can be modified to minimize the function f(b) instead of the dis-
tance, which substantially increases the compression ratio of GBDI when the
cluster centers are used as global bases. However, this solution is computa-
tionally heavy, since f(b) has to be evaluated for all z; to locate the global
minimum. Paper III employs a subsampling scheme to reduce the complexity,
but the complexity is still high (O(M?3/4)). Therefore, a heuristic with lower
complexity (O(Mlog(M))), called histogram binning, is also proposed.

The goal of histogram binning is to ensure that a majority of values are
close to a base value. This is achieved by constructing a histogram of all values,
and split it into a number of equal-range bins. The bins that contain the most
values are identified, and from these bins, the most frequently occurring value
is selected as a base. To find suitable bases, the heuristic sweeps over a fixed
number of bases and bins, compresses the data with GBDI, and chooses the
combination which maximizes compression ratio.

In addition to the lossless compression with global bases, Paper III also
proposes a lossy extension to GBDI which allows the algorithm to leverage
approximation of floating-point values. This extension is called BitPlane-
Aware Approximation (BPA), and is applied to floating-point values before the
deltas are computed. Essentially, BPA analyzes the ¢ least-significant mantissa
bitplanes of the floating-point values, where ¢ is an approximation threshold
set by the user. It approximates the bitplanes to either 0 or 1, depending on
which one is most common, and stores the approximated bitplanes as a small
array. During decompression, the t-bit array are inserted into the reconstructed
values to restore an approximate version of the original values. Compared to
truncation, when the ¢ least significant bits are simply set to 0, BPA offers a
higher compression ratio at a fixed, low, error rate.

To evaluate GBDI, GPU kernels from the Rodinia [6] and Parboil [1]
benchmark suits are investigated. The CUDA memory copy call feeds input data
into GBDI, and the resulting compression ratio is reported. The compression
ratio is analyzed as a function of the size of the global base lookup table, when
histogram binning is used to locate global bases. The results show that a
global base table size of only 256B (64 32-bit bases) has a geometric mean
compression ratio, across all benchmarks, of 3.34X, compared to 2.51X for
BPC using intra-block bases. In summary, for most benchmarks, GBDI yields
a substantial increase in compression ratio as compared to BPC. The exception
is if the benchmark contains values which gradually increase as we sweep over
the memory. In this case, an intra-block base yield very small deltas and thus
a high compression ratio.

The results also compare unmodified and modified kmeans (using distance
and f(b) as minimization objective, respectively). The modified version per-
forms better with a total geometric mean of 3.10X as compared to 2.60X.
However, histogram binning achieves an even higher compression ratio for

2.3. PAPER III 15

many benchmarks (total geometric mean: 3.34X). This is because histogram
binning continuously evaluates the compression ratio, and chooses the best
performing bases. Since compression ratio not only depends on the size of the
deltas, but also the values within each block, histogram binning takes more
dimensions into consideration and might find better global bases.

In summary, Paper III contributes with a lossless compression algorithm for
read-only data, which uses multiple global bases to achieve a higher compression
ratio than BPC. It also shows that choosing base values that minimize the
distance between cluster values does not maximize compression, and proposes
to use the number of bits encoding the distance instead. Furthermore, the
paper contributes with histogram binning for clustering, a heuristic which
yields higher compression ratio than kmeans. Finally, the paper contributes
with a new approximation technique for floating point values which can further
increase compression ratio.

16 CHAPTER 2. SUMMARY OF PAPERS

2.4 Paper IV

This section provides an extended abstract of Paper IV titled ”Distributed
Training of Graph Convolutional Networks using Subgraph Approximation”.
At the time of this writing, the paper is under submission.

2.4.1 Summary

Data modeled as graphs are ubiquitous in application domains such as social
networks, biological networks, and e-commerce interactions. Recent research
has adapted machine learning techniques to train directly on graphs. One
important breakthrough is the development of Graph Convolutional Networks
(GCNs), which generalizes the function of Convolutional Neural Networks
(CNNs), to operate on graphs [24].

However, many real-world graphs are typically very large and do not fit in
GPU device memory, often making the problem of training machine learning
models on them intractable. GCNs are typically more memory demanding
than CNNs since processing a single vertex requires accessing its neighbours,
which means a large amount of data have to be accessed if the neighborhood is
large. Additionally, GCN algorithms often access neighbors multiple hops away,
which might require traversal of disparate graph sections without locality. This
poses challenges when the graph does not fit in memory. Previous approaches
alleviate these issues by constraining the number of dependent vertices through
sampling-based methods [13, 7, 16, 8]. However, heavily sampling the graph
may limit the achievable accuracy [21].

To alleviate the memory size constraints and the computing capacity of a
single machine, the training of CNN models turned to data parallel distributed
training. In such training, a number of machines independently train on
identical neural networks, but on different chunks of input data. A single global
model can be constructed by aggregating model parameters at regular intervals,
for example at the completion of a batch [9]. This works well for CNNs because
the input data can be divided into independent chunks. For example, if the
input is a set of images, each image is independent. Hence, when the dataset is
split into chunks, no information is carried between the chunks and each chunk
can be trained on independently. In contrast, if the input is a connected graph,
the equivalent of splitting the dataset into chunks is to partition the graph
into a number of subgraphs. Since the training of GCNs require not only the
vertex information but also the neighborhood, the GCN might need information
located on a different machine. If all such cross-machine information would be
communicated, a communication bottleneck would quickly arise.

Another approach is to ignore the information that spans multiple ma-
chines [21]. However, this solution might result in accuracy loss. For example,
when distributed on five compute nodes and ignoring cross-machine edges,
Paper IV notes that the accuracy of GraphSAGE [13] trained on the Reddit
dataset [13] drops from 94.94% to 89.95%, a substantial loss.

To mitigate this problem, Paper IV proposes a distributed training approach
for GCNs which reaches an accuracy comparable with that of training on a
single-system machine, while keeping communcation overhead low. This allows
GCNs to train on very large graphs on a distributed system where each

2.4. PAPER IV 17

machine has limited memory. This is achieved by a proposed subsampling
scheme, called Subgraph Approximation, which approximates the non-local
subgraph and making the approximations available in the local machine. The
intuition behind Subgraph Approximation is that each machine has a complete
view of one subgraph, and an approximate view of the rest of the subgraphs.

The scheme first partitions the graph into n non-overlapping subgraphs
g; € G, which are roughly equal in size. For each subgraph g; a fixed number
of vertices are randomly sampled for each of the other subgraphs in G, if the
vertex has a path to g;. Next, the subgraph g¢; is extended to include the
sampled vertices v, including the edges between v, and g;. The number of
sampled vertices is a user-defined input parameter.

The approach is evaluated on a cluster of identical machines, each equipped
with an AMD Ryzen 3 1200 Quad-Core processor, 32 GB memory, and a
NVIDIA GeForce GTX 1080 Ti. The cluster is configured in a master-worker
setting, where the master acts as a parameter server, and the workers are
responsible for the training. The master initiates the training by partitioning
the graph using the METIS library [22], applying subgraph approximation,
and distributing the subgraphs among the workers. The workers send their
trained model parameters to the master at the end of every epoch. The master
aggregates the parameters and averages them before distributing the results to
the workers, which initiates the next epoch. At the end of the training period,
the aggregated parameters from all workers form a global model.

The approach is evaluated on two GCNs: the GCN proposed by Kipf and
Welling [24] (called KW-GCN in the paper), and GraphSAGE [13], and two
datasets: Reddit [13] with 231K vertices and 11M edges, and Amazon2M [8]
with 2M vertices and 48M edges.

The evaluation first explores distributed training for the two GCNs when
trained on the Reddit dataset. On a single machine, the training for KW-GCN
and GraphSAGE converges at 92.90% and 94.94%, respectively. However, when
training on 5 workers in a distributed setting without Subgraph Approximation,
the corresponding accuracy is 50.20% and 89.95%, respectively, for KW-GCN
and GraphSAGE. Paper IV further investigates Subgraph Approximation by
trying different numbers of sampled vertices. For GraphSAGE, an overhead
of 2% of the total vertices, added to each machine, is enough to reach single-
machine accuracy. A further increase in overhead lets the model converge
faster, but does not necessarily increase accuracy.

KW-GCN is more sensitive to graph partitioning than what GraphSAGE is.
However, adding a small overhead substantially increases the model accuracy
bringing it close to the baseline (91.80% for an overhead of 5%).

When it comes to Amazon2M, it is more challenging to train on a single
machine for both GCNs: for KW-GCN, the adjacency matrix is too large to fit
in the GPU. For GraphSAGE, the training time is very long. However, the
trends are similar to that of training on the Reddit dataset: a small increase in
overhead substantially increases both accuracy and time to convergence.

In summary, distributed GCN training is efficient in reducing execution
time and memory footprint, but it can also cause accuracy problems. Paper IV
proposes a technique to mitigate the accuracy loss by introducing subgraph
approximation which helps the system to reach single-machine accuracy while
still keeping the memory footprint and communication costs low.

18

CHAPTER 2. SUMMARY OF PAPERS

Chapter 3

Concluding Remarks and
Future Work

As the amount of available information grows, new innovations in computing
devices are needed in order to process the information in a reasonable amount
of time. One key challenge is to overcome the memory wall, which has arisen
because the improvements in memory access time and bandwidth have fallen
behind the improvements in computational performance.

To this end, this thesis proposes a number of compression and approximation
techniques for GPUs, with the goal of efficiently utilizing the computational
fabric. The results show that the techniques presented in this thesis have the
potential of substantially increasing the performance of GPUs, especially if a
slight output quality degradation is allowed.

One contribution of this thesis is a framework which enables floating-point
precision in a controlled manner, which guarantees that the output is above a
pre-specified quality threshold. While the tuning method presented in Paper I
is applicable to any application, one challenge is to establish a quality metric
for all applications. This is not the same as an error measurement, since an
error measurement does not say anything about the end users’ perception of
the output, nor how usable the output is. One direction of future work is to
establish well-defined quality metrics for more domains in order to efficiently
apply the proposed precision-tuning method.

Moreover, this thesis proposes to leverage the precision-annotated instruc-
tions returned from the precision-tuning method to optimize the register file.
However, many other optimization opportunities are possible. For example,
annotations for load- and store instructions indicate that less data could be
read from and written to memory, which in turn may open up for further
optimizations in other levels of the memory hierarchy. On a similar note, the
annotations could be used as a guidance when deciding on the approximation
threshold for BitPlane-Aware Approximation, as presented in Paper III.

One limitation of GBDI, the compression algorithm presented in Paper I11,
is that it only targets read-only data. This is because an offline analysis of
all values is needed in order to locate suitable global base values. However,
another work in the area of compression techniques applied to the memory
hierarchy has made the observation that value locality changes slowly, and

19

20 CHAPTER 3. CONCLUDING REMARKS AND FUTURE WORK

has proposed statistical compression schemes which only periodically profiles
the data [2]. An interesting future research direction is to investigate if it is
possible to extend GBDI for read-write data by employing an approach in the
same spirit. Furthermore, while Paper III analyzes the possible compression
ratio of GBDI, it does not explore what impact the compression scheme has
on the available bandwidth and performance. This is also a target for future
studies.

When it comes to Paper IV, an interesting direction of future work is
to investigate subgraph approximation for even larger distributed systems
and graphs. Also, the current study only explores distributed training, not
distributed inference. Hence, the study could be extended by also exploring
if subgraph approximation is viable in an inference setting. Another possi-
ble direction is to investigate load-balancing in combination with subgraph
approximation. While it is relatively easy to partition a graph into roughly
equal subgraphs in terms of vertices, the time it takes to train on one subgraph
also depends on the size of the neighborhood for each vertex. Hence, if the
subgraphs are equal in terms of vertex count but not in sparsity, the load
might not be balanced which increases execution time of the distributed system.
Finally, Subgraph Approximation uses randomized sampling to approximate
non-local subgraphs. However, deterministic sampling such as selecting the
vertices with the highest number of edges to the local subgraph might perform
better, since the information from such vertices are beneficial to many vertices
in the local subgraph. Exploring other sampling methods is also a possible
future research direction.

References

A. Stratton, et al. Parboil: A Revised Benchmark Suite for Scientific
and Commercial Throughput Programming. Tech. rep. IMPACT-12-01.
University of Illinois, at Urbana-Champaign, 2012.

Angelos Arelakis, Fredrik Dahlgren, and Per Stenstrom. “HyComp: A
Hybrid Cache Compression Method for Selection of Data-Type-Specific
Compression Methods”. In: Proceedings of the 48th International Sym-
posium on Microarchitecture. MICRO-48. Waikiki, Hawaii: Association
for Computing Machinery, 2015, pp. 38—49. 1SBN: 9781450340342. DOI:
10.1145/2830772.2830823. URL: https://doi.org/10.1145/2830772.
2830823.

Hodjat Asghari Esfeden et al. “CORF: Coalescing Operand Register
File for GPUs”. In: Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems. ASPLOS ’19. Providence, RI, USA: Association for
Computing Machinery, 2019, pp. 701-714. 1SBN: 9781450362405. DOI:
10.1145/3297858.3304026. URL: https://doi.org/10.1145/3297858.
3304026.

A. Bakhoda et al. “Analyzing CUDA workloads using a detailed GPU
simulator”. In: 2009 IEEE International Symposium on Performance
Analysis of Systems and Software. Apr. 2009, pp. 163-174. pDo1: 10.1109/
ISPASS.2009.4919648.

Joan Bruna et al. “Spectral Networks and Locally Connected Networks on
Graphs”. In: 2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings. 2014.

S. Che et al. “Rodinia: A benchmark suite for heterogeneous computing”.
In: 2009 IEEE International Symposium on Workload Characterization
(IISWC). 2009, pp. 44-54. DOI: 10.1109/IISWC.2009.5306797.

Jie Chen, Tengfei Ma, and Cao Xiao. “FastGCN: Fast Learning with
Graph Convolutional Networks via Importance Sampling”. In: Inter-
national Conference on Learning Representations. 2018. URL: https:
//openreview.net/forum?id=rytstxWAW.

Wei-Lin Chiang et al. “Cluster-GCN: An Efficient Algorithm for Training
Deep and Large Graph Convolutional Networks”. In: Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discov-
ery & Data Mining. KDD ’19. Anchorage, AK, USA: Association for

21

22

REFERENCES

[12]

[13]

[16]

[17]

[19]

Computing Machinery, 2019, pp. 257-266. 1SBN: 9781450362016. DOI:
10.1145/3292500.3330925. URL: https://doi.org/10.1145/3292500.
3330925.

Jeffrey Dean et al. “Large Scale Distributed Deep Networks”. In: Advances
in Neural Information Processing Systems. Ed. by F. Pereira et al. Vol. 25.
Curran Associates, Inc., 2012, pp. 1223-1231.

R. H. Dennard et al. “Design of ion-implanted MOSFET’s with very
small physical dimensions”. In: IEEFE Journal of Solid-State Circuits 9.5
(1974), pp. 256-268. DOIL: 10.1109/JSSC.1974.1050511.

Amin Ghasemazar, Prashant Nair, and Mieszko Lis. “Thesaurus: Effi-
cient Cache Compression via Dynamic Clustering”. In: Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS ’20. Lausanne,
Switzerland: Association for Computing Machinery, 2020, pp. 527-540.
ISBN: 9781450371025. DOI: 10.1145/3373376.3378518. URL: https:
//doi.org/10.1145/3373376.3378518.

S. Z. Gilani, N. S. Kim, and M. J. Schulte. “Power-efficient comput-
ing for compute-intensive GPGPU applications”. In: High Performance
Computer Architecture (HPCA2013), 2013 IEEE 19th International Sym-
posium on. Feb. 2013, pp. 330-341. poI1: 10.1109/HPCA.2013.6522330.

William L. Hamilton, Rex Ying, and Jure Leskovec. “Inductive Repre-
sentation Learning on Large Graphs”. In: Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems. NIPS’17.
Long Beach, California, USA: Curran Associates Inc., 2017, pp. 1025—
1035. 1SBN: 978-1-5108-6096-4.

William L. Hamilton, Rex Ying, and Jure Leskovec. “Representation
Learning on Graphs: Methods and Applications”. In: IEEE Data Eng.
Bull. 40 (2017), pp. 52-74.

Song Han, Huizi Mao, and William J. Dally. Deep Compression: Com-
pressing Deep Neural Networks with Pruning, Trained Quantization and
Huffman Coding. 2016. arXiv: 1510.00149 [cs.CV].

Wenbing Huang et al. “Adaptive Sampling Towards Fast Graph Rep-
resentation Learning”. In: Advances in Neural Information Processing
Systems (NIPS). 2018.

D. A. Huffman. “A Method for the Construction of Minimum-Redundancy
Codes”. In: Proceedings of the IRE 40.9 (1952), pp. 1098-1101. por:
10.1109/JRPROC. 1952.273898.

IDC and Statista. Volume of data/information created worldwide from
2010 to 2024 (in zettabytes). 2020. URL: https://wuww . statista .
com / statistics /871513 / worldwide - data - created/ (visited on
11/10/2020).

A. Jain et al. “Concise loads and stores: The case for an asymmetric
compute-memory architecture for approximation”. In: 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
Oct. 2016, pp. 1-13. DOI: 10.1109/MICR0.2016.7783744.

REFERENCES 23

[20]

[21]

[22]

[23]

[25]

[26]

[27]

(28]

D. Jeong et al. “An eDRAM-Based Approximate Register File for GPUs”.
In: IEEFE Design Test 33.1 (Feb. 2016), pp. 23-31. 1SSN: 2168-2356. DOI:
10.1109/MDAT.2015.2500185.

Zhihao Jia et al. “Improving the Accuracy, Scalability, and Performance of
Graph Neural Networks with Roc”. In: Proceedings of Machine Learning
and Systems 2020. 2020, pp. 187-198.

George Karypis and Vipin Kumar. METIS—A Software Package for
Partitioning Unstructured Graphs, Partitioning Meshes and Computing
Fill-Reducing Ordering of Sparse Matrices. Tech. rep. Jan. 1997.

Jungrae Kim et al. “Bit-Plane Compression: Transforming Data for Better
Compression in Many-Core Architectures”. In: Proceedings of the 43rd
International Symposium on Computer Architecture. ISCA ’16. Seoul,
Republic of Korea: IEEE Press, 2016, pp. 329-340. 1SBN: 9781467389471.
DOIL: 10.1109/ISCA.2016.37. URL: https://doi.org/10.1109/ISCA.
2016.37.

Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with
Graph Convolutional Networks”. In: 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. 2017. URL: https://openreview.net/
forum?id=SJU4ayYgl.

Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation”. In: Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization. CGO ’04. Palo Alto, Cali-
fornia: IEEE Computer Society, 2004, pp. 75—. ISBN: 0-7695-2102-9. URL:
http://dl.acm.org/citation.cfm?id=977395.977673.

Sangpil Lee et al. “Warped-compression: Enabling Power Efficient GPUs
Through Register Compression”. In: Proceedings of the 42Nd Annual
International Symposium on Computer Architecture. ISCA ’15. Portland,
Oregon: ACM, 2015, pp. 502-514. 1SBN: 978-1-4503-3402-0. DOI1: 10.1145/
2749469 .2750417.

S. Lloyd. “Least Squares Quantization in PCM”. In: IEEE Trans. Inf.
Theor. 28.2 (Sept. 2006), pp. 129-137. 1ssN: 0018-9448. po1: 10.1109/TIT.
1982.1056489. URL: https://doi.org/10.1109/TIT.1982.1056489.

J. S. Miguel et al. “The Bunker Cache for spatio-value approximation”. In:
2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). 2016, pp. 1-12. DOI: 10.1109/MICRO.2016.7783746.

Sasa Misailovic et al. “Chisel: Reliability- and Accuracy-aware Optimiza-
tion of Approximate Computational Kernels”. In: Proceedings of the 201/
ACM International Conference on Object Oriented Programming Systems
Languages & Applications. OOPSLA ’14. Portland, Oregon, USA: ACM,
2014, pp. 309-328. 1SBN: 978-1-4503-2585-1. DOI: 10.1145/2660193 .
2660231. URL: http://doi.acm.org.proxy.lib.chalmers.se/10.
1145/2660193.2660231.

REFERENCES

[36]

S. Mittal. “A Survey of Techniques for Architecting and Managing GPU
Register File”. In: IEEE Transactions on Parallel and Distributed Systems
28.1 (Jan. 2017), pp. 16-28. 1sSN: 1045-9219. DOI: 10.1109/TPDS.2016.
2546249.

NVIDIA. NVIDIA Tesla P100. White Paper. NVIDIA, 2016.

Gennady Pekhimenko et al. “Base-Delta-Immediate Compression: Prac-
tical Data Compression for on-Chip Caches”. In: Proceedings of the
21st International Conference on Parallel Architectures and Compilation
Techniques. PACT ’12. Minneapolis, Minnesota, USA: Association for
Computing Machinery, 2012, pp. 377-388. 1SBN: 9781450311823. DOTI:
10.1145/2370816.2370870. URL: https://doi.org/10.1145/2370816.
2370870.

Jeff Pool, Anselmo Lastra, and Montek Singh. “Precision Selection for
Energy-efficient Pixel Shaders”. In: Proceedings of the ACM SIGGRAPH
Symposium on High Performance Graphics. HPG ’11. Vancouver, British
Columbia, Canada: ACM, 2011, pp. 159-168. 1SBN: 978-1-4503-0896-0.
DOI: 10.1145/2018323.2018349. URL: http://doi.acm.org/10.1145/
2018323.2018349

R. E. Rodrigues, V. H. Sperle Campos, and F. M. Quintao Pereira. “A fast
and low-overhead technique to secure programs against integer overflows”.
In: Proceedings of the 2013 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). 2013, pp. 1-11. DOI: 10.1109/
CG0.2013.6494996.

Cindy Rubio-Gonzalez et al. “Precimonious: Tuning Assistant for Floating-
point Precision”. In: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. SC ’13. Den-
ver, Colorado: ACM, 2013, 27:1-27:12. 1SBN: 978-1-4503-2378-9. DOI:
10.1145/2503210 . 2503296. URL: http://doi.acm.org/10.1145/
2503210.2503296

Cindy Rubio-Gonzélez et al. “Precimonius: Tuning assistant for floating-
point precision”. In: International Conference for High Performance
Computing, Networking, Storage and Analysis, SC (Nov. 2013). DOI:
10.1145/2503210.2503296

S. Sardashti et al. A Primer on Compression in the Memory Hierarchy.
Synthesis Lectures on Computer Science. Morgan & Claypool, 2015. DOTI:
10.2200/S00683ED1V01Y201511CAC0O36

Vijay Sathish, Michael J. Schulte, and Nam Sung Kim. “Lossless and
Lossy Memory I/O Link Compression for Improving Performance of
GPGPU Workloads”. In: Proceedings of the 21st International Conference
on Parallel Architectures and Compilation Techniques. PACT ’12. Min-
neapolis, Minnesota, USA: Association for Computing Machinery, 2012,
pp- 325-334. 1sBN: 9781450311823. DOI: 10.1145/2370816 . 2370864.
URL: https://doi.org/10.1145/2370816.2370864.

J. Y. F. Tong, D. Nagle, and R. A. Rutenbar. “Reducing power by
optimizing the necessary precision/range of floating-point arithmetic”.
In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
8.3 (June 2000), pp. 273-286. 1sSSN: 1063-8210. DOI: 10.1109/92.845894.

REFERENCES 25

[40]

[41]

[42]

[43]

Vasily Volkov. “Understanding latency hiding on gpus”. PhD thesis. UC
Berkeley, 2016.

X. Wang and W. Zhang. “GPU Register Packing: Dynamically Exploit-
ing Narrow-Width Operands to Improve Performance”. In: 2017 IEEE
Trustcom/BigDataSE/ICESS. Aug. 2017, pp. 745-752. DOI: 10.1109/
Trustcom/BigDataSE/ICESS.2017.308.

Zhou Wang et al. “Image quality assessment: from error visibility to
structural similarity”. In: IEEE Transactions on Image Processing 13.4
(Apr. 2004), pp. 600-612. 1ssN: 1057-7149. por: 10.1109/TIP.2003.
819861.

Wm. A. Wulf and Sally A. McKee. “Hitting the Memory Wall: Implica-
tions of the Obvious”. In: SIGARCH Comput. Archit. News 23.1 (Mar.
1995), pp. 20-24. 1ssN: 0163-5964. DOI: 10.1145/216585.216588. URL:
https://doi.org/10.1145/216585.216588.

Youtao Zhang, Jun Yang, and Rajiv Gupta. “Frequent Value Locality and
Value-Centric Data Cache Design”. In: SIGOPS Oper. Syst. Rev. 34.5
(Nov. 2000), pp. 150-159. 1sSN: 0163-5980. DOI: 10.1145/384264 .379235.
URL: https://doi.org/10.1145/384264.379235.

J. Ziv and A. Lempel. “Compression of individual sequences via variable-
rate coding”. In: IEEE Transactions on Information Theory 24.5 (1978),
pp- 530-536. DOI: 10.1109/TIT.1978.1055934.

26

REFERENCES

