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Abstract

Various measures, such as voyage optimization, performance monitoring and ship
cleaning schedules, have been developed to help increase the energy efficiency of
shipping operations. One of the most important elements needed for these measures
is a reliable ship speed-power model. Many research efforts have been devoted to de-
veloping such models to describe a ship’s energy performance for head-to-beam seas,
which are important for ship design purposes. For measures to increase the energy
efficiency of a ship’s operations, speed-power performance models for other heading
angles are of equal importance but are rarely investigated. Therefore, the overall
objective of this thesis is to develop speed-power models for arbitrary wave headings
that are especially applicable for ship voyage optimization. First, a semi-empirical
model is proposed based on experimental tests. Then, a machine learning model
(black box) is developed based on a large amount of full-scale measurement data.

For the semi-empirical model, formulas to estimate a ship’s added resistance in head
waves are developed to effectively describe a ship’s hull forms and other main charac-
teristics. The formulas are then extended to estimate the impacts of wave headings
from different angles, and these are verified by experimental model tests. A signifi-
cant wave height-based correction factor is proposed to consider the nonlinear effect
on a ship’s resistance and power increase due to irregular waves. For the machine
learning-based model, the XGBoost algorithm is used to establish the model based on
full-scale measurements of a PCTC . The input features include parameters related
to ship operation profiles, metocean conditions, and motion responses.

For the three case study ships, the discrepancy between power predictions and the
actual values is reduced from more than 40% using today’s well-recognized methods
to approximately 5% using the semi-empirical model proposed in this thesis. The
machine learning model can further reduce the discrepancy to less than 1%. It is
also demonstrated that the improved models can help to effectively optimize a ship’s
voyage planning to reduce fuel consumption.

Keywords: added resistance due to waves, energy efficiency, full-scale measure-
ments, machine learning, speed-power performance, voyage optimization
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CHAPTER 1

Introduction

1.1 Background

Fluctuating fuel costs, low freight tariffs, and highly rigorous environmental reg-
ulations for decreasing greenhouse gas (GHG) emissions are promoting innovative
developments of energy efficiency measures to decarbonize maritime transport. A
ship’s operational life typically varies from 25 to 30 years. Increasing a ship’s energy
efficiency could have a crucial impact from both economic and long-term environ-
mental perspectives (Stopford, [2009).

From the economic perspective, shipping is principally a business, and its main tar-
get is to generate profit. The bunker price has exhibited volatility in the last several
decades. When it exceeds $400/mt, fuel consumption expenses could account for
50-60% of a ship’s operating costs (Wang and Teo, 2013). From the environmental
perspective, shipping is the backbone of international trade in the global economy,
contributing to approximately 80% of global trade by volume (UNCTAD, [2018).
The GHG emissions from shipping increased from 977 million tons in 2012 to 1076
million tons in 2018 (9.6% increase), and the share of shipping emissions out of the
total global anthropogenic GHG emissions increased from 2.76% in 2012 to 2.89%
in 2018. It is projected that shipping-induced emissions will increase up to 90-130%
by 2050 relative to the emissions in 2008 (up to 50% more than the emissions in 2018).

Fossil fuel-induced emissions from shipping have attracted great attention from both
public audiences and maritime authorities. To reduce GHG emissions from shipping,
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as shown in Fig. [I.] a protocol was adopted to amend the Convention, and a
new Annex VI was added to the MARPOL 73/78 convention in 1997 and entered
into force in 2005 for the prevention of air pollution from ships. Furthermore, the
2011 Amendments to MARPOL Annex VI introduced mandatory measures to reduce
GHG emissions. A new chapter was added to Annex VI regarding “Regulations on
energy efficiency for ships”. Two mandatory energy efficiency mechanisms have been
entered into force to regulate the energy efficiency of shipping processes, i.e., the ship
energy efficiency design index (EEDI) for new ships and the ship energy efficiency
management plan (SEEMP) for all ships (enacted in 2011), both of which have been
mandatory since the 1st of January 2013 (IMO, . In 2018, the IMO committed
to cutting total annual GHG emissions from international shipping by at least 50%

by 2050 (IMO, [2020)).

/‘{ Annex I: Pollution by oil & oily water

Annex II: Pollution by noxious liquid substances in bulk

Annex IIT: Pollution by harmful substances carried by sea in packaged form

MARPOL

Annex IV: Pollution by sewage from ships

{ Annex V: Pollution by garbage from ships ]

Annex VI: Prevention of air pollution from ships
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Figure 1.1: The evolution of IMO MARPOL energy efficiency regulations for ships.

All these regulations aim at reducing fuel consumption and air emissions from the
shipping industry. In particular, for existing ships, the SEEMP provides a practical
approach for ship operators to manage their ship operations in an energy-efficient
manner over time. Various energy efficiency measures can be developed and poten-
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tially installed by ships to comply with regulations such as the SEEMP. Among all
the available energy efficiency measures, a ship voyage optimization system is one
of the most attractive and widely implemented measures according to the shipping
industry (DNV GL, [2015). With the help of voyage optimization, ships are able to
avoid harsh weather conditions by choosing optimal sailing routes, leading to min-
imized fuel consumption (GHG emissions), reduced risk of ship/cargo damage, and
increased arrival punctuality (Simonsen et al., 2015; Wang et al., 2017). During a
ship’s voyage optimization process, models to describe the performance of the ship
at sea are the core elements for the evaluation of optimization objective functions
(Wang et al., 2020; Lang et al., 2020). If a voyage optimization method is used
to reduce fuel consumption, the reliability of such a method strongly depends on
the accuracy of a ship’s speed-power model in various ocean environments. In this
thesis, various methods for establishing a ship’s speed-power performance models
will be investigated. The impact of using different performance models on voyage
optimization will also be demonstrated. Therefore, the overall scope of the thesis is
to develop reliable speed-power performance models for the development of a ship
voyage optimization system.

1.2 Literature review

In a ship’s energy system, some key components, such as models to estimate the
ship’s total resistance and propulsive coefficients, are required to describe the speed-
power model. A comprehensive overview of different generic models is systematically
conducted in Tillig et al. (2017)). A ship’s total resistance can be divided into three
components, i.e., ship resistance in still water, namely, calm water resistance Rcarr,
added resistance due to waves R4y and resistance due to wind Raa (Pérez Arribas,
2007). Added ice-induced resistance should also be considered if the ship sails in the
Arctic region. Different model uncertainties for estimating these components and
their impacts on a ship’s speed-power predictions are also discussed in Tillig et al.
(2018). Models used to estimate Roary and Raa are often quite reliable, while
for a ship’s voyage optimization, it is essential to accurately estimate a ship’s added
resistance due to waves R 4yy. Based on well-established seakeeping theories, models
for estimating Raw also include two components (Pérez Arribas, [2007)). The first
component is the diffraction-induced resistance when an incident wave reflects on the
ship hull, dominating short waves. In the long wave region, the added resistance from
waves is mainly caused by the drift force from radiated waves due to ship motions.
The viscous effect is normally neglected since viscous damping is much smaller than
the hydrodynamic damping of ship motions. Thus, the added resistance from waves
can be regarded as a non-viscous phenomenon. This means that the added resistance
obtained from model tests can be scaled up to approximate the resistance for full-
scale results (Pérez Arribas, 2007)). Even though experimental methods can provide
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reliable results for the estimation of added resistance due to waves, the cost of doing
so is often too expensive. Numerical analyses based on slender-body theory or the
3D panel method can also be used to estimate the added wave resistance (ITTC,
2018)). Havelock (1942) made the first attempt to calculate such added resistance by
integrating longitudinal pressure over a ship’s wetted ship hull. Boese (1970) con-
tinued Havelock’s work using strip theory, developing a method known as the direct
pressure integration method. Maruo (1957)) proposed the superposition principle,
where the wave-induced added resistance is proportional to the square of the wave
amplitude. The momentum conservation method was then developed according to
momentum balancing through a ship hull’s control volume (Maruo, (1960, {1963). The
radiated energy method was initially introduced by Gerritsma and Beukelman (1972])
and then further implemented in head seas for a Series 60 hull (Salvesen, 1978). In
parallel to these works, Faltinsen et al. (1980) proposed asymptotic formulas to esti-
mate added resistance for wall-side ship hulls in short waves. Often, there are large
uncertainties involved in these models. For instance, accurate measurements of the
reflected and diffracted resistances due to short waves are rarely obtain; these phe-
nomena are nonlinear in nature, and the resulting values are small (Strom-Tejsen
et al., |[1973)). Particularly, as the size of a modern ship increases, short wave regions
with low A/ Ly, values become progressively crucial. Being able to estimate the added
wave resistance correctly is hence an essential part of ship speed-power modelling .

In addition, the theoretical methods mentioned above are relatively complicated since
they rely on potential flow or strip theory-based numerical analyses to estimate ship
motion responses (Tillig (2020) also stated it in the ShipCLEAN model and deployed
empirical methods to achieve efficient estimation). The computational effort required
by such approaches typically ranges from minutes to days. Since the applications of
those approaches (for the development and evaluation of energy efficient measures
to guide a ship’s operations, such as its voyage optimization system) generally need
to run the numerical analysis procedure hundreds or thousands of times, those ap-
proaches are not feasible (ITTC, 2018).

Alternative, various semi-empirical formulas have been developed based on the afore-
mentioned theoretical models. Fujii and Takahashi (1975) applied solutions theo-
rized by Ursell and Dean (1947) and developed the original formula for diffraction-
dominated added resistance; further development was executed by Takahashi (1988)
and Tsujimoto et al. (2008) using more experimental data, resulting in the NMRI
method. Simultaneously, Jinkine and Ferdinande (1974)) established a semi-empirical
method for quickly calculating the added resistance faced by a cargo ship in the long
wave region. It was further developed for the short wave region through several
joint industry projects led by MARIN; the result is known as the STAwave-1 method
(Boom et al., |2013)). With the support of an extracted measurement database, the
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empirical STAwave-2 formula (ITTC, combines the Faltinsen et al.
method for both short waves and long waves based on the technique of Jinkine and
Ferdinande (1974). Recently, Liu et al. statistically simplified the combina-
tion of the above Faltinsen et al. and Jinkine and Ferdinande methods
and introduced a fast approach for executing the method, denoted as NTUA in this
thesis, in engineering applications according to existing experimental results. Tillig
averaged STAwave-2 formula and NTUA method with an angular function for
oblique waves in the ShipCLEAN model. The abovementioned wave-induced added
resistance developments are briefly summarized in Figure [I.2]

N
Direct pressure integration method
Havelock (1942), Boese (1970)

p
Conventional Radiated energy method
theory based Gerritsma & Beukelman (1972)

Momentum and energy method

Maruo (1957,1960,1963) ] ITTC (2018)
> Recommendation for weather

NMRI diffraction formula factor calculation
Fuji & Takahashi (1975), et al.

Semi-empirical Asymptotic formula _Simpliﬁed
S Faltinsen et al. (1980)
N NTUA-SDL Simpl.

Liu & Papanikolaou (2016)

Radiation formula
Jinkine & Ferdinande (1974)

!

STA1 & STA2
ITTC & MARIN (2012)

Short wave
correction

Figure 1.2: Brief summary of the development of various methods for estimating wave-
induced added resistance.

Kwon extended the approximate formula developed by (Townsin and Kwon,
1982) to a direct speed loss estimation model that estimates the impact of weather
in terms of the encountered wave and wind conditions. This method has been widely
adopted for ship speed loss estimation in the development of voyage optimization
systems (Larsson et al., Lu et al., Shao et al., . In this method,
only the ship type, loading condition, Froude number and block coefficient are used
as inputs. Significant deviations inevitably exist between the predictive performances
for specific ships. Likewise, Alexandersson proposed a simplified method to
calculate added resistance through regression analysis based on a measure for a ship’s
motion-induced resistance that was estimated by Gerritsma and Beukelman .
Although this regression model is able to provide relatively acceptable estimations
for long waves, it does not consider the diffraction-induced component in the short
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wave region. Moreover, the accuracy decreases from the bow sea to the following sea.

With the rapid development of measurement sensor technology, today’s ships are
instrumented with different sensors to measure navigation-related parameters. A
large amount of energy-related data is collected to effectively understand a ship’s en-
ergy performance, i.e., through the ship speed-power model, while navigating at sea.
Big data-driven machine learning methods have been progressively implemented for
energy efficiency measures (Ballou, 2013; Mao et al., 2016a). Combinations of con-
ventional analysis models based on physical principles and artificial neural networks
(ANNS), which are called gray boxes, were first reported by Leifsson et al. (2008]) and
Coraddu et al. (2015) and Zhang et al. (2019). Petersen et al. (2012)) compared tradi-
tional methods with a data-driven ANN method for the prediction of ship propulsion
efficiency. A decision support system based on an ANN for predicting a ship’s fuel
consumption was proposed by Bal Besik¢i et al. (2016). Parkes et al. (2018) applied
an ANN for the estimation of the shaft power of large merchant ships. Kim et al.
(2020) also applied a support vector machine (SVM) to predict a vessel’s propulsion
power; the 2nd-order autoregressive model and other statistical mixed-effect models
were also applied to establish a ship’s speed-power model by Mao et al. (2016b).
Uyanik et al. (2020) compared different machine learning methods for predicting the
fuel consumption of a ship based on the navigational data collected while sailing.

1.3 Motivation and objectives

When navigating at sea, a ship may encounter waves from all different angles. For the
development of energy efficiency measures to assist with a ship’s operation, especially
for voyage optimization systems, it is distinctly important to develop semi-empirical
models to estimate a ship’s performance while considering waves from all heading
angles. However, a number of the available semi-empirical models are limited to
head to beam seas, which are important for ship design purposes.

Furthermore, current semi-empirical formulas for added resistance due to waves can-
not accurately estimate the resistances output by model tests, even for regular waves
in head seas. For example, today’s models cannot properly predict the resistance in-
crease yielded in the short wave region when \/Lpp < 0.25 or the resistance in a ship’s
motion resonance region (A/Lpp =~ 1) (Lang and Mao, 2020). On the other hand,
even though machine learning methods have been implemented by various researchers
for building a ship’s speed-power performance model, those machine learning models
are mainly trained by general ship operation profiles, i.e., ship speed, RPM, draft,
trim, etc. To apply data-driven machine learning models for energy-efficient mea-
sures, such as voyage optimization, different formulations of mathematical models
used for machine learning methods should be further investigated in terms of their
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power prediction capability with respect to different combinations of feature inputs,
as well as their sensitivity to the volume of data used to build the models.

The main objective of this thesis is to develop ship speed-power models, particularly
for the development of voyage optimization systems. Different ways to establish such
performance models should be investigated, i.e., 1) physical experiment-driven semi-
empirical models (white box) and 2) big data-based machine learning methods (black
box). If a method is to be used for a ship’s voyage optimization, the discrepancy
between the measured and predicted power consumption should be less than 5-10%
for the semi-empirical models (for scenarios with no measurement data available)
and less than 1% for machine learning models. To achieve the overall objective, five
main tasks and research activities are conducted in this thesis:

1. A semi-empirical model is developed to improve the estimation of added resis-
tance due to regular head waves.

2. The semi-empirical model is further developed from addressing head waves to
also addressing waves from arbitrary angles. These additional semi-empirical
models should be developed to allow for fast calculation using as few ship
characteristics as possible while achieving acceptable accuracy.

3. A data-based ship performance machine learning model is constructed to de-
scribe a ship’s speed-power model and the potential increase in model accuracy
over those of semi-empirical models is investigated.

4. The impact of various speed-power performance models on a ship’s voyage opti-
mization in terms of its sailing trajectories and encountered wave environments
is studied.

5. The benefits of using the proposed ship speed-power performance models for
voyage optimization with regard to fuel savings, emission reduction, and sailing
time estimation are demonstrated.

1.4 Assumptions and limitations

A semi-empirical model requires limited input data regarding ship characteristics for
power prediction. It is only verified for the design load condition. The proposed
added resistance formulas cannot consider different ship drafts and trims. For the
machine learning-based ship model, both stern and stem drafts are used as training
features to build the performance model, which can consider draft and trim effects.
However, due to the limited number of drafts collected from the full-scale measure-
ment data, even the machine learning-based model may not be able to consider all
different kinds of “unusual®“ drafts. For speed-power model verification or machine
learning model training, several assumptions are made:

1. The full-scale measurements of ship operations and motion-related data are as-
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sumed to be accurate enough to reflect a ship’s actual performance when sailing
in a real seaway. The sensor uncertainties that cause abnormal measurements
are neglected.

2. The sea environment data from hindcast sources are assumed to be the true
encountered sea environments along a ship’s sailing routes because on-board
measurements are not available. The historical data from the hindcast source
probably offer the highest accuracy with regard to the grid points.

3. The added resistance due to waves is considered as a non-viscous phenomenon.

4. The impact of biofouling on the calm water resistance and the rudder-induced
resistance are ignored.

5. The collected model test results regarding wave-induced added resistance from
available publications are assumed to be correct and reliable.

6. The metocean conditions considered in this study only consist of wave, wind,
and current data. The influences of the other environmental parameters, i.e.,
water temperature, salinity, and tide conditions, are assumed to be negligible.

Voyage optimization only considers navigation in the open sea. The objective op-
timization calculations, such as those for fuel consumption, are performed for the
instantaneous state of a specific waypoint at a certain time. In this thesis, the in-
stantaneous state is assumed to be a mean state during a period of stationary sea
conditions. The total cost for an objective is calculated by multiplying the mean
state by the time duration.

1.5 Outline of the thesis

To achieve the aforementioned objectives, the research activities carried out in this
thesis are summarized in the three appended papers. A semi-empirical model for
added resistance due to head waves is proposed in Paper I, and this model is ex-
tended to estimate added wave resistance for arbitrary wave headings in Paper II.
The ship speed loss prediction model for actual sea states is addressed in Paper I and
Paper II. Paper III investigates the efficiency and effectiveness of an XGBoost-based
machine learning method for constructing a ship’s speed-power model. The remain-
der of this thesis is organized as follows. In Chapter 2, the proposed methodology is
briefly described. For the completeness of the thesis, both the general ship propul-
sion concept and the added resistances in the wave models developed in Papers I and
IT are presented, as well as the XGBoost-based machine learning algorithm investi-
gated in Paper III. The experimental model tests for regular wave verification and
the full-scale measurements for irregular wave verification and related data process-
ing are elaborated in Chapter 3. Chapter 4 presents the selected important results
and a brief summary. The conclusions are presented in Chapter 5, followed by some
possible future research plans in Chapter 6.



CHAPTER 2

Method for the ship speed-power modelling

2.1 General concept of ship propulsion

A ship’s energy system is a complicated process including energy consumption due

to propulsion, heating, and auxiliary equipment, etc. (Woud and Stapersma, 2002).
A ship’s fuel consumption in a real seaway is dependent on many parameters, e.g.,
marine engine operating parameters, propeller efficiency, and ship resistance (Carl-
ton, [2012). A ship’s propulsion power is generally connected to the sailing speed and

the encountered sea environments. For a ship’s speed-power estimation, a typical

workflow is illustrated

in Figure 2.1]
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Figure 2.1: Typical workflow for the conventional estimation of a ship’s speed to
power/fuel consumption, and the ice induced resistance is not considered in

this study.

In the workflow, the first step is to get the ship’s resistance at different sailing speeds



Chapter 2 Method for the ship speed-power modelling

by either model tests, numerical computation methods, or semi-empirical formulas.
When a ship is sailing in a seaway, the waves and wind environments in the open sea
will affect the ship’s performances for most of her journey time. Hence, added resis-
tance due to wind R4 4 and wave R4y should also be accounted for to estimate the
ship’s total resistance Rrorar. The ship’s total resistance needs to be compensated
by the thrust force provided by propellers powered by marine engines with certain
RPM under different work conditions. The ship’s engine configuration, propeller ef-
ficiencies, and fuel-related factors will be used to compute the propulsion power and
fuel consumption for sailing under different operational and environmental conditions.

The required power to take a ship sailing forward with a ship speed through water
V' overcoming total resistance Rrorar is namely effective power P.:

P. = Rrorar XV (2.1)

where the effective power P, is transmitted from the onboard marine engine supplied
brake power P,, that generates the shaft power to rotate the ship’s propeller:

P, = _ P (2.2)

Ns *Nh = Mr - Mo

where the shaft efficiency 7, hull efficiency 7y, open water efficiency 7,, relative
rotative efficiency 7,.. The fuel consumption can then be predicted from the multipli-
cation of the engine brake power P,, with the specific fuel oil consumption (SFOC)
and operation time. Dependent on the engine type and propeller properties used
on a specific ship, propulsion efficiency is often provided by the manufactures, ship
owners and can be used to calculate the final fuel consumption.

2.2 Ship’s total resistance in a real seaway

2.2.1 Calm water resistance

An approximate calm water resistance calculation method was proposed by Holtrop
and Mennen (1982)), based on full-scale trails and model experiments. The method
accounts for the ship main dimensions, type, appendage arrangement, immersed tran-
som sterns. The total resistance in still water is divided into six different components:

Rearv = Re(1+ k1)) + Rapp+Rw +Rp+ Rrr+ Ra (2.3)

where the frictional resistance Rp is estimated by ITTC-1957 frictional correlation
line (ITTC, |2002), and the empirical formulas calculate the form factor 1 + k;, the
resistance of appendages R pp, wave resistance of bare hull Ry, wave resistance
of bulbous bow Rp, additional resistance from immersed transom Rppr, model-ship

10



2.2 Ship’s total resistance in a real seaway

correlation resistance R 4.

Additionally, suppose the towing tank resistance test result is available. In that case,
the calm water resistance is preferred to be calculated by the interpolation of the
measurement value to avoid the potential deviation of different types of ships.

2.2.2 Added resistance due to wind

The wind induced added resistance is determined by the area of the ship superstruc-
ture and the relative wind. The relative wind is the vectorial summation of the ship
speed, direction and wind speed, direction (Lewis, [1988). In this study, the added
resistance due to wind is predicted by the ISO (2015]) guideline:

1
Raa = 2PA [Caa (Wwr) AxvViwr® — Caa(0)AxvVoe?] (2.4)

where the air mass density p4, the transverse projected area above waterline included
superstructures Axy, relative wind speed Viy g, relative wind direction ¢y g, ship
speed over ground Vo, the wind resistance coefficient Cy 4, and C44(0) stands for
wind resistance coefficient in head wind. The wind resistance coefficients are based
on the data derived from huge amount of model tests performed in the wind tunnel.

2.2.3 Added resistance due to waves

An actual sea state is usually multiplied by a spreading function D(f) and a wave
spectrum of predefined formats. In this study, a Cosine-Squared spreading function
D(60) and the the Jonswap wave spectrum, are applied to describe irregular waves of
a ship’s actual sailing wave conditions (Hasselmann et al., [1973):

s

{20052(9) for— 5 <0< 73 (2.5)

0 otherwise

320H,2 1950 exp| Legen)
Sl T, )D0) = T s exp(Tp4w4)v = b e

where the wave spreading direction #. The spectrum is described by the significant
wave height H,, wave peak period T}, peakedness factor v (set to the standard value
3.3). The spectral width parameters o = 0.07 for w < wp, 0 = 0.09 when w > w,.

The added resistance due to wave R in a real seaway (irregular waves), is conven-
tionally estimated by integrating wave resistance in regular waves R, (w) multiplied

11
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with the wave spectrum S(w) over the entire range of wave frequency w:

< [tE Raw (w|V,
RAW(W|H37T1N’77 Mﬁ) = 2/ / S(W‘Hsana’Y) M
0 —

] P D(6 — B)dfdw

(2.7)
where (,(w) is amplitude of the regular wave to get the added resistance R, (w).
The term Ry, /(2 is often referred as the transfer function (RAOs) of a ship’s added
resistance in waves.

2.3 Semi-empirical model for added resistance in waves

For a ship sailing with speed V' and relative wave angle 3, the added resistance
in regular waves of frequency w can be evaluated by the sum of two components,
i.e., added resistance due to wave reflection R, and added resistance due to ship
motions Rgum (Strom-Tejsen et al., [1973):

Raw(w‘vwg) = Rawr(w|vaﬁ)+Rawm(w|Vaﬂ) (28)

where Rgyr (w|V, B) and Rgwm (w|V, 8) are assumed to be uncoupled. And the added
resistance in waves is regarded as a non-viscous phenomenon.

2.3.1 Added resistance due to wave reflection
R,wr(w|V,0) in head wave

Fujii and Takahashi (1975) introduced the semi-empirical formula for diffraction in-
duced added resistance initially four decades ago, and it was further developed by
Tsujimoto et al. (2008) as the namely NMRI method. That the added resistance
due to wave reflection in head wave Ryq,(w|V,0) is given by 2pg(2BByrar (1+ ay),
where the draft coefficient ar and advance coefficient (1+ay) have further calibrated
rest on the supplementary experiment data (Kuroda et al., 2008; Takahashi, [L988;
Tsujimoto et al., |2008]), and the advance coefficient was determined as:

1+ ay =14 CyF,, where Cy = max(—310B; + 68, 10) (2.9)

where the bluntness coefficient By, is usually estimated by the integration method,
considering the shape of water plane and encountered wave direction. The blunt-
ness coefficient is simplified by Liu et al. (2016)), it is highly correlated to the block
coefficient as an approximation expression:

By =2.25sin* E (2.10)

12



2.8 Semi-empirical model for added resistance in waves

The average entrance angle E = arctan(B/2Lg), is defined by the ship width B and
length of entrance Lg. Notably, the length of entrance has been modified to the
length between the fore perpendicular and the point where it reaches 99% ship width
at the waterline surface (Liu et al., 2016). The latest developed draft coefficient
—2FT | was evolved instead of NMRI version of Bessel function, due to the
exponential decay is observed to be more equivalent to the real physical wave energy
dissipation (Liu et al., 2016; Valanto and Hong, 2015).

ar=1—e

Whereas, it still cannot catch up the tail increase for high frequency wave reflec-
tion, for instance as DTC container, KVLCC2 tanker and HSVA cruise model tests
presented in el Moctar et al. (2012), Guo and Steen (2011)), Liu et al. (2016, Sadat-
Hosseini et al. (2013)), and Valanto and Hong (2015)). In the proposed model, a wave
length correction factor was thus added and tuned in NMRI expression. The new
modified formula has presented much better prediction performance in the short wave
region, which is matching the reasonable resistance increase owing to the extremely
short wave. The formula expression is given as:

1 019, A _
Rawr(W]V,0) = 5 pgCe BBrar (1 + ay) () (7—) ™~ (2.11)
2 Cg ' Lpp
The wave length correction factor is settled by block coefficient Cg, Froude number
F,, and the ratio between wave length A and ship length L,,. Besides, k.1 is
proposed to replace kT as the non-dimensional frequency in the draft coefficient:

ap =1 — e 2T (2.12)

where k. = k(1 + Qcos3)? and Q = %, the circular frequency of incident regular
waves w, wave number of incident regular waves k.

R,wr(w|V, B) at arbitrary wave heading

For the added resistance due to wave reflection at other encountered relative wave
angles, the magnitude of Rg.r(w|V, 5) has has shown a decline from the head wave
till the following sea, as the heading angle 8 increase. And minor negative values are
observed in the HSVA cruise, DTC container, and a bulk carrier model tests in, e.g.,
el Moctar et al. (2012), Kadomatsu (1988)), and Valanto and Hong (2015), for a few
very short waves at 120° < 5 < 180°. Thus, a simplified modification factor cos g is
proposed to express the physical phenomenon.

Besides, the advance coefficient is further parameter tuned by Froude number F,,, and
the encountered relative wave angle 5. That the resistance force has been investigated
a obvious increase when 8 < 90°, and the negative values becomes becomes weaker
when S exceed 90°, with higher F,, (ship speed). The modified added resistance due

13
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to wave reflection for arbitrary relative wave angles is written as:

Rawr(w]V,0) - FileosBl=leos BNFn oo 3 for0<pB <3
Ruw7‘(w|‘/76) =
Reawr(w|V,0) - Fy PoUeosBIFTcos SDE (g3 for I<p<m

(2.13)

2.3.2 Added resistance due to ship motion
Rawm(w|V,0) in head wave

In parallel to NMRI formula, Jinkine and Ferdinande (1974)) developed their approx-
imate formula for ship motion induced added resistance calculation in the long wave
region. This formula was derived by the experiment data of a fine hull fast cargo
ship for F,, > 0.12 condition. The original model is given by:

b
Rawm(W|V,0) = 4pg¢2 B? / L,,@"" exp Lll (1- wdl)] aias (2.14)
1

where the amplitude factor a1, speed correction factor as, slope adjustment factor
b1, dy, and frequency factor w. The amplitude factor came up with by Jinkine and
Ferdinande (1974) has been continually modified. The most recent expression was
developed by Liu et al. (2016)), and further parameters tuned in this study viz:

1 1+ F,,
ay = 60.3Cp'3* (C) (2.15)
B

while block coefficient C'g and Froude number F;, were used as modification param-
eters. The speed correction factor as has been extended to the span 0 < F,, < 0.3,
compared to the original high speed domain (Grin, [2012; ITTC, 2014} Liu et al.,
2016)). The speed correction factor ay is found sensitive to the longitudinal radius of
gyration k,, and the block coefficient C'p in high speed region, through the careful
analysis of all collected experimental data. Moreover, it has a little bit steeper slope
compared to the formula in Liu et al. (2016) when F,, < 0.12. Hence the following
formula is consequently introduced:

0.0072 4 0.24F, for F, < 0.12
ag = (2.16)

F, 0023 oxp(—2 — [g%5] — Lg% ) Fa) - for Fy > 0.12

where the ceiling function and floor function allow to give discrete scales for Fj,,
concerning the correlation between k,, and the typical value 0.25 (ITTC, 2017).
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2.8 Semi-empirical model for added resistance in waves

The frequency factor @ is determined by the frequency of heave and pitch motions.
These motions’ resonance responses are regarded as the leading cause of radiation
induced added resistance reaching the peak value in head wave. Liu et al. (2016) have
separated the expression to lower and normal speed. However, it can still not match
the experimental data well for some cases when k,, do not equal to 0.25, especially
for HSVA cruise (Liu et al., 2016; Valanto and Hong, 2015). The resonance position
has been observed that moves horizontally from A/L,, < 1 to A/L,, > 1 region
with higher Froude number F),. The longitudinal radius of gyration variation also
influences the trend. Consequently, the expression is further parameter tuned in this
study, and the modified formula is given by:

Lpp/g c %0.050.143

w for F, < 0.05

1.09 + [ 54£10.08

\/m 4 /%FHO.MB

1.09 + [ 541008

(2.17)

gl
I

w for F,, > 0.05

where the root ¢; = 0.4567% +1.689, and the improved expression results are more
fit to the resonance position in experiment measurements. The slope adjustment
factors are also further calibrated in this study, concerning the longitudinal radius of
gyration k,, and the block coefficient Cp:

(19.77¢2 — 36.39)/[5%5]  forw < 1,Cp < 0.75

0.25
11/[ 2w forw < 1,Cp > 0.75
by = 0-25 (2.18)
~12.5/[ fu forw>1,Cp <0.75
—5.5/ g forw>1,Cp > 0.75
14 forw<1,Cp <0.75
L —2.66
4y = 566 (f) 2 forw<1,0p =075 (2.19)
I —2.66
—566 (%) -6 elsewhere

while C'g = 0.75 is adopted as the boundary to define the piece-wise.

R,wm (w|V, B) at arbitrary wave heading

In view of the ship motions induced added resistance Rgm (w|V, ) at arbitrary wave
heading, it is still mainly caused by the long waves (small values of w) attacking from
various angles, and reaching peak value at ship motion’s resonance state. From the
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Chapter 2 Method for the ship speed-power modelling

collected experimental tests, e.g., el Moctar et al. (2012)), Fujii and Takahashi (1975]),
Journée (2001), Kadomatsu (1988), Liu et al. (2016), Takahashi (1988]), and Valanto
and Hong (2015), its peak position moves horizontally from A/L,, = 1 position to
lower A\/L,, region, as the encountered wave angles § increase. It can be readily
explained that the encountered frequency wg decreases from the head wave till the
following wave. Thus, a novel encountered frequency correction factor Cz(3) was
introduced in this study:

w5 = @+ Ca(B) (2.20)

where the suggested values of C(8) for typical wave angles are listed in Table
and Cz() value of other specific encountered wave angles can be further interpolated.

Table 2.1: Encountered frequency correction factor for typical relative wave angle
8 0° 30° 45°  60°  90° 120°  135° 150° 180°
Cz(8) 1 0925 09 08 075 0.7 0.7 0.7 0.6

Besides, the Rgwm(w|V, B) peak value shows a declining trend as the relative wave
angle 3 increases. The roll motion dominates the ship motion instead of heave and
pitch motions when 3 close to 90°. An amplitude adjustment factor e (3 , and
a compensation factor for roll motion, considering the ratio between wave length A
and ship width B, Froude number F;, and the relative wave angle 3, are thus tuned
in the proposed formula:

VR

Rawm(w|V, B8) = Rawm - e (B [% -max(cos (3,0.45)] "5 sin B (2.21)

2.3.3 A correction factor for ship resistance and power

The conventional integration method from ITTC (2014) and ISO (2015) made sig-
nificant contributions to the EEDI implementation for ship design. It considers wave
effect through extensive benchmark study of experimental test results and sea trails.
The semi-empirical methods developed by ITTC (2014)), ISO (2015)), and other schol-
ars can give a fair estimation of the “mean” wave resistance of large ship samples for
the design purpose. For a ship’s operation, such as in her voyage optimization plan-
ning, the specific ship’s actual performance is interested rather than the “average”
wave resistance.

However, the discrepancy between the estimations from the linear superposition prin-
ciple and the ship’s actual wave resistance cannot be avoided for an individual ship.
The integration method assumes the ship’s response is linear to the wave. However, a
ship’s response (reflections, motions) is known to be nonlinear, especially in harsher

16



2.4 Machine learning approach

sea states with large Hs. The propulsion efficiency may also be reduced due to the
large nonlinear motions in severe sea wave conditions. Large waves lead a ship has
to experience unstable surf-riding along the waves as well. These factors contribute
to the propulsion power increase. All of them are strongly related to the increase
of sea states H, that directly determine the added resistance due to waves Raw .
Therefore, a correction factor Cyr, is proposed to calibrate the semi-empirical Raw
to consider these factors contribution to the propulsion power increase, for voyage
optimization purpose. The ship total resistance Rrorar is estimated by:

Rrorar = Rocarm + Raa + Raw x Ch, (2.22)

where the correction factor is wave height based Cpg, = 3%/H,. For this correction
factor’s more general application, a comprehensive investigation with extra experi-
mental tests and full-scale measurement should be conducted to configure a flexible
formula, based on various input parameters.

2.4 Machine learning approach

A novel, simple tree-based ensemble method named eXtreme Gradient Boosting (XG-
Boost) was recently developed by Chen and Guestrin (2016)). It is an improved version
of gradient boosting with higher computation efficiency and better capability to deal
with over-fitting problems. Despite the widely used machine learning method in the
maritime industry, such as the support vector machine (SVM), artificial neural net-
work (ANN), the XGBoost algorithm is rarely applied in ship performance studies.
The XGBoost is robust to handle heterogeneous data. Especially for the onboard
data, that the features are measured on different scales.

The XGBoost method is based on gradient tree boosting algorithms (Friedman et al.,
2000). Gradient boosting is one of the most powerful techniques for constructing pre-
dictive models. It is a representative algorithm for boosting in the ensemble method.
The ensemble method builds multiple weak evaluators on the data. It ensembles all
weak evaluators’ modelling results to obtain better regression or classification perfor-
mance than a single model. A weak evaluator is defined as a model that performs at
least better than random guessing, that is, any model with a prediction accuracy rate
of not less than 50%. There are many methods to ensemble different weak evaluators.
Such as the bagging method that multiple parallel independent weak evaluators es-
tablished at once in random forests. There is also a method like boosting that builds
weak evaluators one by one and gradually accumulates multiple weak evaluators af-
ter multiple iterations. The most famous algorithms of the boosting method include
Adaboost and the gradient tree boosting. The gradient tree boosting can have re-
gression trees or classification trees. Both use the classification and regression trees
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Chapter 2 Method for the ship speed-power modelling

(CART) algorithm as the mainstream. XGBoost is also a CART, which means that
all trees in XGBoost are binary.

Gradient boosting decision tree (GBDT) for regression is a boosting model focusing
on the regression. The modelling process is typically building a tree first. Then each
iteration process gradually adds a tree and ensemble a strong evaluator with many
trees. The value on each leaf node of the GBDT is the mean value of all samples on
this leaf node. The prediction result of each sample can be expressed as a weighted
calculation of all trees’ results. It is worth noting that XGBoost is an improvement
of GBDT. For XGBoost, each leaf node has a prediction score, also known as leaf
weight. The leaf weight is the regression value of all the samples on this leaf node
on this tree, represented by fi(z;) or w, where fi represents the k-th decision tree,
and z; represents the feature corresponding to the sample. When there is only one
tree, fi(x;) is returned by the boosting algorithm, but this result is often terrible.
When there are multiple trees, the ensemble model’s regression result is the sum of
the prediction scores of all trees. Assuming that there are a total of K decision trees
in the ensemble model, the prediction result given by the model on this sample is:

K
9" =3 fi (2) (2.23)
k

To solve the optimal result of the ensemble algorithm, then we should find a objective
function first. The objective function should be able to measure the gradient tree
boosting capacity on the sample by bringing in the prediction results. Then the
gradient descent is applied to iterate the ensemble algorithm:

. (K
;) = yf Y4 o (@) (2.24)

where after k iterations, there are a total of k trees in the ensemble algorithm. The
ensemble result of k trees is the cumulation of the leaf weights on all the previous
trees. So we add the ensemble results @gk) of k trees to the leaf weights fri1 (2;)
on our newly-built trees to get the prediction results y}(kﬂ) of a total of k 4 1 trees
after the k + 1 iteration. Let this process continue until find the § that minimizes
the objective function. This is the predicted result of the model.

The XGBoost is an algorithm that achieves a balance between model performance
and computing speed. Standard objective functions, such as error rate, mean square
error, etc., can only measure the model’s performance but cannot measure its compu-
tational efficiency. The XGBoost algorithm introduces model complexity to measure
computational efficiency. Therefore, the objective function of XGBoost is written as
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a traditional loss function + model complexity:

K

Obj = 1 (Y i) + Y Q(fr) (2.25)

=1 k=1

where i represents the i-th sample in the dataset, m represents the total amount of
data imported into the k-th tree, and K represents all the trees built. The first term
represents the traditional loss function, which measures the difference between the
real value y; and the predicted value ¢;, usually RMSE, the root mean square error.
The second term represents the model’s complexity, that measures the complexity
of the tree model from the structure of the tree. Combining Equation and
Equation , the objective function of the ¢-th iteration is:

m t—1
D=3 (00T f )+ Q)+ Q) (2.26)
=1 k=1

where f; is the newly added tree at the ¢-th iteration. Through the Taylor expansion,
we can obtain a simplified version of objective function without constants:

m t—1
Obj =3 [l (o3 4 ) gt (o)) hi] +3 QU +Q(f)
i=1 k=1

Zm: [ft i) gi + (ft (€:))* 1 }+Q(ft)

- (2.27)

where g; and h; are the first and second derivative of the cost function [ (yf7gjl(t 1))

with respect to gjgt*l), respectively. In this tree structure, we use g(z;) to represent
the leaf node where the sample z; is located, and use wy(,,) to represent the score
obtained by the sample falling on the ¢(x;)-th leaf node on the t-th tree, so we
obtained f; (z;) = wWg(z,). This is the leaf weight for each sample, but the leaf
weights corresponding to all samples on a leaf node are the same. Suppose a tree
contains a total of T" leaf nodes, where each leaf node’s index is j, then the sample

weight on this leaf node is w;, and we define the complexity of the model Q(f) as:

Q(f) =T + regularization (2.28)

where the first part controls the tree structure, and the other part is the regularization
term. The number of leaves T represent the entire tree structure. Since all trees in
XGBoost are CART (binary trees), so we can judge the depth of the tree based on
the number of leaves, and v is the parameter to control the number of leaves. If
L2 regularization (Ridge Regression) is applied, we further simplify the objective
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function from Equation 2:27}

m T
. 1 1
Obj*) = Z {wq(xi)gi + 2“’2(%)}%] +9T + gAZ“’JQ‘
i=1 j=1
(2.29)
1

=D |wi D g+ gui(Q_hi+ )| +9T

j=1 i€l icl;

where ) is a parameter that controls the intensity of L2 regularization. We can also
use L1 regularization (Lasso Regression), that the parameter is . Alternatively, it
can be used together to increase the intensity of regularization. When both o and A
are 0, the objective function is the same as ordinary gradient tree boosting.

To minimize the objective function, as long as the quadratic function under each
leaf’s value is the smallest, their sum will be the smallest. Therefore, we take the
derivative of w; and make the first derivative equal to 0 to find the extreme value,

then obtain w; = — "5, and the corresponding optimal value is:
T 2
1 G*
pit) — _ = J T 2.
Obj 2;Hj+/\+7 (2.30)

where define G; = Eielj 9, Hj = Zielj h;. Compared to the original loss function +
complexity, the XGBoost’s objective function has changed dramatically. The sample
has been attributed to each leaf. The objective function is calculated based on each
leaf node, which is the structure of the tree. Therefore, the objective function is also
called “structure score”. The score is lower as the better of the overall structure of
the tree. In this way, a direct connection between the tree’s structure (leaf) and the
effect of the model is established. To minimize the objective function is to find the
best tree’s structure (T'). Then the G;, H; and further w; are evaluated.

Initial class of
hyperparameters

K-fold splitting H XGBoost

Pre-processing

Data acquisition

Data cleaning & Engine
transients rejection

Feature extraction

Dataset splitting into Pre-processed
training and testing test dataset

Vessel
database

’\

Pre-processed
training dataset

LRnpcat k times for k-foldJ
cross-validation

Performance

evaluation

Figure 2.2: Workflow for the suggested machine learning methodology based on XGBoost
algorithm.

In this thesis, the non-linear tree-based learner in XGBoost is applied for the re-
gression task of ship speed-power modelling. The developed methodology based on
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XGBoost algorithm is illustrated in Figure 2:2] The full-scale measurements of the
studied PCTC is pre-processed and implemented in feature engineering. The dataset
is then randomly split into training (80%) and testing (20%) set. The 5-fold cross-
validation is implemented in the hyperparameters tuning process to minimize the
generalization errors of model training.

Table 2.2: Attributes filtered and considered for the proposed XGBoost model

Class Category Description Attributes
Input attributes Operation Ship speed V [knots|
Ship draft Tfwq & Tope [m]
Heading HDG [°]
Ship motions 6 DOF motions Heave & Sway & Surge [m]
Roll & Yaw & Pitch [°]
Velocity of 6 DOF motions Heaveyer & Swayyper & Surgeye [m/s]

Rollyer & Yawyer & Pitchyer [°/s]
Acceleration of 6 DOF motions Heaveaee & Swayace & Surgeqee [m/s?]
Rollyee & Yawgee & Pitchgee ["/52]

Metocean Significant wave height H, [m]
environments Mean wave period T. [s]
Mean wave direction Dyave [°]
Wind speed Uwind & Viind
Output target Operation Propulsion power P, kW]

To establish a ship’s speed-power model, the parameters related to the prediction
target of propulsion power is required to set as input features to the training dataset.
For a ship voyage optimization system and knowledge gaps identified in the semi-
empirical model development, the encountered metocean environments are the es-
sential features for the model training, except for the operation profiles, such as ship
speed through water V', ship draft at stem T%,q4 and stern 7, . During a ship in a
real seaway, the encountered wave and wind always induce 6 DOF motion responses
of ship. Thus, it is also interested to deploy the ship’s motions as input features
instead of metocean loads with a more straightforward way. The details of the con-
sidered features for the modelling is summarized in Table The ship operation
and metocean environments dataset are applied for metocean based machine learning
model. The motion driven model consist of ship operation and motion dataset. At
the same time, the 1st and 2nd derivative of the 6 DOF is studied separately.
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CHAPTER 3

Experimental tests and full-scale measurements

In this thesis, the proposed semi-empirical models are verified with both experimental
test data and full-scale measurement data. The machine learning models are derived
from full-scale measurements of a PCTC ship. In the following sections, various types
of data are briefly presented. Since the full-scale measurement data often contain
some measurement noise, the data postprocessing approaches used in the thesis to
clean the data and obtain a reliable reference for model verification are presented.

3.1 Experimental tests on regular waves

The proposed semi-empirical formulas for estimating a ship’s added resistance due
to waves, as presented in Section 2, are developed based on experimental tests on
regular waves. Several model tests are available in the public literature and are
collected for this study, i.e., S175 container (Fujii and Takahashi, 1975; Takahashi,
1988), KVLCC2 tanker (Guo and Steen, 2011; Sadat-Hosseini et al., 2013), DTC
container (el Moctar et al., [2012)), HSVA cruise (Valanto and Hong, 2015), S.A. Van
Der Stel (Alexandersson, 2009)), a bulk carrier (Kadomatsu, [1988)), and Series 60
models with five various block coefficients Cp (Strom-Tejsen et al., [1973). All the
required parameters for those ships are listed in Table For the development and
verification of the semi-empirical models on regular head waves, the experimental
results from all 11 aforementioned ships are employed in Paper I. Five ships, i.e.,
the S175 container ship, the DTC container ship, the HSVA cruise ship, the S.A.
Van Der Stel and the bulk carrier, are selected to verify the semi-empirical model
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for added resistance due to arbitrary wave heading angles. Table [3.2] presents the
considered relative wave angles 5 and Froude numbers F,, of the experimental tests
in Paper II.

Table 3.1: Main characteristics of the studied ships in the experiments conducted in avail-
able publications.

Ship type Lpp [m] Bm] T[m] Cpl] Lgml ky []
S175 container 175 25.4 9.5 0.572 59.05 0.24
KVLCC2 tanker 320 58 20.8 0.8098 60 0.25
DTC container 355 51 14.5 0.661 112 0.27
HSVA cruise 220.27  32.2 7.2 0.654 72.42 0.263
S.A. Van Der Stel 152.5 22.8 9.14 0.563 61 0.22
Bulk carrier 285 50 18.5 0.829 51 0.25
Series 60 model 4210 121.96 16.254 6.492 0.6 52 0.25

Series 60 model 4211 121.96 16.816 6.73 0.65 46.522  0.25
Series 60 model 4212 121.96 17.42  6.97 0.7 38.606  0.25
Series 60 model 4213 121.96 18.062 7.22 0.75 30.48 0.25
Series 60 model 4214 121.96 18.757 7.495 0.8 22.8 0.25

Table 3.2: Considered relative wave angles and Froude numbers for arbitrary wave heading
model tests.

Ship type Relative wave angle 8 Froude number F,,

S175 container [0°, 30°, 60°, 90°, 120°, 150°, 180°]  0.250

DTC container [0°, 30°, 60°, 120°, 150°, 180°] 0.052

HSVA cruise [0°, 30°, 60°, 90°, 120°, 150°, 180°]  0.232

S.A. Van Der Stel 180° [0.150, 0.200, 0.250, 0.300]
Bulk carrier [0°, 45°, 90°, 135°, 180°] 0.100

3.2 Full-scale measurements from three ships

A merchant chemical tanker and a PCTC sailing worldwide, as well as a container
ship sailing in the North Atlantic, are employed as the case study vessels. The
full-scale measurement data collected onboard these vessels are used to verify the
proposed semi-empirical models. The main characteristics of these studied ships are
listed in Table 3:3] These parameters are applied as inputs in the semi-empirical
models. The three ships were instrumented with various sensors to collect a large
amount of ship navigation- and performance-related data, up to a gigabyte per day.
The parameters of the full-scale measurement data from all three ships are similar.
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3.2 Full-scale measurements from three ships

Table 3.3: Main characteristics of the studied PCTC, container ship and chemical tanker
used for full-scale measurements.

Parameter Symbol Unit PCTC Container Chemical tanker
Length between perpendicular Ly, m 190 232 174.8

Breadth molded B m 32.26 322 32.2

Designed draft T m 9.5 10.78 10.98

Block coefficient Cp - 0.6 0.54 0.8005
Longitudinal radius of gyration £y, - 0.26 0.26 0.25

Length of entrance Lg m 62 40 38.5

Transverse projected area Axv m? 985 750 400

Deadweight DWT tons 28126 40900 46067
Maximum continuous rating P, kW 14700 21000 8200
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&+ PCTC &8 Chemical tanker ¢  Container |

Figure 3.1: Typical routes of the three studied ships during their measurement campaigns.
The PCTC and chemical tanker were sailing worldwide, while the container
ship was sailing in the North Atlantic.

In the full-scale measurements, the shaft torque, RPM and propulsive power were
recorded by sensors installed in marine engines. The ship draft was measured at the
stern and stem. A GPS tracker stored the longitude, latitude, speed over ground,
and ship heading at the wheelhouse of each ship. The measurements were collected
with a frequency of 1 Hz. Several typical sailing routes recorded during the full-scale
measurement campaign are illustrated in Figure Furthermore, the ship baselines
used to describe the calm water resistances obtained from model tests and sea trials
are provided by the ship operators for this study. The coefficient of wind resistance
for the PCTC is obtained from wind tunnel tests. For the chemical tanker and the
container ship, the wind resistance R 44 is calculated according to the semi-empirical
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models in ISO (2015). The total propulsive efficiency 7p is extracted from the open
water tests.

3.3 Metocean data

For the development of a ship’s speed-power model and the investigation of its impact
on voyage optimization, it is crucial to access reliable meteorological and oceano-
graphic (metocean) environments that are encountered by ships. A metocean en-
vironment includes parameters for wind, waves and currents. For the purposes of
both the development and verification of a ship’s speed-power performance in terms
of its encountered metocean environment, actual historical data from different hind-
cast data sources are used. In this study, the mean wave direction D, qye, mean
wave period T, significant wave height H,, and wind speed U,;nq and Viing are
extracted from the reanalysis dataset ERAS to construct the encountered sea states
along the sailing routes (Copernicus, [2019). In terms of the current speed Ueyrrent
and Veyrrent, the CMEMS (2019) observation data are applied. The U component
denotes the speed from west to east, and the V' component denotes the speed from
south to north for both wind and currents. The true velocity and direction are the
vectorial summation of these two components. The spatial and temporal resolu-
tions of the metocean parameters used in this study are listed in Table The
bathymetry information is accessed from GEBCO (2019)). The environmental loads
caused by biofouling are ignored in this study.

Table 3.4: Sources and resolutions of the metocean parameters used in this study.

Parameter Source Spatial resolution = Temporal resolution

H,
TZ

Dyave ERA5 0.25 x 0.25 degree  hourly
Uwind

Vwind

Ucurrent CMEMS 0.25 x 0.25 degree daily

churrent

3.4 Data processing

3.4.1 Semi-empirical model

Full-scale measurement data are used to verify the semi-empirical speed-power model
for speed loss prediction. To predict a ship’s speed loss, the power setting should
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3.4 Data processing

be first identified from the full-scale measurements. In this study, all the sailing
waypoints from engine power settings close to 9000 kW (64% MCR) for the PCTC,
17000 kW (80% MCR) for the container and 5800 kW (70% MCR) for the chemical
tanker are selected for the verification analysis.

The Kwon model that is widely used in ship voyage optimization systems
is compared with the semi-empirical speed-power models developed in this study.
It takes Beaufort numbers as inputs to predict a ship’s speed loss. Therefore, for
the full-scale measurements of the three case study ships, all the waypoints from
the selected engine power settings are divided into various Beaufort number groups,
i.e., BN-3, BN-4, BN-5, BN-6, and BN-7, based on the encountered significant wave
height H,. The interval of H for determining the Beaufort numbers of encountered
metocean environments is determined according to Table which uses criteria from

the definitions in ISO (2015)).

Table 3.5: The probable span of H, for the Beaufort scales considered in the verification
dataset separation process.

Beaufort number Significant wave height Beaufort number Significant wave height

BN-3 0.3~1.0m BN-4 1.0~15m
BN-5 1.5~25m BN-6 25~40m
BN-7 40~55m
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Figure 3.2: Heatmap and averaged measure speed V,.cq: in terms of the wave heading angle
B for the studied chemical tanker for (a) BN-3, (b) BN-4, (a) BN-5, and (b)
BN-6.

The relative wave heading angles /3 of approximately 0°, 30°, 60°, 90°, 120°, 150°, and
180° are selected as the reference wave headings for comparison purposes. To increase
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the sample size of sailing conditions located at each wave heading span, the specific
angles [ are collected in the range of £5° for instance, 85° ~ 95° is represented as
90°. Notably, the measurement data with relative wave angles between 0° ~ 10° and
170° ~ 180° are considered head seas and following seas, respectively. Figure
presents the heatmaps of the measured speeds versus the encountered wave heading
angles, and these can help with visualizing how V.., changes as 3 increases from a
head sea to a following sea. All sailing speeds of a ship under each Beaufort scale
and within each specific relative wave angle span are averaged to represent the mea-
sured (mean) speed for that sea condition. The red circle markers are the obtained
averaged speeds used for the verification process. The full-scale measured V,.q; is
significantly scattered along the averaged lines in the heatmaps.

For semi-empirical model verification in head waves, the PCTC and the chemical
tanker are employed as the case study ships. The studied power settings are ap-
proximately 8800 kW (60% MCR) for the PCTC and 4300 kW (52% MCR) for the
chemical tanker.

3.4.2 Machine learning model

When the XGBoost machine learning method is used to construct a ship’s speed-
power performance model, more than 3 months of raw data containing operational
and navigational information collected onboard a PCTC are used for both model
training and testing. There are different types of measurement noise in the measured
raw data. For ship operation and performance monitoring, the different measure-
ment devices should communicate with a server to store the data. The interruptions,
i.e., data transfer delays, server latency, or other communication channel conflicts
between the measurement sensors and server, may prevent the data logger from ac-
cessing the data stream. The recorded nonuniform spacing of data in time is referred
to as time vector jumps. The first step in the modeling process is to detect the time
vector jumps in the data and synchronize the signals from different measurement
devices. The obvious outliers are then detected based on some basic physical con-
straints, e.g., the measured propulsion power should be positive and less than the
maximum continuous rating, and the measured speed cannot exceed the maximum
service speed or be less than zero. In addition, repeated values and drop-outs (0 or
NaN) should be excluded. The ship data obtained during the ship’s maneuvering
periods, such as acceleration, deceleration and course changes, are also removed from
the dataset.

The other nonphysical phenomena are related to the spikes in the measurement
data. These spikes are sudden changes that significantly deviate from the closed
continuous data. The spikes can cause problems during the model training process.
The machine learning algorithm cannot recognize these spikes, and this leads to
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an incorrect description of the model. Therefore, spike values are also detected
and excluded by a low-pass filter and a running standard deviation. For instance,
some spikes are observed in the measured propulsion power in this study. This
kind of power increase is a standard soot-blowing procedure conducting to clean
the turbocharger during operations. See Figure [3.3] for a visualization of one-period
propulsion power spike value detection. The envelope is set as three times the running
standard deviation (£3c). The measurements that deviate from the upper and lower
boundaries are excluded for further feature engineering and model training.

16000 r -
e T Full-scale measurements
é 14000 —— Low-pass filtered
52 19000 e e, Envelope (30)
o
a
£ 10000
2 8000
A

6000

5284000 5286000 5288000 5290000 5292000
Index

Figure 3.3: Extracted measured propulsion power with an envelope of +30 relative to the
low-pass filter for spike value detection.
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CHAPTER 4

Results

This chapter presents a summary of the appended papers, including research activi-
ties and a selection of the important results, and highlights the main achievements.

4.1 Summary of Paper |

“A semi-empirical model for ship speed loss prediction in head
seas and its validation with full-scale measurements”

Paper I proposes a semi-empirical speed-power model for estimating a ship’s speed
loss in a head sea. In particular, semi-empirical formulas to estimate added resistance
due to head waves are further developed based on some state-of-the-art methods. The
semi-empirical model not only provides accurate speed loss predictions but also per-
forms fast calculations. The added resistance formulas are derived in Section by
combining the further developed NMRI formulas for resistance due to wave reflec-
tions and the improved semi-empirical models from Jinkine and Ferdinande (1974])
for resistance due to wave motions. The improved semi-empirical models are verified
by abundant published experimental data regarding regular head waves; see Table
in Section for the types of applied ships. The PCTC worldwide sailing and
the chemical tanker in Section [3.2] are deployed to verify the full-scale measurements.

The proposed formula for added resistance due to waves achieves sufficiently accurate

approximations compared to those of the other two existing well-known approaches,
i.e., the ITTC-STA2 and NTUA approaches (ITTC, |2014; Liu et al., [2016]), for the
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verification with regular head waves. Some typical cases are presented in Figure [£.1]
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Figure 4.1: Added resistance in a regular head sea, O experimental data, CTH, =+=-=
ITTC-STA2, ==== NTUA; estimated for (a) Bulk carrier with F,, = 0.010, (b)

DTC container ship with F;, = 0.139, (¢) HSVA cruise ship with F;,, = 0.232,
(d) KVLCC2 tanker with F,, = 0.142, (e) S175 container ship with F;, = 0.200,
and (f) S.A. Van Der Stel with F,, = 0.250.

Figure (c) presents the verification and comparison for the HSVA cruise ship
model test at F,, = 0.232. The proposed method (denoted as CTH) significantly
improves the nondimensional added resistance R, estimation for increases in re-
sistance in the A/L,, < 0.5 short wave region and for amplitude matching at the
resonance state in the long wave field. The magnitudes of the resonance resistance
for the bulk carrier in Figure[d.] (a) and the S175 container in Figure [4.1] (e) indicate
that the developed formula results in better predictions than those of other methods.
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Although the rest of the examples exhibit similar prediction performances in the
resonance zone, the CTH formula enhances the fit with regard to increases in added
resistance tail of the short wave region; see Figure 4.1] (b) for the DTC container ship
and Figure (d) for the KVLCC2 container ship.

Table 4.1: MSE analysis of all experimental measurement verification cases for regular
head waves; all outcomes are normalized by the proposed formula results.

Ship type Froude number CTH NTUA ITTC-STA2 Best fit
0.150 1 2.34 4.84 CTH
. 0.200 1 3.90 3.26 CTH
S175 container 0.250 1 1.82 2.86 CTH
0.275 1 1.23 12.99 CTH
0.050 1 3.28 9.40 CTH
0.090 1 1.19 3.91 CTH
KVLCC2 tanker 0.142 1 1.02 2.77 CTH
0.180 1 1.10 3.01 CTH
. 0.052 1 1.69 5.63 CTH
DTC container 0.139 1 4.15 2.20 CTH
. 0.166 1 6.70 1.11 CTH
HSVA cruise 0.232 1 17.11 5.29 CTH
0.150 1 0.27 1.52 NTUA
0.200 1 0.38 4.00 NTUA
S.A. Van Der Stel 0.250 1 2.15 2.65 CTH
0.300 1 1.66 3.40 CTH
0.000 1 5.61 2.62 CTH
' 0.005 1 0.77 0.74 ITTC-STA2
Bulk carrier 0.010 1 2.15 5.75 CTH
0.150 1 1.19 6.33 CTH
0.266 1 5.81 6.67 CTH
0.237 1 2.13 5.79 CTH
Series 60 model 4211 0254 1 467 473 CTH
0.207 1 3.50 10.32 CTH
0.177 1 1.37 3.43 CTH
Series 60 model 4213 0195 1 103 252 CTH
0.147 1 0.96 1.83 NTUA
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The mean squared error (MSE) is used to evaluate the quality of all numerical predic-
tions from a quantitative assessment viewpoint (Hastie et al., . All assessment
results are listed in Table 1l The MSEs of the ITTC-STA2 and NTUA results are
normalized by the values of the predicted values output by the CTH method. As
Table [4.1] expresses, the proposed formula has the best prediction performances for
almost all the studied instances, except for 3 cases with the NTUA approach and 1
case with the ITTC-STA2 formula. The introduced formula demonstrates superior
estimation ability compared with those of the other widely used methods in regular
head sea conditions. Accordingly, these results are considered to be sufficient for the

calculation of wave-induced added resistance.
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Figure 4.2: The real speed comparison for the PCTC case study with various sea conditions
estimated for an engine power setting of approximately 8800 kW.
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Figure 4.3: The real speed comparison for the chemical tanker case study with various sea
conditions estimated for an engine power setting of approximately 4300 kW.

The proposed semi-empirical speed-power model is then verified with a comparison of
the ship’s real speed V,..q;. When assessing a ship’s real speed with real encountered
wind and wave conditions, the power setting should be fixed near a specific value.
The postprocessed full-scale measurements with engine powers of approximately 8800
kW (60% MCR) for the PCTC and 4300 kW (52% MCR) for the chemical tanker are
chosen as the power settings for the speed loss verification process. All the measure-
ments and the theoretical real ship speed estimations around a specific significant
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wave height are averaged for a comparison between the calm and harsh weather re-
sults. The values of Vyesign at the defined engine power settings are 16.9 kn and 12.8
kn for the PCTC and tanker, respectively.

As Figure [£.2]illustrates, the proposed model produces consistently excellent predic-
tions through all considered wave conditions for the studied PCTC, with a maximum
discrepancy of approximately 0.2 kn. The largest speed loss is approximately 2.4 kn
at H;, = 3.1 m, i.e., a 14% involuntary speed reduction caused by the encountered
wave and wind conditions. Satisfactory accuracy is also observed for the chemical
tanker in Figure [£.3] where the verification cases start from Hy ~ 1.4 m in harsh
sea conditions with a significant wave height greater than 7 m (4.5 < Hy < 5.5 m is
skipped because too few measurements exist in that range). The model estimations
have slight fluctuations compared to the corresponding measurements, but they are
still in good agreement.

4.2 Summary of Paper Il

“A practical speed loss prediction model at arbitrary wave heading
for ship voyage optimization”

In this study, the semi-empirical speed-power model developed for the head sea in
Paper I is further developed to estimate a ship’s speed loss due to waves from ar-
bitrary angles. In this model, formulas to estimate the added resistance are further
developed to consider waves from different angles. The improved formulas are ver-
ified by experimental data from 5 ships encountering regular waves. They achieve
reasonable accuracy with a high calculation speed. The proposed model is then ap-
plied for speed loss prediction and compared to the well-known Kwon (2008]) method.
The PCTC, chemical tanker, and container ship in Section [3.2] are employed as the
case study ships. The impact of such an improved speed loss prediction model on a
ship’s voyage optimization is also investigated.

Figure[f-4shows one instance of the nondimensional added resistance R,,, verification
for the HSVA cruise ship, where the nondimensional reflection-induced resistance
Ruw- and nondimensional ship motion-induced resistance Rg.., are illustrated as
well. The experiment is conducted from 30° to 180°at a Froude number of F,, = 0.232.
The proposed formula is in good agreement with the measurements for 30° and 60°,
for both the tail increase in the extreme short wave region and peak value seizing
for the resonance position. Although some fluctuations exist for the other considered
angles, the results can still catch up with the measurement trend. The peak value
decreases and moves to the lower wavelength (A/L,,) region as the relative wave
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angle increases. The negative resistance on the ship stern caused by the reflections
of the following waves is captured.
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Figure 4.5:

Added resistance for the HSVA cruise due to regular waves with arbitrary
angles at F, = 0.232, O experimental data, =—— Rgq, ==="= Rowr, ====
Rawm; estimated at (a) 30 degrees, (b) 60 degrees, (c) 90 degrees, (d) 120
degrees, (e) 150 degrees, and (f) 180 degrees.
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The speed loss estimation results output by both Kwon’s method and the pro-
posed model in comparison with the measurements obtained for the case study
container ship, O proposed model prediction, O Kwon’s method prediction,
------ ship real speed V,.eq: upper and lower bound for the piecewise boundary
of each Beaufort scale Hy, =+=-= average of real measurements; estimated for
(a) BN-4, (b) BN-5, (¢) BN-6, and (d) BN-7.

For the speed-power model application, the speed losses predicted by the proposed

model are consistently in good agreement with the full-scale measurements. Espe-
cially for chemical tankers, the widely used Kwon (2008) method cannot provide
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reasonable values. The predicted values always fluctuate around the baseline. More-
over, the Kwon method can only give one speed prediction for a specific
Beaufort number. However, the significant wave height H, varies greatly along the
Beaufort scale. represents the container ship’s speed estimation. The proposed
model results in the best average real speed V,...; predictions (in black circle mark-
ers), as they coincide with the real measurements. This model can also provide highly
realistic and precise speed loss estimations for the upper and lower bounds for each
Beaufort-scale wave condition; this is because the proposed model can predict the
speed loss for a sea state with specific metocean parameters, such as Hy, T, etc. The
gray dotted lines in Figure (c) represent speeds evaluated using the measurement
data close to the piecewise boundary of the considered Beaufort scale, such as 2.5 m
and 4.0 m for the BN-6 condition.
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Figure 4.6: Optimal trajectories for the selected case study: (a) voyage 2009-01-18, (b)
voyage 2009-02-18, (c) voyage 2009-12-26, and (d) voyage 2010-01-13.

The proposed model and Kwon method are then implemented for voyage op-
timization. Four winter voyages in an open sea area, on 2009-01-18 and 2009-12-26
for the eastbound direction and on 2009-02-18 and 2010-01-13 for the westbound
direction, are used to demonstrate the importance of an accurate ship speed-power
model. In the voyage optimization analysis, the three-dimensional Dijkstra’s algo-
rithm (Wang et al., 2019) is applied for highly flexible speed adjustment and route
planning. The aforementioned relatively unstable prediction ability of the Kwon
method also leads to significant variance in the voyage optimization results,
both for the final optimized trajectories and the optimal ship speed. Figure [4.6]
presents the optimized trajectories for those selected routes based on the proposed
model and Kwon method. The results show that the different models have
varying effects on voyage optimization, and the optimal trajectories differ significantly
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for instances in the open sea.
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Figure 4.7: The encountered significant wave heights Hs and ship speeds V along the
optimized and actual ship routes for the two case study voyages. (a) H, along
voyage 2009-01-18, (b) V along voyage 2009-01-18, (c¢) H, along voyage 2010-
01-13, and (d) V along voyage 2010-01-13.

The encountered significant wave heights H, and ship speeds V, along with two
optimized ship voyages and the actual voyages, i.e., the eastbound voyage 2009-01-
18 and the westbound voyage 2010-01-13, are presented in Figure[£.7] The maximum
discrepancy of the encountered Hy for voyage 2009-01-18 is almost 2 meters. The
voyage optimization results obtained using the proposed model recommend a sailing
speed of 2 knots faster than that suggested by optimization with Kwon (2008) method
between the 35°W and 20°W areas to avoid encountering high sea environments.
When the ship encounters a large Hs; above 6 m, the voyage optimization results
using our proposed model recommend slowing down considerably to decrease the
added resistance due to waves. A similar difference can also be observed for voyage
2010-01-03, in which the route optimized by Kwon (2008)) method encounters harsher
wave conditions. In contrast, the route navigated by the proposed model adjusts the
speed to allow the ship to sail in the calmest possible wave conditions.

4.3 Summary of Paper Ill

“XGBoost method to model a ship’s propulsion power in seaways”

With the development of sensor technology and its wide exploitation in the ship-
ping industry, a large amount of ship performance-related data is collected onboard
ships, and this provides new opportunities to better model a ship’s actual energy
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4.8 Summary of Paper IIT

performance when sailing at sea. In this study, a machine learning method, i.e., the
XGBoost method, is used to build models for predicting a ship’s propulsion power in
various operational and metocean conditions. The speed-power models are trained in
2 scenarios: 1) ship operational profiles and metocean conditions are used as feature
inputs and 2) ship motions are used instead of the encountered metocean parameters
as inputs. For each scenario, two power prediction models are established by the XG-
Boost method and compared afterwards. The first performance model is trained by
setting the measured propulsion power as the training target, while the second model
is trained by setting the increase in propulsion power due to the encountered sea en-
vironments as the training target. In the second model, a ship’s baselines obtained
from experimental tests and sea trials are assumed to be available for estimating
the propulsion power of the ship in calm water conditions. Then, the target of the
machine learning method is to model the power increase (the difference between the
measured power and calm water baseline Ppeqsurement — Peaim ). The full-scale mea-
surements of the PCTC presented in Section [3.2] are applied for this study. The root
mean square error (RMSE) and the coefficient of determination (R?) are calculated
as references for describing the generalization capability of the constructed models.
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Figure 4.8: Learning curve for the load-based XGBoost machine learning model (without
baseline) training process in a metocean environment: (a) RMSE, (b) coef-
ficient of determination R?, and (c) correlations between the predicted ship
propulsion power values and the actual measurements.

The amount of power required in calm water relies on the experimental baselines of
the ship speed and draft. The drafts at the stern and stem were measured once per
day for the case study PCTC. The frequency is much lower than those of the other
training measurements (1 Hz). Uncertainties and noise are inevitably introduced
into the training data when subtracting the calm water power from the measured
propulsion power. Thus, for metocean environment-based machine learning models,
the model choosing the power increase as the training target yields slightly lower
power predictions than those of the other models. Figure (a) and Figure (b)
present the learning curves of the RMSE and R? for cross-validation of the training

39



Chapter 4 Results

process, respectively. The small discrepancies between the training scores and cross-
validation scores indicate that the hyperparameters chosen minimize overfitting. The
predicted power versus the measured power for the testing set is shown in Figure
(c). The R? is 0.9917 and indicates a satisfactory prediction performance.
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Figure 4.9: Learning curve for the ship motion velocity response with the baseline XG-
Boost machine learning model training process: (a) coefficient of determination
R?, (b) RMSE, (c) correlations between the predicted ship propulsion power
values and the actual measurements.

In scenario 2, in addition to the original 6 DOF motions, the 1st-order derivative
and 2nd-order derivative of the ship motions, i.e., the motion velocity and motion
acceleration, respectively, are implemented as feature inputs to consider the effect
of ship motions on a ship’s performance models. The mean value, standard devia-
tion, skewness and kurtosis are estimated to describe the motion statistics and are
applied as the training features. For different feature inputs, the power increases as
training targets yield better performance predictions. A ship’s motion response is
linearly dependent on the encountered wave amplitudes (despite extreme conditions
such as storm and green water influence), while added resistance due to waves is
estimated as a quadratic function in terms of the wave amplitudes. The 1st-order
derivative of ship motion, i.e., motion velocity, has the strongest correlation with the
wave-induced power increase. Thus, the motion velocity case achieves the highest R?
score; see Figure for the learning curve and testing set evaluation. The testing R?
score of the motion-based model is relatively lower than that of the metocean-based
model. The low score of the motion-based model may be due in part to the time inter-
val being selected as a stationary sea state for the data inputs of the training process.

The proposed metocean-based model (with original propulsion power as the target)
is further implemented for comparison with the measured power and conventional
semi-empirical models with regard to the prediction of fuel consumption and sailing
time within one voyage. It should be noted that the conventional method in ITTC
(2014) adopted the theoretical model of added resistance, without resistance and
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power correction factors. Two voyages are used as case studies in this analysis. The
proposed machine learning model’s prediction results fluctuate slightly compared to
real measurements, but they are in good agreement overall. Due to the fact that it
underestimates the resistance and power, the semi-empirical model has a prediction
gap of up to 30000 kWh for the power accumulation during voyage 1 in Figure [£.10]
and 4 hours for the sailing time accumulation during voyage 2 in Figure [L.11]
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Figure 4.10: The accumulated propulsion power differences

(b) Voyage 2

calculated by the proposed

XGBoost machine learning speed-power model and the theoretical method

for voyage 1 and voyage 2.
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Figure 4.11: The accumulated sailing time differences obtained by the proposed XGBoost
machine learning speed-power model and the theoretical method for voyage

1 and voyage 2.

Finally, it is concluded that the XGBoost machine learning method can construct an
accurate speed-power model for a ship in actual sailing environments based on its

onboard measurements.
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Conclusions

In this thesis, two types of speed-power performance models, i.e., a semi-empirical
model (white box) and big data-driven machine learning models (black box), are de-
veloped to predict a ship’s propulsion power in an actual sailing environment at sea,
especially for the task of voyage optimization. The semi-empirical model is able to
predict a ship’s propulsion power within a 5% ~ 10% difference compared to the real
measurements, and the discrepancies of the results output by the machine learning
model are less than 1%. It is concluded that when a large amount of ship operation
data is available, the machine learning method is recommended to establish the ship
speed-power model for voyage optimization. Otherwise, the semi-empirical model
should be adopted since it needs limited input data regarding the ship character-
istics. The main findings and conclusions are presented below with respect to the
subtasks in Section [[.al

The development of a semi-empirical model for head waves

The semi-empirical model for head waves in Paper I includes improved semi-empirical
formulas for added resistance due to regular waves. Based on a quantitative assess-
ment via a statistical MSE analysis, this model produces the best approximations for
almost all the collected published experimental data for regular waves compared to
those output by the well-known ITTC-STA2 and NTUA methods (ITTC, 2014} Liu
et al.,2016)). The formulas combine the further developed NMRI formulas (Tsujimoto
et al.,[2008) for short waves (due to wave reflections) and the improved semi-empirical
models from Jinkine and Ferdinande (1974)) for long waves (due to wave motions). It
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Chapter 5 Conclusions

is shown that the proposed model provides consistently excellent ship speed predic-
tions in real seaways, with maximum discrepancies of 0.4 kn (2.5%) for the PCTC
and 0.3 kn (2.9%) for the chemical tanker.

The extension of the semi-empirical model to arbitrary wave headings

The semi-empirical model in Paper I is extended to arbitrary wave headings in Paper
II. The model for arbitrary wave headings is based on the extension of the formulas
for head waves. The formulas can be calculated quickly by using as few ship charac-
teristics as possible while still achieving good accuracy. The full-scale measurements
from three case study ships, i.e., a PCTC, a container ship, and a chemical tanker,
are employed to verify the proposed semi-empirical speed-power model for speed loss
prediction. It is shown that the proposed model has better ship speed prediction
capability than that of the widely used Kwon (2008)) method. To quantify this im-
provement, for the blunt ship, i.e., the chemical tanker, the proposed model yields
an approximately 40% increase in speed prediction accuracy in bow seas under BN-6
weather conditions. The increases are as high as 7% for the PCTC (BN-6) and 6%
for the container ship (BN-7). Notably, the semi-empirical model is only developed
and verified under the design load condition.

The machine learning model for ship speed-power performance

The XGBoost algorithm is deployed to establish the machine learning-based speed-
power model for the PCTC in Paper III, and it does so by using the full-scale mea-
surement data from the onboard monitoring system of the ship. The establishment of
the model consists of two scenarios. In scenario 1, the metocean environmental loads
and ship operation parameters are selected as the input features, and the XGBoost
system is trained to predict the propulsion power. In scenario 2, instead of using the
metocean data, the recorded ship’s 6 DOF motion responses, the related motion ve-
locity (1st order derivative) and the acceleration (2nd order derivative) are deployed
as inputs. It is shown that the metocean-based machine learning model with the
target of measured propulsion power results in less than a 1% discrepancy compared
to the real measurements in the testing dataset. Then, this model is implemented
for the estimation of the ship’s actual speed. Except for the following wave condition
(due to a lack of data), the predicted speeds are in good agreement with the mea-
sured data, within a 0.1 kn (up to 0.4%) difference. The machine learning model is
trained by using data from different stationary sea states. Individual stationary sea
states during short-term navigation cannot be considered.
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The impacts of various speed-power models on voyage optimization

In Paper II, the proposed semi-empirical and Kwon (2008]) models are implemented
in voyage optimization systems to investigate the influences of different speed-power
models. Significant impacts on the voyage optimization results, such as the sailing
distances, trajectories, sailing speeds, and encountered sea environments, are ob-
served due to the different models. It is shown that the proposed model recommends
a faster sailing speed to avoid severe wave conditions (maximum 20% H, decrease),
leading to reduced fuel consumption.

The benefit of the proposed speed-power models for voyage optimization

The metocean-based machine learning model is implemented in the individual voyage
propulsion power and sailing time accumulation studies in Paper III. For 72 hours
and 120 hours of sailing, it was determined that the proposed machine learning
model can dramatically reduce the accumulated propulsion power difference by up
to ten times more than the semi-empirical model (without the wave height correction
factor). An increase in prediction accuracy of up to 4% is also found for the sailing
time accumulation difference.
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CHAPTER 6

Future work

The main objective of this thesis is to develop ship speed-power performance models
that can describe a ship’s power /fuel consumption performance, or reversely estimate
a ship’s real sailing speed in seaways (speed reduction caused by encountered sea en-
vironment conditions). These models should be sufficiently accurate for application
in a ship’s voyage optimization system. For this special application case, both semi-
empirical performance models and big data-driven machine learning models have
been developed and verified by experimental and full-scale measurement data. The
semi-empirical models can allow for fast computation of a ship’s energy performance
for voyage optimization. Since the parameters in the semi-empirical models are (in
principle) obtained by regression, these models may provide accurate expected speed
loss values for ships of the same type. However, for an individual ship, the semi-
empirical models may lead to large scattering of the ship’s performance predictions.
To best model a ship’s energy performance, it is important to consider the ship’s
actual performance when sailing at sea, i.e., the full-scale measurements collected for
the specific ship of interest. In this way, the machine learning method can play an
important role in the further development of ship performance models. In addition
to a ship’s energy performance-related parameters, the full-scale measurement data
also contain other relevant information, such as different sea parameters, motion re-
sponses, or structural responses, that can have a direct potential impact on a ship’s
performance. Therefore, my future research plan is to exploit the capabilities of ma-
chine learning methods and the collected big data for improving a ship’s performance
model as well as for other related applications.
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Chapter 6 Future work

Further improvements in the speed-power performance models

The proposed semi-empirical model can be further verified by different ships if ad-
ditional full-scale measurements are available. Especially for the wave height-based
ship resistance and power increase correction factor, this is a preliminary idea for cal-
ibrating the model. A thorough investigation with additional experimental tests and
full-scale measurements of ships should be conducted to configure a more flexible for-
mula for this factor based on various input parameters. The developed semi-empirical
models provide reliable mean performances for full-scale measurements over several
months or over years. They can act as a baseline for an increasingly dynamic propul-
sion prediction model for a ship in the short term (one voyage). The dynamic model
is driven by some time series analysis algorithms to increase the short-term accuracy
of ’online performance predictions for a ship under a stationary sea state. In addition,
machine learning methods will be introduced in the modeling process to integrate
ship-specific parameters in the proposed semi-empirical models.

Ezxtended applications of machine learning methods

The applicability of machine learning methods can be widened by using more options
to study ship fatigue for safety purposes. Machine learning techniques can be used
to model the relationships between the encountered wave conditions, ship operation
profiles and measured stress responses. The calculated fatigue damage can be verified
by the high-cycle fatigue principle and spectral fatigue method for long-term (several
years) and short-term (one voyage) navigation.

Any maritime-related studies and innovations need to know a ship’s actual encoun-
tered wave environments. These are used as inputs for developing and optimizing
some measures to improve a ship’s safety and energy efficiency. Large investments,
e.g., satellites, onboard radar, blue green lidar, etc., have been adopted to obtain
increasingly reliable sea weather environments. However, the accuracy of such mea-
sures is still not satisfactory for shipping-related activities. It would be interesting to
implement an inverse machine learning method to obtain a ship’s sea environments
through its motions and other response parameters when sailing at sea.
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