
Understanding The Impact of Solver Choice in Model-Based Test
Generation

Downloaded from: https://research.chalmers.se, 2025-06-18 03:07 UTC

Citation for the original published paper (version of record):
Meng, Y., Gay, G. (2020). Understanding The Impact of Solver Choice in Model-Based Test
Generation. International Symposium on Empirical Software Engineering and Measurement, ESEM
'20. http://dx.doi.org/10.1145/3382494.3410674

N.B. When citing this work, cite the original published paper.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

Understanding The Impact of Solver Choice in Model-Based Test
Generation

Ying Meng
University of South Carolina

Columbia, SC, USA
ymeng@email.sc.edu

Gregory Gay
Chalmers and the University of Gothenburg

Gothenburg, Sweden
greg@greggay.com

ABSTRACT
Background: In model-based test generation, SMT solvers explore
the state-space of the model in search of violations of specified
properties. If the solver finds that a predicate can be violated, it
produces a partial test specification demonstrating the violation.
Aims: The choice of solvers is important, as each may produce
differing counterexamples. We aim to understand how solver choice
impacts the effectiveness of generated test suites at finding faults.
Method:We have performed experiments examining the impact
of solver choice across multiple dimensions, examining the ability
to attain goal satisfaction and fault detection when satisfaction is
achieved—varying the source of test goals, data types of model
input, and test oracle.
Results: The results of our experiment show that solvers vary in
their ability to produce counterexamples, and—for models where
all solvers achieve goal satisfaction—in the resulting fault detection
of the generated test suites. The choice of solver has an impact on
the resulting test suite, regardless of the oracle, model structure, or
source of testing goals.
Conclusions: The results of this study identify factors that impact
fault-detection effectiveness, and advice that could improve future
approaches to model-based test generation.

CCS CONCEPTS
• Software and its engineering→ Software testing and de-

bugging; System modeling languages.
KEYWORDS

Model-Based Test Generation, Model-Driven Development, Sat-
isfiability Modulo Theories

1 INTRODUCTION
Model-driven development is a practice where models of system
behavior are analyzed in order to improve the quality of the fi-
nal system. Such models [36], often expressed as state-transition
systems, represent the system specifications by prescribing the
behavior (the state) to be exhibited in response to input. Models
allow the analysis of system requirements and behavior, the debate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEM ’20, 2020, Bari, Italy
© 2020 Association for Computing Machinery.
ACM ISBN AAA-B-CCCC-DDDD-E/FF/GG. . . $15.00
https://doi.org/10.1145/AAA.BBB

of design decisions, and the construction of test cases before mis-
takes lead to expensive or life-threatening failures. Model-driven
development has been adopted in safety-critical domains such as
avionic [24], automotive [25], and medical systems [39].

Models allow testing activities to begin before the actual imple-
mentation is constructed, and models are suited to the application
of automated test generation techniques [24, 36]. Tests generated
from these models can be used either to test the model itself or to
test the real system, once constructed.

A common form of model-based test generation is based on
the use of bounded model checking [20, 43], where properties ex-
pected of the model are embedded as temporal logic formulae—
Boolean predicates describing states encountered during execu-
tion paths [30]. Model checking relies on the use of an SMT solver.
Solvers explore the state-space of the model—in search of states
that violate the specified properties—by casting property violation
as a Boolean satisfiability problem [30]. If the model checker finds
that a predicate can be violated, it produces a counterexample—a
partial test specification demonstrating the violation.

Often, rather than being used to search directly for violations of
properties, we instead embed properties that we want to show can
be met by the model. We then negate those properties, claiming that
they cannot be met. The model checker then attempts to produce
a counterexample illustrating how the property can be met. This
counterexample offers test input that can be applied to put the
model into the desired state. Often, this form of test generation
is used to achieve structural coverage over the model [21, 24]. By
repeating this process for each goal of the coverage criterion, we
can thoroughly explore the state-space of the model.

The choice of solvers is important, as each follows their own
algorithm, and each may produce differing counterexamples. Each
may be better suited to particular classes of problems, or types
of models. In many situations, multiple solvers could be used to
guide the test generation process. If only one is capable of achieving
goal satisfaction, the choice of solver is clear—use the one that can
solve your problem. However, with advances in both computing
power and algorithm design, we increasingly encounter situations
where multiple solvers can produce test cases for a given model.
Consider four common solvers: Z3 [14], MathSAT5 [10], CVC4 [7],
and Yices2 [15]. Each is able to handle similar model structures and
data types. In this situation, does it matter which solver is used?

Even in this situation, there may still be merit in choosing one
solver over another. Multiple input choices often lead to the same
state. The strategy used to sample the input space differs from one
solver to another, and the resulting test suites—while demonstrating
the same goals—may offer different paths or choices of input in

https://doi.org/10.1145/AAA.BBB

ESEM ’20, 2020, Bari, Italy Anonymous Authors

service of achieving that goal. This can, in turn, impact the fault-
detection potential of the test suite [24]. In practice, the choice of
solver could have an impact on the ability of the generated test suite
to detect failures in the model or the system. To help developers
choose the right solver for their task, we must understand the
differences in the test cases produced by those solvers.

To examine the fault-detection capabilities of suites produced by
Z3, Yices2, CVC4, and MathSAT5, we have performed test genera-
tion over 37 models. Tests were generated targeting four different
coverage criteria—Branch Coverage, Decision Coverage, Condition
Coverage, and Modified Condition/Decision Coverage (MC/DC).
We seeded up to 500 faults—mutations—in each model, and assess
the ability of the generated test suites to detect them using two
different test oracle strategies—oracles based on the output vari-
ables of the model and maximal oracles that assess the values of
all model variables [23]. This experiment allows us to examine the
impact of solver choice on multiple dimensions—the ability of a
solver to achieve goal satisfaction, and the impact on fault-detection
effectiveness of the solver algorithm, types of goals, data types of
the model variables, and the type of test oracle.

The results of our experiments demonstrate that:

• CVC4 and MathSAT5 fail to produce test cases for a subset
of the goals on seven models (18.92%), while Z3 and Yices2
achieve satisfaction over the full set.

• The solvers yield test suites that differ in fault-detection
capabilities for 18 models (48.65%). Performance differences
are seen for 13 of these models across all coverage criteria.

• When using a standard output-based oracle, suites generated
by CVC4 and MathSAT5 outperform suites generated by Z3
with significance. When using a maximal oracle, CVC4 and
MathSAT5 also outperform Yices2 with significance.

• Solvers and generation frameworks could improve fault de-
tection by factoring effect propagation of variables, like those
associated with testing goals, into input selection.

• Complex goals constrain the solver’s ability to choose input,
narrowing the performance gap. Simple testing goals can be
satisfied by a wider range of input, magnifying the difference
in search strategies employed by solvers.

• Solvers could improve fault-detection by applying a wider
variety of values, rather than favoring fixed values.

• Solvers, by design, omit unused input variables from the
counterexample. The strategy used by the test generation
framework to fill those gaps impacts fault detection.

• Solvers often offer parameters that can be used to control
the search. These parameters could be automatically tuned
by test generation frameworks.

We observe, from this study, that the choice of solver has a major
impact on the resulting test suite, regardless of the oracle, model
structure, or source of testing goals. The results of this study identify
factors that impact fault-detection effectiveness, and offer advice
that could be used to improve future solvers and future approaches
to model-based test generation as well as other test generation
methods that make use of solvers, like symbolic execution [49].

2 BACKGROUND
Bounded model checking is an automated approach to property ver-
ification where the state-space of a model is explored for a state that
violates user-specified properties [26, 30]. Bounded model check-
ing is based on logical propositions, often expressed in a temporal
language where a formula is not statically true or false in a model.
Instead, across the states of the model reached during execution,
a formula may be true in some states and false in others [30]. The
problem of identifying property-violating states can be expressed
as a Satisfiability Modulo Theories (SMT) instance, a generalization
of a boolean satisfiability instance in which atomic boolean vari-
ables are replaced by predicates expressed in classical first-order
logic [8]. An SMT problem can be thought of as a constraint sat-
isfaction problem—we seek values for the input variables of the
model that lead to a state violating the stated properties. Bounded
model checking is a specific form of model checking where, given
a transition-based model M , a set of logical formulae f , and a
user-supplied transition limit k , we can decide whether or not f
is satisfiable over all transition paths of length k . If the formulae
can be violated, the model checker produces a counter-example
showing a set of transitions that cause the violation.

Within the bounded model checking framework, the solver at-
tempts to falsify the user-specified properties by using a search
strategy to explore the state space of the model. A common search
strategy is the branch-and-bound algorithm [4]. This algorithm
is conceptually simple: set a literal in the property to a particular
value and see if the value satisfies all of the clauses that it appears
in. If so, assign a value to the next variable. However, if setting
a value unsatisfies a clause, then a backtracking step (a bound) is
initiated and another value is applied. This process prunes branches
of the formed Boolean decision tree. Another common approach,
the Davis-Putnam-Logemann-Loveland (DPLL) algorithm, is simi-
lar [13]. DPLL begins by selecting a variable and applying a value
to it. If this value satisfies the clause, then all clauses containing
that variable are removed from the formula. If the variable is made
false due to negation, the algorithm instead remove that variable
from only the clause that it is negated in. This process is repeated
recursively until a solution is found. This induces a domino effect—
as more variables are removed from clauses, more clauses turn into
unit clauses [41].

In this study, we have made use of the JKind [19, 26] model
checker and four common solvers:

Cooperating Validity Checker (CVC4) is based on the DPLL(T)
algorithm, an extension of DPLL designed to offer solutions for
not just Boolean variables, but also for rational and integer linear
aritmetic, tuples, records, inductive data types, bit-vectors, strings,
and uninterupted functions [7].

MathSAT5 is also based on the DPLL(T) algorithm, and offers its
own theories for arrays and floating point calculations [10]. It offers
sophisticated preprocessing of Boolean formulae, and support for
incremental solving.

Yices2 is based on the conflict-driven clause learning (CDCL) algo-
rithm [48], and is able to address formulae containing uninterpreted
functions, real and integer arithmetic, bit-vectors, scalar types, and
tuples [15]. It also supports both linear and non-linear arithmetic.

Understanding The Impact of Solver Choice in Model-Based Test Generation ESEM ’20, 2020, Bari, Italy

Z3 is also based on the DPLL(T) algorithm, and supports linear and
non-linear real and integer arithmetic, bit-vectors, uninterpreted
functions, extensional arrays, and quantifiers [14].

While many of these solvers are based on similar algorithms,
i.e., DPLL(T), each may search the state-space differently, and each
offers their own theories for solving non-trivial formulae.

In counterexample-based test generation, we produce test cases
intended to put the system into a set of desired states. This could
be done to show that the final system conforms to the model’s
behavior, or to attain coverage over certain elements of the model
structure. In this form of test generation, we embed a set of one or
more properties into the model. These properties describe behavior
we want the model to demonstrate, or a state we want the model to
be in.We then negate these properties—we assert that the properties
can not be satisfied, and ask the search algorithm to find a set of
values for the input variables that do satisfy those properties.

For example, we have a model containing the expression: out =
(x and s). We then might formulate a testing goal stating that we
want variable x to be false, the expression out to evaluate to false,
and x to influence the outcome of out without being masked by
the value of s . This leads to the property ((not x) and s). We then
negate that to be (not ((not x) ands)). When a solver is able to
falsify a property, it returns a partial test specification outlining
how that violation can be replicated. For one ormore input variables,
this specification outlines a value for each specified variable. For
example, the specification m : f alse, f alse outlines a two-step
test case (a path with two transitions) where the value of false is
provided for input variablem in both steps. By providing that input,
we violate the negated property, demonstrating that the original
property can be met.

The test specification provided in the counterexample may not
specify values for all input variables. By design, the counterexample
only provides values for variables needed to reach the desired state.
The other input variables are unspecified, as they will not impact
the execution path. However, executing a test case still requires
providing some value for those “don’t care” variables. Generally,
default values (i.e., 0 for numeric variables or false for Boolean
variables) are used.

3 METHODOLOGY
We are interested in understanding the effect that solver choice
has on the test suites produced through bounded model checking.
We are especially interested in the impact of solver choice when
multiple solvers are able to produce tests for the full set of satis-
fiable testing goals. In this situation, each solver will produce an
identically-sized test suite—with one test per goal. However, as
each solver brings their own theories and applies their own search
strategy, the input used to address each goal may differ. Does this
difference matter? Do these variations have a practical, observable
impact on the ability of test suites to detect faults?

This question motivates our study. In particular, we wish to
address the following research questions:

(1) Does the choice of solver influence the number of test goals
that will be satisfied for a model?

(2) Does the choice of solver influence the resulting fault detec-
tion capabilities of the produced test suite?

(3) Does the source of test goals influence the capabilities of the
chosen solver?

(4) Does the choice of oracle strategy influence the capabilities
of the chosen solver?

(5) Do the data types of the model variables influence the capa-
bilities of the chosen solver?

(6) Are there additional factors that influence the capabilities of
the chosen solver?

To address these questions, we have:

(1) Gathered case examples: We have assembled a set of 37
software models written in the Lustre language (Section 3.1).
Some solversmay be better at addressing numeric constraints
than other solvers. Therefore, we study models with varying
mixtures of Boolean and numeric data types.

(2) Generated mutants: We generated up to 500 mutations
(faulty versions) of each model, each containing a single
fault (Section 3.2).

(3) Generated test suites: Different sources of testing goals
will impose different constraints on the produced test suites.
We focus in this study on testing based on structural cov-
erage criteria. Simple criteria, like Branch Coverage, often
have fewer goals and impose fewer constraints on input se-
lection than complex criteria like MC/DC. Some criteria may
expose differences between solvers more clearly than oth-
ers. Using each solver, we generated test suites intended to
satisfy Branch, Condition, Decision, and MC/DC Coverage
(Section 3.3).

(4) Computed effectiveness: We collect data on the number
of testing goals satisfied and compute the fault finding ef-
fectiveness of each test suite. A test oracle is required to
judge the correctness of system behavior. The oracle speci-
fies expected values for a set of variables. We vary the size
of that set, as one solver may be better at propagating faulty
state to the monitored variables than others. Therefore, we
assess fault detection using both a standard oracle based on
the output variables and an oracle considering all program
variables—a maximally powerful oracle (Section 3.4).

A replication package containing all models, mutants, test
suites, execution traces, and fault-detection results is
available from http://doi.org/10.5281/zenodo.3484641.

3.1 Case Examples
Increasingly, our society is powered by reactive systems—-embedded
systems that interact with physical processes. Reactive systems
operate in cycles—receiving new input from their environment, to
which they react by issuing output. In each step, input is received,
internal computations are performed sequentially, and output is
produced. Within a step, no iteration or recursion is done—each
internal variable is defined, and the value for it computed, exactly
once. The system itself operates as an large loop.

Such systems are commonly designed using modeling languages,
which are translated into C code that can be directly flashed to
hardware. Models can be developed using visual notations, such as

http://doi.org/10.5281/zenodo.3484641

ESEM ’20, 2020, Bari, Italy Anonymous Authors

Table 1: Benchmark example information. “i” = int, “b” =
bool. Systems in italics show difference in number of solv-
able test goals between solvers, systems in bold show differ-
ent fault-detection performance between solvers.

Model # Inputs # Internal Variables # Outputs
6counter 1 (b) 4 (b) 1 (b)
CarAll 2 (b) 8 (3 i, 5 b) 1 (b)
cd 1 (i) 6 (2 i, 4 b) 1 (b)

DockingApproach 13 (9 i, 4 b) 1410 (1211 i, 199 b) 11 (b)
DragonAll 13 (1 i, 12b) 22 (7 i, 15 b) 1 (b)
DragonAll2 13 (1 i, 12b) 27 (11 i, 16 b) 1 (b)

durationThm1 5 (2 i, 3 b) 7 (5 i, 2 b) 1 (b)
ex3 2 (b) 5 (2 i, 3 b) 1 (b)
ex8 2 (b) 5 (2 i, 3 b) 1 (b)

fast_1 14 (1 i, 13 b) 19 (b) 1 (b)
fast_2 14 (1 i, 13 b) 30 (b) 1 (b)
FireFly 9 (1 i, 8 b) 17 (7 i, 10b) 1 (b)
Gas 2 (b) 8 (5 i, 3 b) 1 (b)

HysteresisAll 2 (b) 5 (2 i, 3 b) 1 (b)
IllinoisAll 10 (1 i, 9b) 16 (5 i, 11b) 1 (b)

Infusion_Manager 20 (14 i, 6 b) 861 (797 i, 64 b) 5 (4 i, 1 b)
MesiAll 4 (b) 10 (4 i, 6 b) 1 (b)
Metros1 3 (b) 16 (7 i, 9 b) 1 (b)
MoesiAll 5 (1 i, 4 b) 12 (5 i, 7 b) 1 (b)

PetersonAll 12 (b) 28 (13 i, 15 b) 1 (b)
ProducerConsumerAll 4 (1 i, 3 b) 12 (6 i, 6 b) 1 (b)

ProductionCell 3 (b) 15 (b) 1 (b)
Readwrit 9 (b) 24 (12 i, 12 b) 1 (b)
RtpAll 12 (b) 24 (9 i, 15 b) 1 (b)
Speed2 2 (b) 5 (3 i, 2 b) 1 (b)
Stalmark 1 (b) 3 (b) 1 (b)

SteamBoilerNoArr2 19 (16 i, 3 b) 3 (2 i, 1 b) 1 (b)
Swimmingpool1 8 (2 i, 6 b) 21 (13 i, 8 b) 1 (b)

Switch 3 (b) 2 (b) 1 (b)
Switch2 3 (b) 2 (b) 1 (b)

SynapseAll 4 (1 i, 3 b) 10 (5 i, 5 b) 1 (b)
Ticket3iAll 13 (4 i, 9 b) 20 (8 i, 12 b) 1 (b)
Traffic 1 (i) 3 (2 i, 1 b) 1 (b)
Tramway 4 (b) 23 (b) 1 (b)

TwistedCounters 1 (b) 4 (1 i, 3 b) 1 (b)
Two Counters 1 (b) 3 (1 i, 2 b) 1 (b)

UMS 5 (b) 39 (b) 1 (b)

Simulink1, Stateflow2 and SCADE [17]. They can also be directly
expressed using dataflow languages. The models used in this ex-
periment were developed in the Lustre dataflow language [27], a
declarative programming language for manipulating streams of
variable values. Lustre offers an intermediate representation be-
tween behavioral model and traditional source code that is useful
for specification, design, and analysis purposes [26]. Lustre pro-
grams can be automatically generated from visual notations such
as Simulink, and can be automatically compiled to target languages
such as C/C++, VHDL, as well as to input models for verification
tools such as model checkers. This is a syntactic transformation,
and if applied to C, the results of this study would be identical.

In this study, we make use of 37 models from the open-source
Lustre Benchmarks dataset3. This dataset has been used in previous
test generation experiments [38], and includes complex models
such as Docking_Approach, a NASA-created example that describes
the behavior of a space shuttle as it docks with the International
Space Station [24]. Another model, Infusion_Manager represents

1http://www.mathworks.com/products/simulink
2http://www.mathworks.com/stateflow
3Available from https://github.com/Greg4cr/Reworked-Benchmarks/tree/SingleNode.

the prescription management of an infusion pump device [22–24].
Information related to each system is provided in Table 1, where
we list the number and data types of of input, internal, and output
variables. The models in italics differ in terms of the number of
solvable testing goals for any of the criteria, and the models in bold
yielded differing fault-detection results.

3.2 Mutant Generation
The following mutation operators were used in this study: arith-
metic operator change (+, -, /, *, mod, exp), relational operator
change (=, ,, <, >, ≤, ≥), Boolean operator change (∨,∧, XOR),
Boolean negation, use the stored value of the variable from the
previous computational cycle rather than the newly computed
value, alter a constant, and variable substitution. The mutation
operators used in this study are discussed at length in [42]. These
mutations are similar to those used by Andrews et al., where the
authors found that generated mutants are a reasonable substitute
for actual failures in testing experiments [5]. Additionally, Just et
al. have found a significant correlation between mutant detection
and real fault detection [33].

The mutation method used is designed such that all mutants
produced are both syntactically and semantically valid. That is,
the mutants will compile, and no mutant will trivially “crash” the
system under test. In order to control experiment costs, we do not
use all possible mutants for each model. Instead, we employ the
following rule-of-thumb—if a model has fewer than 500 possible
mutations, we use all possible mutations. If over 500 mutations are
possible, we choose 500 of them for use in the experiment. In order
to select mutants, we first gather a list of all possible mutations.
Then, we use the proportions of each mutation type in the full set to
select the number of mutants for the reduced set of 500. Mutants of
each type are then chosen randomly until the determined number
are chosen for that type. This process prevents biasing towards
particular types of mutations. Instead, the proportion of each fault
type is maintained, despite not using the full set.

3.3 Test Input Generation
Structural coverage criteria serve as a means to determine that the
structure of system-under-test—the various elements making up
the model—have been thoroughly exercised by test cases. Many
structural coverage criteria, defined with respect to specific syn-
tactic elements of a program, have been proposed and studied [24].
These criteria are used both to measure suite adequacy—as a means
to assess the quality of existing test suites—and as goals for auto-
mated test generation. In this study, we are primarily concerned
with reactive systems. Such systems often have sophisticated log-
ical structures. Therefore, we focus on coverage criteria defined
over Boolean expressions:
Decision Coverage: A decision is a Boolean expression. Deci-
sions are composed of one or more conditions—atomic Boolean
subexpressions—connected by operators (and, or, xor, not). Deci-
sion Coverage requires that all decisions in the system under test
evaluate to both the true and false.
Branch Coverage: A branch is a type of decision that can cause
program execution to diverge down a particular control flow path,
such as that in if or case statements. Branch Coverage is defined in

http://www.mathworks.com/products/simulink
http://www.mathworks.com/stateflow
https://github.com/Greg4cr/Reworked-Benchmarks/tree/SingleNode

Understanding The Impact of Solver Choice in Model-Based Test Generation ESEM ’20, 2020, Bari, Italy

the samemanner as Decision Coverage, but is restricted to branches,
rather than all decision statements.
Condition Coverage: Condition Coverage requires that each con-
dition evaluate to true and false. Note that satisfying Condition
Coverage does not always imply that Decision Coverage is ful-
filled as well, as tests can vary condition values without the entire
expression changing value.
Modified Condition/Decision Coverage (MC/DC):MC/DC re-
quires that each decision evaluate to all outcomes, each condition
take on all outcomes, and that each condition be shown to inde-
pendently impact the outcome of the decision. Independent effect
is defined in terms of masking—a masked condition has no effect
on the value of the decision; for example, given a decision of the
form x and y, the truth value of x is irrelevant if y is false, so we
state that x is masked out. A condition that is not masked out has
independent effect for the decision. Showing independent impact
requires a pair of test cases where all other conditions hold fixed
values and our condition of interest flips values. If changing the
value of the condition of interest changes the value of the decision
as a whole, then the independent impact has been shown.

The MC/DC criterion is used as an exit criterion when testing
software for critical software in the avionics domain, and is required
for safety certification in that domain [44]. Several variations of
MC/DC exist. We use Masking MC/DC, as it is a common criterion
within the avionics community [9].

We use a counterexample-based test generation framework for
Lustre programs used in past research on test generation4 [21, 24,
38]. This framework generates counterexamples using the JKind
bounded model checker [19, 26], then fills in default values for any
variables not specified by the specification. The solver is invoked
for each goal, meaning that this form of test generation will produce
one test per testing goal. There may be overlap between tests in
terms of goals covered, and test suite reduction is often used to
narrow the size of the suite [38]. As suite reduction adds stochastic
noise to experiment results, we do not employ it in this study, and
instead examine the full suite.

3.4 Data Collection
In order to compute effectiveness of the generated test suites, we
produce traces of execution by executing each test case against
the original program and each mutant—recording the value of all
variables at each step.

We use expected value oracles as test oracles [23], where the tester
defines concrete, anticipated values for one or more variables in the
program. We employ two oracle formulations: an output-only oracle
strategy defines expected values for all outputs, and a maximum
oracle strategy that defines expected values for all variables. The
output-only strategy represents the oracle most likely to be used in
practice, while the maximum strategy allows examination of the
best possible fault-detection scenario for a generated suite [23].

To produce an oracle, we use the values of the monitored vari-
ables from the traces gathered by executing test cases on the original
program, and we compare those values to those recorded for each
mutant. The fault finding effectiveness of the test suite and oracle
pair is computed as the number of mutants detected. For all studied
4Available from https://github.com/MENG2010/lustre.

Table 2: Models where a solver was unable to achieve satis-
faction of all solvable goals for all criteria. In each case, the
percentage of satisfaction achieved is listed. Z3 and Yice2 at-
tain full satisfaction for all models.

Model Solver Branch Decision Condition MC/DC

DockingApproach CVC4 33.97% 25.29% 33.97% 15.08%
MathSAT5 15.17%

Gas CVC4/MathSAT5 95.23% 75.76%
HysteresisAll CVC4/MathSAT5 41.02% 48.49%

Metros1 CVC4/MathSAT5 94.19%
PetersonAll CVC4/MathSAT5 97.12% 97.58%
Readwrit CVC4/MathSAT5 97.01% 95.44%

RtpAll CVC4 94.37% 94.95%
MathSAT5 94.50%

systems, we assess the fault-finding effectiveness of each test suite
and oracle combination by calculating the ratio of mutants detected
to total number.

4 RESULTS & DISCUSSION
We divide our analysis of the experimental results as follows: (a)
the ability of solvers to satisfy testing goals, (b) the impact of solver
choice on fault-detection effectiveness, and (c) the factors that in-
fluence fault detection.

4.1 Ability to Satisfy Testing Goals
Our first research question differentiates the solvers in terms of their
basic ability to generate test cases. Are there models where certain
solvers cannot satisfy all solvable testing goals? For each model,
solver, and coverage criterion, we have measured the number of
cases where a solver returns an “unknown” verdict, indicating that
it cannot produce a counterexample or prove a property unsolvable.

Table 2 indicates the percentage of solvable testing goals covered
in situations where a solver could not achieve full satisfaction of all
solvable goals for that model and criterion. From this, we can see
that Z3 and Yices2 achieve full satisfaction over all 37 models, while
CVC4 and MathSat5 fall short for a subset of criteria on seven of
the models. For many of these models, the performance gap is not
major, with CVC4 and MathSAT5 achieving over 90% satisfaction.
However, for some models, like DockingApproach and HysteresisAll,
the gap is much larger. We also see that more goals are missed for
the more complex criteria, Condition Coverage and MC/DC.

An “unkown” verdict is generally returned for one of two reasons.
First, the model could contain features that the solvers lack theories
for, such as complex non-linear arithmetic operations. In this study,
none of the solvers fail for that reason. Instead, the reason for failure
is that the solver is unable to prove or disprove the property in the
specified time limit or path length.

In this experiment, we provided all solvers with the same timeout,
either 72000 seconds or a path with a length of over 500 transitions.
Both limits are well over what is generally required. In practice,
almost all test cases for these criteria have paths of fewer than five
transitions, and test goals can be satisfied in a matter of seconds.
A time out often indicates that the solver will never be able to
produce an answer for that obligation, regardless of the limit. This
is generally due to the model having a large and complex state
space that the solver is unable to explore. In such cases, it seems
that Z3 and Yices2 are better able to navigate the state spaces of
these seven models, while CVC4 and MathSAT5 become trapped.

https://github.com/MENG2010/lustre

ESEM ’20, 2020, Bari, Italy Anonymous Authors

Table 3: Median percentage of mutants detected for all models where solvers achieved full goal satisfaction, and for a filtered
subset of models where there are performance differences. Results are shown for all oracle strategies and coverage criteria.

Output-Only Oracle (OO) Maximum Oracle (MX)
Criterion Num. Models Z3 Yices2 CVC4 MathSAT5 Z3 Yices2 CVC4 MathSAT5

All Models

Branch 28 46.34% 42.30% 56.85% 56.85% 76.77% 77.36% 93.41% 93.71%
Decision 30 77.15% 78.94% 78.14% 78.24% 100.00% 100.00% 100.00% 100.00%
Condition 30 65.55% 84.88% 66.93% 66.93% 93.67% 100.00% 94.95% 94.95%
MC/DC 30 75.43% 94.29% 77.88% 77.88% 95.37% 100.00% 96.37% 96.51%

Differences

Branch 16 25.00% 25.55% 27.90% 28.94% 66.72% 67.08% 73.03% 74.27%
Decision 15 14.57% 25.00% 25.00% 25.00% 66.95% 65.25% 76.81% 76.77%
Condition 16 21.77% 24.43% 29.62% 28.81% 71.51% 73.39% 78.75% 78.85%
MC/DC 15 31.93% 32.77% 32.77% 32.77% 84.67% 88.57% 85.43% 84.85%

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Z3-OO Y2-OO CVC4-OO MS5-OO Z3-MX Y2-MX CVC4-MX MS5-MX

(a) Branch Coverage

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Z3-OO Y2-OO CVC4-OO MS5-OO Z3-MX Y2-MX CVC4-MX MS5-MX

(b) Decision Coverage

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Z3-OO Y2-OO CVC4-OO MS5-OO Z3-MX Y2-MX CVC4-MX MS5-MX

(c) Condition Coverage

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Z3-OO Y2-OO CVC4-OO MS5-OO Z3-MX Y2-MX CVC4-MX MS5-MX

(d) MC/DC

Figure 1: Boxplots of percentage of mutants detected for
each solver and oracle, separated by criterion. OO = output-
only, MX = maximum, Y2 = Yices2, MS5 = MathSAT5.

CVC4 and MathSAT5 fail to produce test cases for a subset of
the goals on seven models, while Z3 and Yices2 achieve

satisfaction over the full set.

From this, we can see that—for the majority of our models—a
tester could reasonably choose between all four solvers. However,
solvers are also not a “solved” problem. More research is clearly
needed before all solvers can handle all models equally well.

4.2 Fault-Detection Capabilities
Our remaining research questions examine the impact of solver
choice on the fault-detection capabilities of generated test suites.
To fairly assess such potential, we remove from consideration the

Table 4: Models where the generated test suites differ in per-
formance. “i” = int, “b” = bool. Bold indicates that perfor-
mance differed for all coverage criteria.

Model # Inputs # Internal Variables # Outputs
CarAll 2 (b) 8 (3 i, 5 b) 1 (b)
cd 1 (i) 6 (2 i, 4 b) 1 (b)

DragonAll 13 (1 i, 12b) 22 (7 i, 15 b) 1 (b)
DragonAll2 13 (1 i, 12b) 27 (11 i, 16 b) 1 (b)
durationThm1 5 (2 i, 3 b) 7 (5 i, 2 b) 1 (b)

ex3 2 (b) 5 (2 i, 3 b) 1 (b)
ex8 2 (b) 5 (2 i, 3 b) 1 (b)

fast_1 14 (1 i, 13 b) 19 (b) 1 (b)
FireFly 9 (1 i, 8 b) 17 (7 i, 10b) 1 (b)

IllinoisAll 10 (1 i, 9b) 16 (5 i, 11b) 1 (b)
Infusion_Manager 20 (14 i, 6 b) 861 (797 i, 64 b) 5 (4 i, 1 b)

MoesiAll 5 (1 i, 4 b) 12 (5 i, 7 b) 1 (b)
ProducerConsumerAll 4 (1 i, 3 b) 12 (6 i, 6 b) 1 (b)

Speed2 2 (b) 5 (3 i, 2 b) 1 (b)
SteamBoilerNoArr2 19 (16 i, 3 b) 3 (2 i, 1 b) 1 (b)
Swimmingpool1 8 (2 i, 6 b) 21 (13 i, 8 b) 1 (b)

SynapseAll 4 (1 i, 3 b) 10 (5 i, 5 b) 1 (b)
Traffic 1 (i) 3 (2 i, 1 b) 1 (b)

seven models where CVC4 and MathSat5 fail to achieve full sat-
isfaction. Failing to produce test cases will generally negatively
impact fault-detection and bias comparison. We instead compare
results for the remaining 30 models, where all four solvers achieve
full satisfaction5.

Table 3 lists the median percentage of mutants detected by gen-
erated test suites for each combination of solver, oracle strategy,
and criterion. First, we list the median for the full set of thirty mod-
els. From this, we can see that there are performance differences
between the solvers. In fact, the difference in median is often quite
pronounced—for example, in Branch, Condition, and MC/DC Cov-
erage with the OO oracle. From first glance, it seems that there are
substantive differences between solvers.

Looking at performance across the full set of models does not
paint a completely clear portrait of performance. For twelve of the
thirty models, every solver produces tests that perform identically
in fault detection. It is worth closely analyzing performance for the
models where the solvers differ in performance. Table 4 lists the
18 models where performance differed for at least one coverage
criterion. The models in bold differ in performance across all four

5We exclude two models, 6counter and UMS for Branch Coverage, as these two models
have no testing goals for that criterion.

Understanding The Impact of Solver Choice in Model-Based Test Generation ESEM ’20, 2020, Bari, Italy

Table 5: P-Values for Mann-Whitney rank-sum tests.

OO Oracle

Z3 Yices2 CVC4 MathSAT5
Z3 - 0.83 0.99 0.98

Yices2 0.17 - 0.85 0.85
CVC4 0.01 0.15 - 0.49

MathSAT5 0.01 0.15 0.51 -

MX Oracle

Z3 Yices2 CVC4 MathSAT5
Z3 - 0.69 1.00 1.00

Yices2 0.31 - 0.99 0.99
CVC4 < 0.01 0.01 - 0.49

MathSAT5 < 0.01 0.01 0.52 -

coverage criteria. In Table 3, we also list the median performance
for the subset of models where performance differs between solvers
for that criteria, along with the number of models in that subset. In
Figure 1, we show fault detection for the filtered set of models.

The solvers yield test suites that differ in fault detection for
eighteen models. For thirteen models, performance
differences are seen across all coverage criteria.

From the filtered results in Table 3 and Figure 1, we can see
clear differences in performance between the test suites produced
by the four solvers. For Branch, Condition, and Decision Cover-
age, CVC4 and MathSAT5 have higher median performance—and
higher first and third quartile performance—than Yices2 and Z3. For
MC/DC, however, Yices2 ties on median performance with CVC4
and MathSAT5 for the OO oracle and pulls ahead in median on the
MX oracle. Across the board, Z3 yields the worst performance, with
lower medians and lower first quartiles.

For Branch, Decision, and Condition Coverage, when solvers
yield differing results, CVC4 and MathSAT5 outperform other
solvers in mutant detection by up to 71.58% overall, or up to

1270% per model.

For MC/DC, Yices2 ties on median performance with
CVC4/MathSAT5 for the OO oracle and yields up to a 4.6%
overall improvement for the MX oracle (up to 238.98%

improvement on a per-model basis).

We perform statistical analysis to assess our observations. For
each pair of solvers, we formulate hypothesis and null hypothesis:

• H : Test suites generated using solver A will have a different
distribution of fault detection results than suites generated
using solver B.

• H0: Observations of fault detection results for both solvers
are drawn from the same distribution.

Our observations are drawn from an unknown distribution; To
evaluate the null hypothesis without any assumptions on distribu-
tion, we use a one-sided (strictly greater) Mann-Whitney-Wilcoxon
rank-sum test [47], a non-parametric test for determining if one set
of observations is drawn from a different distribution that another
set. We apply the test for each pairing of techniques and baselines
with α = 0.05. Because of the limited number of samples per cov-
erage criterion, we combine observations for all four criteria. We
assess hypotheses for systems where solvers attain differing results.

P-values are listed in Table 5. The results add further weight
to our previous observations. For the OO oracle, we are able to
reject the null hypothesis for CVC4 and MathSAT5 versus Z3. For
the MX oracle, we are also able to reject the null hypothesis for
CVC4 and MathSAT5 versus Yices2. We are unable to reject the
null hypothesis in all other cases.

When using a standard output-based oracle, suites generated
by CVC4 and MathSAT5 outperform suites generated by Z3
with statistical significance. When using a maximal oracle,
CVC4 and MathSAT5 outperform Yices2 with significance.

4.3 Factors That Influence Fault Detection
Our goal is not necessarily to recommend one particular solver. We
would not use these results to suggest the universal application of
CVC4 or Yices2—particularly as these two solvers fail to achieve full
goal satisfaction over several models. Rather, wewant to understand
why performance differs, so that we can make recommendations
for solver improvement across the board. To that end, we have
examined the impact of test oracle employed, the source of testing
goals, and the data types of input variables.

Choice of Test Oracle:

In this experiment, we used two test oracle formulations. The
output-only oracle reflects standard practice, where we specify
expected values for the output variables of themodel. Themaximum
oracle reflects a situation where we specify expected values for all
model variables, internal or output. This is not a realistic oracle.
However, it is useful for looking at the “best-case” performance
of these test suites, where all triggered faults are also detected.
Therefore, the maximum oracle is a useful piece of information
for understanding a critical feature of solver performance—the
ability of the solver to choose input that both triggers faults and
propagates corrupted state to the model output.

The same overall trends—i.e., CVC4 and MathSAT5 outperform-
ing Z3—largely hold across both oracles. However, there are a few
observations we can make. First, there is a clear performance gap
between the two oracle types. This indicates that some faults are
triggered, but the corrupted state is not propagated to the output
level. Intermediate calculations mask out the corrupted state—for
example, a corrupted variable may be used in a Boolean expression,
but not impact the outcome of that expression. This does not mean
these faults are unimportant. Rather, it means that the chosen input
was not sufficient to reveal the fault [21, 24, 38].

We can see from the results in Figure 1 that the overall distribu-
tion of results is “narrower” for the MX oracle than the OO oracle
for each technique—there is less distance between the first and
third quartile. This suggests that there is more variance in whether
faults are propagated to the output than there is in whether faults
are triggered for all four solvers. No solver has a universally nar-
rower range of results, this varies by coverage criterion. Therefore,
rather than suggesting a difference between these four solvers, the
test oracle results identify an area of improvement for both future
solvers and test generators:

ESEM ’20, 2020, Bari, Italy Anonymous Authors

Solvers and test generation frameworks could improve fault
detection by factoring effect propagation of important

variables into input selection.

To some extent, propagation is a factor that can be addressed
through the design of coverage criterion. For example, the criteria
used as testing goals in this study have been enhanced in the past
with “observability” requirements that add path conditions to their
existing goals [38, 46].

Ensuring propagation is clearly important, and could be ad-
dressed at one of two levels. Either the solver could ensure ef-
fect propagation by explicitly factoring path constraints into the
constraints being solved, or the test generation framework could
append path constraints to the test obligations being passed to
the solver. In either case, these path constraints would “protect”
variables referenced in the user-specified constraints from being
masked along the path between their assignment and the assign-
ment of output variables.

Choice of Coverage Criterion:

All four of the sources of testing goals used in this study are
related—they are structural coverage criteria based on Boolean ex-
pressions. Therefore, we would not expect major differences in fault
detection based solely on the choice of criterion. Indeed, Table 3
and Figure 1 indicate similar trends between Branch, Coverage, and
Decision Coverage in terms of relative solver performance. Cover-
age criterion does influence the resulting fault detection—MC/DC-
satisfying suites tend to detect more faults than Decision-satisfying
suites—but that rise occurs regardless of the chosen solver.

However, from the results for MC/DC, we can also see that
there is some relation between solver performance and source of
testing goals. For Branch, Condition, and Decision Coverage, there
are clear median and distribution differences between solvers. For
MC/DC, both the median performance and the overall distributions
(first/third quartiles in the boxplots) are quite similar across solvers.

MC/DC is the strictest of the studied criteria. It imposes the most
constraints on the test input used to satisfy its goals. It follows
that the solver would have less freedom to choose input that meets
the goals of MC/DC. In turn, this explains why the solvers yield
similar—albeit not identical—performance on models when MC/DC
is the goal. The other criteria place fewer constraints. A wider
variety of input will be able to attain satisfaction of those criteria.
In turn, this leads to more variance between solvers.

Complex goals constrain the solver’s ability to choose input,
narrowing the performance gap. Simple goals can be satisfied
by a wider range of input, magnifying solver differences.

The choice of testing goal is ultimately up to the developer. How-
ever, as solvers increase in efficiency and ability to solve complex
constraints, it becomes easier for developers to make use of stronger
coverage criteria as their baseline approach.

-20

-10

 0

 10

 20

 30

 40

Z3 Y2 CVC4 MS5

Figure 2: Values chosen for the integer input for DraдonAll2.
OO = output-only oracle,MX =maximumoracle, Y2 = Yices2,
MS5 = MathSAT5.

Input Data Types:
Like in standard programs, model variables have data types—

i.e., Boolean, integer, real valued, and enumerated types6. Solvers
have evolved over the years to better handle complex data types.
Some constraints remain challenging to solve—such as non-linear
numeric operations—and some will likely remain unsolvable. How-
ever, great strides have been made in handling complex properties.
How these data types are handled, however, differs greatly between
solvers, and much of the performance gap may come down to how
solvers explore the underlying structure of the studied models.

As indicated in Table 1, the studied models use a mixture of
Boolean and integer input. Table 4 lists the models where there
were performance differences between solvers. The models in bold
are particularly important, as these are themodels where differences
were encountered regardless of the choice of coverage criterion.
This indicates situations where the difference in search strategy
clearly impacted the results.

One factor we can see, comparing the full list of models in Table 1
to the filtered list in Table 4 is that the models where test suites
differ in performance tend to have numeric input variables. In
contrast, many of the models where there were no performance
differences only have Boolean input. This makes intuitive sense—
Boolean variables only have two choices, while numeric variables
can be assigned a far wider range of values. In situations where a
model has numeric input, the differences in search strategy could
be magnified.

To better understand the impact of the search strategy of each
solver, we examined the values chosen for these input variables. We
could see a recurring trend—in many cases, CVC4 and MathSAT5
choose a far wider range of values for the numeric variables.

An example of this is shown in Figure 2. The model visualized,
DragonAll2 has one integer input. All four solvers supply values for
this variable as part of the counterexample, but they have different
tendencies in how they set this value. All four have similarmedians—
Z3 and Yices2 have a median of 0, CVC4 and MathSAT5 have a
6Note—while other data types are supported by solvers, the models in the benchmark
we used only used integer and boolean variables.

Understanding The Impact of Solver Choice in Model-Based Test Generation ESEM ’20, 2020, Bari, Italy

median of 1. However, as can be seen in the boxplot, CVC4 and
MathSAT5 apply a much larger range of values, and apply values
outside the median more often, than the other solvers.

Past research on test generation has shown that more faults tend
to be detected as either the test suite grows [31] or when random
assignment is used instead of a constant, default value [24]. In both
cases, the reason is the same. By applying a wider range of values,
the test suite is more likely to stumble on values that expose the
underlying fault. Because CVC4 and MathSAT5 try a wide range of
integer input, they produce suites that detect more faults—suites
produced by MathSAT5 for DragonAll2 outperform suites produced
by Z3 or Yices2 by up to 360.07%.

Not all of the models with differing performance have integer
input. For example, ex3 only has Boolean input. We examined the
test suites produced for this model, and observed a similar phe-
nomenon. This was one of the few models where Z3 outperforms
CVC4 and MathSAT5—albeit only by a small amount, 3.63% when
targeting Branch Coverage. When examining the suites, we saw
that Z3 sets Boolean variables to true more often than the other
solvers. The effect is more muted than with numeric variables, but
by trying a wider range of values, Z3 generates better test suites.

Solvers could improve fault-detection by applying a wider
variety of values to variables, rather than tending towards

fixed values.

In Section 2, we noted that the counterexamples produced by
solvers are a partial test specification. The solver will only provide
values for variables that directly impact the taken execution path.
In many situations, the solver will not include values for all input
variables. This is a deliberate design decision that offers benefits in
terms of both computational complexity—solvers can simplify the
state space by dropping unnecessary variables—and in terms of aid-
ing human understanding—counterexamples with fewer variables
are easier to read and comprehend.

If a value is not provided in the counterexample, the test genera-
tion framework itself must fill something in. This will often be a
default value, like “0” for numeric variables or false for Boolean
variables. As shown above, constantly using the same value tends to
decrease the probability of exposing faults. In practice, then, there
are two reasons why the tests might tend towards those values.
Either the solver deliberately uses those values, or by omitting a
variable, the test generation framework fills in those values.

Both of these reasons contribute to loss in fault-detection po-
tential. In the above example, DragonAll2, Z3 and Yices2 explicitly
set the value of the integer input. The solvers naturally tend to-
wards a limited range of integer input. However, in other cases
like durationThm1, Z3 and Yices2 ignore this variable—allowing
the test generation framework to fill in a default “0” value. CVC4
and MathSAT5 do apply values to the input, and they detect more
faults as a result.

Examining all of the produced counterexamples, we found that
Z3 and Yices2 assign values to an average of 68.67% of the input
variables, CVC4 assigns 70.75% of the variables on average, and
MathSAT5 sets 73.10% of the variables on average. The increase
for CVC4 and MathSAT5 may partially contribute to their superior

performance—they have more opportunities to vary the values of
those variables. Across the board, however, we can see from these
averages that no solver sets values to all of the inputs for many of
these models.

The reasons that solvers omit variables are valid, and we would
not suggest that solvers must change their design to explicitly as-
sign values to all variables to improve test generation—only one
of the many applications of solver technology. Instead, this is an
area where the test generation framework could step in to improve
performance. Better strategies than a simple application of a sin-
gle default value could be used to build on the gaps in the core
specification offered by the solver.

Solvers, by design, omit unused input variables from the
counterexample. The strategy used by the test generation

framework to fill those gaps impacts fault detection.

Parameter Tuning:
To avoid bias in our experiments, we used the same settings

for the JKind model checker, regardless of the solver employed.
However, each solver offers a number of parameters that can be
used to tune the search. As has been seen time and time again,
general solutions can be outperformed by solutions tuned to a
particular problem [32]. This is certainly true in this domain as
well. By tuning the parameters used by the solver to control it
search strategy, we may see vast improvements in performance.

However, a developer interested in generating test cases should
never have to spend extensive time tuning low-level parameters to
attain a reasonable set of test cases. It would be better to ensure
that test generation attempts yield “good enough” performance out
of the box. This does not, however, imply that we should just use
the default parameter values for a solver. Instead, we can propose
an improvement for the test case generation.

Automated approaches to parameter tuning have been proposed
in multiple domains, generally making use of some form of rein-
forcement learning [3, 32]. A model-based test generation frame-
work could perform a short parameter tuning experiment before
generating a test suite. During this experiment, it could generate a
set of mutants, formulate a small set of test obligations, and gener-
ate input satisfying those obligations. It could then assess success
using the set of mutants. After experimenting with various con-
figurations, the parameters that yield the most effective mutant
detection could be used to generate the final test suite. This process
would require a longer test generation period, but may help yield
more effective test suites.

Solvers often offer parameters that can be used to control the
search. These parameters could be automatically tuned by

test generation frameworks.

5 THREATS TO VALIDITY
External Validity: Our study has focused on a relatively small
number of models. Nevertheless, we believe the range of systems
chosen is appropriate. The models vary in size and have been used

ESEM ’20, 2020, Bari, Italy Anonymous Authors

in prior research [22, 24, 38, 39]. Further, only models written in the
Lustre language have been used. Lustre is used as it is a common
intermediate language that visual models can be translated into,
often before further translation into C [23]. Lustre can be straight-
forwardly translated into other modeling languages. Only four
solvers have been used in this study. Others exist. However, these
are the only four compatible with the bounded model checking
framework used in this study. All four have been used extensively
in research, and represent a range of strategies and underlying
algorithms.

Construct Validity: In our study, we measure fault finding
over seeded faults, rather than real faults. However, Andrews et
al. showed that seeded faults lead to similar conclusions to those
obtained using real faults [5] for the purpose of measuring test
effectiveness and Just et al. found a positive correlation between
mutant detection and fault detection [33]. We have assumed these
conclusions hold true in our domain and language, where examples
of real faults are rare.

To control experiment costs, we limited the number of mutants
to 500 per model. When more than 500 mutations exist, a random
selection was used to avoid bias. While the selection of specific
mutants is randomized, the distribution is matched to the full dis-
tribution of possible mutants in the model. In our experience, sets
containing more than 100 mutants result in similar fault finding;
we generated up to 500 to further increase our confidence that no
bias was introduced.

Lau and Yu [35] and Kaminski et al. [34] have defined fault hier-
archies for Boolean expressions, outlining cases where detection
of one fault could guarantee detection of other, redundant faults.
The mutation operators we have employed could produce redun-
dant mutations. We do not identify and remove these. However,
we have performed a worst-case analysis, and found that there is a
low correlation between the percent of redundant faults and the
percent of detected faults. We do not believe that redundancies
have a significant impact on our results.

Conclusion Validity:When using statistical analyses, we have
attempted to ensure the base assumptions beyond these analyses
are met, and have favored non-parametric methods. In cases in
which the base assumptions are clearly not met, we have avoided
using statistical methods.

6 RELATEDWORK
Solvers are an integral part of model-based test generation [45],
particularly methods based on bounded model checking [29, 40]
and constraint solving [11, 12]. Solvers are also an important part
of test generation based on symbolic execution [49], where they
used to produce test input targeting structural elements. To our
knowledge, this is the first study to contrast the use of solvers in
terms of their ability to produce fault-exposing test suites.

This study is comparable to other studies on parameter tuning [1].
Many algorithms have a variety of configurable parameters—i.e., the
choice of solver. We may not know a priori which choice is best, and
configuration performance may depend on the problem or domain
being studied [18]. Parameter tuning studies attempt to identify,
either manually or automatically, the ideal settings for particular
tasks [1, 16, 18]. Parameter tuning is common in test generation,

particularly in search-based test generation—test generation us-
ing metaheuristic optimization techniques [37]—as evolutionary
algorithms have a large number of configurable parameters that
impact effectiveness [6]. Parameter tuning has also been used in
model-based test generation for choices other than the choice of
solver [2, 28]. Our study could be considered a manual exploration
of the parameter space for solver choice.

7 CONCLUSIONS
A common form of model-based test generation is based on the
use of bounded model checking, where properties expected of the
model are embedded as temporal logic formulae. In bounded model
checking, SMT solvers explore the state-space of themodel in search
of states that violate the specified properties. If the model checker
finds that a predicate can be violated, it produces a counterexample—
a partial test specification demonstrating the violation. The choice
of solvers is important, as each follows their own algorithm, and
each may produce differing counterexamples. In practice, the choice
of solver could have an impact on the ability of the generated test
suite to cause failures in themodel or the system. To help developers
choose the right solver, we must understand the differences in the
test cases produced by those solvers.

We have performed experiments examining the impact of solver
choice across multiple dimensions, examining the ability to attain
goal satisfaction and fault detection when satisfaction is achieved—
varying the source of test goals, data types of model input, and
test oracle. The results of our experiment show that solvers vary in
their ability to produce counterexamples, and—for models where
all solvers achieve goal satisfaction—in the resulting fault detection
of the generated test suites. The choice of solver has an impact on
the resulting test suite, regardless of the oracle, model structure, or
source of testing goals.

The results of this study identify factors that impact fault-detection
effectiveness. Solvers and generation frameworks could improve
fault detection by factoring effect propagation of important vari-
ables, like those associated with testing goals, into input selection.
Solvers can produce improve fault-detection by applying a wider
variety of values to variables, rather than tending towards fixed
values. Solvers, by design, omit unused input variables from the
counterexample. The strategy used by the test generation frame-
work to fill those gaps could improve fault detection. Finally, test
generation frameworks could perform short parameter tuning ex-
ercises to make more effective use of solvers. This advice could be
used to improve future solvers and future approaches to model-
based test generation as well as other test generation methods that
make use of solvers, like symbolic execution [49].

REFERENCES
[1] Aman Aggarwal and Hari Singh. 2005. Optimization of machining techniques

— A retrospective and literature review. Sadhana 30, 6 (01 Dec 2005), 699–711.
https://doi.org/10.1007/BF02716704

[2] S. Aljahdali and A. F. Sheta. 2010. Software effort estimation by tuning
COOCMO model parameters using differential evolution. In ACS/IEEE Inter-
national Conference on Computer Systems and Applications - AICCSA 2010. 1–6.
https://doi.org/10.1109/AICCSA.2010.5586985

[3] Hussein Almulla and Gregory Gay. 2020. Learning How to Search: Generating
Exception-Triggering Tests Through Adaptive Fitness Function Selection. In
13th IEEE International Conference on Software Testing, Validation and Verification
(ICST 2020). IEEE, 12.

https://doi.org/10.1007/BF02716704
https://doi.org/10.1109/AICCSA.2010.5586985

Understanding The Impact of Solver Choice in Model-Based Test Generation ESEM ’20, 2020, Bari, Italy

[4] T. Alsinet, F. Manya, and J. Planes. 2003. Improved Branch and Bound Algorithms
for MAX-SAT. In Proceedings of the Sixth Int’l Conf. on the Theory and Applications
of Satisfiability Testing.

[5] J.H. Andrews, L.C. Briand, Y. Labiche, and A.S. Namin. 2006. Using Mutation
Analysis for Assessing and Comparing Testing Coverage Criteria. IEEE Trans-
actions on Software Engineering 32, 8 (aug. 2006), 608 –624. https://doi.org/10.
1109/TSE.2006.83

[6] Andrea Arcuri and Gordon Fraser. 2011. On Parameter Tuning in Search Based
Software Engineering. In Search Based Software Engineering, Myra B. Cohen and
Mel Ó Cinnéide (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 33–47.

[7] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovi’c, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. CVC4. In
Proceedings of the 23rd International Conference on Computer Aided Verification
(CAV ’11) (Lecture Notes in Computer Science), Ganesh Gopalakrishnan and Shaz
Qadeer (Eds.), Vol. 6806. Springer, 171–177. http://www.cs.stanford.edu/~barrett/
pubs/BCD+11.pdf Snowbird, Utah.

[8] A. Biere, M. Heule, H. van Maaren, and T. Walsh. 2009. Handbook of Satisfia-
bility: Volume 185, Frontiers in Artificial Intelligence and Applications. IOS Press,
Amsterdam, The Netherlands, The Netherlands.

[9] J. Chilenski. 2001. An Investigation of Three Forms of the Modified Condition
Decision Coverage (MCDC) Criterion. Technical Report DOT/FAA/AR-01/18.
Office of Aviation Research, Washington, D.C.

[10] Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma, and Roberto Sebastiani.
2013. The MathSAT5 SMT Solver. In Proceedings of TACAS (LNCS), Nir Piterman
and Scott Smolka (Eds.), Vol. 7795. Springer.

[11] Duncan Clarke, Thierry Jéron, Vlad Rusu, and Elena Zinovieva. 2002. STG: A
Symbolic Test Generation Tool. In Tools and Algorithms for the Construction and
Analysis of Systems, Joost-Pieter Katoen and Perdita Stevens (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 470–475.

[12] Severine Colin, Bruno Legeard, and Fabien Peureux. 2004. Preamble computation
in automated test case generation using constraint logic programming. Software
Testing, Verification and Reliability 14, 3 (2004), 213–235. https://doi.org/10.1002/
stvr.300 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.300

[13] Martin Davis, George Logemann, and Donald Loveland. 1962. Amachine program
for theorem-proving. Commun. ACM 5, 7 (July 1962), 394–397. https://doi.org/
10.1145/368273.368557

[14] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems. Springer,
337–340.

[15] Bruno Dutertre. 2014. Yices 2.2. In Computer-Aided Verification (CAV’2014) (Lec-
ture Notes in Computer Science), Armin Biere and Roderick Bloem (Eds.), Vol. 8559.
Springer, 737–744.

[16] A.E. Eiben and S.K. Smit. 2011. Parameter tuning for configuring and analyzing
evolutionary algorithms. Swarm and Evolutionary Computation 1, 1 (2011), 19 –
31. https://doi.org/10.1016/j.swevo.2011.02.001

[17] Esterel-Technologies. 2004. SCADE Suite Product Description.
http://www.esterel-technologies.com/v2/ scadeSuiteForSafetyCriticalSoft-
wareDevelopment/index.html.

[18] E. M. Fredericks. 2018. An Empirical Analysis of the Mutation Operator for
Run-Time Adaptive Testing in Self-Adaptive Systems. In 2018 IEEE/ACM 11th
International Workshop on Search-Based Software Testing (SBST). 59–66.

[19] Andrew Gacek. 2015. JKind - a Java implementation of the KIND model checker.
https://github.com/agacek.

[20] A. Gargantini and C. Heitmeyer. 1999. Using Model Checking to Generate Tests
from Requirements Specifications. Software Engineering Notes 24, 6 (November
1999), 146–162.

[21] Gregory Gay, Ajitha Rajan, Matt Staats, MichaelWhalen, andMats P. E. Heimdahl.
2016. The Effect of Program and Model Structure on the Effectiveness of MC/DC
Test Adequacy Coverage. ACM Trans. Softw. Eng. Methodol. 25, 3, Article 25 (July
2016), 34 pages. https://doi.org/10.1145/2934672

[22] G. Gay, S. Rayadurgam, and M. P. E. Heimdahl. 2017. Automated Steering of
Model-Based Test Oracles to Admit Real Program Behaviors. IEEE Transactions
on Software Engineering 43, 6 (June 2017), 531–555. https://doi.org/10.1109/TSE.
2016.2615311

[23] G. Gay, M. Staats, M. Whalen, and M. Heimdahl. 2015. Automated Oracle Data
Selection Support. Software Engineering, IEEE Transactions on PP, 99 (2015), 1–1.
https://doi.org/10.1109/TSE.2015.2436920

[24] G. Gay, M. Staats, M. Whalen, and M.P.E. Heimdahl. 2015. The Risks of Coverage-
Directed Test Case Generation. Software Engineering, IEEE Transactions on PP, 99
(2015). https://doi.org/10.1109/TSE.2015.2421011

[25] Carlos A. González, Mojtaba Varmazyar, Shiva Nejati, Lionel C. Briand, and
Yago Isasi. 2018. Enabling Model Testing of Cyber-Physical Systems. In Proceed-
ings of the 21th ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS ’18). ACM, New York, NY, USA, 176–186.
https://doi.org/10.1145/3239372.3239409

[26] G. Hagen. 2008. Verifying safety properties of Lustre programs: an SMT-based
approach. Ph.D. Dissertation. University of Iowa.

[27] N. Halbwachs. 1993. Synchronous Programming of Reactive Systems. Klower
Academic Press.

[28] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and Y. Zhang. 2014. Search
Based Software Engineering for Software Product Line Engineering: A Survey
and Directions for Future Work. In Proceedings of the 18th International Software
Product Line Conference - Volume 1 (SPLC ’14). ACM, New York, NY, USA, 5–18.
https://doi.org/10.1145/2648511.2648513

[29] Hyoung Seok Hong, Insup Lee, Oleg Sokolsky, and Hasan Ural. 2002. A Temporal
Logic Based Theory of Test Coverage and Generation. In Tools and Algorithms for
the Construction and Analysis of Systems, Joost-Pieter Katoen and Perdita Stevens
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 327–341.

[30] M. Huth and M. Ryan. 2006. Logic in Computer Science: Modeling and Reasoning
about Systems, Second Edition. Cambridge Press.

[31] Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated
with Test Suite Effectiveness. In Proceedings of the 36th International Conference
on Software Engineering (ICSE 2014). ACM, New York, NY, USA, 435–445. https:
//doi.org/10.1145/2568225.2568271

[32] Yue Jia, Myra B. Cohen, Mark Harman, and Justyna Petke. 2015. Learning Com-
binatorial Interaction Test Generation Strategies Using Hyperheuristic Search.
In Proceedings of the 37th International Conference on Software Engineering (ICSE
’15). IEEE Press, Piscataway, NJ, USA, 540–550. http://dl.acm.org/citation.cfm?
id=2818754.2818821

[33] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes,
and Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In FSE 2014, Proceedings of the ACM SIGSOFT 22nd Symposium on the
Foundations of Software Engineering. Hong Kong, 654–665.

[34] Gary Kaminski, Paul Ammann, and Jeff Offutt. 2013. Improving logic-based
testing. Journal of Systems and Software 86, 8 (2013), 2002 – 2012. https://doi.
org/10.1016/j.jss.2012.08.024

[35] Man F. Lau and Yuen T. Yu. 2005. An Extended Fault Class Hierarchy for
Specification-based Testing. ACM Trans. Softw. Eng. Methodol. 14, 3 (July 2005),
247–276. https://doi.org/10.1145/1072997.1072998

[36] D. Lee and M. Yannakakis. 1996. Principles and methods of testing finite state
machines-a survey. Proc. IEEE 84, 8 (1996), 1090–1123. https://doi.org/10.1109/5.
533956

[37] Phil McMinn. 2004. Search-based Software Test Data Generation: A Survey.
Software Testing, Verification and Reliability 14 (2004), 105–156.

[38] Y. Meng, G. Gay, and M. Whalen. 2018. Ensuring the Observability of Structural
Test Obligations. IEEE Transactions on Software Engineering (2018), 1–1. https:
//doi.org/10.1109/TSE.2018.2869146 Available at http://greggay.com/pdf/18omcdc.
pdf.

[39] Anitha Murugesan, Oleg Sokolsky, Sanjai Rayadurgam, Michael Whalen, Mats
Heimdahl, and Insup Lee. 2014. Linking abstract analysis to concrete design: A
hierarchical approach to verify medical CPS safety. 2014 ACM/IEEE International
Conference on Cyber-Physical Systems (ICCPS) 0 (2014), 139–150. https://doi.org/
10.1109/ICCPS.2014.6843718

[40] Jeff Offutt, Shaoying Liu, Aynur Abdurazik, and Paul Ammann. [n.d.]. Gen-
erating test data from state-based specifications. Software Testing, Verifi-
cation and Reliability 13, 1 ([n. d.]), 25–53. https://doi.org/10.1002/stvr.264
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.264

[41] M. Qasem. [n.d.]. SAT and MAX-SAT for the Lay-Researcher. ([n. d.]). Available
at http://www.mqasem.net/sat/sat/index.php.

[42] A. Rajan, M.Whalen, M. Staats, andM.P. Heimdahl. 2008. Requirements Coverage
as an Adequacy Measure for Conformance Testing. (2008), 86–104.

[43] S. Rayadurgam andM.P.E. Heimdahl. 2001. Coverage Based Test-Case Generation
Using Model Checkers. In Proc. of the 8th IEEE Int’l. Conf. and Workshop on the
Engineering of Computer Based Systems. IEEE Computer Society, 83–91.

[44] RTCA/DO-178C. [n.d.]. Software Considerations in Airborne Systems and Equip-
ment Certification.

[45] Mark Utting, Alexander Pretschner, and Bruno Legeard. 2012. A tax-
onomy of model-based testing approaches. Software Testing, Verifica-
tion and Reliability 22, 5 (2012), 297–312. https://doi.org/10.1002/stvr.456
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.456

[46] M. Whalen, G. Gay, D. You, M.P.E. Heimdahl, and M. Staats. 2013. Observable
Modified Condition/Decision Coverage. In Proceedings of the 2013 Int’l Conf. on
Software Engineering. ACM.

[47] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), pp. 80–83. http://www.jstor.org/stable/3001968

[48] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad Malik.
2001. Efficient Conflict Driven Learning in a Boolean Satisfiability Solver. In
Proceedings of the 2001 IEEE/ACM International Conference on Computer-aided
Design (ICCAD ’01). IEEE Press, Piscataway, NJ, USA, 279–285. http://dl.acm.
org/citation.cfm?id=603095.603153

[49] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. 2013. Z3-str: A Z3-based
String Solver for Web Application Analysis. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2013). ACM, New York,
NY, USA, 114–124. https://doi.org/10.1145/2491411.2491456

https://doi.org/10.1109/TSE.2006.83
https://doi.org/10.1109/TSE.2006.83
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
https://doi.org/10.1002/stvr.300
https://doi.org/10.1002/stvr.300
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.300
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/368273.368557
https://doi.org/10.1016/j.swevo.2011.02.001
https://doi.org/10.1145/2934672
https://doi.org/10.1109/TSE.2016.2615311
https://doi.org/10.1109/TSE.2016.2615311
https://doi.org/10.1109/TSE.2015.2436920
https://doi.org/10.1109/TSE.2015.2421011
https://doi.org/10.1145/3239372.3239409
https://doi.org/10.1145/2648511.2648513
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/2568225.2568271
http://dl.acm.org/citation.cfm?id=2818754.2818821
http://dl.acm.org/citation.cfm?id=2818754.2818821
https://doi.org/10.1016/j.jss.2012.08.024
https://doi.org/10.1016/j.jss.2012.08.024
https://doi.org/10.1145/1072997.1072998
https://doi.org/10.1109/5.533956
https://doi.org/10.1109/5.533956
https://doi.org/10.1109/TSE.2018.2869146
https://doi.org/10.1109/TSE.2018.2869146
http://greggay.com/pdf/18omcdc.pdf
http://greggay.com/pdf/18omcdc.pdf
https://doi.org/10.1109/ICCPS.2014.6843718
https://doi.org/10.1109/ICCPS.2014.6843718
https://doi.org/10.1002/stvr.264
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.264
http://www.mqasem.net/sat/sat/index.php
https://doi.org/10.1002/stvr.456
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.456
http://www.jstor.org/stable/3001968
http://dl.acm.org/citation.cfm?id=603095.603153
http://dl.acm.org/citation.cfm?id=603095.603153
https://doi.org/10.1145/2491411.2491456

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Case Examples
	3.2 Mutant Generation
	3.3 Test Input Generation
	3.4 Data Collection

	4 Results & Discussion
	4.1 Ability to Satisfy Testing Goals
	4.2 Fault-Detection Capabilities
	4.3 Factors That Influence Fault Detection

	5 Threats to Validity
	6 Related Work
	7 Conclusions
	References

