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Abstract
In recent works—both experimental and theoretical—it has been shown how to use
computational geometry to efficiently construct approximations to the optimal trans-
port map between two given probability measures on Euclidean space, by discretizing
one of the measures. Here we provide a quantitative convergence analysis for the
solutions of the corresponding discretized Monge–Ampère equations. This yields
H1-converge rates, in terms of the corresponding spatial resolution h, of the discrete
approximations of the optimal transport map, when the source measure is discretized
and the target measure has bounded convex support. Periodic variants of the results are
also established. The proofs are based on new quantitative stability results for optimal
transport maps, shown using complex geometry.

Keywords Monge–Ampère equations · Optimal transport · Numerical analysis ·
Complex differential geometry

Mathematics Subject Classification 35J60 · 90C08 · 65N99 · 53C56

1 Introduction

The theory of optimal transport [47], which was originally motivated by applications
to logistics and economics, has generated a multitude of applications ranging from
meteorology and cosmology to imageprocessing and computer graphics inmore recent
years [44,45]. This has led to a rapidly expanding literature on numerical methods to
construct optimal transport maps, using an appropriate discretization scheme. From
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the PDE point of view, this amounts to studying discretizations of the second boundary
value problem for the Monge–Ampère operator. The present paper is concerned with
a particular discretization scheme, known as semi-discrete optimal transport in the
optimal transport literature (see [6] and references therein for other discretization
schemes, based on finite differences). This approach uses computational geometry
to compute a solution to the corresponding discretized Monge–Ampère equation and
exhibits remarkable numerical performance, using a dampedNewton iteration [34,38].
The convergence of the iteration toward the discrete solution was recently settled
in [31], and one of the main aims of the present paper is to establish quantitative
convergence rates of the discrete solutions, as the spatial resolution h tends to zero.

1.1 Background

Throughout the paper, we fix open bounded domains X and Y in Rn with Y assumed
convex and a probability measure ν on Y with a density which is uniformly bounded
from below:

ν = 1Y g(y)dy, g ∈ L1(Rn), δ := inf
Y

g > 0 (1.1)

We recall that in the casewhenμ is a probabilitymeasure on X which is also absolutely
continuous with respect to dx, i.e., μ ∈ Pac(X), then a map T in L∞(X , Y ) is said
to be a transport map (with source μ and target ν) if

T∗μ = ν

and T is said to be an optimal transport map (with respect to the Euclidean cost
function |x − y|2), denoted by T ν

μ , if it realizes the infimum defining the Wasserstein
L2-distance W2(μ, ν) [47]:

W2(μ, ν) := inf
T

∫
X

|x − T x |2μ,

where the infimum ranges over all transport maps. By Brenier’s theorem [14], there
exists a unique optimal transport map T ν

μ and it has the characteristic property of being
a gradient map:

T ν
μ = ∇φ

(in the almost everywhere sense) for a convex function φ on X , called the potential of
T ν

μ (see [47] for further background on optimal transport theory). The potential φ is
the unique (modulo an additive constant) convex solution to the corresponding second
boundary value problem for the Monge–Ampère operator: The sub-gradient image of
φ is contained in the closure of Y ,

(∂φ)(X) ⊆ Ȳ (1.2)
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and φ solves the equation

M Ag(φ) = μ, (1.3)

where the Monge–Ampère measure M Ag is the probability measure on X defined by

M Ag(φ) := g(∇φ) det(∇2φ)dx (1.4)

when φ is C2-smooth and the general definition, due to Alexandrov, is recalled in
Sect. 2.1. We will say that (X , Y , μ, ν) is regular if the corresponding solution φ is
in C2(X̄). By Cafferelli’s regularity results [17–19], this is the case if X and Y are
assumed strictly convex with C2-boundary and the densities of μ and ν are Hölder
continuous and strictly positive on X̄ and Ȳ , respectively. Then, φ defines a classical
solution of the corresponding PDE, and the corresponding optimal transport map
∇φ yields a diffeomorphism between the closures of X and Y . In fact, as is well
known, for any probability measure μ, there exists a solution (in the weak sense of
Alexandrov) of the corresponding second boundary value problem, which is uniquely
determined up to normalization (Lemma 2.2). In the sequel, it will be convenient to
use the normalization condition that the integral of a solution over (X , dx) vanishes.

1.1.1 Discretization Using Semi-discrete Transport

A time-honored approach for discretizingMonge–Ampère equations, which goes back
to the classical work of Alexandrov on Minkowski type problems for convex bodies
and polyhedra, amounts to replacing the given probability measure μ with a sequence
of discretemeasures convergingweakly towardμ (see [1, Thm7.3.2 and Section 7.6.2]
and [5, Section 17]). A standard way to obtain such a sequence is to first discretize
X by fixing a sequence of “point clouds” (x1, . . . , xN ) ∈ X N and a dual tessellation
of X with N cells (Ci )

N
i=1. This means that the union of Ci cover X , xi ∈ Ci and

the intersection of different cells have zero Lebesgue measure. For example, given
a point cloud the corresponding Voronoi tessellation of X provides a canonical dual
tessellation of X . The “spatial resolution” of the discretization is quantified by

h := max
i≤N

diam(Ci ),

where diam(Ci ), denotes the diameter of the cellCi . The corresponding discretization
of the measure μ is then defined by setting

μh :=
N∑

i=1

fiδxi , fi := μ(Ci ) (1.5)

where we have used the subindex h to emphasize that we are focusing on the limit
when h → 0 (see also Sect. 3.4 for other discretizations). This discretization scheme
corresponds, from the point of view of optimal transport, to the notion of semi-discrete
optimal transport (since it corresponds to optimal transport between the “continuous”
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measure ν and the discrete measure μh; see [31,34] and Sect. 5.2). From the point
of view of numerics, this kind of discretization scheme was first introduced in the
different setting of the Dirichlet problem in [43].

1.2 Convergence Rates for DiscretizedMonge–Ampère Equations

Given a point-cloud on X with spatial resolution h, we denote by φh the normalized
convex solution to the corresponding Monge–Ampère equation 1.3 with right-hand
side given by the discrete measure μh . It follows from a standard general convexity
argument that in the limitwhen h → 0 (and hence N → ∞), the functionsφh converge
uniformly toward the solution φ, and as a consequence, the gradients of φh converge
weakly toward the gradient of φ (in the sense of distributions; see Proposition 2.3).
But the argument gives no control on the rate of convergence (in terms of h or N−1)
and the main purpose of the present work is to provide such a result:

Theorem 1.1 (Regular case) Assume that (X , Y , μ, ν) is regular and let μh be a dis-
cretization of μ. Denote by φ and φh, the solutions to the corresponding second
boundary value problems for the Monge–Ampère operator. There exists a constant C1
(depending on (X , Y , μ, ν)) such that

‖φh − φ‖H1(X) :=
(∫

X
|∇φh − ∇φ|2dx

)1/2

≤ C1h1/2 (1.6)

More precisely, if ∇2φ ≥ C−1
0 I , then

C1 =
√

n(n + 1)Cn−1
0 δ−1 (1.7)

where δ is the constant in formula 1.1). The result thus holds more generally as long
as φ is uniformly convex and δ > 0.

As a consequence, if CP denotes the constant in the L2-Poincaré inequality on X
(i.e., ‖u‖L2(X) ≤ CP ‖∇u‖L2(X) for u with zero average), then

‖φh − φ‖L2(X) ≤ CPC1h1/2 (1.8)

From the point of view of optimal transport theory, the previous theorem says that
the optimal transport map ∇φ from μ to ν (defining a diffeomorphism between the
closures of X and Y ) may be quantitatively approximated by the L∞-maps ∇φh . As
explained in Sect. 5, the gradient maps ∇φh are piecewise constant on the convex hull
of the corresponding point cloud (more precisely, ∇φh is constant on the facets of the
weighted Delaunay tessellation of Rn induced by φh).

We will also establish the following universal bound which applies in the general
case. It yields, in particular, a quantitative approximation of the corresponding optimal
transport map if μ has a density.
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Theorem 1.2 (General case) Let X and Y be bounded domains in R
n with Y assumed

convex and ν a probability measure of the form 1.1. Then, for any given probability
measure μ on X ,

‖φh − φ‖H1(X) ≤ C2h1/2n
,

where the constant C2 only depends on upper bounds on the diameters of X and Y
and on positive lower bounds on the volume V (Y ) of Y and δ(:= supY (ν/dy)).

The previous theorems are obtained as straightforward consequences of the fol-
lowing analytic inequalities of independent interest (see Theorem 3.5 for the precise
statements). Let φ0 and φ1 be two convex functions on X whose sub-gradient images
are equal to Ȳ (without of loss of generality the functions may be assumed to be
smooth). Then,

∫
X

|∇φ0 − ∇φ1|2dx ≤ C0

∫
X
(φ1 − φ0)

(
M Ag(φ0) − M Ag(φ1)

)
, (1.9)

for a constantC0 depending on a positive lower bound on∇2φ0.Moreover, in general,

∫
X

|∇φ0 − ∇φ1|2dx ≤ C

(∫
X
(φ1 − φ0)

(
M Ag(φ0) − M Ag(φ1)

))1/2n−1

,(1.10)

for a constant C independent of φ0 and φ1. Using that

∫
X
(φ1 − φ0)

(
M Ag(φ0) − M Ag(φ1)

) ≤ d(Y )W1
(
M Ag(φ0), M Ag(φ1)

)
,(1.11)

where W1 denotes the Wasserstein L1-distance on P(X) and d(Y ) the diameter of Y ,

Theorems 1.1, 1.2 are deduced by setting φ0 = φ and φ1 = φh, and noting that the
right-hand side in formula 1.11 is bounded from above by h.

1.3 Quantitative Stability for Optimal Transport Maps

The combination of the inequalities 1.9, 1.10with the inequality 1.11maybe succinctly
formulated as a quantitative stability result for optimal transport maps:

Theorem 1.3 (Regular case). Assume that (X , Y , μ0, ν) is regular. Then, there exists
a constant c1, depending on μ0 and ν, such that

∥∥T ν
μ0

− T ν
μ1

∥∥
L2(X ,dx)

≤ c1W1(μ0, μ1)
1/2

for any μ1 ∈ Pac(X). More generally, if the potential φ of T ν
μ0

is uniformly convex,
then the inequality above holds with c1 = C1

√
d(Y ), where d(Y ) denotes the diameter
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of Y and C1 is as in formula 1.7. Moreover, if μ0 and μ1 have densities in L2(X),

then

∥∥T ν
μ0

− T ν
μ1

∥∥
L2(X ,dx)

≤ c1CP

∥∥∥μ0

dx
− μ1

dx

∥∥∥
L2(X ,dx)

,

where CP is the Poincaré constant on X .

Recall that here T ν
μ denotes the L2-optimal transport map from μ to ν. The power

1/2 in the first inequality of the previous theorem is sharp, as explained in Sect. 4.2.
In the general case, we have:

Theorem 1.4 (General case). There exists a constant c2 such that

∥∥T ν
μ0

− T ν
μ1

∥∥
L2(X ,dx)

≤ c2W1(μ0, μ1)
1/2n

for any pair μ0, μ1 ∈ Pac(X). More precisely, c2 only depends on upper bounds on
the diameters of X and Y and on positive lower bounds on the volume V (Y ) of Y and
δ(:= supY (ν/dy)) Moreover, if μ0 and μ1 have densities in L2(X), then

∥∥T ν
μ0

− T ν
μ1

∥∥
L2(X ,dx)

≤ c3
∥∥∥μ0

dx
− μ1

dx

∥∥∥1/(2
n−1)

L2(X ,dx)

for a constant c3 depending on the same quantities as the constant c2.

Since W1 ≤ Wp, where Wp denotes the L p-Wasserstein distance, the previous
theorems also hold with W1 replaced by Wp.

Note that Theorems 1.3 and 1.4 imply Theorems 1.1 and 1.2, respectively. Indeed,
even though theMonge–Ampèremeasure of φh is discrete and hence the push-forward
(∇φh)∗μh is ill-defined, one can first apply Theorems 1.3, 1.4 to a regularization φε

h
of φh (e.g., obtained by convolution) and then let ε → 0.Anyhow, as explained above,
all theorems above will be deduced from the analytic inequalities 1.9, 1.10.

1.4 Relations to Computational Geometry

An important motivation for the present work comes from the recent result in [31],
showing that the vector φh := (φh(x1), . . . φh(xN )) ∈ R

N —which solves a discrete
variant of theMonge–Ampère equation (with target Y )—may be effectively computed
using a damped Newton iteration on R

N , which converges globally at a linear rate
toward φh (and locally at a quadratic rate if g is Lipschitz continuous). The iteration is
defined in terms of computational geometry, and the restriction of the solutionφh to the
convex hull Xh of the points {x1, . . . , xN } can then be recovered as the piecewise affine
function defined by convex hull of the discrete graph of φh . From this computational
point of view, Theorems 1.1, 1.2 above yield quantitative convergence results for the
corresponding discrete objects defined on Xh in the “continuous limit” when h → 0.
This is explained in Sect. 5.
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1.5 The Periodic Setting

Now assume that μ is a given Z
n-periodic measure on R

n normalized so that its
total mass on a (or equivalently any) fundamental region X is equal to one (e.g.,
X = [0, 1[n). We then consider the corresponding Monge–Ampère equation 1.3 for a
convex function φ on Rn subject to the condition that ∂φ be periodic (which replaces
the second boundary condition 1.2). Such a convex function will be called quasi-
periodic.

In this periodic setting, Theorem 1.1 still applies (with X = [0, 1[n) (see Sect. 6).
In terms of optimal transport, the induced diffeomorphism Tφ of the torus (R/Z)n

transportingμ to the Riemannian volume form on the flat torus is optimal with respect
to the cost function d(x, y)2 where d denotes the Riemannian distance function on
the flat torus [16,30].

1.6 Proofs by Complexification

The proofs of the key analytic inequalities 1.9 and 1.10 use a complexification argu-
ment to first deduce the special case when g is constant from well-known inequalities
inKähler geometry and pluripotential theory (due toAubin [2] andBlocki [12], respec-
tively). Then, a separate variational argument is used to reduce the case of a general g to
the special case of a constant g. The universal dependence in Theorem 1.2 is obtained
by exploiting that a convex body Y induces a canonical toric Kähler–Einstein metric,
whose analytical properties are controlled by upper bounds on the diameter of Y and
the inverse of the volume of Y (thanks to the estimates in [25,32]).

One may wonder whether the use of complex geometry is really necessary? In a
nutshell, the complexification method has two advantages:

• The exterior algebra of positive forms can be can be leveraged
• By a compactification argument (involving toric varieties), one may perform inte-
gration by parts without boundary terms.

(the second point is not needed in the periodic setting). The first point can without
doubt be replaced by a suitable linear algebra of mixed real Monge–Ampère operators
and mixed discriminants, etc. However, at least to the author, this appears to make the
calculations rather unwieldy (but see [33] for a real formalism mimicking the com-
plex formalism). Moreover, it seems likely that the second point can be circumvented
by an appropriate choice of cut-off functions in R

n . Anyhow, an important merit of
the general complexification method employed in this paper is that it also opens the
door for direct applications of other results in complex geometry to the second bound-
ary value problem for the real Monge–Ampère equation and optimal transport. This
method is, in spirit, similar to Gromov’s approach [28] to the Brunn–Minkowski and
Alexander–Fenchel inequalities for convex bodies, which also exploits the complex
geometry of toric varieties.
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1.7 Comparison with Previous Results

There seem to be no prior results giving convergence rates (in any norms) for the
functions φh or the vectors φh in the limit when h → 0 (even in the model case of a
uniform grid on the torus). Another quantitative stability result for optimal transport
maps, in the regular setting, has previously been obtained by Ambrosio (reported
in [26] where it was shown to be sharp). Translated into the present notation the
result in [26] shows that the inequality in Theorem 1.3 holds if the L∞-mappings
T ν

μi
are replaced by their inverse, i.e., by the optimal transport maps T μi

ν and the L1-
Wasserstein distance W1 is replaced with the (weaker) L2-Wasserstein distance W2
(see [26, Cor 3.4] and its proof). In otherwords, while Theorems 1.3, 1.4 above concern
stability of optimal transport maps with respect to variations of the source measure,
the result [26, Cor 3.4] concerns variations with respect to the target measure. Since
T μ

ν = ∇φ∗, where φ∗ denotes the Legendre transform of the solution φ to the second
boundary value problem discussed above, the stability result in [26, Cor 3.4] can be
used to obtain the same rates O(h1/2) for the H1-norm of the difference of Legendre
transforms φ∗

h − φ∗.
In the different setting of the Oliker–Prussner discretization of the Dirichlet prob-

lem for the Monge–Ampère equation [43] with g = 1 (where the second boundary
condition 1.2 is replaced by the vanishing of the solution φ at the boundary of X),
convergence rates for L∞-norms were established in [42] at a rate O(hα) under the
assumption that the solution φ ∈ C2,α(X). The proofs are based on a combination
of discrete Alexandroff L∞-estimates with Brunn–Minkowski inequalities (see also
the recent work [22] where an optimal rate O(h2) is shown, assuming bounds on the
fourth-order derivatives of φ). Moreover, in [41] the L∞-rates in [42] and [22] were
used to obtain rates for W 2

p-norms.

1.8 Comparison with Subsequent Developments

After the preprint version on ArXiv of the present paper had appeared, several inter-
esting new developments have emerged. In [39, Theorem 2.3], the stability result for
optimal transport maps in [26, Cor 3.4] (discussed above) was sharpened by replacing
W2 with W1, thus providing an analog of Theorem 1.3 when variations of the target
measure are considered instead. The proof of [39, Theorem 2.3] is based on an inequal-
ity of the form 1.9, but with φ0 and φ1 replaced by their Legendre transforms φ∗

0 and
φ∗
1 in the left-hand side (the constant also depends on a strict lower bound on∇2φ, i.e.,

an upper bound on ∇2φ∗; see [39, Lemma 2.4]). The latter inequality is shown using
an elegant convexity argument (see also [4] for a different Riemannian generalization
of [26, Cor 3.4]). Moreover, for generalμ, but with the density of ν assumed constant,
an analog of the first inequality in Theorem 1.4 is established, when variations of the
target measure are considered; see [39, Theorem 3.1]. The power of W1 obtained in
[39, Theorem 3.1] is equal to 2/15. Remarkably, the power is thus independent of the
dimension n (which is important for the applications to machine learning considered
in [39]). Moreover, an analog of the second inequality in Theorem 1.4 is obtained with
the L2-norm in the right-hand side replaced by an L1-norm (i.e., the total variation
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distance) raised to the power 1/5. One is thus naturally led to ask whether there is
a relation between the quantitative stability with respect to variations of the target
and the source, respectively? The answer is affirmative, as follows from arguments in
the appendix of [39]. However, when passing from one type of the inequalities, the
argument unfortunately diminishes the exponent of W1; it gets divided by (n + 2).
(Hence, the exponent in Theorem 1.4 is larger than the one implied by [39, Theorem
3.1], as long as n ≤ 5.) This is briefly explained in Sect. 4.3.

In the very recent work [35], a variant of the H1-estimate in Theorem 1.1 is obtained
(see [35, Cor 4.2, formula 4.8]). The main difference between the H1-estimate in
Theorem 1.1 and the one in [35] is that in [35] the values in Y of ∇φh, which are
constant on the facets of the weighted Delaunay tessellation of X , induced by φh,

are replaced by the barycenters of the facets ∂φh(xi ) of the dual tessellation of Y .

Moreover, while the constant in the estimate in Theorem 1.1 depends on a strictly
lower bound on ∇2φ, the constant in [35] depends on an upper bound of ∇2φ. The
proof in [35] is based on a generalization of the quantitative stability result for the
optimal transport map T μ

ν in [26, Cor 3.4] (discussed above) to optimal transport
plans. The results in [35] also hold for fully discrete approximation schemes (see
[35, Thm 5.1]). See the end of Section 4 in [35] for a detailed comparison between
Theorem 1.1 (and Theorem 5.4) and the results in [35].

1.9 Organization

We start in Sect. 2 with preliminaries from convex and complex analysis. Since the
complex analytic side may not be familiar to some readers, a rather thorough presenta-
tion is provided. In Sect. 3, the theorems stated in the introduction are proven, starting
with the special case when the density g is constant on Y and finally reducing to the
special case. In Sect. 4, the relations to quantitative stability of optimal transport maps
are spelled out. The relations to computational geometry are explained in Sect. 5.4,
based on Proposition 5.1. In the final section, the periodic setting is considered.

2 Preliminaries

2.1 Convex Analytic Notions

Given a convex function φ onRn taking values in ]−∞,∞] (and not identically equal
to ∞), we denote by ∂φ its subgradient, i.e., the set-valued function on R

n defined
by

∂φ(x0) := {
y0 ∈ R

n : φ(x0) + 〈y0, x − x0〉 ≤ φ(x)∀x ∈ R
n}

(in particular, if φ(x0) = ∞, then ∂φ(x0) = ∅). The gradient (∇φ)(x) of a convex
function exists a.e. on the set {φ < ∞} and defines a L∞

loc-map into R
n (called the

Brenier map). The Monge–Ampère measure of φ (in the sense of Alexandrov) is
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defined by

∫
B

M A(φ) :=
∫

∂φ(B)

dy, (2.1)

for any Borel subset B of Rn . This yields a well-defined measure on R
n . Indeed,

introducing the Legendre transform of φ(x), i.e., the convex function φ∗ defined by

φ∗(y) := sup
x∈Rn

(y · x − φ(x)) ,

the following formula holds:

M A(φ) = (∇φ∗)∗dy, (2.2)

i.e., M A(φ) is the measure obtained as the push-forward of the Lebesgue measure dy
under the L∞

loc-map ∇φ∗ (the formula follows from point 2 and 3 below).
We recall the following basic properties which hold for a given lower semi-

continuous (lsc) convex function φ : Rn →] − ∞,∞]:
(1) φ∗∗ = φ

(2) y ∈ ∂φ(x) ⇐⇒ x ∈ ∂φ∗(y)

(3) (∂φ)(Rn) = {φ∗ < ∞} (which is a convex set)
(4) (∂φ)(Rn) = (∂φ)(supp(M A(φ))

(5) If y ∈ (∂φ)(Rn), i.e., y ∈ ∂φ(xy) for some xy ∈ R
n, then

φ∗(y) = sup
x∈(∂φ)(Rn)

x · y − φ(x) = xy · y − φ(xy)

(6) The function φ is piecewise affine on R
n if and only if it is the max of a finite

number of affine functions, i.e., there exists y1, . . . , yM ∈ R
n (assumed distinct)

and c1, . . . , cM in R such that

φ(x) = max{yi }
x · yi − ci

(7) Denote by Fi the closure of a maximal open region where the piecewise affine
function φ is affine. Then, we can label Fi such that ∇φ(x) = yi on the interior of
Fi .Moreover, the corresponding covering ofRn defines a polyhedral cell-complex
with facets Fi .

(8) Denote by xi , . . . , xN the 0-dimensional cells (i.e., vertices) of the polyhedral
cell-complex above. Then,

supp(M A(φ)) = {x1, . . . , xN }

and ∂φ(xi ) is the convex hull of the vectors y j associated to all facets Fj containing
xi .
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A reference for point 1–5 is [47] and 6 could be taken as the definition of a convex
piecewise affine function and then point 7 follows readily. As for point 8, it can be
shown using the following observation: x is not in a 0-dimensional cell if and only if the
convex hull Cx (= ∂φ(x)) of the vectors yi corresponding to the facets Fi containing
x has dimension p < n (as can be seen by identifying the Fi s with intersecting pieces
of hyperplanes in the graph of φ in Rn+1 and Cx with the corresponding normal cone
at (x, φ(x)). As a consequence, if x is not in a 0-dimensional cell, then there exists a
whole neighborhood U of x having the latter property and hence (∂φ)(U ) is a null-set
for Lebesgue measure, i.e., M A(φ) = 0 in U . This shows that the support of M A(φ)

is contained in {x1, . . . , xn}. Conversely, if x is contained in the latter set, then p = 0
and hence (∂φ)(x) has dimension n, i.e., M A(φ){x} �= 0,

2.1.1 The Class CY (RRR
n) of Convex Functions Associated with a Bounded Convex

Domain Y

Given a bounded convex domain Y , we denote by CY (Rn) the space of all convex
functions on Rn such that (∂φ)(Rn) ⊂ Y . A reference element in CY (Rn) is provided
by the support function of Y :

φY (x) := sup
y∈Y

x · y (2.3)

A function φ is in CY (Rn) if and only if there exists a constant C such that φ ≤ φY +C
(as follows fromproperties 3 and 5 in the previous section).A leading role in the present
paper will be played by the subspace CY (Rn)+ of CY (Rn) consisting of the convex
functions φ onRn with “maximal growth” in the sense that the reversed version of the
previous inequality also holds:

CY (Rn)+ := {
φ convex on R

n and φ − φY ∈ L∞(Rn)
}

In particular, φY is in CY (Rn)+. If φ ∈ CY (Rn)+, then M A(φ)/V (Y ) is a probability
measure (by point 3 in the previous section). The converse is not true in general, but
we will have great use the fact that if M A(φ)/V (Y ) is a probability measure and
moreover M A(φ) has compact support, then φ is in CY (Rn)+, as follows from the
following lemma:

Lemma 2.1 Assume that φ is in CY (Rn) and M A(φ)/V (Y ) is a probability measure.
If φ is normalized so that supRn (φ − φY ) = 0 (or equivalently, infY φ∗ = 0), then for
any q > n,

‖φ − φY ‖L∞(Rn) ≤ d(Y )

V (Y )

∫
Rn

|x |M A(φ) + Cn,q
d(Y )(1+n(1−1/q))

V (Y )

∫
Rn

|x |q M A(φ),

where Cn,q only depends on n and q and d(Y ) and V (Y ) denote the diameter and
volume of Y , respectively.
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Proof Following the argument in the proof of [7, Prop 2.2], we denote by v := φ∗ is
the Legendre transform of φ, which defines a convex function on the interior of Y .

By the Sobolev inequality for the embedding W 1,q(Y ) � L∞(Y ), we have, since the
interior of Y is a bounded convex domain,

sup
Y

|v| ≤ 1

V (Y )

∫
Y

|v(y)|dy + Cn,q
diam(Y )(1+n(1−1/q))

V (Y )

(∫
Y

|∇v(y)|qdy

)1/q

(see [23, Lemma 1.7.3] or [40, Thm 4.4]). In general, as explained in [7, Prop 2.2],
infY v = − sup(φ − φY ) and hence, by assumption, inf P v = 0. Assume that the
infimum is attained at y0 ∈ Y , i.e., v(y0) = 0. By convexity |v(y)| = v(y) − v(y0) ≤
∇v(y) · (y − y0). Thus, the Cauchy–Schwartz inequality yields

∫
Y

|v(y)|dy ≤ d(Y )

∫
Y

|∇v|dy.

Finally, the proof is concluded by observing that
∫ |∇v(y)|αdy = ∫ |x |α M A(φ) for

any α > 0 and

‖φ − φY ‖L∞(Rn) = ∥∥φ∗∥∥
L∞(Y )

(2.4)

(which follows directly from the fact that the transformation φ �→ φ∗ is decreasing
and involutive). ��

2.1.2 The Second Boundary Value Problem for the Monge–Ampère Equation

We next recall some basic properties of the second boundary value problem for the
Monge–Ampère equation, introduced in Sect. 1.1. We thus let X and Y be bounded
domains in R

n, with Y bounded and convex. Given a function g with support Y
such that g ∈ L1(Y , dy) the corresponding “g-Monge–Ampère measure” M Ag(φ) is
defined by

∫
B

M A(φ) :=
∫

∂φ(B)

gdy,

(see [37, Section 3] for amore general setting involving a cost function c). In particular,
if φ is smooth, then M Ag(φ) is given by formula 1.4. In the case when gdy has unit
integral we denote by ν the corresponding probability measure:

ν := gdy

Lemma 2.2 Given a probability measure μ with compact support contained in X , a
solution φX to the corresponding second boundary value problem 1.3, 1.2 exists and
is uniquely determined (mod R). Moreover, φX is equal to the restriction to X of φRn

(mod R).
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Proof This result goes back to Alexandrov’s classical work on Monge–Ampère equa-
tions, but for the convenience of the reader, we show here how to deduce the result
fromBrenier’s theorem [14]. Given a closed subset F inRn denote byχF the functions
which is equal to 0 on F and∞ on the complement of F . In the proof, we will refer to
points 1–8 in Sect. 2.1. Set ψX := (χX + φX )∗ (where we have used that φX extends
uniquely to a Lipschitz continuous function on the closure of X). Since μ and ν have
the same mass, the second boundary condition 1.2 implies that ∂φX (Rn) = Ȳ .Hence,
ψX is finite on Y (by point 3) and the MA-equation 1.3 is equivalent to

μ = (∇ψX )∗ν. (2.5)

By Brenier’s uniqueness theorem [14], the latter equation determines the L∞-map
∇ψX a.e ν. Since the support Y of ν is connected, the restriction ψ of ψX to Y
is thus uniquely determined (mod R). Now, by point 1 χX + φX = ψ∗

X and since
∂(χX + φX )(Rn) � Ȳ we get χX + φX = (χY + ψX )∗ (by point 5). In particular,
on X we have φX = (χY + ψ)∗, where ψ, as explained above, is independent of X .

Hence, replacing X with Rn reveals that the corresponding two solutions coincide on
X (mod R) as desired. Also note that Brenier’s existence theorem says that given μ

and ν, there exists some convex function ψ on Y satisfying Eq. 2.5. Hence, defining
φX in terms of ψ as above yields the existence of a solution to the second boundary
value problem. ��
The uniqueness property in the previous lemma implies the following qualitative sta-
bility result:

Proposition 2.3 (Qualitative stability) Using the setup in the previous lemma let φh

be a solution to the second boundary value problem obtained by replacing μ with
μh where μh is a family of probability measures on X converging weakly toward
μ as h → 0. Then, ∇φh converges weakly toward ∇φX (more precisely, all the
distributional derivatives of φh converge weakly toward the distributional derivatives
of φX ).

Proof Let φh be the convex continuous solution on Rn normalized by φh(x0) = 0 for
a fixed point x0 ∈ X . Since ∂φh ⊂ Y and Y is assumed bounded, it follows from the
Arzela–Ascoli compactness theorem that there exists a subsequence φh j converging
uniformly to a convex function φ∞ on X as j → ∞.By standard continuity properties
of Monge–Ampère operators, it follows that M Aν(φ∞) = μ (see [37, Corollary 3.1]
for a more general result). But then we can apply the uniqueness property in the
previous theorem to conclude that φ∞ = φ, where φ is the unique solution to 1.3,
1.2 on R

n satisfying φ(x0) = 0 and hence the whole family φh converges locally
uniformly onRn toward φ. The last statement then follows directly from the definition
of distributional derivatives. ��

2.2 Complex Analytic Notions

For the benefit of the reader lacking background in complex analysis and geometry, we
provide a (hopefully user-friendly) recap of some complex analytic notions (see the

123



1112 Foundations of Computational Mathematics (2021) 21:1099–1140

book [24] for further general background and [7] for the case of toric varieties). Setting
z := x + iy ∈ C

n the space 
1(Cn) of all complex one-forms on C
n decomposes as

a sum


1(Cn) = 
1,0(Cn) + 
0,1(Cn), (2.6)

of the two subspaces spanned by {dzi } and {dz̄i }, respectively. This induces a decom-
position of the exterior algebra of all complex differential forms 
·(Cn) into forms
of bidegree (p, q), where p ≤ n and q ≤ n. Accordingly, the exterior derivative d
decomposes as d = ∂ + ∂̄, where

∂φ :=
n∑

i=1

∂φ

∂zi
dzi ,

∂

∂zi
:= (

∂

∂xi
− i

∂

∂ yi
)/2,

and taking its complex conjugate defines the (0, 1)-form ∂̄φ. In particular,

ωφ := i

2π
∂∂̄φ = i

2π

∑
i, j≤n

∂2φ

∂zi∂ z̄ j
dzi ∧ dz̄ j , (2.7)

defines a real (1, 1)-form (this normalization turns out to be useful, as illustrated by
Example 2.4, 2.4). Such a smooth form ω is said to be positive (Kähler), written as
ω ≥ 0 (ω > 0), if the corresponding Hermitian matrix is semi-positive (positive
definite) at any point. Positivity can also be defined for general (p, p)-forms, but for
the purpose of the present paper it is enough to know that

ωi ≥ 0, i = 1, .., n �⇒ ω1 ∧ · · · ∧ ωn ≥ 0,

where the last inequality holds in the sense of measures.
If φ is smooth, then φ is said to be plurisubharmonic (psh) if ωφ ≥ 0. A general

function φ ∈ L1
loc is said to be psh if it is strongly upper semi-continuous and ωφ ≥ 0

holds in the weak sense of currents.

Example 2.4 The normalization used in the definition of ωφ ensures that when n = 1
the measure ωφ on C is the Dirac measure at 0 ∈ C in the case when φ = log |z|2.

More generally, given a real (1, 1)-form ω0 a function u said to be ω0-psh if

ωu := ω0 + i

2π
∂∂̄u ≥ 0

If ω0 := ωφ0 , this means that φ is psh if and only if u := φ − φ0 is ω0-psh. When φi

for i = 1, . . . , p is psh and in L∞
loc the positive closed (p, p)-currents

ωφ1 ∧ · · · ∧ ωφp ,
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is defined by the local pluripotential theory of Bedford-Taylor. The current does not
charge pluripolar subsets (i.e., sets locally contained in the−∞-locus of a psh function)
and in particular not analytic subvarieties. Accordingly, the Monge–Ampère measure
of a locally bounded psh function φ(z), is defined by the measure

M AC(φ) := (ωφ)n/n!. (2.8)

We also recall that if φ0 and φ1 are as above, then the positive current i∂(φ0 − φ1) ∧
∂̄(φ0 − φ1) may be defined by the formula

∂ϕ ∧ ∂̄ϕ := −ϕ∂∂̄ϕ + ∂∂̄ϕ2, ϕ := φ0 − φ1

2.2.1 Metrics on Line Bundles and!0-psh Functions

The local complex analytic notions above naturally extend to the global setting where
C

n is replaced by a complexmanifold (since the decomposition 2.6 is invariant under a
holomorphic change of coordinates). However, if X is compact, then all psh functions
φ on X are constant (by the maximum principle). Instead, the role of a (say, smooth)
psh function φ on Cn is played by a positively curved metric on a line bundle L → X
(using additive notations for metrics). To briefly explain this first recall that a line
bundle L over a complex manifold X is, by definition, a complex manifold (called
the total space of L) with a surjective holomorphic map π to X such that the fibers
Lx of π are one-dimensional complex vector spaces and such that π is locally trivial.
In other words, any point x ∈ X admits a neighborhood U such that π : L → U
is (equivariantly) isomorphic to the trivial projection U × C → U . Fixing such an
isomorphism, holomorphic sections of L → U may be identified with holomorphic
functions on U . In particular, the function 1 over U corresponds to a non-vanishing
holomorphic section sU of L → U . Now, a smooth (Hermitian) metric ‖·‖ on the
line bundle L is, by definition, a smooth family of Hermitian metrics on the one-
dimensional complex subspaces Lx , i.e., a one-homogeneous function on the total
space of the dual line bundle L∗ which vanishes precisely on the zero-section. Given a
covering Ui of X and trivializations of L → Ui , a metric ‖·‖ on L may be represented
by the following family of local functions φUi on Ui :

φUi := − log
∥∥sUi

∥∥2

(accordingly a metric on L is often, in additive notation, denoted by the symbol φ).

Even if the functions φUi do not agree on overlaps, the (normalized) curvature form
ω of the metric ‖·‖ is a well-defined closed two-form on X , locally defined by

ω|Ui := ωφUi

Singular metrics on L may be defined in a similar way. In particular, a singular met-
rics is said to have positive curvature if the local functions φUi are psh, i.e., the
corresponding curvature form ω defines a positive (1, 1)-current on X . The difference
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of two metrics, written as φ1 − φ2 in additive notation, is always a globally well-
defined function on X (as a consequence, the curvature currents of any two metrics on
L are cohomologous and represent the first Chern class c1(L) ∈ H2(X ,Z)). Fixing
a reference metric φ0 and setting u := φ − φ0, this means that the space all metrics
φ on L with positive curvature current may be identified with the space of all ω0-psh
functions u on X .

Example 2.5 The m-dimensional complex projective space P
m := C

m+1 − {0}/C∗)
comes with a tautological line bundle whose total space is Cm+1 and the line over
a point [Z0 : . . . . : Zm] ∈ P

m is the line C(Z0, . . . , Zm). The dual of the tauto-
logical line bundle is called the hyperplane line bundle and is usually denoted by
O(1) (the notation reflects the fact that the metrics on O(1) may be identified with
1-homogeneous functions onCm+1). The Euclidean metric onCm+1 induces a metric
on the tautological line bundle and hence on its dual O(1), called the Fubini–Study
metric. In the standard affine chart U := C

n ⊂ P
n defined by all points where z0 �= 0

and with the standard trivializing section sU := (1, z1, . . . , zn) of the tautological line
bundle the Fubini–Study metric is represented by

φF S(z) := log ‖sU ‖2 = log(1 + |z|2),

defining a smooth metric with strictly positive curvature form. Another T n-invariant
metric onO(1)with positive curvature current, which is continuous, but not smooth, is
the “max-metric” defined by the one-homogeneous psh functionmax{|Z0|, . . . , |Zn|},
which may be represented by

φmax (z) = logmax{1, |z1|2, . . . , |zn|2},

Given any complex subvariety X � P
m , one obtains a line bundle L over X by

restricting O(1) to X (and a smooth positively curved metric φ by restricting the
Fubini–Study metric). If X is singular then, by Hironaka’s theorem it admits a smooth
resolution, i.e., a smooth compact manifold X ′ with surjective and generically one-to-
one projection π ′ to X . Pulling back L by π ′ yields a line bundle L ′ over X ′ (endowed
with a smooth metric φ′).

2.2.2 The Toric Variety Associated to a Moment Polytope Y

Let Y be a bounded closed convex polytope with non-empty interior and rational
vertices. It determines a compact toric complex analytic variety XC and an ample line
bundle L over XC.More precisely, this is the case if the rational polytope Y is replaced
by the integer polytope kY for a sufficiently large positive integer k.But since scalings
of Y will be harmless we may as well assume that k = 1. Then, XC may be defined
as the closure of the image of the holomorphic (algebraic) embedding defined by

C
∗n → P

M−1 z �→ [zm0 : · · · : zmM−1 ], (2.9)
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using multinomial notation, where m0, . . . , mM−1 label the integer vectors in Y . The
line bundle L is then simply defined as the restriction to XC of the hyperplane line
bundle O(1) on PM−1. By construction, the following holds:

• XC may be embedded in a complex projective space P
N in such a way that L

coincides with the restriction to XC of the hyperplane line bundle O(1) on P
N .

• The standard action of the real n-dimensional torus T n on C∗n extends to a holo-
morphic action of XC which lifts to the line bundle L.

By the first point above, we can identify C∗n with an open dense subset of XC, whose
complement in XC is an analytic subvariety.

Now, the key point is that the function φ(x) is in the class CY (Rn) (Sect. 2.1.1) if
and only if φ(x) extends to a positively curved (singular) metric on L → XC. More
precisely, we have the following [7, Prop 3.2]

Lemma 2.6 A convex function φ(x) such that CY (Rn)+ may be identified with a L∞-
metric on the line bundle L → XC with positive curvature current ωφ.

Proof Since the lemma will play a key role in the proof of the main results, we recall,
for the benefit of the reader, the simple proof. Without loss of generality, we can
assume that m0 := 0 is in Y . By construction, the “max metric” on O(1) → P

M−1

restricts to a continuous (and in particularly bounded) positively curved metric on
L → XC. The map 2.9 may be factored asC∗n → C

N → P
M−1.Hence, the standard

trivialization of O(1) over the affine piece CN pulls back to give a trivialization of L
over C∗n, where the restricted max metric is represented by φY (x), when expressed
in the logarithmic coordinates x on R

n . Now, any other L∞-metric φ on L → XC

satisfies φ −φY ∈ L∞(XC) and, as a consequence, restricting toC∗n and switching to
the real logarithmic coordinate x shows that φ(x) is CY (Rn)+.Conversely, given φ(x)

in CY (Rn)+ we have that φ(z) is psh on C
∗n and u := φ(z) − φY (z) is in L∞(C∗n).

Since C
∗n is dense in XC and u ≤ C , it admits a canonical upper semi-continuous

(usc) extension to all of XC (namely, the smallest one). Since φY (z) extends to define
a continuous metric on L → XC, this means that φ extends from C

∗n to a canonical
usc metric on L → XC (in additive notation) which has a positive curvature current on
C

∗n � XC.But the complement XC−C
∗n is an analytic subvariety of XC and hence it

follows from basic local extension properties of psh functions that the corresponding
metric on L → XC has positive curvature current. ��

We note that for any φ as above

1

n!
∫

XC

(ωφ1)n == V (Y ), (2.10)

the volume of Y . Indeed, since M AC(φ) does not charge analytic subvarieties, the
integral can be restricted to C

∗n and then formula 2.13 can be invoked.
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2.3 Complex vs Real Notions

If φ(z) = φ(x), i.e., φ is independent of the y-variable, then φ(z) is psh on Cn if and
only if φ(x) is convex on R

n, as follows directly from the relation:

∂2φ

∂zi∂ z̄ j
= 1

4

∑
i, j≤n

∂2

∂xi∂x j
(2.11)

For example, if φ0(x) := 4π |x |2/2, then u(x) is quasi-convex (i.e., u(x) := φ(x) −
φ0(x) is convex) if and only if u(z) is ω0-psh for

ω0 := i

2π
∂∂̄φ0 =

∑
i

i

2
dzi ∧ dz̄i =

∑
i

dxi ∧ dyi , (2.12)

the standard Kähler form onCn .The formω0 descends to the Abelian varietyCn/(Z+
iZ).

2.3.1 The Complex TorusCCC∗n

Let Log be the map from C
∗n to Rn defined by

Log(z) := x := (log(|z1|2), . . . , log(|zn|2)).

The real torus T n acts transitively on the fibers of the map Log. Pulling back a convex
function φ(x) on R

n by Log yields a T n-invariant function on C
∗n that we will,

abusing notation slightly, denote by φ(z). The function φ(x) is convex if and only
if the corresponding function φ(z) on C

∗n is plurisubharmonic. This can be seen by
identifying C

∗n with C
n/iπZn(= R

n + iπT n) using the multivalued logarithmic
holomorphic coordinate 2 log z, and proceeding as in Sect. 2.3.

We will have great use for the following lemma:

Lemma 2.7 Let φ(x) be a finite convex function on R
n and denote by φ(z) the cor-

responding T n-invariant psh function on C
∗n defined as the pull-back of φ(x) under

the Log map. Similarly, if u is a difference of two finite convex functions on R
n we

denote by u(z) the corresponding function on C
∗n . Then, the following two identities

of measures on R
n hold:

(Log)∗
(
1

n! (
i

2π
∂∂̄φ)n

)
= M A(φ). (2.13)

and

(Log)∗
(

i

2π
∂u ∧ ∂̄u ∧ 1

(n − 1)! (
i

2π
∂∂̄φ)n−1

)
= |∇u|2gφ M A(φ),
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if φ(x) is assumed to be smooth and strictly convex, where gφ denotes the Riemannian
metric on R

n defined by the symmetric Hessian matrix ∇2φ and ∇u is defined almost
everywhere with respect to dx .

Proof These formulas are essentially well known (in particular, the first one), but for
completeness a proof is provided. First consider two smooth functions φ(z) and u(z)
defined on Cn with holomorphic coordinate z. Assume that φ(x + iy) and u(x + iy)

are independent of y. Then,

1

n! (
i

2
∂∂̄φ)n = 1

4n
M A(φ) ∧ dy (2.14)

and

i

2
∂u ∧ ∂̄u ∧ 1

(n − 1)! (
i

2
∂∂̄φ)n−1 = 1

4n
|∇u(x)|2gφ M A(φ) ∧ dy (2.15)

Indeed, without loss of generality, we may assume that φ(x) = ∑
λi |xi |2 (since it

is enough to prove the formulas at a fixed point, which may be taken as x = 0 and
since the formulas are invariant under z �→ Az for A ∈ SO(n)). Then, i

2∂∂̄φ =∑
i
1
4

∂2φ
∂xi ∂xi

dxi ∧ dyi and hence formula 2.14 follows directly. As for formula 2.15, it

follows from noting that the term involving dzi ∧ dz̄i in ∂u ∧ ∂̄u only gives a nonzero
contribution when it encounters the product of all terms in ∂∂̄φ not involving the index
i . Indeed, this gives

i

2
∂u ∧ ∂̄u ∧ 1

(n − 1)! (
i

2
∂∂̄φ)n−1 =

∑
i

1

4

∣∣∣∣ ∂u

∂xi

∣∣∣∣
2 1

λi
λ1λ2 · · · λndx ∧ dy

which proves formula 2.15. Then, by standard local approximation arguments, for-
mula 2.14 extends to the case when φ is non-smooth and formula 2.15 to the case
when u is non-smooth. Finally, consider C∗n and denote by wi its standard holomor-
phic coordinates. This means that zi := 2 logwi is multivalued on C

∗n and the real
part of z is equal to Log (w). But locally z defines holomorphic coordinates on C

∗n

to which formula 2.14 and formula 2.15 apply. Moreover, we can identify dy/(4π)n

with the standard invariant probability measure on the T n-fiber of the Log map from
C

∗n to R
n . Since the push-forward operation amounts to integration along the fibers,

the formulas in the lemma thus follow from formula 2.14 and formula 2.15. ��

3 Proof of Theorems 1.1, 1.2

Let X and Y be open bounded domains inRn,with Y convex. Assume given a positive
function g ∈ L1(Y , dy) such

δ := inf
Y

g > 0 (3.1)
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Recall that M Ag(φ) denotes the “g-Monge–Ampère measure” of a given convex
function φ, defined in Sect. 2.1.2. When g = 1, we simply write M Ag = M A.

3.1 The Key Analytic InequalitiesWhen g = 1

We first consider when g = 1, starting with the case of a uniformly convex φ0.

Proposition 3.1 Given bounded open domains X and Y with Y assumed convex,
assume that φ0 and φ1 are convex functions on X , such that the closures of the
sub-gradient images (∂φi )(X) are equal to Y . If there exists a positive constant C0
such that ∇2φ0 ≥ C−1

0 I (in the sense of distributions), then

∫
X

|∇φ0 − ∇φ1|2dx ≤ nCn−1
0

∫
X
(φ1 − φ0)(M A(φ0) − M A(φ1)).

In order to prove this, we start with some preparations. First, by Lemma 2.7

∫
X

|∇(φ1 − φ0)|2gφ M A(φ) =
∫

(Log)−1(X)

i

2π
∂u ∧ ∂̄u ∧ 1

(n − 1)! (ω
φ)n−1 (3.2)

holds for any smooth convex function φ on X . Next, we will use the same notation φ0
and φ1 for the canonical extensions toRn solving the corresponding second boundary
problem on all ofRn (as in Lemma 2.2). In general, if φ(x) is a convex function onRn ,
we will denote by φ(z) the corresponding T n-invariant plurisubharmonic function on
C

∗n, obtained by pulling back φ to C
∗n using the log map (abusing notation slightly,

as in Sect. 2.3.1). It will be enough to prove the following identity:

−
∫
C∗n

(φ0 − φ1)
(
(ωφ0)n − (ωφ1)n)

= i

2π

n∑
j=0

∫
C∗n

∂(φ0 − φ1) ∧ ∂̄(φ0 − φ1) ∧ (ωφ0)n− j ∧ (ωφ1) j , (3.3)

Indeed, first applying formula 3.2 to φ = |x |2/2 a gives

∫
X

|∇φ0 − ∇φ1|2dx = i

2π

∫
(Log)−1(X)

∂(φ0 − φ1) ∧ ∂̄(φ0 − φ1) ∧ (ωφ)n−1 ≤

≤ Cn−1
0

i

2π

∫
(Log)−1(X)

∂(φ0 − φ1) ∧ ∂̄(φ0 − φ1) ∧ (ωφ0)n−1,

using that, by assumption, ωφ0 ≥ C−1
0 ωφ. Finally, using that all the integrands in the

rhs of formula 3.3 are non-negative will then conclude the proof. In order to prove
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formula 3.3 first note that

−
∫
C∗n

(φ0 − φ1)
(
(ωφ0)n − (ωφ1)n)

= −
n∑

j=0

∫
C∗n

(φ0 − φ1) ∧ i

2π
∂∂̄(φ0 − φ1) ∧ (ωφ0)n− j ∧ (ωφ1) j ,

as follows directly from the algebraic identity

(ωφ1)n − (ωφ0)n =
n−1∑
j=1

(ωφ1 − ωφ0) ∧ (ωφ0)n− j ∧ (ωφ1) j (3.4)

This means that if integration by parts can be justified, then the desired identity 3.3
follows.However, the non-compactness ofC∗n poses non-trivial difficulties, so instead
of working directly on C

∗n we will use a compactification argument, which applies
when Y is a rational polytope (the general case will then follow by approximation).

Compactification When Y is a Convex Polytope with Rational Vertices

Let XC be the compact toric complex analytic variety determined by the moment
polytope Ȳ and denote by L the corresponding ample line bundle over XC (Sect.
2.2.2). By Lemma 2.1, combined with Lemma 2.6, the T n-invariant psh functions
φ0(z) and φ1(z) onC∗n extend to define L∞-metrics on the line bundle L → XC with
positive curvature currents ωφ0 and ωφ1 . In particular, φ0 − φ1 ∈ L∞(XC). We claim
that

∫
XC

(φ1 − φ0)
(
(ωφ0)n − (ωφ1)n)

=
n∑

j=0

∫
XC

i

2π
∂(φ0 − φ1) ∧ ∂̄(φ0 − φ1) ∧ (ωφ0)n− j ∧ (ωφ1) j (3.5)

This is a well-known identity in Kähler geometry (in the smooth case) and global
pluripotential theory (in the general singular L∞-case) and follows from the general
integration by parts formula for psh functions in L∞

loc in [13, Thm1.14] (see [9, Formula
2.9]). But for the benefit of the reader, we provide the following alternative proof. First,
assume that the metrics φi on L are smooth (i.e., the restrictions to L → X of smooth
metrics on O(1) → P

N ). Expanding point-wise, as in formula 3.4 and using that
the form � := (ωφ0)n− j ∧ (ωφ1) j is closed formula 3.5 then follows from Stokes
formula if XC is non-singular and from Stokes formula on a non-singular resolution
of XC if XC is singular. To handle the general case, we invoke the general fact that
any (possibly singular) metric on an ample line bundle L over a projective complex
variety can be written as a decreasing limit of smooth metrics [15] (in fact, this can
be shown by a simple direct argument in the present toric setting). Formula 3.5 then
follows from the previous smooth case, combined with the continuity of expressions
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of the form appearing in formula 3.5 under decreasing limits (see [13, Prop 2.8] and
its proof for much more general convergence results).

Conclusion of Proof of Proposition 3.1

LetY be as in the previous step. Since the complexMonge–Ampèremeasures of locally
bounded psh functions do not charge complex analytic subvarieties, formula 3.5 on
C

∗n follows from formula 3.5 on XC. Since each term in the right-hand side above is
non-negative, we deduce that

−
∫
C∗n

(φ0 − φ1)
(
(ωφ0)n − (ωφ1)n)

≥ 1

n!
i

2π

∫
(Log)−1(X)

∂(φ0 − φ1) ∧ ∂̄(φ0 − φ1) ∧ (ωφ0)n

By 2.13 and 3.2, this proves formula 3.5 when Y is a convex polytope with rational
vertices. In the general case, we can write Y is an increasing limit of rational convex
polytopes Y j . Then, the general case follows from the previous case and basic qual-
itative stability properties for the solution of the second boundary value problem for
M A on X with respect to variations of the target domain Y .

3.1.1 The Key Inequality for General�0 and�1

We next turn to the key analytic inequality in the case of general φ0, but still with
g = 1.

Proposition 3.2 Given bounded open domains X and Y with Y assumed convex,
assume that φ0 and φ1 are convex functions on X , such that the closures of the
sub-gradient images (∂φi )(X) are equal to Y . Then, there exists a constant C only
depending on X and Y such that

∫
X

|∇φ0 − ∇φ1|2dx ≤ C

(∫
X
(φ1 − φ0)(M A(φ1) − M A(φ0))

)1/2n−1

More precisely, the constant C only depends on upper bounds on the the diameters of
X and Y , d(X) and d(Y ) and a positive lower bound on the volume V (Y ) of Y

Proof It will be enough to show that

∫
X

|∇φ0 − ∇φ1|2gφY M A(φY ) ≤ CY

(∫
X
(φ1 − φ0)(M A(φ0) − M A(φ1))

)1/2n−1

,(3.6)

for a fixed φY ∈ CY (Rn)+ such that

∇2φY ≤ A1 I , M A(φY ) ≥ A2dx
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for some positive constants A1 and A2. In fact, setting

R(X) := (sup
x∈X

|x |) (3.7)

we will show that CY only depends on upper bounds on R(X), R(Y ) and

A3 :=
∥∥∥φY − φY

∥∥∥
L∞(Rn)/R

:= inf
c∈R

∥∥∥(φY + c) − φY

∥∥∥ (3.8)

To this end we may, without loss of generality, assume that φ0 and φ1 are sup-
normalized as in Lemma2.1. Fix a sequence of rational convex polytopesY j increasing
to Y and some (say smooth) functions φY j ∈ CY (Rn)+ such that

φY j − φY j → φY − φY

uniformly on R
n . Just as in the proof of Theorem 1.1, it will be enough to prove that

the inequality in the proposition holds when Y is a rational convex polytope and φY is
replaced by φY j (by letting j → ∞ in the end). We will identify, just as in the proof of
Theorem 1.1 a convex function φ(x) on R

n with a psh function φ(z) on C∗n . Setting

ωY j := ωφ
Y j
, it will thus be enough to show that

i
∫
C∗n

∂(φ0 − φ1) ∧ ∂̄(φ0 − φ1) ∧ ωn−1
Y j

≤ CY j

(∫
C∗n

(φ1 − φ0)
(
(ωφ0)n − (ωφ1)n))1/2(n−1)

We will deduce this inequality from the following inequality of Blocki [12] (see also
[10, Lemma A.1] for a more general inequality). Let (M, ω) be a compact Kähler
manifold and u0 and u1 ω-psh functions on M in L∞(X). Then, there exists a constant
CM such that

i
∫

M
∂(u0 − u1) ∧ ∂̄(u0 − u1) ∧ ωn−1 ≤ CM

(∫
M

(u0 − u1)(ω
n
u1 − ωn

u0)

)1/2(n−1)

(3.9)

The constant CM only depends (in a continuous fashion) on upper bounds on the L∞-
norms of u0 and u1 and the volume of ω. More generally, exactly the same proof as
in [12] shows that the inequality holds more generally when ω is a semi-positive form
with an L∞-potential and positive volume. In the present setting, we set

u0 := φ0(z) − φY j
(z), u1 = φ1(z) − φY j

(z),

originally defined on C
∗n . Just as in the proof of Theorem 1.1, the functions φ0, φ1

and φY j
may be identified with L∞-metrics on the ample line bundle L → M j over

the toric variety M j determined by Y j . Moreover, the corresponding currents extend
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to positive currents on M j . Passing to a smooth resolution we may as well assume
that M j is smooth (and L semi-ample). Applying the inequality 3.9 on M j , all that
remains is to verify that the corresponding constants CM j are under control. Applying
Lemma 2.1 and using that, by assumption, Y j is contained in Y , gives, for a fixed
q > n,

∥∥∥φ0 − φY j
∥∥∥

L∞ ≤ d(Y )

V (Y j )

∫
Rn

|x |M A(φ0)

+Cn,q
d(Y )(1+n(1−1/q))

V (Y j )

∫
Rn

|x |q M A(φ0) +
∥∥∥φY j − φY j

∥∥∥
L∞

in terms of the L∞-norms on R
n . Hence,

lim sup
j→∞

‖u0‖L∞(M j ) ≤ d(Y )

∫
Rn

|x | M A(φ0)

V (Y )

+Cn,qd(Y )(1+n(1−1/q))

∫
|x |q M A(φ0)

V (Y )
+

∥∥∥φY − φY

∥∥∥
L∞ ,

Since the probability measureμ0 := M A(φ0)/V (Y ) is supported in X , it follows that

lim sup
j→∞

‖u0‖L∞(M j ) ≤ d(Y )R(X) + Cn,qd(Y )(1+n(1−1/q)) R(X)q +
∥∥∥φY − φY

∥∥∥
L∞ .

The same estimate also holds (for the same reason) for u1. Finally, since the left-hand
side in the inequality 3.6 is invariant under φY → φY + c for c ∈ R, it follows that
the constant CY appearing in 3.6 only depends on upper bounds on φY through the
quantity A3 defined by formula 3.8. Moreover, as explained above CY also depends
on an upper bound on the volume of ωY j on M j . But (by formula 2.10) this equals n!
times the volume of Y j , which is bounded from above by a constant times d(Y )n . All
in all this proves the inequality 3.6 with the desired control on the constant CY . ��

3.1.2 The Dependence on X and Y

Finally, we show that the constant C appearing in Proposition 3.2 can be made to only
depend on upper bounds on d(X), d(Y ) and 1/V (Y ). To see this first note that both
sides of the inequality in Proposition 3.2 are invariant under φi (x) → φi (x)− x ·b for
any b ∈ R

n, if Y is replaced by Y − {b}. In particular, taking b to be the barycenter of
Y we may as well assume that 0 is the barycenter of Y . Similarly, since both sides of
inequality in Proposition 3.2 are invariant under φi (x) → φi (x + a) for any a ∈ R

n ,
we may as well assume that 0 ∈ X . It will then be enough to show that the auxiliary
convex function φY used in the proof above can be chosen so that the corresponding
constants A1, A2 and A3 only depend on upper bounds the outer radius R(X) and
R(Y ) of X and Y (defined as in formula 3.7) and 1/V (Y ). Indeed, since 0 ∈ Y and
0 ∈ X we have that R(Y ) ≤ d(Y ) and R(X) ≤ d(X).
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Wewill take φY to be the unique smooth and strictly convex function φ in CY (Rn)+
solving

M A(φ) = e−φdx, (∇φ)(0) = 0 (3.10)

(the first equation geometrically means that φ(z) is a Kähler potential for a Kähler–
Einstein metric on C

∗n and the second one ensures that φ is uniquely determined).
Since we have assumed that 0 is the barycenter of Y , it follows from [7] that such a
solution indeed exists (and is uniquely determined). Moreover, by [32] the solution
satisfies

∇2φ ≤ 2R(Y )2 I .

Thus, all that remains is to verify the bounds on A2 and A3. To this end, first note that
it follows directly from the defining equation for φ that it is enough to establish an
upper bound on A3. This will be accomplished by the following:

Proposition 3.3 The unique solution φ ∈ CY (Rn)+ of 3.10 satisfies

‖φ − φY ‖L∞(Rn) ≤ A,

where the constant A only depends on upper bounds on R(Y ), 1/V (Y ) and 1/R0(Y ),

where R0(Y ) := d(0, ∂Y ) is the distance between 0 and ∂Y .

Proof This proposition is implicitly contained in [25], but since it is not stated explicitly
there we briefly explain how to extract the bound in the proposition from the estimates
in [25, Section 3.3]. To this end, denote by v(y) the convex function on Y defined by
the Legendre transform of φ (which is denoted by u in [25] and Y is denoted by P
there). The equation for φ translates into

log det(∇v) = x · ∇v − v

(the lhs is denoted by L in [25] and the rhs by h, but the constant C appearing in
[25, formula 22] vanishes in the present setting). The assumption that ∇φ(0) = 0
equivalently means that ∇v(0) = 0 which, in turn, means that the infimum of v on Y
is attained at y = 0. Set

m := −v(0) = − inf
Y

v

Step 2 in [25, Section 3.3] yields a lower bound on m in terms of an upper bound on
R(Y ) and a lower bound on the volume of Y . Step 4 gives an upper bound on m in
terms of upper bounds on 1/R0(Y ) and 1/V (Y ). This implies that

φ(x) ≥ κ−1|x | + m − κ−1,

where κ is bounded from above by a constant only depending on upper bounds on
1/R0(Y ) and 1/V (Y ) (see [25, formula 24]). But then it follows that, for any q > 0, the
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moment
∫
Rn |x |q M A(φ)/V is bounded from above by a constant only depending on

upper bounds on R(Y ), 1/R0(Y ) and 1/V (Y ).Hence, by Lemma 2.1, the inequality in
the proposition holds if supRn (φ−φY ) is added to the right-hand side of the inequality.
But, since supRn (φ − φY ) = m, which as explained above is bounded from above by
upper bounds on 1/R0(Y ) and 1/V (Y ), this proves the proposition. ��
Finally, the desired bound on A3 follows from the following elementary lemma show-
ing that 1/R0(Y ) � R(Y )n−1/V (Y ):

Lemma 3.4 Let Y be a convex body and denote by bY the barycenter of Y . Assume
that Y is contained in a ball BR of radius R. Then,

d(bY , ∂Y ) ≥ 1

2cn

V (Y )

Rn−1 ,

where cn denotes the volume of the unit-sphere ∂ B1 in R
n .

Proof Denote by d(y) the function on Y defined as the distance of y ∈ Y to ∂Y and
set Yε := {d ≥ ε} for a given ε > 0. Decomposing bY as a convex combination of
bYε and b(Y−Yε ),

bY = V (Yε)

V (Y )
bYε + V (Y − Yε)

V (Y )
b(Y−Yε )

and using that the function d(y) is concave (since it can be expressed as the infimum
over the affine functions defined by the distances to the supporting hyperplanes of Y )
and non-negative gives

d(bY ) ≥ V (Yε)

V (Y )
ε.

By the monotonicity of the surface area of convex bodies (i.e., the classical fact that
V (∂ P) ≤ V (∂ Q) if the convex body P is included in the convex body Q [46]), we
have, assuming that Y − Yε is non-empty,

V (Yε) = V (Y ) − V (Y − Yε) ≥ V (Y ) − εV (∂Y ) ≥ V (Y ) − εV (∂ BR)

Hence, d(bY ) ≥ ε − ε2cn Rn−1/V (Y ) for any such ε > 0. Optimizing over ε, i.e.,
taking ε = ε0 := 1

2cn

V (Y )

R(Y )n−1 thus concludes the proof when Y − Yε is non-empty.
Finally, if Y − Yε0 is empty, then, since bY ∈ Y , it must be that d(bY ) ≥ ε0, which
concludes the proof. ��

3.2 The Key Analytic Inequalities for General g

We next turn to the case of a general density g with a strict positive lower bound δ on
Y (formula 3.1).

123



Foundations of Computational Mathematics (2021) 21:1099–1140 1125

Theorem 3.5 Let X and Y be bounded open domains X in R
n and assume that Y is

convex and endowed with a probability measure ν satisfying 1.1. Let φ0 and φ1 be
convex functions on X , such that the closures of the sub-gradient images (∂φi )(X)

are equal to Y . If there exists a positive constant C0 such that ∇2φ0 ≥ C−1
0 I (in the

sense of distributions), then

∫
X

|∇φ0 − ∇φ1|2dx ≤ n(n + 1)Cn−1
0 δ−1

∫
X
(φ1 − φ0)(M Ag(φ0) − M Ag(φ1)).

In general, there exists a constant C independent of φ0 and φ1 such that

∫
X

|∇φ0 − ∇φ1|2dx ≤ C

(
δ−1

∫
X
(φ1 − φ0)

(
M Ag(φ0) − M Ag(φ1)

))1/2n−1

.

More precisely, the constant C only depends on upper bounds on the the diameters of
X and Y , d(X) and d(Y ) and a positive lower bound on the volume V (Y ) of Y

Fix φ0 ∈ CY (Rn)+ (the class defined in Sect. 2.1.1) and set μ0 := M Ag(φ0).

Consider the following functional on CY (Rn)+ :

Ig(φ) :=
∫
Rn

(φ − φ0)
(−M Ag(φ) + μ0

)

In order to prove Theorem 3.5, it will, by Propositions 3.1, 3.2 be enough to prove the
following:

Proposition 3.6 Setting δ := infY g we have

Ig ≥ δ

(n + 1)
I

To this end, consider the following auxiliary functional on CY (Rn)+ :

Jg(φ) :=
∫

Y
φ∗gdy +

∫
(φ − φ0)μ0

To simplify the notation, we will write I1 = I and J1 = J . We start with a number of
lemmas.

Lemma 3.7 The Gateaux differential of Jg at φ is represented by −M Ag(φ) + μ0,

i.e., fixing φ1 and φ2 in CY (Rn)+ and setting φt := φ1 + t(φ2 − φ1) we have

d Jg(φt )

dt |t=0
=

∫
Rn

(φ2 − φ1)
(−M Ag(φ) + μ0

)

Moreover, t �→ Jg(φt ) is convex and Jg ≥ 0.
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Proof This is essentially well known in the literature of optimal transport, where Jg

appears as the Kantorovich functional (up to a change of sign and additive constant).
A simple direct proof is given in [7]. ��
Remark 3.8 The formula for the differential of Jg implies that when g = 1 and Y is
a rational convex polytope, then Jg coincides with Aubin’s J -functional defined with
respect to the curvature form ω0 corresponding to φ0 (see [2] for the smooth setting
and [9] for the general singular setting).

Using the previous lemma, we next establish the following

Lemma 3.9 The following inequality holds:

Ig ≥ Jg

Proof Fix φ in CY (Rn)+ and set φt := φ0 + t(φ − φ0) and Ig(t) := Ig(φt ) and
Jg(t) := Jg(φt ). By the previous lemma, we have for any t > 0.

dJg(t)

dt
=

∫
Rn

(φ − φ0)
(−M Ag(φt ) + μ0

) = t−1 Ig(t)

Hence,

dIg(t)

dt
= d

dt
(t
dJg(t)

dt
) = dJg(t)

dt
+ t

d2 Jg(t)

d2t
≥ dJg(t)

dt
,

using that Jg(t) is convex, by the previous lemma. Since Ig(0) = Jg(0)(= 0), it
follows that Ig(t) ≥ Jg(t) for all t ≥ 0 and in particular for t = 1, which concludes
the proof. ��
We next show that Jg is controlled from below by J :
Lemma 3.10 Setting δ := infY g we have Jg ≥ δ J ≥ 0

Proof We continue with the notation in the proof of the previous lemma. By a standard
approximation argument we may as well assume that φ and φ0 are smooth and strictly
convex. Moreover, as before it will be enough to consider the case when Y is a rational
polytope. First observe that it will be enough to prove the following claim:

Claim:
d2 Jg(t)

d2t
≥ δ

d2 J (t)

d2t
≥ 0,

Indeed, by Lemma 3.7 the derivatives of both Jg(t) and J (t) vanish at t = 0. As

a consequence, if the claim holds, then dJg(t)
dt ≥ δ

dJ (t)
dt for all t and since Jg(0) =

J (0) = 0 it follows that Jg(t) ≥ δ J (t) for all t and in particular for t = 1, proving
the lemma. In order to prove the claim above, it is enough to establish the following
formula:

d2 Jg(φt )

dt
= −

∫
Rn

|∇φt |2gφt M Ag(φt ). (3.11)
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To this end first consider a general curve φt (x) in CY (Rn)+ such that�(x, t) := φt (x)

is smooth on R
n+1. We complexify R

n by C
∗n (as in Sect. 2.3.1) and R by C (in the

usual way). Denote by (z, τ ) the corresponding complex coordinates on C
∗n × C.

Denoting by π the natural projection from C
∗n × C to C

∗n , we have the following
general formula:

∂2 Jg(φτ )

∂τ∂τ̄
idτ ∧ d τ̄ = −π∗(g(∇xπ

∗φt )M AC(�))

onC,where M AC(�) denotes complexMonge–Ampère measure of the smooth func-
tion � in C

∗n × C. This formula is a special case of the more general formula [11,
formula 2.11]. Next, we note that if φt is affine, then M AC(�) ≤ 0. Indeed, a direct
calculation gives

−M AC(�) = i

2π
(π∗ωφt )n ∧ ∂z(φ − φ0) ∧ ∂̄z(φ − φ0) ∧ idτ ∧ d τ̄

Using formula 3.2 this concludes the proof of formula 1.2. ��

3.2.1 Conclusion of Proof of Proposition 3.6

Combing the previous lemmas with Lemma 3.9 gives Ig ≥ Jg ≥ δ J . Hence, the
proof is concluded by noting that J ≥ I/(n + 1). In the complex setting this is a
well-known inequality in the Kähler geometry literature which goes back to Aubin
[2]. For a simple proof see [9, formula 2.7]. The present real setting then follows from
a complexification and approximation argument, just as before.

3.3 Proof of Theorems 1.1, 1.2

First note that the following simple lemma holds, where d(Y ) denotes the diameter of
Y :
Lemma 3.11 Assume that φ0 and φ1 are convex functions onRn whose gradient images
are contained in Ȳ . Then,

Ig(φ0, φ1) ≤ d(Y )W1
(
M Ag(φ0), M Ag(φ1)

)
.

Proof This follows directly from the Kantorovich–Rubinstein formula

W1(μ0, μ1) := sup
u∈Lip 1(R

n)

∫
u(μ0 − μ1) (3.12)

where the sup runs over all Lipschitz continuous functions on X withLipschitz constant
one (by taking u = (φ1 − φ0)/d(Y )). ��
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Applying the key inequalities in Theorem 3.5 to φ0 = φ and φ1 = φh, and invoking
the previous lemma, all that remains is thus to verify that

W1(μ,μh) ≤ h. (3.13)

To this end, we rewrite the integral appearing in the right-hand side of formula 3.12
as

∫
u(μ − μh) =

N∑
i=1

∫
Ci

(u − u(xi )μ (3.14)

Since u ∈ Lip 1(X), we trivially have

x ∈ Ci �⇒ u(x) − u(xi ) ≤ d(Ci ) ≤ h,

where the last inequality follows directly from the very definition of h. Hence,
W1(μ0, μ1) is bounded from above by h times the total mass of μ, which proves
the inequality 3.13.

Similarly, combining the analytic inequalities in Theorem 3.5 with Lemma 3.11
and the inequality 3.13, concludes the Proof of Theorems 1.1, 1.2

3.4 Alternative Discretization SchemesWhen�Has a Density

Assume for simplicity that the domain X has been normalized to have unit volume and
fix a sequence of point clouds (x1, ..xN )on X . In the casewhenμhas a density f itmay,
from a computational point of view, by more convenient to consider discretizations of
μ̃h of the form

μ̃h :=
∑N

i=1 f (xi )wiδxi∑N
i=1 f (xi )wi

:= f λN∫
f λN

(3.15)

for appropriate weights wi (independent of μ). For example, a convenient choice is
to take wi to be equal to the volume of the intersection with X of the Voronoi cell
corresponding to xi . We claim that the result in Theorem 1.1 then still holds if f is
Lipschitz continuous. Indeed, by the proof of Theorem 1.1, it is enough to show that

W1(μ, μ̃h) ≤ Ch,

which, in turn, will follow from

W1(dx, λN ) ≤ h.

But the latter inequality follows from the identity 3.14 applied to μ = dx . Similarly,
if f is merely assumed to be in the Hölder space Cα(X) for α < 1, then the same
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argument reveals the an analog of Theorem 1.1 holds, with the rate Ch1/2 replaced by
Chα/2.

Finally, in the case when the point cloud {xi } is equal to the intersection of X with
the grid (ZN−1/n)n and the distance between the point cloud and the boundary of X
is of the order O(N−1/n), then a slight variant of the previous argument reveals that
the same results as above hold, with h := N−1/n,when all weightswi in formula 3.15
are taken to be equal to 1/N .

4 Quantitative Stability of Optimal Transport Maps

Denote by Pac(R
n) the space of all probability measures on Rn, which are absolutely

continuouswith respect to Lebesguemeasure. Givenμ and ν inPac(R
n)with compact

support X and Y , respectively, there exist optimal transport maps T ν
μ and T μ

ν in
L∞(X , Y ) and L∞(Y , X) transporting μ to ν and ν to μ, respectively [14,47]. The
maps are uniquely determined and inverses of each other almost everywhere with
respect to μ and ν, respectively.

4.1 Proof of Theorems 1.3, 1.4

By Brenier’s theorem [14,47], we can write T ν
μi

= ∇φi for a convex function φi on X

such that ∂φi (X) = Y . The first inequality in Theorem 1.3 then follows directly from
the first inequality in Theorem 3.5, combined with the inequality in Lemma 3.11.
To prove the second inequality in 1.3 first note that combining first inequality in
Theorem 3.5 with the Cauchy–Schwartz inequalities yields

‖∇φ0 − ∇φ1‖2L2(X)
≤ n(n + 1)Cn−1

0 δ−1 ‖φ0

−φ1‖L2(X) ‖dμ0/dx − dμ1/dx‖L2(X) (4.1)

Applying, the Poincaré inequality to φ0 − φ1 (whose integral with respect to (X , dx)

may be assumed to vanish) gives ‖φ0 − φ1‖L2(X) ≤ CP ‖∇φ0 − ∇φ1‖L2(X) . Hence,
dividing both sides of the inequality 4.1 with ‖∇φ0 − ∇φ1‖L2(X) concludes the proof
of Theorem 1.3. Finally, Theorem 1.4 is proved in the sameway, but now instead using
the second inequality in Theorem 3.5.

4.2 Sharpness of the Exponent 1/2 in the Uniformly Convex Case

We next show that the exponent 1/2 in the first inequality in Theorem 1.3 is optimal.
We take X and Y to both be equal to (]0, 1[)n ⊂ R

n and ν = dy.

Lemma 4.1 There exists a curve φε of convex functions such that ∂φε(X) = Y and φ0
is uniformly convex satisfying

‖∇φε − ∇φ0‖L2(X) = C (W1 (M A(φε), M A(φ0)))
1/2
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for a constant C > 0 independent of ε. Moreover, W1 (M A(φε), M A(φ0)) is nonzero
and tends to zero as ε → 0.

Proof First consider the case when n = 1. Fix a smooth convex function φ1 on [0, 1],
not equal to |x | + c for any constant c, such that ∂φ1(]0, 1[) = [0, 1] and define

φε(x) := 1

2
εφ1(

x

ε
) + 1

2
|x |2, φ0(x) := 1

2
|x | + 1

2
|x |2,

where the second term ensures uniform convexity. Denote by Sε the scaling map on
R defined by x �→ εx . Then, for ε > 0,

2 (M A(φε) − M A(φ0)) = (Sε)∗(M A(φ1) − δ0.

Hence, using the dual representation 3.12 for W1,

W1 (M A(φε), M A(φ0)) = 1

2
W1 ((Sε)∗(M A(φ1), δ0)

= 1

2

∫
|x |(Sε)∗(M A(φ1)) = ε

2

∫
|x |M A(φ1).

On the other hand, denoting by H(x) the sign of x, we have ‖∇φε − ∇φ0‖2L2[0,1] =

= 1

22

∫ 1

0

∣∣∣∇xεφ1(
x

ε
) − H(x)

∣∣∣2 dx = 1

22

∫ 1

0

∣∣∣φ′
1(

x

ε
) − H(x)

∣∣∣2 dx

= ε
1

22

∫ 1

0

∣∣φ′(x) − H(x)
∣∣2 dx .

This proves the equality in the lemma when n = 1. Finally, for n > 1 we simply set

ψε(x) := φε(x1) +
n∑

i=2

1

2
|xi |2, ψ0(x) := φ0(x) +

n∑
i=2

1

2
|xi |2.

Then, ‖∇ψε − ∇ψ0‖L2([0,1]n) = ‖∇φε − ∇φ0‖L2([0,1]) .Moreover, since M A(ψε) =
∂2x1φε(x1)dx it follows from the representation 3.12 that W1 (M A(ψε), M A(ψ0)) =
W1 (M A(φε), M A(φ0))R . Hence, the curve ψε satisfies the equality in the lemma on
X = (]0, 1[)n .

Now, assume that the first inequality in Theorem 1.3 holds with the exponent 1/2
replaced by α for some given α > 0 and with a constant c only depending on a
strict power lower bound on the uniform convexity of the convex potential of T0. This
implies that there exists a constant C0, only depending on φ0, such that

‖∇φ1 − ∇φ0‖L2(X) ≤ C (W1 (M A(φ1), M A(φ0)))
α
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for any convex functions φi such that ∂φε(X) = Y with φ0 uniformly convex. Indeed,
this follows from applying the inequality in question to regularizations of ∇φ0 and
∇φ1. But then the previous lemma forces α ≤ 1/2, as desired. ��

4.3 Variations with Respect to the Source vs the Target Measure

The two different types of quantitative stability results discussed in Sects. 1.7, 5.1 can
be related thanks to the following lemma, essentially contained in the proof of [39,
Cor 2.6]:

Lemma 4.2 Assume that there exist α1 > 0 and C1 such that for any μ0, μ1 ∈ Pac(X)

∥∥T ν
μ0

− T ν
μ1

∥∥
L2(X ,dx)

≤ C1W1(μ0, μ1)
α1 .

Then, there exists A1 > 0 such that for any μ0, μ1 ∈ Pac(X),

∥∥T μ0
ν − T μ1

ν

∥∥
L2(Y ,dy)

≤ A1W1(μ0, μ1)
α1/(n+2)

Conversely, assume that there exist α2 > 0 and A2 > 0 such that for any μ0, μ1 ∈
Pac(X)

∥∥T μ0
ν − T μ1

ν

∥∥
L2(X ,dx)

≤ A2W1(μ0, μ1)
α2 .

Then, there exists a constant C2 > 0 such that for any μ0, μ1 ∈ Pac(X)

∥∥T ν
μ0

− T ν
μ1

∥∥
L2(X ,dx)

≤ C2W1(μ0, μ1)
α2/(n+2)

Proof Recall that, using the notation in the proof of Theorems 1.3, 1.4 above, we can
express T ν

μ0
= ∇φi and T μ0

ν = ∇φ∗
i , where φ∗ denotes the Legendre transform of φ.

The proof of the lemma is now obtained by combining the fact that the Legendre trans-
form preserves the L∞-norm together with the following two well-known inequalities
on a bounded Lipschitz domain 
 ⊂ R

n for Lipschitz continuous functions u0 and u1
with Lip constant one, assumed convex in the second inequality:

‖u0−u1‖L∞(
) ≤ A1 ‖u0 − u1‖2/(n+2)
L2(
)

, ‖∇u0 − ∇u1‖L2(
) ≤ A2 ‖u0 − u1‖1/2L∞(
)

togetherwith the Poincaré inequality on
.We recall that the first inequality for u0−u1
above is a special case of the Gagliardo–Nirenberg inequalities (see [36, Lemma 5.2]
for a direct simple proof) and the second one is shown in [21, Thm 22]). ��

5 Formulation in Terms of Computational Geometry

In this section, we show how to use Theorem 1.1 to obtain a quantitative approx-
imation of the solution φ to the second boundary problem for the Monge–Ampère
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operator, using computational geometry, as developed in [3,4,29,31,34,38]. A com-
parison with the standard notation from computational geometry and semi-discrete
optimal transport is provided in Sects. 5.1 and 5.2, respectively.

Assume given a discrete probability measure on Rn and a convex bounded domain
Y of unit volume. In order to facilitate the comparison with the setup considered in
the previous sections (in particular Sect. 1.1.1), the discrete probability measure in
question will be denoted by μh :

μh =
N∑

i=1

fiδxi , xi ∈ R
n, fi := μh({xi }).

The index h is thus used a reminder that the measure μh is discrete. Let φh be the
(finite) convex function on R

n (uniquely determined up to an additive constant) by

M Ag(φh) = μh, (∂φh)(Rn) = Y

Set

φh := (φh(x1), . . . , φh(xN )) ∈ R
N ,

which we identify with a function on Rn which is equal to φh on {x1, . . . , xN } and ∞
elsewhere. We will denote by Xh the bounded convex polytope defined as the convex
hull of {x1, . . . , xN } :

Xh := conv{x1, .., xN }

We will refer to the following equation for a vector φ ∈ R
N as the discrete Monge–

Ampère equation (associated with the discrete measure μh on R
n and the measure ν

on Y ) :

Vol ν(Fφ∗
i ∩ Y ) = fi (5.1)

where (Fφ∗
i )N

i=1 are the cells in the partition of Rn induced by the piecewise affine
function φ∗(see point 6 and 7 in Sect. 2.1).

By the following proposition, the previous equation is solved by the vector φh and
moreover, the graph of φh over Xh is simply the convex hull of the discrete graph over
{x1, . . . , xN } of φh .

Proposition 5.1 Denote by ψh := φ∗
h the Legendre transform of φ. Then,

• The vector φh solves the discrete Monge–Ampère equation 5.1 and on Y the convex
function ψh is piecewise affine and given by

ψh(y) = φ∗
h(y) :=

(
max{xi }

xi · y − φ(xi )

)
y ∈ Y (5.2)
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• On the convex hull Xh of {x1, . . . , xN } the convex function φh is piecewise affine
and given by

φh(x) =
(
max{yi }

x · yi − ψh(yi )

)
x ∈ Xh, (5.3)

where {yi }M
i=1 runs over the vertices in the polyhedral decomposition of Y deter-

mined by the convex piecewise affine function ψh on Y . Moreover, the graph of φ

over Xh is equal to the convex hull of the graph of the discrete function φ(xi ) over
Xh .

• The following duality relations hold:

(∂φh)(Xh) = Y

and the multi-valued maps ∂φh and ∂ψh, which are inverses to each other, yield
a bijection between the facets and the vertices of the induced tessellations of Xh

and Y .

Proof This is without doubt essentially well known (and it is, as discussed below,
closely related to results in computational geometry). But for completeness a simple
analytic proof is provided using the basic properties of the Legendre transform recalled
in Sect. 2.1, points 1–8. First observe that

(∂φh)(Rn) = (∂φh)({xi }) = Y ,

as follows directly from the defining property of φh combined with point 4. Hence,
for almost any y ∈ Y there exists xi such that y ∈ ∂φ(xi ). But then formula 5.2 on
Y follows from point 5. Now formula 5.1 follows from the very definition M A(φh)

[Fψh
i ]. ��

To prove formula 5.3 on Xh , it will by the previous argument (with φh replaced by
ψh) be enough to show that

(∂ψh)(Y ) = (∂ψh)({yi }) = Xh . (5.4)

Denote by ψ̃h the canonical piecewise affine extension of ψh|Y to R
n (defined by

formula 5.3). Note that

(∂ψ̃h)(Rn) = Xh .

Indeed, by definition, ψ̃h = φ∗
h on all of Rn and hence this follows from point 3.

All that remains is thus to verify that (∂ψ̃h)(Rn) = (∂ψ̃h)(Y ). To this end it is, by
point 4, enough to show that M A(ψ̃h) is supported in Y . By point 8 this amounts
to showing that the vertices yi defined by ψ̃h are all contained in Y . Assume, to get
a contradiction, that this is not the case. Then, there exists a facet Fi of ψ̃h which
does not intersect Y (by the hyperplane separation theorem for convex sets). But this
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contradicts formula 5.1. This proves formula 5.4 and hence formula 5.3, as well. All
in all, this means that

φh = (χK + φh)∗∗ on Xh, K := {xi }N
i=1.

But then it follows, from general principles, that on Rn

φh(x) = sup
{
�(x) : � convex on R

n, � ≤ φh on K
}

Now, denote by φ̄ the convex function on Xh whose graph is the convex hull of the
discrete graph of φh . Equivalently, this means that

x ∈ Xh �⇒ φ̄(x) = sup {�(x) : � convex on Xh, � ≤ φh on K }

Hence, χK φ̄ ≤ φh on R
n and φh ≤ φ̄ on Xh which implies that φh = φ̄ on Xh, i.e.,

the graph of φh is the convex hull of the discrete graph of φh, as desired.

Remark 5.2 If Y is a polytope, it follows from classical results that φh is piecewise
affine on all of Rn (see (see [5, Section 17.2]). However, this is not true in general, as
illustrated by the case when Y is the unit-ball and μh = δ0, so that φh(x) = |x |.

By the next lemma, the solution φh to the discrete Monge–Ampère equation 5.1 is,
in fact, the unique solution (mod R) :
Lemma 5.3 Equation 5.1 admits a unique solution in R

n/R.

Proof This is a consequence of the results in [29,31]: the solutions are critical point of
the Kantorovich functional onRN ,which in [29,31] is shown to be strictly concave on

the subsetK+ ofRN /R defined as all φ such that Volν(Fφ∗
i ∩Y ) > 0 for i = 1, . . . , N

(using properties of graph Laplacians). But it may be illuminating to point out that
the uniqueness result is also a consequence of the following general result (applied to
X = {x1, . . . xN } and μ = μh). Let ν be a probability measure of the form gY dy with
g > 0 and μ a probability measure onRn with support compact X .Assume that φ is a
function on X such that (∇(χX +φ)∗)∗ν = μ.Then,φ is uniquely determined (modR)

a.e. with respect to μ (and moreover, equal to the restriction to X of a convex function
onRn with subgradient image inY ). Indeed, settingψ := (χY +φ)∗ the argument in the
proof ofLemma5.3 gives that the convex function PY φ := (χY +ψ)∗(= (χY +φ)∗)on
R

n is uniquely determined and satisfies M Ag(PY φ) = μ. But, by general principles,
we have that

M A(PY φ) = 0 on {PY φ < φ} (5.5)

and hence PY φ = φ on X , showing that φ is uniquely determined (modR) on X . The
vanishing 5.5 can, for example, by shown by noting that PY φ is the upper envelope
of all functions ϕ in CY (R) dominated by φ. Then, 5.5 follows from a local argument
using the maximum principle for the Monge–Ampère operator (just as in the more
general case of the complex Monge–Ampère operator considered in [8, Prop 2.10]).

��
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There has been extensive numerical work on constructing solutions to the discrete
Monge–Ampère equation 5.1 on R

N , based on computational geometry [3,4,31,34,
38]. In particular, it was shown in [31] that the solution φh ∈ R

N is the limit point
of a damped Newton iteration, which converges globally at a linear rate (and locally
at quadratic rate if g is Lipschitz continuous). Performing one step in the iteration,
φ(m) �→ φ(m+1), amounts to computing the convex hull in Rn+1 of the discrete graph
over {x1, . . . xN } defined by φ(m) (or equivalently, the corresponding power diagram
in Rn and its intersection with Y ; see Sect. 5.1).

Here we show that Theorems 1.1, 1.2 yield a quantitative rate of convergence, in the
limit when the spatial resolution h → 0, for the solutions φh and the corresponding
piecewise constantmaps Th from Xh toRn defined as follows. Consider the tessellation
of Xh by the convex polytopes F∗

j obtained by projecting toR
n the facets of the “upper

boundary” of the convex hull inRn+1 of the discrete graph�h of the solutionφh ∈ R
N .

Then, Th maps F∗
j to the dual vertex y j ∈ R

n . In geometric terms, y j is the projection

to R
n of the corresponding normal of the graph �h in R

n+1 (normalized so that its
projection to R is −1).

We now come back to the setup introduced in Sect. 1.2, where T ν
μ denotes the

optimal L∞-map transporting μ to ν and h denotes the spatial resolution of the dis-
cretization μh of μ.

Theorem 5.4 Assume that (X , Y , μ, ν) is regular (or more generally, that the potential
φ of T ν

μ is uniformly convex) and let φh ∈ R
N be the normalized solution to the

discrete Monge–Ampère equation 5.1 and denote by Th(= ∇φh) the corresponding
piecewise constant maps from Xh to R

n . Then, there exists a constant C, depending
on (X , Y , μ, ν), such that

∥∥Th − T ν
μ

∥∥2
L2(Xh)

:=
M∑

j=1

∫
F∗

j

|y j − T ν
μ (x)|2dx ≤ Ch

where T ν
μ is the optimal diffeomorphism transporting μ to ν. In the general case,

when X and Y are bounded domains in R
n with Y assumed convex and ν a probability

measure of the form 1.1 the estimates above hold if h is replaced by h1/2(n−1)
and then

the constant C only depends on upper bounds on the diameters of X and Y and on a
positive lower bound on δ(:= supY (ν/dy)).

Proof Combing Theorems 1.1, 1.2 with Proposition 5.1 and Lemma 5.3 immediately
yields the theorem. ��

5.1 Comparison with Duality in Computational Geometry

Proposition 5.1 is closely related to the well-known duality in computational geometry
between weighted Voronoi tessellations (also known as Laguerre tessellations and
power diagrams) of Rn and weighted Delaunay tessellations [3] of convex polytopes

(see also [29]). To briefly explain this we first note that, by definition, the facets F
φ∗

h
i

in Proposition 5.1 have the property that φ∗
h(y) is affine on F

φ∗
h

i and equal to xi · y −
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φh(xi ) there (which is the affine function realizing the max over x j in formula 5.3).
Completing the square this means that

F
φ∗

h
i =

{
y ∈ R

n : |xi − y|2 + wi ≤ |x j − y|2 + w j ∀ j
}

wi := 2φh(xi ) − |xi |2,

which is the definition of the cells in the weighted Voronoi tessellation of Rn associ-
ated to the weighted points (xi ;wi )

N
i=1) [3]. The corresponding weighted Delaunay

tessellation is defined as the projection to Xh of the polyhedral cell-complex in Rn+1

defined by the convex hull of the graph of φh . The duality in Proposition 5.1 implies
that the corresponding sub-gradient map ∂φh maps the facets F∗

i of theweighedDelau-
nay tessellation of Xh to the vertices yi of the weighted Voronoi tessellation of Rn .

More generally, p-dimensional faces correspond to (n − p)-dimensional faces [3].

Remark 5.5 By the duality above, computing a convex hull of a discrete graph over
N points in R

n is equivalent to computing the corresponding weighted Voronoi tes-
sellation (as emphasized in [3]). For example, when n = 2 the time-complexity is
O(N log N ). Moreover, if g is constant and Y is a polytope, then the computation of
the volumes of the corresponding cells has time-complexity O(N ) (since the cells are
convex polytopes). More generally, efficient computation of the volume can be done
if the density g is piecewise affine. However, the Newton iteration referred to above
(as opposed to a steepest descent iteration) also requires computing the volumes of the
intersections of the cells [34,38]. This has worst-case time-complexity O(N 2), but
the experimental findings in [34,38] indicate much better near linear time complexity.

5.2 Comparison with Semi-Discrete Optimal Transport

While the L∞-map T := ∇φ is the optimal map pushing forward the measure μ ∈
Pas(X) to ν ∈ Pac(Y ),

T : X → Y , T∗ : μ �→ ν

the push-forward of the discrete measure μh under the piece-wise constant map

Th : Xh → Y

is not even well defined. However, the inverse (Th)−1 of Th is a well-defined L∞-
map from Y to Xh, pushing forward ν to the discrete measure μh on Xh . In fact,
(Th)−1 is the optimal such map, as follows from standard results in the theory of semi-
discrete optimal transport (indeed, T −1

h = ∇φ∗
h ,whereφ∗

h is the Legendre transformof
φh). However, the notation used here differs from the standard notation adopted in the
literature on semi-discrete optimal transport [31]. Indeed, in the latter case themeasure
ν is viewed as the sourcemeasure. Accordingly, the space that is here called X is called
Y in [31] and the measure μ that is treated as a source measure here is viewed as the
target measure in [31], where it is called ν. Moreover, the function −φh(x) + |x |2/2
on X , in the present notation, corresponds to the function ψ in the notation of [31]

123



Foundations of Computational Mathematics (2021) 21:1099–1140 1137

(when the cost function is taken to be |x − y|2/2). The mismatch between the notation
here and the one in [31] is a reflection of the fact that here the emphasis is put on the
solutions of the Monge–Ampère equations (and their discretizations), rather than on
semi-discrete optimal transport maps.

6 The Periodic Setting

Assume given a Zn-periodic measures μ and ν on R
n normalized so that their total

mass on a (or equivalently any) fundamental region is equal to one. We will assume
that ν has a positive density g with positive lower bound δ > 0.Wewill identifyμ and
ν with probability measures on the torus M := (R

Z
)n . We endow M with its standard

flat Riemannian metric induced from the Euclidean metric on R
n and denote by dx

the corresponding volume form on M . Setting

u(x) := φ(x) − |x |2/2

gives a bijection between quasi-convex functionsφ onRn (i.e., such that ∂φ is periodic)
and functions u ∈ C0(M)which are quasi-convex in the sense that∇2u + I ≥ 0 holds
in the weak sense of currents.

When u ∈ C2(M) and μ = f dx , the Monge–Ampère 1.3 for a quasi-convex
function φ on R

n is equivalent to the following equation for u :

g(I + ∇u(x)) det(I + ∇2u)dx = f dx

Wewill say that (μ, ν) is regular if such a solution exists. This is the case if both f and
g are Hölder continuous and strictly positive [20]. In the case of general (μ, ν) there
always exists a weak solution, in the sense of Alexandrov, which is unique modulo an
additive constant [16].

Let now μh be a family of discrete measures on M, defined as in formula 1.5 (with
h denoting the corresponding mesh norm). Then, the following analog of Theorem 1.1
holds:

Theorem 6.1 Let M be the n-dimensional standard flat torus and u and uh quasi-
convex functions on M, defined as above. Then, in the regular case, there exists a
constant C such that

‖uh − u‖H1(M) :=
(∫

M
|∇uh − ∇u|2dx

)1/2

≤ Ch1/2

The constant C only depends on f through a positive lower bound on (∇2u + I ). The
analog of Theorem 1.2 also holds with a universal constant C only depending on the
dimension n and δ−1.

Proof As before it is enough to consider the case when g = 1. Setting MC := (C/Z+
iZ)n (which defines anAbelian variety) and identifying the convex function 4πφ(x) on
R

n with a metric on the theta line bundle L → MC [27] this is proved as in the proof of
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Theorem1.1 (and is, in fact, considerably simpler as no extension and compactification
argument is needed). In the language ofω0-psh functions, this equivalently means that
the quasi-convex function u(x) on M is identified with the ω0-psh function 4πu(z) on
MC, where ω0 is the standard invariant Kähler form on MC, defined by formula 2.12.
Then, formula 3.5 holds on MC with φi replaced by ui , as follows directly from Stokes
theorem on MC. This implies the general case by a regularization argument, which
is particularly simple in this setting as one can use ordinary convolutions. Finally,
the estimate of W1(μ0, μh) proceeds precisely as before, using that any quasi-convex
function on M has Lipschitz constant bounded from above by

√
n (see [30, Lemma

9]). ��
An analog of Theorem 5.4 also holds in the periodic setting. In fact, the situation
is facilitated by the fact that the solution φh is piecewise affine on all of Rn (since
the convex hull of the corresponding periodic point-cloud covers all of Rn). As a
consequence, the discrete Monge–Ampère equation 5.1 may, in the periodic setting,
be reformulated as follows. Identify a vector φ ∈ R

N with a quasi-periodic discrete
function on the periodic discrete subset �N of Rn determined by the point-cloud
{x1, . . . , xN }. We will say that the discrete function φ is convex if its graph over �N

coincides with the boundary vertices of its convex hull in R
n+1. Then, the Monge–

Ampère equation for the quasi-periodic function φh on R
n is (almost tautologically)

equivalent to the following discrete Monge–Ampère equation for a discrete quasi-
periodic convex function φh :

M Ag(φh) = f ,

where the discreteMonge–Ampère operator M Ag(φ)(xi ) is defined as M Ag(Pφ){xi }
where Pφ is the function on R

n defined by the convex envelope of φ. Since Pφ is
piecewise affine on R

n , this means that M Ag(φ)(xi ) is the volume (with respect to
gdy) of the convex hull of the gradients of the affine functions representing Pφ close
to xi (as in points 6–8 in Sect. 2.1).

Remark 6.2 The discrete Monge–Ampère equation above can be seen as a quasi-
periodic variant of the Oliker-Prussner discretization of the Dirichlet problem for
the Monge–Ampère operator (where g = 1 is assumed) [41–43].
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