
PARMA-CC: Parallel Multiphase Approximate Cluster Combining

Downloaded from: https://research.chalmers.se, 2025-06-18 04:00 UTC

Citation for the original published paper (version of record):
Keramatian, A., Gulisano, V., Papatriantafilou, M. et al (2020). PARMA-CC: Parallel Multiphase
Approximate Cluster Combining. ACM International Conference Proceeding Series, Part F165625.
http://dx.doi.org/10.1145/3369740.3369785

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Behavior Trees in Action:
A Study of Robotics Applications

Razan Ghzouli
Chalmers | University of Gothenburg

Sweden

Thorsten Berger
Chalmers | University of Gothenburg

Sweden

Einar Broch Johnsen
University of Oslo

Norway

Swaib Dragule
Chalmers | University of Gothenburg

Sweden

Andrzej Wąsowski
IT University of Copenhagen

Denmark

Abstract

Autonomous robots combine a variety of skills to form in-
creasingly complex behaviors called missions. While the
skills are often programmed at a relatively low level of ab-
straction, their coordination is architecturally separated and
often expressed in higher-level languages or frameworks.
Recently, the language of Behavior Trees gained attention
among roboticists for this reason. Originally designed for
computer games to model autonomous actors, Behavior
Trees offer an extensible tree-based representation of mis-
sions. However, even though, several implementations of the
language are in use, little is known about its usage and scope
in the real world. How do behavior trees relate to traditional
languages for describing behavior? How are behavior-tree
concepts used in applications?What are the benefits of using
them?

We present a study of the key language concepts in Behav-
ior Trees and their use in real-world robotic applications. We
identify behavior tree languages and compare their seman-
tics to the most well-known behavior modeling languages:
state and activity diagrams. We mine open source reposito-
ries for robotics applications that use the language and ana-
lyze this usage. We find that Behavior Trees are a pragmatic
language, not fully specified, allowing projects to extend it
even for just one model. Behavior trees clearly resemble the
models-at-runtime paradigm. We contribute a dataset of real-
world behavior models, hoping to inspire the community to
use and further develop this language, associated tools, and
analysis techniques.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SLE ’20, November 16–17, 2020, Virtual, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8176-5/20/11. . . $15.00

https://doi.org/10.1145/3426425.3426942

CCS Concepts: • Software and its engineering → Do-

main specific languages; Software libraries and repositories;
System modeling languages; • Computer systems organi-

zation → Robotics.

Keywords: behavior trees; robotics applications; empirical
study

ACM Reference Format:

Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Swaib Drag-
ule, and AndrzejWąsowski. 2020. Behavior Trees in Action: A Study
of Robotics Applications. In Proceedings of the 13th ACM SIGPLAN

International Conference on Software Language Engineering (SLE

’20), November 16–17, 2020, Virtual, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3426425.3426942

1 Introduction

The robots are coming! They can perform tasks in environ-
ments that defy human presence, such as fire fighting in
dangerous areas or disinfection in contaminated hospitals.
Robots can handle increasingly difficult tasks, ranging from
pick-and-place operations to complex services performed
while navigating in dynamic environments. Robots combine
skills to form complex behaviors, known as missions [25, 34].
While skills are typically programmed at a relatively low
level of abstraction (such as controllers for sensors and actu-
ators), the coordination of skills to form missions in higher-
level representations is becoming increasingly important.

Behavior Trees are attracting attention of roboticists as a
language for such high-level coordination. They were origi-
nally invented for computer games, to define the behavior of
autonomous non-player characters. Similar to autonomous
robots, non-player characters are reactive and make deci-
sions in complex and unpredictable environments [29, 31].
Their popularity in robotics stems from their modularity and
malleability when expanding or debugging missions [3, 11,
13–15, 23, 36, 37]. Users appreciate a purportedly easy-to-
understand hierarchical structure, able to represent layers of
behavior. Traditionally, missions have been specified using
finite state machines, but the representation of complex and
dynamic surroundings quickly makes state machines un-
manageable [29]. Hierarchical state machines [28] overcame
these issues, bringing modularity and the structuring of tasks

196

https://www.acm.org/publications/policies/artifact-review-badging

SLE ’20, November 16–17, 2020, Virtual, USA Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Swaib Dragule, and Andrzej Wąsowski

into sub-tasks. Still, many find evolving hierarchical state
machines harder than evolving behavior trees [7, 14, 35].
We present a study of behavior tree languages and their

use in real-world robotic applications. Specifically, we ask:

RQ1.What are the key characteristics, modeling concepts, and

design principles underlying behavior tree languages?

RQ2. How are the language concepts used in robotic projects?

RQ3. What are characteristics of Behavior Trees models?

To answer these questions, we mine open-source reposito-
ries for behavior trees in robotics applications and analyze
their usage. Behavior tree implementations (i.e., libraries) are
identified and analyzed as domain-specific languages (DSLs).

We find that Behavior Trees are a pragmatic language, not
fully specified, allowing, even expecting, concrete projects
to extend it by-need. The use of behavior trees in robotics
follows the models-at-runtime paradigm [4, 5]. Models are
used for coordinating skills, actions, and tasks, which are im-
plemented by lower-level means (e.g., The Robot Operating
System (ROS) components). We hope to raise the interest of
the software languages and modeling research communities
in behavior trees and their usage. We also hope that this
analysis can inspire designers of behavior tree languages in
robotics to revisit, or at least justify, some design choices. We
contribute a dataset of real-world behavior models, hoping
to inspire the community to use and further develop this
language, associated tools, and analysis techniques.

An accompanying online appendix [1] contains themodels
dataset, mining and analysis scripts, and further details.

2 Background

Behavior trees are well-suited to express the runtime be-
havior of agents, which has fueled applications in computer
games and robotics. High-profile games, such as Halo [31],
use behavior trees. In the robotic community, there has been
a growing interest in behavior trees. There was a dedicated
workshop on behavior trees in robotics at IROS’19,1 one of
the key research conferences in robotics. ROS, the main open
source platform for robotics software, has recently adopted
behavior trees as the main customization mechanism for
their navigation stack.2 In addition, multiple projects in Rob-
MoSys, one of the leading model-driven community in robot-
ics,3 have been launched to create a set of best practices and
tools for behavior trees (e.g., CARVE4 and MOOD2Be5). The
EU project Co4Robots6 developed a mission-specification
DSL for multiple robots upon behavior tree concepts [23, 24].

1https://behavior-trees-iros-workshop.github.io/
2https://github.com/ros-planning/navigation2/tree/master/nav2_

behavior_tree
3https://robmosys.eu/
4https://carve-robmosys.github.io/
5https://robmosys.eu/mood2be
6http://www.co4robots.eu

Figure 1. An example behavior tree of a health
and safety robot inspector from a GitHub project
kmi-robots/hans-ros-supervisor shown in the Groot
editing and animation tool from BehaviorTree.CPP

A number of libraries has been developed to implement be-
havior trees, including common libraries such as Behavior-
Tree.CPP and py_trees. In this paper, we explore the con-
cepts offered by behavior tree languages and how these are
exploited by the users of these libraries, based on open source
projects.

By many researchers, behavior tree languages are praised
for their modularity, flexibility, reusability, and ability to ex-
press reactive behavior [3, 11, 13–15, 33, 37]. However, none
of these claims has been studied upon behavior treemodels in
real-world projects—the main motivation behind our study.

Illustrative Example. Figure 1 presents an example of a
behavior tree model of a health and safety inspector robot
from the Knowledge Media Institute.7 The robot performs
an exploration sequence of an area. The main operation is
placed in the bottom, in the sub-tree under ExplorationSeq:
it consists of obtaining the next waypoint, moving the mobile
base to the waypoint, and exploring the area. If obtaining a
new waypoint fails (empty stack) the first task fails, which is
inverted into a success by an (Inverter) and this means that
the sequence of motions have been completed. Otherwise,
we keep repeating the same operation (next point, move,

7http://kmi.open.ac.uk/

197

Behavior Trees in Action: A Study of Robotics Applications SLE ’20, November 16–17, 2020, Virtual, USA

explore) up to 10 times, as long as the stack is not empty. The
entire computation is placed in an infinite loop of alternating
obtaining new waypoints and performing the exploration
sequence (MainSeq) until the success of all children.

Behavior Tree Concepts. In general, a behavior tree is a
directed tree with a dedicated root node, with non-leaf nodes
called control-�ow nodes and with leaf nodes called execution
nodes. A behavior tree is executed by sending signals called
ticks from the root node down traversing the tree according
to the specific semantics of the control-flow nodes. Ticks
are issued with a specific frequency [14, 30]. Upon a tick, a
node executes a task, which can be a control-flow task or, if
a leaf node is ticked, some specific robotic task. The latter
classify into actions (e.g., MoveBase in Fig. 1) and conditions,
which can test propositions (e.g., whether the robot is at its
base) used to control task execution. A ticked node returns
its status to its parent: (1) success when a task is completed
successfully, (2) failure when a task execution failed, and (3)
running when a task is still under execution.

The benefit of using behavior trees lies in their ability to ex-
press task coordination behavior using a small, but extensible
set of control-flow nodes. Most behavior tree languages offer
the types sequence, selector, decorator, and parallel, which
we will discuss in detail in the remainder (Sect. 4). Our ex-
ample in Fig. 1 illustrates two sequence nodes (MainSeq and
ExplorationSeq) and two decorator nodes (Inverter and
RetryUntilSuccesful). Intuitively, sequence nodes tick all
its children and require all to succeed for the sequence to
succeed, while selector nodes only require one to succeed.
Decorator nodes allow more complex control flow, including
for or while loops. They are also extensible; developers can
implement custom decorator nodes. Finally, parallel nodes
are generalizations of sequence and selector nodes, allowing
custom policies, such as cardinalities specifying the mini-
mum or maximum number of nodes that need to succeed.

3 Methodology

We now describe our methodology for identifying and an-
alyzing behavior tree languages (RQ1) and for identifying
and analyzing real-world robotic applications using these
languages (RQ2 and RQ3).

3.1 Behavior Tree Languages

We identified behavior tree languages by searching GitHub
for popular behavior tree libraries in Python and C++, the
most used programming languages in robotics. To ensure
the libraries’ relevance for real-world robotics applications,
we focused on maintained libraries that support ROS and
applied the following exclusion criteria: (1) lack of documen-
tation, (2) out-dated libraries not maintained anymore (last
commit older than 2019), and (3) no ROS support.

To understand the modeling concepts offered in behavior
trees (RQ1), we studied their relation to concepts found in

UML behavior diagrams [27]. Specifically, we systematically
compared behavior trees with state machines and activity
diagrams. We chose the latter two languages, since they are
among the most popular, well-understood, and standardized
(via the UML) languages for describing the behaviors. From
a robotics user’s perspective, behavior trees are becoming
an alternative to state machines [8, 13]. Thus, it is natural
to compare them. Many other behavior modeling languages
are derivatives of state machines or activity diagrams.
For our comparison, we collected behavior tree concepts

bymeans of a thorough literature [9, 14, 35] and library analy-
sis [21, 39], then carefully mapped (based on their semantics)
these concepts to related concepts found in the other two
UML languages. In this process, we focused on behavior tree
concepts and whether state machines and activity diagrams
offer direct support for similar concepts or whether they
need to be expressed indirectly. Our analysis was iterative,
to ensure a proper reflection of the concepts in the different
languages.

3.2 Behavior Tree Models

For the identified behavior tree libraries, we investigated
how they are used in the source code of robotics projects. In
BehaviorTree.CPP, the termmain_tree_to_execute refers to
the entry point tree in the XML source code, while the term
py_trees_ros is used to import the language py_trees_ros.
Both terms must be used in the source code of targeted lan-
guages. To this end, we created a Python script to mine
GitHub repositories using those terms for a simple text-
match in source code and GitHub’s code search API.8 After
mining GitHub for open-source projects, we manually ex-
plored the found projects to identify the relevant ones. To fo-
cus on behavior tree models used in real robotic projects, we
excluded projects belonging to (1) a tutorial or to (2) a course.

To understand the use and characteristics of behavior tree
models (RQ2 and RQ3), we analyzed the identified projects.
We explored manually and semi-automatically; the latter by
calculating metrics to understand how behavior tree con-
cepts are used in the selected projects from a statistical per-
spective. Those metrics are:

• The size of the behavior tree (BT.size): number of all
nodes excluding the root node.

• The tree depth (BT.depth): number of edges from the
root node to the deepest node of the tree [17].

• Node type percentage (N.pct):the frequency of a node
type with respect to the total number of nodes.

• Average branching factor (ABF): the average number
of children at each node.

To calculate BT.size and N.pct, we extracted a function
name for each node type based on the libraries’ documen-
tation, then used a Python script to count the number of
text matches. For leaf nodes, automatic counting was only

8https://github.com/PyGithub/PyGithub

198

SLE ’20, November 16–17, 2020, Virtual, USA Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Swaib Dragule, and Andrzej Wąsowski

Table 1. Behavior tree languages identified (we analyzed the
implementations of the first three, which are in bold)

Name Language ROS Doc. Last commit

BehaviorTree.CPP C++ yes [21] 2020/05/16
github.com/BehaviorTree/BehaviorTree.CPP

py_trees Python no [39] 2020/03/10
github.com/splintered-reality/py_trees

py_trees_ros Python yes [40] 2020/02/25
github.com/splintered-reality/py_trees_ros

BT++ C++ yes [10] 2018/10/22
github.com/miccol/ROS-Behavior-Tree

Beetree Python yes N/A 2016/03/14
github.com/futureneer/beetree

UE4 Behavior Tree UnrealScript no [22] N/A
docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees

possible for libraries imposing a specific structure on the
leaf nodes; otherwise, we counted manually. We manually
calculated BT.depth and ABF, since we needed to manually
extract the models anyway. Note that, while these metrics
capture core structural aspects of the models, answering RQ2
and RQ3, we specifically focus on reuse as one of the major
issues in robotics software engineering [25, 26].

Wemanually inspected themodels. Looking at eachmodel,
we identified different usage patterns depending on the used
language. We were able to use a visual editor shipped with
one of the identified libraries (Groot for BehaviorTree.CPP,
explained shortly) where the behavior tree language is re–
alized as an external DSL. The other identified library
(py_trees_ros, explained shortly) constituted an internal
DSL, where we needed to manually extract the model from
the source code, identifying the respective library API calls
constructing the model. There, we considered every tree
with a root node as a behavior tree model.

4 Behavior Tree Languages (RQ1)

Table 1 lists the implementations of behavior tree languages
identified and considered in this study; five from the robotics
community and one from outside. This section focuses on
analyzing the implementations in the first three rows, set in
bold font. Among the languages relevant for robotics, these
three were actively developed when we checked (2020/05/16).
Together they support ROS systems implemented in Python
and C++, the two most popular programming languages in
the robotics community. The py_trees library, the main be-
havior tree implementation in the Python community, does
not directly target ROS, but robotics in general. A popular
extension, py_trees_ros, provides bindings for ROS. Since
py_trees and py_trees_ros are similar, with the only dif-
ference of ROS packaging, we decided to include py_trees
in the language analysis even though it does not support
ROS directly.

We decided to discard the remaining three languages from
our analysis. BT++ is now obsolete, superseded by Behavior-
Tree.CPP after the developer of BT++ joined the latter as
a contributor. Beetree is an inactive experiment, now aban-
doned. Unreal Engine 4 (UE4) Behavior Tree, probably the
world’s most used behavior tree dialect, is a well-documented
library with a graphical editor to model intelligent actor be-
havior in games. However, the game development use case
impacts the implementation. It emphasizes event-driven pro-
gramming rather than time-triggered control, which is the
major concern in robotics. Since we focus on robotics and
not computer games, we will not discuss it any further.

4.1 Language Subject Matter

Behavior trees can be seen as graphical models that are
shaped as trees, representing tasks for execution by an agent.
Robotics and gaming are domains where autonomous agents
are frequently programmed [14]. Amodel consists of compos-
ite control flow nodes that coordinate how the basic action
nodes should be scheduled by the agent. The visual presen-
tation of the main node types is summarized in Fig. 2 as
used in robotics and games [14, 30, 35]. The four basic cat-
egories of control flow are: Sequence, Selector, Parallel, and
Decorator. The two basic execution nodes are Action and
Condition. Each tree has a designated Root node. To illustrate
the abstract syntax, we also provide ameta-model we reverse-
engineered from BehaviorTree.CPP’s XML format in Fig. 3
and most of these concepts are explained in detail in Table 2.

Table 2 summarizes the key aspects of our analysis of the
concepts and benefits of behavior trees and their compar-
ison with UML state machines and activity diagrams. The
left-most column names concepts pertinent to the behavior
tree languages, either due to inclusion or a striking exclu-
sion from behavior tree languages. The last two columns
comment briefly on how the respective concept is handled
in the UML languages.

4.2 Language Design and Architecture

Turning our attention to how behavior tree languages are
implemented from the language design perspective, the first
striking observation is that both languages are predomi-
nantly distributed as libraries, not as language tool chains, or
modeling environments. BehaviorTree.CPP is implemented
as a C++ library, packaged as a ROS component, easy to inte-
grate with a ROS-based codebase [20]. In contrast, py_trees

Root Root Sequence Selector ?

Parallel Decorator Action

Condition

Figure 2. Behavior Trees node types (visual syntax)

199

Behavior Trees in Action: A Study of Robotics Applications SLE ’20, November 16–17, 2020, Virtual, USA

Table 2. Selected key language concepts in behavior trees, and a comparison with UML diagrams

Concept/aspect Behavior trees Activity diagrams State diagrams

programming
model

Synchronized, time-triggered, activity-based. Reactive
programming can be implemented to an extent using tick
and re-ordering sub-trees.

Asynchronous, reactive, ex-
plicit control-flow

Synchronous, reactive, ex-
plicit control-flow

simple nodes Execute actions (arbitrary commands, both instanta-
neous and long-lasting) or evaluate conditions (value
translated to success/failure).

Basic activity Basic action

exit status Each node reports success, failure, or an in-operation state
(“running”) each time it is triggered. Status report causes
the computation (the traversal) to advance to the next
node.

Completion of an activity ad-
vances state like in BTs, fail-
ures modeled by exception-
s/handlers

No direct support, control-
flow mostly driven by mes-
sage passing, not by activity
flow

composite

nodes

Define hierarchical traversal, the control-flow for each
epoch (tick). Sequentially composed. Nodes may start
concurrent code though.

Nested activities Nested states, both sequen-
tial and parallel

root Serves as entry point for every traversal. Has exactly one
child node. The root node is re-entered at every epoch.

Initial node, possibly a root
activity, initialized only once

Initial state, possibly a root
state, initialized only once

sequence Trigger children in a sequence until the first failure. If no
failure return success, otherwise fail.

No direct support, detect fail-
ure with exception handler

No direct support, use a par-
ent transition on failure

selector Trigger children in a sequence until the first success. If
no success return failure, otherwise succeed.

No direct support, difficult to
model with exceptions

No direct support, use a par-
ent transition on success

parallel Generalize sequence/selector with a policy parameter.
Several polices available, e.g. meeting a minimum number
succeeding children.

No direct support No direct support

goto (jumps) No general jump construct, the computation always tra-
verses the tree.

Supported Supported

decorators

inverter Invert the Success/Failure status of the child No expl. inversion operator No expl. inversion operator

succeed Return success regardless of status returned by the child No expl. support for status No expl. support for status

repeat Trigger the child node a set number of times, then succeed.
Fail if the child fails.

No direct support. Encode
with loops + counter/guard

No direct support. Encode
with loops + counter/guard

retry Run the child node and retry it immediately if it fails for
a maximum number of times, otherwise succeed.

No direct support. Encode
with loops + counter/guard

No direct support. Encode
with loops + counter/guard

dynamicity Runtime modifications of model (re-ordering of nodes)
possible due to the dynamic nature of the implementation

The syntax (order of execu-
tion) is fixed at run-time.

The syntax (order of execu-
tion) is fixed at run-time.

openness New nodes and operators implemented by users as needed Not possible (closed) Not possible (closed)

is a pure Python library. It has an extension py_trees_ros

which packages py_trees as a ROS package and adds ROS-
specific nodes.

Concrete Syntax. The syntactic elements of behavior trees
are presented graphically in Fig. 2. Fig. 1 showed an ex-
ample model in a slightly different concrete syntax. Both
dialects come with ways to visualize models as graphs, and
BehaviorTree.CPP even has a graphical editor and a visual
runtime monitor for its models called Groot (which which
the graphical representation of a behavior tree was visualized
in Fig. 1).

Nevertheless, it is important to understand that behav-
ior trees are not a visual modeling language in a traditional
sense. First, in both libraries, the models are constructed
in a text editor, in a mixture of C++, respectively Python.
Second, the models are constructed directly in abstract syn-
tax, by instantiating and wiring abstract syntax types. For
convenience, and to support Groot, BehaviorTree.CPP of-
fers an XML format, which can be used to write the tree
syntax in static files. This file is interpreted at runtime, and
an abstract syntax tree is constructed from it dynamically.
Third, crucially, the types of nodes (and, thus, the XML file
in BehaviorTree.CPP) do not constitute the entire meaning
of the model. An important part of the model is embedded in

200

SLE ’20, November 16–17, 2020, Virtual, USA Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Swaib Dragule, and Andrzej Wąsowski

Decorator

ParallelSelectorSequenceConditionAction

SimpleNode CompositeNodeSubTree

Root

TreeNode

ID: String
name: String

BehaviorTree

ID: String
1

main
1

*

refers to

1

1

*

*

Figure 3. A meta-model for BehaviorTree.CPP (reverse-
engineered from its XML format)

C++/Python code that is placed in the methods of the custom
node classes. This part of the model is neither modifiable
nor presentable in the graphical tools.
Finally, recall that BehaviorTree.CPP is realized as an

external DSL through Groot and the XML-like format, while
py_trees_ros constitutes an internal DSL, since it does not
have similar tools. From our experience analyzing their mod-
els (cf. Sect. 5), we can confirm that the BehaviorTree.CPP
models are much easier to comprehend, and the availability
of its visual editor Groot has made it faster to analyze the
behavior tree models than py_trees_ros models.

Semantics of Behavior Trees. The variant of behavior
trees used in robotics is predominantly a timed-triggered

activity-based behavioral modeling language. The computa-
tion consists of activities that have duration, like in activity
diagrams. Unlike in activity diagrams, the main control loop
does not shift control tokens or states around. Instead, it
triggers the entire model at (typically) fixed intervals of time
like a circuit. Every tick (or epoch) triggers a traversal of the
entire tree, with diversions introduced by various types of
nodes. The traversal can start new activities, evaluate condi-
tions, access state, and execute basic actions for side effects.
Reactive programming seems not to be supported first-class,
despite reappearing statements to the contrary,9 but can be
simulated by sufficiently high-frequency model execution.

The model has a global storage called blackboard, which is
a key-value store. No scopes are supported; all keys are global.
The blackboard is used for communicating, both within the
model and with the rest of the system. The model and the
system read and update the blackboard asynchronously.

Simple Nodes. Simple nodes, or leaves in the syntax tree,
are either conditions or actions. Actions realize the basic
computation in the model. Users of the language need to
implement custom action nodes—classes obeying the Action

9For example, the py_trees documentation states that the language pro-

vides a good blend of purposeful planning towards goals with enough reactivity

to shift in the presence of important events; https://py-trees.readthedocs.io/

en/devel/background.html

interface that contain Python or C++ code to be executed
whenever a node is ticked. Conditions calculate a value of a
Boolean predicate and convert it to a success or failure value.
Simple nodes, and by propagation also composite nodes,

return an explicit exit status, which can be a success, a failure,
or information that the action is still running. These values
propagate upwards during the tree traversal according to the
semantics of composite nodes, discussed below. The seman-
tics resembles that of a logical circuit, a neural network, a
flow diagram, or a computation in the failure monad known
in pure functional programming (but the modeling language
is obviously far from pure). The model receives results from
simple nodes and converts them through the network.
The simplest Action nodes are synchronous, so they ter-

minate quickly and return success or failure immediately.
Asynchronous nodes may also return a ‘running’ status and
use some form of concurrency to continue operation. The ex-
ecution engine will attempt to trigger them at the next epoch
again. The design of behavior tree languages does not pre-
scribe the model of concurrency, and implementations vary.
For instance, BehaviorTree.CPP implements asynchronous
nodes using coroutines [16]. A node that is not ready to ter-
minate can yield to the engine, and be restarted again at the
next epoch. This directly gives interleaving concurrency, but
can give true concurrency if the executed code uses threads
or parallel processes (which it would typically do in ROS).
Coroutine semantics is extremely rare inmodeling languages.
It was present in Simula [18]. Statecharts had a weak form
of coroutines as ‘history states’ [28], and more recently they
were used cooperatively in ABS [32]. It is interesting that
this semantics is coming back, thanks to programming lan-
guages re-discovering it. It is now supported in Python and
included in the 2020 C++ specification.

Observation 1. Implementations of behavior tree lan-
guages support both interleaving and true concurrency
using threads and coroutines. The model of concurrency
is not defined strictly in the language, but instead, left
largely to the users.

Composite Nodes. Composite nodes are internal nodes of
a behavior tree. Their main function is to define the order of
traversal at every time epoch (at every trigger). Unlike for
simple nodes, which need to be implemented by the user, the
language provides a range of predefined composite nodes.
The root node is the composite node that serves as an entry
point for every traversal, it contains another node as the
body. This node is re-entered to start every traversal. UML
languages do not have an explicit notion of ticks and of
reoccurring traversals. Both Activity Diagrams and State
Diagrams have initial nodes and a possibility to nest the
model in a root node, but their initial nodes are only started
once at the beginning of the model execution, revisited only
if the control-flow gets there.

201

Behavior Trees in Action: A Study of Robotics Applications SLE ’20, November 16–17, 2020, Virtual, USA

Table 3. Behavior tree concepts and corresponding language
elements in BehaviorTree.CPP and py_trees

Concept BehaviorTree.CPP py_trees

Simple
Node

subclasses of ActionNode
ConditionNode

behaviour.Behaviour

Composite subclasses of
ControlNode

classes in composites

Sequence Sequence,
SequenceStar

ReactiveSequence

composites.Sequence

Selector Fallback,
FallbackStar

ReactiveFallback

composites.Selector

composites.Chooser

Decorator subclasses of
DecoratorNode

classes in decorators

Parallel ParallelNode composites.Parallel

A sequence node triggers (visits) all children until the first
failure (similar to a forall higher order function, which is
standard in many programming languages). A selector node
triggers all children until the first success (similar to exist).
A parallel node is really a misnomer. It does not execute
nodes concurrently, but generalizes sequence and selector
to a range of policies; that is, the subset of children that shall
succeed or fail.

Since the execution is always a traversal of the entire tree,
there is no direct support for jumps (goto). Instead, composite
nodes can affect the traversal locally, in stark contrast to both
activity diagrams and state diagrams. In these languages, a
typical change of control allows an arbitrary change of state,
often cross-cutting the syntax tree.

Decorators. Decorators are unary composite nodes (only
one child). They decorate the sub-trees and modify their data
or control flow. An Inverter flips the return status of a child
between success and failure. A Succeeder always succeeds
regardless the status returned by its child node. A Repeat

node, which is stateful, acts like a for-loop: it continues to
trigger the child for a given number of ticks. It increments
an internal counter at every trigger. The node succeeds (and
resets the counter) on hitting a set bound. It fails (and resets
the counter) if the child fails. A Retry node resembles a repeat
node. Its main goal is to make a flaky node succeed. Like
Repeat it can run a node up to a set number of times, but
unlike Repeat, it only retries when a node fails and it retries
immediately without waiting for the next epoch. It fails if
the child failed in a given number of attempts.

Observation 2. The conceptual scope and semantics of
behavior tree languages differ significantly from the mod-
eling languages in UML. Behavior trees gather a number
of constructs based on patterns that, according to users

and developers, are frequently found in high-level control
of autonomous systems.

The above discussion is based on a broad description of be-
havior languages extracted from the available literature and
documentation of py_trees, py_trees_ros, and Behavior-
Tree.CPP [21, 39]. Table 3 presents the names of the basic
Behavior Trees concepts in the two dialects.

An interpreter or a compiler? Both dialects are inter-
preted. Once the abstract syntax tree is constructed, the
user is supposed to call a method to trigger the model once,
or to trigger it continuously at a fixed frequency. This does
not seem to depart far from other applications of models-at-
runtime [4, 5]. BehaviorTree.CPP uses template metapro-
gramming instead of code generation, which allows to offer
a bit of type-safety when implementing custom tree nodes,
without exposing users to any specialized code-generation
tools. Using the library appears like using a regular C++ li-
brary. As expected, no static type safety is offered in py_trees.

Openness. The openness and indefiniteness of behavior
trees are probably their most interesting aspects, after the
time-triggered coroutine-based model of computation. Oth-
ers have also noticed this in the context of variability in
DSLs [41]. Both languages are unusually open. Behavior-
Tree.CPP is technically an external DSL, but its implemen-
tation exposes aspects of dynamic internal DSLs. The pro-
grammer can both create models in XML (external, static),
and create new node types or modify the shape of the syntax
tree at runtime (dynamic). py_trees is an entirely dynamic
DSL, where new node types and Python code can be freely
mixed, like in internal DSLs.

Unlike in Ecore10 or UML, the language meta-model is not
fixed. The basic implementation provides the meta-classes
for composite nodes, while it leaves the simple nodes abstract
or only gives them bare bones functionality (cf. Fig. 3). A user
of the language is expected to first extend the meta-model by
implementing the basic action nodes, then link them together
in a syntax tree, possibly using an external XML file. This
practice vaguely resembles stereotyping [27]. Obviously, a
user of Ecore can extend the meta-model classes and give
them new functionality at runtime as well, however such use
of Ecore is considered advanced and is seen rather rarely. The
difference is that of degree: there is essentially no way to con-
sider using Behavior Trees without creating custom nodes.
This design pragmatically supports openness of the lan-

guage and makes adaptation to diverse scenarios in robotics
easy. The openness seems to be required due to a lack of
agreement in the robotics community about the ideal con-
trol model for robot behavior. Since this question is likely
to remain open for a long time, the design allows users to
adapt the language as they see fit when building robots.

10https://www.eclipse.org/modeling/emf/

202

SLE ’20, November 16–17, 2020, Virtual, USA Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Swaib Dragule, and Andrzej Wąsowski

Prerequisites (User Demographics). The open nature of
Behavior Trees means that the experience of building and
debugging models resembles very much language-oriented
programming as practiced in the modeling and language
design research community. One constantly deals with meta-
classes, composing them, traversing them, etc. Anybody fa-
miliar with building DSLs on top of Ecore or similar frame-
works will definitely experience a déjà vu, when using either
py_trees or BehaviorTree.CPP.

Given that many robotics engineers, and many ROS users,
lack formal training in computer science and software engi-
neering [2], it is surprising to us that this design seems to be
well received in the community. Even within software engi-
neering, language implementation and meta-programming
skills are often considered advanced. Yet, using Behavior
Trees requires such skills. A challenge for the modeling com-
munity is lurking here: to design a Behavior Trees language
that, while remaining flexible and easy to integrate with
large and complex existing code bases, is much easier to use
for a regular robotics programmer.

Observation 3. The flexibility and extensibility of Behav-
ior Trees require language-oriented programming skills
from robotics developers. The software-language engi-
neering community could contribute by designing an
accessible, but still flexible, dialect of Behavior Trees.

Separation of Concerns. Behavior Trees are platform-spe-
cific models (PSMs) built as part of a specific robotics system
to control behaviors at runtime. The models are used to
simplify and conceptualize the description of behavior. The
ability to reuse the same models with other hardware or
similar systems is not (yet!) a primary concern. Behavior
Trees not only are PSMs, but tend to be very tightly inte-
grated with the system. Custom nodes tend to refer to system
elements directly and interact with the system API. As a re-
sult, it is hard to use these models separately from the robot.
While Groot can visualize a standalone XML file of a model,
a working build environment of ROS is needed just to visu-
alize the syntax of a py_trees_ros model. This may mean
not only an installation of suitable Python and ROS libraries,
but, for example, a working simulation of the robot, or even
the hardware environments. You need to launch the system
and inject a visualization call to inspect the model!

It is in principle possible with both libraries to build mod-
els that are completely decoupled from the system. It suffices
to route all communication with the system via the black-
board. BehaviorTree.CPP provides dedicated XML primi-
tives for this purpose, allowing the entire behavior to be
programmed in XML, provided the rest of the system can
read from andwrite to the blackboard. This separation allows
models to be processed outside the system for visualization,
testing, grafting into other systems, and so on. We definitely
think this is a good architectural practice to follow. Nev-
ertheless, it is not what we observed in real-world models

(cf. Sect. 5). Most models mix the specification of behavior
deeply with its implementation, making separation virtually
impossible.

Observation 4. Behavior tree models tend to be deeply
intertwined with behavioral glue code linking them to
the underlying software system. This makes operating
on models outside the system difficult, hampering visual-
ization, testing, and reuse.

5 Behavior Tree Models (RQ2 & RQ3)

We identified 75 behavior tree models belonging to 25 robotic
projects, as summarized in Table 4. Their domains are:

• navigation and verbal communication (gizmo, neuron-

bot2_multibot, vizzy_playground, vizzy_behavior_trees, MiRON-

project, behavior_tree_roscpp, BT_ros2);
• pick-and-place (stardust, refills_second_review, pickplace, mo-

bile_robot_project, mecatro-P17);
• serving robot (Pilot-URJC, robocup2020, BTCompiler, Yarp-Smart-

Soft-Integration, carve-scenarios-config);
• real-time strategy and inspection (roborts_project, robotics-

player, Robotics-Behaviour-Planning);
• health and nursing home (hans-ros-supervisor, bundles);
• testing submarine hardware (Smarc_missions, sam_march);
• drone-based parcel delivery (dyno).

RQ2.Use of BehaviorTree LanguageConcepts. Wemea-
sured themetrics explained in Sect. 3.2 on py_trees_ros and
BehaviorTree.CPP projects. Table 4 presents these metrics
under model characteristics. In general, we noticed a large
variation in BT.size among models (11% of models have a
BT.size > 50, 56% ≥ 10, and 33% of models have BT.size < 10).

In addition, 66% of total node types were leaf nodes (1, 228
out of 1, 850 total node types), while composite nodes ac-
quired 34% of total node types. Since leaf nodes are dom-
inated in the model, we decided to explore the usage of
composite concepts against each other to have a better un-
derstanding of how the concepts are used. Table 5 summa-
rizes the usage of composite nodes for each studied project
models (as of 2020/07/16).
Most of the composite nodes in our projects are of type

Sequence (53% with py_trees_ros, 57% with Behavior-

Tree.CPP) and Selector (28% and 19% respectively). The Par-
allel concept was not used much, only 7% of total composite
nodes. (The reader might recall that it is not any more con-
current than Sequence and Selector.) This perhaps explains
why standard libraries of programming languages normally
do not include generalizations of existential and universal
quantifier functions (exists and forall)—these use cases seem
to be rare. The re-entrant nature of the behavior tree lan-
guage allows to use Parallel to wait until a minimum number
of sub-trees succeed. This however does not seem to be used
as often as we expected.

203

Behavior Trees in Action: A Study of Robotics Applications SLE ’20, November 16–17, 2020, Virtual, USA

Table 4. Subject projects identified from GitHub that use behavior tree models to define robot behavior. The average of BT.size
and BT.depth were taken for projects with multiple models.

Project Name &

GitHub Repository

Last

Commit

Model Characteristics

L
a
n
g
.

M
o
d
e
ls

Model Description B
T
.s
iz
e

B
T
.d
ep
th

N
.p
ct

A
B
F

sam_march

KKalem/sam_march

2019/03/08 py 1 Model re-use sub-trees and some functions in different branches. Ex-

ploits modularity by reusing sub-trees

53 9 Comp: 38%

Leaf: 62%

2.5

mobile_robot_project

simutisernestas/mobile_robot_project

2019/10/07 py 1 Model reuses same sub-tree in different places in the tree. Shows mod-

ularity of BTs.

30 5 Comp: 40%

Leaf: 60%

2.5

smarc_missions

smarc-project/smarc_missions

2020/02/17 py 2 Exploits modularity by reusing sub-trees. puts ROS data into

blackboard shared among sub-trees.

29 7 Comp: 36%

Leaf: 64%

2.7

dyno

samiamlabs/dyno

2018/10/11 py 2 Two models with same structure (e.g., composite nodes, depth, size),

differ in leaf nodes and passed parameters. Illustrates reuse among BTs.

29 6 Comp: 38%

Leaf: 62%

3

gizmo

peterheim1/gizmo

2019/02/22 py 8 Multiple models with same structure (e.g., tree depth, model size) but

minor changes for nodes type. Shows use of different node types to

implement same mission with similar BT structure.

17 5 Comp: 38%

Leaf: 62%

2.4

roborts_project

Taospirit/roborts_project

2019/11/26 py 1 Complex robot tasks, but simple model. Multiple sequence sub-trees

ends with leaf nodes executing functions with the actual complex tasks.

16 3 Comp: 38%

Leaf: 63%

2.5

robotics-player

braineniac/robotics-player

2018/06/29 py 1 Each tasks is modeled using sequence sub-trees. Simple model, actions

are executed in leaf nodes by reading and writing to blackboard.

12 4 Comp: 33%

Leaf: 67%

2.8

Robotics-Behaviour-Planning

jotix16/Robotics-Behaviour-Planning

2019/10/05 py 3 Models with similar tree structure, but different parameters are passed

depending on the task.

12 3 Comp: 23%

Leaf: 77%

4.4

refills_second_review

refills-project/refills_second_review

2020/02/19 py 1 Simple model. A sub-tree executes sequence of tasks (implemented via

functions), which use blackboard to read sensors values (e.g., shelf ID).

8 4 Comp: 38%

Leaf: 63%

2.3

pickplace

ipa-rar/pickplace

2020/04/01 C++ 1 Model reuses sub-tree concept in different ways; same sub-tree in

different places and sub-trees almost identical but have minor difference

(setBlackboard node added). Shows modularity and reusability in BTs.

85 8 Comp: 32%

Leaf: 68%

3.0

stardust

julienbayle/stardust

2019/06/09 C++ 4 Among our largest models found. Exploits modularity and reusability

of sub-trees.

56 8 Comp: 39%

Leaf: 61%

2.7

neuronbot2_multibot

skylerpan/neuronbot2_multibot

2020/07/12 C++ 2 Both models are similar but passing different parameters to the tree.

Exploits modularity of sub-trees.

54 10 Comp: 50%

Leaf: 50%

2.1

mecatro-P17

alexandrethm/mecatro-P17

2019/06/01 C++ 11 Models with multiple sub-trees for different sequential tasks. Some

sub-trees reuse structure, but other parameters passed based on task.

49 4 Comp: 20%

Leaf: 80%

4.7

Yarp-SmartSoft-Integration

CARVE-ROBMOSYS/Yarp-SmartSoft-Integration

2019/04/23 C++ 1 Shows combination of Selector and condition nodes to keep track of

robot surrounding environment before executing action.

31 7 Comp: 42%

Leaf: 58%

2.2

bundles

MiRON-project/bundles

2020/07/10 C++ 5 The different models take advantage of behavior trees modularity using

the same sub-trees.

16 5 Comp: 43%

Leaf: 57%

1.8

BTCompiler

CARVE-ROBMOSYS/BTCompiler

2019/04/09 C++ 8 Shows combination of Selector and condition nodes to keep track of a

robot surrounding environment before executing action. Two models

similar to Yarp-SmartSoft-Integration, illustrating cross-project reuse.

15 6 Comp: 40%

Leaf: 60%

2.1

BT_ros2

Adlink-ROS/BT_ros2

2020/06/12 C++ 2 The two models exploit modularity and reusability of sub-trees. 14 7 Comp: 54%

Leaf: 46%

1.6

vizzy_behavior_trees

vislab-tecnico-lisboa/vizzy_behavior_trees

2020/04/02 C++ 7 The models show different ways to implement the same activity with

or without sub-trees.

13 6 Comp: 45%

Leaf: 55%

1.8

hans-ros-supervisor

kmi-robots/hans-ros-supervisor

2018/10/11 C++ 1 Simple model with only two sub trees. 8 5 Comp: 50%

Leaf: 50%

1.6

Pilot-URJC

MROS-RobMoSys-ITP/Pilot-URJC

2020/06/10 C++ 2 Models contain customized nodes implementation (developers imple-

mented a customized node type) for sequence and decorator nodes.

8 4 Comp: 40%

Leaf: 60%

2.6

vizzy_playground

vislab-tecnico-lisboa/vizzy_playground

2020/04/05 C++ 6 Shows simple behavior tree models using combinations of sequence

and action nodes.

8 3 Comp: 32%

Leaf: 68%

2.0

behavior_tree_rosC++

ParthasarathyBana/behavior_tree_rosC++

2020/06/24 C++ 1 Simple behavior tree model showing the usage of combining sequence

and condition nodes.

7 3 Comp: 43%

Leaf: 57%

1.8

MiRON-project

ajbandera/MiRON-project

2020/02/21 C++ 1 Simple behavior tree model. 7 2 Comp: 14%

Leaf: 86%

6

robocup2020

IntelligentRoboticsLabs/robocup2020

2020/03/25 C++ 2 Simple behavior tree model with customized nodes implementation. 7 2 Comp: 23%

Leaf: 77%

3

204

SLE ’20, November 16–17, 2020, Virtual, USA Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Swaib Dragule, and Andrzej Wąsowski

Table 5. Usage of different composite nodes to the total
of composite nodes in the identified robotic projects and in
total for all projects

Composite Nodes

Project Name Se
q
u
en
ce

Se
le
ct
o
r

D
ec
o
ra
to
r

P
ar
al
le
l

roborts_project py_trees_ros 83% 17% 0% 0%

refills_second_review 67% 0% 33% 0%

gizmo 58% 17% 6% 19%

smarc_missions 57% 29% 0% 14%

sam_march 55% 25% 0% 20%

robotics-player 50% 50% 0% 0%

dyno 45% 27% 18% 9%

Robotics-Behaviour-Planning 38% 63% 0% 0%

mobile_robot_project 25% 67% 8% 0%

robocup2020 BehaviorTree.CPP 100% 0% 0% 0%

MiRON-project 100% 0% 0% 0%

pickplace 81% 11% 0% 7%

BT_ros2 80% 7% 13% 0%

vizzy_playground 73% 20% 7% 0%

mecatro-P17 70% 0% 19% 11%

behavior_tree_roscpp 67% 33% 0% 0%

neuronbot2_multibot 59% 11% 26% 4%

vizzy_behavior_trees 53% 23% 13% 13%

Pilot-URJC 50% 17% 33% 0%

hans-ros-supervisor 50% 0% 50% 0%

BTCompiler 46% 54% 0% 0%

stardust 44% 16% 38% 2%

carve-scenarios-config 38% 62% 0% 0%

Yarp-SmartSoft-Integration 38% 63% 0% 0%

bundles 37% 20% 31% 11%

Share in population of all models 56% 21% 16% 7%

Decorators are used relatively rarely in py_trees_ros

models, they constitute 6% of the composite nodes. This is
likely explained by the fact that it is easier to apply the trans-
forming operations directly in the Python code, using Python
syntax, than elevating it to behavior tree abstract syntax con-
structors. The situation is different with BehaviorTree.CPP,
where decorators are used almost three times as often (19% of
composite nodes). Here, the benefit of using the decorators
(data-flow operators) of behavior tree instead of C++ allows
them to be visualized and monitored in the graphical edi-
tor (Groot). No such tool is available for py_trees, so likely
bigger parts of the model may “leak” to the code. This demon-
strate that Behavior trees users often have a choice of what is
in scope and what out of scope for a model. This is a property
that clearly distinguishes GPLs from DSLs. Yet, in our experi-
ence, the skill of deciding the model scope and the precision
level is rarely discussed in teaching and research literature.

Finally, we have observed that none of the models imple-
ment their own custom nodes. They relay on the extensi-
bility of behavior trees using new custom operator (decora-
tors). By using the available off-shelf decorators in Behavior-
Tree.CPP and py_trees_ros, they were sufficient to create
a custom behavior to change an action/condition status, or
customize an action length, e.g. want to execute an action
without waiting, retry an action 𝑛 times before given up, or
repeat an action 𝑛 times.

Going back to Fig. 1, the decorator RetryUntilSuccesful
was used to create a conditional loop that executes the sub-
tree under (ExplorationSeq) 10 times, unless the task fails,
which is inverted into a success by an (Inverter). The devel-
opers were able to model this without having to use while-
loop or a similar general control-flow structure in the script.

Observation 5. The studied Behavior tree languages
offer a range of concepts that are well suited to roboticists,
but the offered concepts usage might differ according to
the language.

RQ3. Characteristics of behavior tree models. We al-
ready presented core structural characteristics of our models
in Table 4. We now focus on reuse as one of the major issues
in robotics software engineering [25, 26]. In fact, our quali-
tative analysis of the models shows that reusing parts of the
trees plays a major role.
Reusing refers to the ability to divide a mission into sub-

tasks represented by sub-trees or functions and reusing them
in the same models or across models. The creators of our
models tend to divide them into sub-tasks, which are repre-
sented by sub-trees or actions that can be easily separated
and recombined like building blocks. They can be re-used in
other models when they share similar activities, improving
the efficiency of modeling.
We observed three patterns of reusing in the studied be-

havior tree models: reuse by reference, reuse by clone-and-

own [19], and reuse by reference through file inclusion.
59% of behavior tree models exploit reuse by reference in

their models, and in the projects with multiple models, devel-
opers even reuse across the different models (33% of projects).
Developers implemented reuse by reference mostly by cre-
ating a sub-tree for a repeated activity, then re-using it by
reference in multiple branches in the model after passing the
new values for its parameters (usually writing a new value
to a blackboard). Another implementation is by defining a
leaf node as a function in an external file (header files), then
reusing it by reference after passing new values to its pa-
rameters. Figure 4 shows an excerpt from one of our models,
presenting the different tasks for a robot in a retirement
home. The red box highlights an example of reuse by refer-
ence, where the developer wrapped the moving activity in
the sub-tree (Recharge) and reused it in multiple parts of the
model. Another example of reuse by reference, but for a leaf

205

Behavior Trees in Action: A Study of Robotics Applications SLE ’20, November 16–17, 2020, Virtual, USA

Root

Parallel

VariantAction

Sequence

Recharge subTree

expanded

Repeat

Fallback
?

peoplerecognition
moveRoboterPosition

<approachRadius="200"

x="5630" y="-12000">

Switch2

Recharge

<SubTree>

Recharge

<SubTree>

SearchThomasRoom1

<SubTree>

SearchThomasRoom2

<SubTree>

Recharge

<SubTree>

Recharge

<SubTree>

Sequence

moveRoboterPosition

<approachRadius="200"

name="Door8"

x="23200" y="-12000">

moveRoboterPosition

<approachRadius="10"

name="GotoCharger"

x="23200" y="-14800">

Figure 4. Behavior tree model of a retirement home robot from project bundles. The red box highlights an example of a reuse
by reference for a sub-tree Recharge (expanded on the right side). A legend is shown in Figure 2.

node, is shown in the action moveRoboterPosition, where
it was used in multiple parts in the model, only changing the
parameters’ values (name, approachRadius, x, and y).
Reuse by clone-and-own was used slightly less frequently

than reuse by reference (in 48% of behavior tree models). In
projects with multiple behavior tree models, we observe that,
when two behavior trees have the same activities, the similar
parts (a branch in the tree, a sub-tree or the entire model) are
reused after some minor changes, such as adding new nodes
or removing old ones. The Dyno project in Fig. 5, a drone-
based parcel delivery project, includes two behavior tree
models: one for a parcel delivery mission (M1) and another
one for a route scheduler mission (M2). These models are an
example of clone-and-own, where the developer reused the
entire behavior tree model for two different missions that
share similar activities after proper modification depending
on the mission.11

Reuse by reference through file inclusion was used in 40% of
the projects (10 of the 25 projects). Repeated activities were
implemented as action nodes in header files that were passed
later in the main tree execution file. This allows projects with
multiple models having similar activities to reuse these ac-
tions in different parts of the model. Zooming into these
projects, 30% of them belong to BehaviorTree.CPP projects,
and 70% to py_trees_ros projects. Going back to our discus-
sion in Sect. 4, these numbers can be related to Behavior-

Tree.CPP having a dedicated XML format to express the
behavior tree model, so reuse by inclusion is done on the
(C++) source-code level code, which we speculate can be
challenging to use and maintain by the developers. While
behavior tree models in py_trees_ros are intertwined with
the Python code, making it easier to reuse by inclusion. How-
ever, the nature of the projects and the frequency of needed

11The model can be found in full-size in the online appendix, [1] in addition

to the models of the other projects.

changes might have influenced the developer choice of reuse
mechanism in both languages, since changing on the ac-
tion level can be done easily without the challenge of going
through every model in this mechanism. However, these con-
jectures need to be confirmed by feedback from the projects’
developers, which we see as valuable future work.

Observation 6. We conjecture that the identified sim-
ple reuse mechanisms suffice for the identified robotics
projects. It is less clear whether it would be useful to have
more safe and rich reuse mechanisms known from main-
stream programming languages, including namespacing
and safe reuse contracts (interfaces), which tend to be
heavyweight for users to learn and use. More research
is needed to determine whether sufficiently lightweight
and safe reuse mechanism could be realized.

6 Threats to Validity

Internal. Themajor threat that could affect the results about
the models are possible errors in our Python scripts calcu-
lating the model metrics. As a form of a quality check, we
manually counted node types and checked the script results
against these after building the model. We excluded com-
mented parts and unused node types in the behavior trees
codes.
When comparing behavior trees to other UML diagrams,

we only conducted a comparison to behavior trees concepts
and whether the UML diagrams support them or not. Thus,
we might have missed other concepts offered by those two
UML languages, but not behavior trees, which could have
highlighted the limitation of Behavior trees. In a research
extension, we plan to mitigate that.
External. The list of identified open source robotic projects
might be missing examples from Bitbucket and GitLab. Both
platforms are used in the robotics community, however, they
do not provide a code search API, which made it difficult

206

SLE ’20, November 16–17, 2020, Virtual, USA Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Swaib Dragule, and Andrzej Wąsowski

Topics2BB

Main Coordination

Tee

Priorities

/world_state/

locations

/world_state/

objects
start stop clear add_delivery Queue

empty?

Clear deliveries

from queueClear?
Set should

moveStart?

Move

Move to

next object

Move or be

canceled

Move

Cancel

Should

move?

Clear should

move

Pick up

parcel

Move to next

location

Drop off

parcel

Remove first

delivery from

queue

Idle

Root

Clear Queue

<SuccessIsFailure>

Start

<SuccessIsFailure>

Clear Queue Start
?

?

?

Stop?

Parcel delivery model

Topics2BB

Main Coordination

Tee

Priorities

/world_state/

locations
start stop clear add_location

Queue

empty?

Clear locations

from queueClear?

Set should

moveStart?

Move

Move to next

waypoint

Move

Cancel

Should

move?

Stop? Clear should

move

Remove first location

from queue

Idle

Root

Clear Queue

<SuccessIsFailure>

Start

<SuccessIsFailure>

Clear Queue
Start

?

?
Route scheduler model

Move or be

canceled

?

Figure 5. An example of clone-and-own referencing in Behavior trees from project Dyno. Each model belong to a different
mission (M1) parcel delivery, and (M2) a route scheduler. Legend in Figure 2.

to conduct a code-level search. We conducted a less precise
query in Bitbucket and GitLab using behavior trees as a search
term in the web interface, however, we could not identify
any real robotics projects from that search.
We have only considered projects using Python and C++

libraries with ROS support, while there might be other open-
source robotics projects out there. We acknowledge that
limiting our search to ROS-supported languages might have
resulted in missing other robotic projects. However, we fo-
cused on the two dominant languages in ROS, assuming that
this is the most representative framework for open source
robotics.

7 Related Work

Guidelines how to apply behavior trees as well as important
model properties relevant for multi-robotics systems have
been discussed before, by Colledanchise et al. [11–15]. How-
ever, these works do not provide real-world robotic projects
to support the claims related to the model properties of be-
havior trees modularity, flexibility, and reusability. In con-
trast, we conducted an empirical study of behavior tree char-
acteristics in real-world robotic projects, and in comparison
to those literature, we were only able to observe reusability
through analyzing the studied behavior tree models. So, our
work can be considered as complementary, confirming some
of the declared claims about behavior trees. However, more
research is needed to support the other claims.

The use of behavior trees in various robotics sub-domains
has also been discussed before. Colledanchise and Ögren

[14], in their thorough introduction to behavior trees, dis-
cuss model excerpts from industrial applications that the
authors are aware of (e.g., by the truck manufacturer SCA-
NIA). They also discuss the relationship of behavior trees to
other behavior models (e.g., finite state machine and deci-
sion tree). A survey Iovino et al. [30] of 160 research papers,
devoted to the development of behavior tree as a tool for AI
in games and robotics, have highlighted how behavior trees
have been used in different application areas. In comparison
to our work, we focus on comparing behavior trees modeling
concepts and design principles from a language perspective.
In addition, we provide actual behavior tree models in a com-
munity dataset mined from open-source robotic projects.
which non of the previous literature did, which can be used
for further research.
Bagnell et al. [3] present a robotic system with percep-

tion, planning, and control, where task control is driven by
behavior trees. The authors find that behavior trees easily de-
scribe complex manipulation tasks, and that behaviors can be
reused. They chose behavior trees, because they had a team
with a broad skill sets and needed a task orchestrating model
that is easy to by each team member. Our findings support
their claim to some extent, assuming all team members have
basic programming skills. However, we noticed that behavior
trees require language-oriented programming skills.

8 Conclusion

We presented a study of behavior trees languages and their
use in real-world robotics applications. We systematically

207

Behavior Trees in Action: A Study of Robotics Applications SLE ’20, November 16–17, 2020, Virtual, USA

compared the concepts of popular behavior tree language
implementations with each other and with two other es-
tablished UML languages for describing behavior (state ma-
chines and activity diagrams).Wemined open-source projects
from code repositories and extracted their behavior tree mod-
els from the codebases, analyzing their characteristics and
use of concepts. We contribute a dataset of models in the on-
line appendix [1], together with scripts, and additional data.
Our analysis sheds light on languages designed outside

of the language-engineering community for the vibrant and
highly interesting domain of robotics. We believe that study-
ing modeling and language-engineering practices is benefi-
cial for both communities, as it helps to improve language-
engineering methods and tools, as well as to improve the
actual practices and languages. In fact, our results illustrate
that many of the modeling and language-engineering meth-
ods are relevant in practice, especially the models-at-runtime
paradigm but also reusability and meta-model extensibility.
However, it also shows that developing languages in a rather
pragmatic way, without hundreds of pages of specification
documents and with a basic, but extensible meta-model, or
even without an explicitly defined meta-model seems to be
successful. Such a strategy seems to attract practitioners
not trained in language and modeling technology, allow-
ing practitioners who come from lower-level programming
paradigms to raise the level of abstraction and effectively im-
plement missions of robots in higher-level representations.

Still, we have observed aspects of behavior tree languages
and models that are clearly suboptimal from the language
design perspective, and pose interesting opportunities for
this community to make impact. Behavior trees are a highly
extensible language, but this comes at a cost of not having
proper concrete syntax, and a seemingly high requirements
that its users need to be familiar with language-oriented
programming. Moreover, the abstract-syntax oriented mod-
eling encourages heavy coupling of the model and the con-
trolled system. This makes it really hard to work with models
separately—for instance, verification, testing, and even visu-
alizing may be a challenge without a working build system.
In the future, we would like to identify further sources

of models and analyze them, as well as deepen the compar-
ison with the traditional behavior-specification languages,
which includes mining state machines represented in popu-
lar libraries (e.g., SMACH [6] or FlexBE [38]). Improving the
syntax and semantics of behavior tree languages themselves
is another interesting direction for future research we want
to pursue.

Acknowledgment

This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation, the EU H2020
project ROSIN (732287), and the SIDA project BRIGHT.

References
[1] 2020. Online Appendix. https://bitbucket.org/easelab/behaviortrees.

[2] Adam Alami, Yvonne Dittrich, and Andrzej Wasowski. 2018. Influ-

encers of quality assurance in an open source community. In 11th

International Workshop on Cooperative and Human Aspects of Software

Engineering (CHASE).

[3] J Andrew Bagnell, Felipe Cavalcanti, Lei Cui, Thomas Galluzzo, Martial

Hebert, Moslem Kazemi, Matthew Klingensmith, Jacqueline Libby,

Tian Yu Liu, Nancy Pollard, et al. 2012. An integrated system for

autonomous robotics manipulation. In International Conference on

Intelligent Robots and Systems (IROS).

[4] Nelly Bencomo, Robert B. France, Betty H. C. Cheng, and Uwe Aß-

mann (Eds.). 2014. Models@run.time—Foundations, Applications, and

Roadmaps. Vol. 8378. Springer.

[5] Gordon Blair, Nelly Bencomo, and Robert B France. 2009. Mod-

els@run.time. IEEE Computer 42, 10 (2009), 22–27.

[6] Jonathan Bohren and Steve Cousins. 2010. The SMACH high-level

executive [ROS news]. IEEE Robotics & Automation Magazine 17, 4

(2010), 18–20.

[7] Iva Bojic, Tomislav Lipic, Mario Kusek, and Gordan Jezic. 2011. Extend-

ing the JADE agent behaviourmodel with JBehaviourTrees Framework.

In KES International Symposium on Agent and Multi-Agent Systems:

Technologies and Applications.

[8] Juan Chen and DianXi Shi. 2018. Development and Composition of Ro-

bot Architecture in Dynamic Environment. In International Conference

on Robotics, Control and Automation Engineering (RCAE).

[9] Michele Colledanchise. 2017. Behavior trees in robotics. Ph.D. Disserta-

tion. KTH Royal Institute of Technology.

[10] Michele Colledanchise. 2017. BT++ library Documentation.

https://github.com/miccol/ROS-Behavior-Tree/blob/master/

BTUserManual.pdf.

[11] Michele Colledanchise, Alejandro Marzinotto, Dimos V Dimarogonas,

and Petter Oegren. 2016. The advantages of using behavior trees in

multi robot systems. In 47th International Symposium on Robotics (ISR).

[12] Michele Colledanchise and Petter Ögren. 2014. How Behavior Trees

modularize robustness and safety in hybrid systems. In International

Conference on Intelligent Robots and Systems (IROS).

[13] Michele Colledanchise and Petter Ögren. 2016. How behavior trees

modularize hybrid control systems and generalize sequential behavior

compositions, the subsumption architecture, and decision trees. IEEE

Transactions on robotics 33, 2 (2016), 372–389.

[14] Michele Colledanchise and Petter Ögren. 2018. Behavior Trees in

Robotics and Al: An Introduction. CRC Press.

[15] Michele Colledanchise, Ramviyas Parasuraman, and Petter Ögren. 2018.

Learning of behavior trees for autonomous agents. IEEE Transactions

on Games 11, 2 (2018), 183–189.

[16] Melvin E. Conway. 1963. Design of a Separable Transition-Diagram

Compiler. Commun. ACM 6, 7 (July 1963), 396–408.

[17] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford

Stein. 2009. Introduction to algorithms. MIT press. Appendix B.5.3

pages.

[18] O.-J. Dahl and C.A.R. Hoare. 1972. Hierarchical Program Structures. In

Structured Programming, O.-J. Dahl, E. W. Dijkstra, and C.A.R. Hoare

(Eds.). Academic Press.

[19] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski,

Martin Becker, and Krzysztof Czarnecki. 2013. An Exploratory Study

of Cloning in Industrial Software Product Lines. In 17th European

Conference on Software Maintenance and Reengineering (CSMR).

[20] Davide Faconti. 2019. MOOD2Be: Models and Tools to design Robotic

Behaviors. https://github.com/BehaviorTree/BehaviorTree.CPP/blob/

master/MOOD2Be_final_report.pdf

[21] Davide Faconti and Michele Colledanchise. 2018. BehaviorTree.CPP

library Documentation. https://www.behaviortree.dev.

208

SLE ’20, November 16–17, 2020, Virtual, USA Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Swaib Dragule, and Andrzej Wąsowski

[22] Epic Games. 2020. Unreal Engine 4 Behavior Tree library

Documentation. https://docs.unrealengine.com/en-US/Engine/

ArtificialIntelligence/BehaviorTrees/BehaviorTreeUserGuide/index.

html.

[23] Sergio García, Patrizio Pelliccione, Claudio Menghi, Thorsten Berger,

and Tomas Bures. 2019. High-level mission specification for mul-

tiple robots. In 12th International Conference on Software Language

Engineering (SLE).

[24] Sergio Garcia, Patrizio Pelliccione, Claudio Menghi, Thorsten Berger,

and Tomas Bures. 2020. PROMISE: High-Level Mission Specification

for Multiple Robots. In 42nd International Conference on Software Engi-

neering (ICSE), Demonstrations Track.

[25] Sergio Garcia, Daniel Strueber, Davide Brugali, Thorsten Berger, and

Patrizio Pelliccione. 2020. Robotics Software Engineering: A Per-

spective from the Service Robotics Domain. In 28th ACM SIGSOFT

International Symposium on the Foundations of Software Engineering

(FSE).

[26] Sergio Garcia, Daniel Strueber, Davide Brugali, Alessandro Di Fava,

Philipp Schillinger, Patrizio Pelliccione, and Thorsten Berger. 2019.

Variability Modeling of Service Robots: Experiences and Challenges.

In 13th International Workshop on Variability Modelling of Software-

intensive Systems (VaMoS).

[27] Object Management Group. 2017. OMG Unified Modeling Language

2.5.1. https://www.omg.org/spec/UML/

[28] DavidHarel. 1987. Statecharts: A visual formalism for complex systems.

Science of computer programming 8, 3 (1987), 231–274.

[29] FrederickWPHeckel, GMichael Youngblood, and Nikhil S Ketkar. 2010.

Representational complexity of reactive agents. In IEEE Conference on

Computational Intelligence and Games (CIG). IEEE.

[30] Matteo Iovino, Edvards Scukins, Jonathan Styrud, Petter Ögren, and

Christian Smith. 2020. A Survey of Behavior Trees in Robotics and AI.

arXiv preprint arXiv:2005.05842 (2020).

[31] Damian Isla. 2005. Handling complexity in the Halo 2 AI. GDC 2005

Proceedings (2005). https://www.gamasutra.com/view/feature/130663/

gdc_2005_proceeding_handling_.php?page=2

[32] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and

Martin Steffen. 2010. ABS: A Core Language for Abstract Behavioral

Specification. In 9th International Symposium on Formal Methods for

Components and Objects (FMCO).

[33] Andreas Klöckner. 2013. Interfacing behavior trees with the world

using description logic. In AIAA Guidance, Navigation, and Control

Conference (GNC).

[34] ClaudioMenghi, Christos Tsigkanos, Patrizio Pelliccione, Carlo Ghezzi,

and Thorsten Berger. 2019. Specification Patterns for Robotic Missions.

IEEE Transactions on Software Engineering (2019). preprint.

[35] Ian Millington and John Funge. 2009. Artificial intelligence for games.

CRC Press.

[36] Petter Ögren. 2012. Increasing modularity of UAV control systems

using computer game behavior trees. In AIAA Guidance, Navigation,

and Control Conference (GNC).

[37] Francesco Rovida, Bjarne Grossmann, and Volker Krüger. 2017. Ex-

tended behavior trees for quick definition of flexible robotic tasks. In

IEEE/RSJ International Conference on Intelligent Robots and Systems (

IROS).

[38] Philipp Schillinger, Stefan Kohlbrecher, and Oskar von Stryk. 2016.

Human-Robot Collaborative High-Level Control with an Application

to Rescue Robotics. In IEEE International Conference on Robotics and

Automation (ICRA).

[39] Daniel Stonier, Naveed Usmani, and Michal Staniaszek. 2020. Py

Trees library Documentation. https://py-trees.readthedocs.io/en/

devel/background.html.

[40] Daniel Stonier, Naveed Usmani, and Michal Staniaszek. 2020. Py Trees

ROS library Documentation. http://docs.ros.org/kinetic/api/py_trees_

ros/html/index.html.
[41] Juha-Pekka Tolvanen and Steven Kelly. 2019. How Domain-Specific

Modeling Languages Address Variability in Product Line Development:

Investigation of 23 Cases. In 23rd International Systems and Software

Product Line Conference (SPLC).

209

