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a b s t r a c t 

Dissolved organic matter (DOM) is a complex pool of compounds with a key role in the global carbon 

cycle. To understand its role in natural and engineered systems, efficient approaches are necessary for 

tracking DOM quality and quantity. Fluorescence spectroscopy combined with parallel factor analysis 

(PARAFAC) is very widely used to identify and quantify different fractions of DOM as proxies of DOM 

source, concentration and biogeochemical processing. A major limitation of the PARAFAC approach is the 

requirement for a large data set containing many variable samples in which the fractions vary indepen- 

dently. This severely curtails the possibilities to study fluorescence composition and behavior in small 

or unique datasets. Herein, we present a simple and inexpensive experimental procedure that makes it 

possible to mathematically decompose a small dataset containing only highly-correlated fluorescent frac- 

tions. The approach, which uses widely-available commercial extraction sorbents and previously estab- 

lished protocols to expand the original dataset and inject the missing chemical variability, can be widely 

implemented at low cost. A demonstration of the procedure shows how a robust six-component PARAFAC 

model can be extracted from even a river-water dataset with only five bulk samples. Widespread adoption 

of the procedure for analyzing small fluorescence datasets is needed to confirm the suspected ubiquity 

of certain DOM fluorescence fractions and to create a shared inventory of ubiquitous components. Such 

an inventory could greatly simplify and improve the use of fluorescence as a tool to investigate biogeo- 

chemical processing of DOM in diverse water sources. 

© 2020 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Dissolved organic matter (DOM) is an important component of 

he carbon cycle in both natural and engineered aquatic environ- 

ents ( Bianchi, 2011 ; Ridgwell and Arndt, 2014 ). A variety of dif-

erent approaches identify and quantify DOM with varying degrees 

f molecular insight and analytical complexity ( McCallister et al., 

018 ; Mopper et al., 2007 ). Amongst the more rapid and afford- 

ble techniques, ultraviolet-visible spectroscopy gives insight into 

he optically-active fractions termed chromophoric DOM (CDOM, 

etermined via absorbance measurements) and fluorescent DOM 

FDOM, characterized through fluorescence measurements). De- 

pite decades of study, the chemical origin of DOM’s optical prop- 

rties and the chemical interpretation of the obtained signals 

emains poorly constrained ( Aiken, 2014 ; Rosario-Ortiz and Ko- 

ak, 2017 ). 
∗ Correspondence to: Sven Hultins Gata 6, 41296 Gothenburg, Sweden. 

E-mail address: murphyk@chalmers.se (K. Murphy). 
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Fluorescence excitation-emission matrices (EEMs) of DOM con- 

ist of broad emission spectra whose maxima tend to increase with 

ncreasing excitation wavelength ( Coble et al., 1990 ). In an effort 

o assign chemical interpretations, fluorescence emission in differ- 

nt wavelength regions is commonly attributed to chemical frac- 

ions or else is assigned a primary source such as terrestrial or- 

anic matter ( Coble, 2007 ). EEMs can be analyzed quantitatively 

nder the assumption that the observed signals are due to the su- 

erposition of distinct fluorescence phenomena that could theoret- 

cally convert to concentrations if the true fluorescence quantum 

ields were known. However, fluorophores and meaningful fluores- 

ence quantum yields remain largely unknown. Additionally, there 

s an ongoing debate on the origin and behavior of DOM fluores- 

ence signals and part of DOM’s fluorescence emission has been 

ttributed to charge-transfer interactions between donor- and ac- 

eptor species ( McKay, 2020 ; McKay et al., 2018 ; Sharpless and 

lough, 2014 ). Regardless of the underlying principles that cause 

OM fluorescence, it has been observed that EEMs dominated by 

utochthonous or allochthonous material seem to largely consist of 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Schematic of the augmentation approach. Samples are collected, filtered, 

then absorbance and fluorescence properties are determined (Abs = absorbance, 

EEM = excitation-emission matrix). One sample is selected for fractionation with 

three different solid-phase sorbents. The combination of whole-water and perme- 

ate absorbance spectra and EEMs is assembled and analyzed to identify fluores- 

cence components. SAX: Strong anion exchange sorbent; NH2: weak anion exchange 

(aminopropyl bonded) sorbent; PPL: reverse-phase styrene-divinylbenzene sorbent. 

Table 1 

Description of the modelled data sets 

Name N whole-water N SPE permeates 

Small data set 10 0 

Augmented 10 37 

Augmented: Split-half 1 5 19 

Augmented: Split-half 2 5 18 
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Abbreviations 

DOM dissolved organic matter 

DOC dissolved organic carbon 

PARAFAC parallel factor analysis 

CDOM chromophoric DOM 

FDOM fluorescent DOM 

EEMs excitation-emission matrices 

SPE solid-phase extraction 

SSE sum of squared error 

TCC Tucker congruence coefficient 

SSC shift- and shape sensitive congruence 

tatistically similar fluorescence spectra, suggesting that ubiquitous 

ignals may exist ( Murphy et al., 2018 ). To appropriately interpret 

uorescence EEMs and reliably establish the properties and bio- 

eochemical distribution of fluorescence signals, overlapping fluo- 

escence spectra must be reliably separated. 

Mathematical approaches are often deployed to separate and 

istinguish between superimposed fluorescence phenomena in 

EMs ( Murphy et al., 2014a ; Stedmon et al., 2003 ). The most

idely-adopted tool is a chemometric model called parallel factor 

nalysis (PARAFAC), which identifies the underlying fluorescence 

pectra that best explain the observed patterns in the data set 

ssuming linearly additive signals. Under ideal conditions when 

odel assumptions are fulfilled (see Murphy et al., 2013 ), all 

ystematic fluorescence emission will be accounted for and the 

rue spectra of underlying fluorophores can be well approximated 

 Bro, 1997 ). Most importantly, PARAFAC assumes that fluorescence 

EMs are made up of a limited number of fluorescence phenom- 

na with invariant excitation and emission spectra. Frustratingly, 

OM fluorescence EEMs are typically very similar and many EEMs 

re needed so that a PARAFAC analysis produces meaningful com- 

onents ( Stedmon and Bro, 2008 ). 

There are several scenarios in which the conditions for a suc- 

essful application of PARAFAC may not be met. In particular, since 

ARAFAC identifies the spectra of underlying fractions via their 

hange in abundance relative to other fractions, it fails when sam- 

les are few and/or the abundances of underlying fractions are too 

orrelated. In that case, PARAFAC will represent multiple discrete 

ractions as a single component with intermediate spectral proper- 

ies, with only a small number of fractions being identified in total. 

ncreasing sample size by supplementing a dataset with unrelated 

amples is not usually a solution to this problem, since at the other 

xtreme, PARAFAC fails if samples are too different and can’t be 

epresented by the linear superposition of a relatively small num- 

er of spectra (typically < 10) plus only random error. Numerous 

tudies have attempted to overcome this problem by redeploy- 

ng models that were previously established using large datasets 

 Fellman et al., 2009 ; Miller et al., 2006 ; Romera-Castillo et al.,

014 ; Yamashita and Jaffé, 2008 ), but this approach relies on pre- 

umptions that are impossible to verify, including that the origi- 

al model recovered only chemically-meaningful spectra, and that 

oth the underlying fluorescence phenomena and the instrumen- 

al measurement error structures have remained constant between 

eveloping and redeploying the model. 

Earlier work demonstrated that numerous processes, includ- 

ng size fractionation, metal quenching, and biodegradation, each 

ntroduce compositional variability that can be exploited by 

ARAFAC to separate underlying fluorescence fractions ( Cuss and 

uéguen, 2012 ; Guéguen et al., 2013 ; Stedmon and Mark- 

ger, 2005 ). Only recently, however, have various approaches been 

ptimised with the aim of establishing reliable methods for ex- 

racting spectra from extremely small datasets containing as few 
2 
s one bulk sample. Photodegradation, size-exclusion chromatog- 

aphy and asymmetrical flow field-flow fractionation have been 

hown to produce the missing variability needed to overcome the 

asic limitations of one-sample datasets ( Guéguen et al., 2013 ; 

in and Guo, 2020 ; Murphy et al., 2018 ; Wünsch et al., 2017 ). How-

ver, spectral averaging still occurs in some cases, and the above- 

entioned one-sample methods each involved expensive equip- 

ent together with complex analytical workflows, which detracts 

rom the inexpensive and rapid nature of DOM fluorescence mea- 

urements. 

The goal of this study was to develop a simple, widely- 

pplicable method for extracting fluorescence spectra from 

atasets that cannot be reliably decomposed by traditional 

ARAFAC methods, due to too few samples and/or the pres- 

nce of strongly covarying fractions. Recent work highlights the 

idespread deficiencies caused by ignoring these critical con- 

traints ( Murphy et al., 2018 ; Wünsch et al., 2017 ). The basic

ethod involves augmenting the target dataset with fractionations 

btained using three inexpensive and widely available solid-phase 

xtraction (SPE) cartridges ( Fig. 1 ). This method is shown to over- 

ome the dual limitations of small sample size and low chemical 

ariability by introducing statistically meaningful variability and 

educing covariance between the underlying fluorescence compo- 

ents. 
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. Materials and Procedures 

.1. Samples 

Whole-water samples (N = 10) were collected at a drinking wa- 

er treatment plant in southern Sweden on September 24, October 

4, and November 5 2019 (N = 9), as well as May 25 2020 (N = 1).

he treatment plant is fed directly from the Göta Älv, a 93 km long 

iver at the west coast of Sweden sourced from lake Vänern that 

rains into the Kattegat at the city of Gothenburg. The 2020 sam- 

le was taken at the river intake, whereas the 2019 samples were 

aken at either the river intake (N = 3) or after primary biofilters 

N = 6). 

All samples were filled into pre-combusted amber glass bot- 

les and transported directly from the sampling location to the 

aboratory where they were filtered with pre-combusted GF/F fil- 

ers (0.7 μm, 2019 samples) or water-flushed 0.2 μm syringe fil- 

ers (polysulfonate, 2020 samples). Filters with 0.2μm pores re- 

ove a small additional fraction of absorbing and fluorescing col- 

oidal matter compared with filtering through 0.7 μm pore-size fil- 

ers ( Massicotte et al., 2017 ; Nimptsch et al., 2014 ). We thus carried

ut our study under the assumption that samples filtered through 

.2 and 0.7 μm pores can be compared qualitatively if not quanti- 

atively. After filtration, the samples were stored at 4 °C in the dark. 

ll subsequent measurements (below) were done within five days 

f sampling. Dissolved organic carbon (DOC) was determined for 

ne of the whole-water samples taken in 2019 (after biofilter treat- 

ent step) and 2020 (raw water) using high-temperature catalytic 

ombustion with a TOC/V CP H (Shimadzu). 

.2. Augmentation Technique: Solid-Phase Extractions 

To supplement the small whole-water dataset, solid-phase ex- 

ractions (SPE) were carried out on a single sample taken in May 

020. Initially, a range of pre-packed, commercially-available sor- 

ent materials were tested (silica, C2, C8, styrene-divinylbenzene, 

H2, SAX) to identify those that produced high spectral variability 

cross all permeates, indicating varying time-profiles for extract- 

ng different DOM fractions. Each column was first cleaned by a 

ethanol-soak for a minimum of 24 h, followed by a rinse with 

hree column volumes of fresh methanol and ultrapure water (at 

ircumneutral pH) before extractions were performed. Initial tests 

ed to a shortlist of three well-performing commercial sorbents: 

AX (strong anion exchange sorbent, 100 mg, Agilent Technolo- 

ies), NH2 (aminopropyl-bonded ion exchange sorbent, 200 mg, 

gilent Technologies), and PPL (reverse-phase sorbent, 200 mg, Ag- 

lent Technologies). Permeates from only these three sorbent mate- 

ials were combined to produce the dataset analysed in this study 

 Fig. 1 ). Note that while the combination of SAX, NH2 and PPL per-

eates appeared to effectively fractionate fluorescent DOM in the 

tudied riverine samples, other DOM sources may require different 

r additional sorbents and/or modified experimental protocols to 

chieve comparable success. 

Approximately 45 mL of sample at ambient pH (approx. 6.8) 

as subsequently applied onto each of the three columns. A Luer- 

lip three-way valve was installed after the column in order to di- 

ert the column permeate through a 5-mL Luer-slip syringe (Fig. 

1). The three-way valve and sampling syringe were cleaned with 

0% HCl and rinsed thoroughly with ultrapure water before use. 

ermeate samples (3 mL) were drawn slowly by hand, then the 

ow of sample was stopped until the next permeate collection. The 

uorescence cuvette was rinsed with one mL of the permeate sam- 

le and the remaining two mL were used for spectroscopic mea- 

urements. This procedure was repeated until approximately 45 mL 

ad passed over each of the columns. Since optical measurements 

nd extractions were performed simultaneously, the flow over the 
3 
PE cartridge was stopped regularly for intervals of between five 

nd fifteen minutes. Each extraction took between three and five 

ours to produce and measure up to 15 subsamples, depending on 

he fluorometer settings (below). The three extractions were car- 

ied out sequentially and all measurements completed within 2 

ays. 

.3. Fluorescence Spectroscopy 

Fluorescence and absorbance measurements were obtained us- 

ng a HORIBA AquaLog fluorometer using a 10 mm quartz cu- 

ette (Helma GmbH). Fluorescence emission was detected in the 

ange of 220 – 800 nm (increment ~3.3 nm) with an integra- 

ion time between 3 and 9 s at excitation wavelengths between 

40 nm and 450 nm (increment 3 nm) for the samples mea- 

ured in 2020 and between 241 nm and 700 nm (increment 3 nm) 

or the 2019 samples. The accuracy of the excitation monochro- 

ator, emission detector, and the optical immaculacy of cuvettes 

ere validated daily following a previously described protocol 

 Wünsch et al., 2015 ). Excitation and emission offsets on each axis 

ere corrected by adding three nm to the values reported by the 

nstrument. 

.4. Data processing & chemometrics 

Spectroscopy data were processed in MATLAB (v9.8, Mathworks 

nc.) using the drEEM toolbox, version 0.6.0 ( Murphy et al., 2013 ). 

nner filter effects were eliminated with the absorbance-based 

ethod ( Kothawala et al., 2013 ) and signals in each EEM normal- 

zed using the Raman peak area of ultrapure water. Since excitation 

avelengths settings differed slightly between samples measured 

n 2019 compared to 2020, a 2D gridded linear interpolation was 

arried out to adjust the excitation axis of the 2019 EEMs to corre- 

pond to the EEMs measured in 2020. 

The two data sets were subsequently merged and 1 st and 2 nd 

rder physical scatter was replaced with missing numbers (no in- 

erpolation). Fluorescence emission longer than 650 nm or shorter 

han 310 nm was excluded from further analyses. Moreover, emis- 

ion scans at 358.1, 312.6, and 519.7 nm were deleted after a 

reliminary analysis indicated frequent signal instability at these 

avelengths. Frequent noisy measurements at excitation 246 nm 

lso necessitated the exclusion of this excitation wavelength from 

urther analyses. Several of the SPE permeate EEMs were then re- 

oved from the data set either because of very low fluorescence 

ignals or excessive instrument noise (N = 8). 

The underlying components of fluorescent DOM in the sam- 

les were isolated with PARAFAC using the drEEM toolbox in 

onjunction with the N-way toolbox ( Andersson and Bro, 20 0 0 ; 

urphy et al., 2013 ). To avoid high leverages from the most fluo- 

escent samples, all EEMs were scaled by the 3/2 th root of the stan- 

ard deviation of each EEM. This scaling did not amplify measure- 

ent noise in low-signal samples as severely as established meth- 

ds (scaling to unit variance) but increased the weighting of these 

amples compared to the unscaled data set (Fig. S2). Models with 

wo to seven components were explored. All models were con- 

trained to fit components with positive scores and loadings (non- 

egativity constraint). Each model was initialized with random or- 

hogonalized numbers and the best model (with lowest SSE, sum 

f squared errors) out of 50 random initializations was selected. A 

aximum of 10 4 iterations was allowed and relative change in fit 

f 10 −8 was chosen as the convergence criterion. 

.5. Modeling approach 

Parallel factor analysis was applied to two different data sets 

 Table 1 ): (1) The small dataset consisting of ten whole-water sam- 
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les. This first approach represents a conventional PARAFAC analy- 

is with the caveat that sample size and variability were likely in- 

ufficient for it to be possible to derive a valid PARAFAC model; (2) 

he augmented dataset consisting of the ten whole-water samples 

nd 37 SPE permeates. 

In line with previous research on extractions of DOM 

 Andrew et al., 2016 ; Li et al., 2017 ; Li et al., 2016 ; Rosario-

rtiz et al., 2007 ; Wünsch et al., 2018 ), it was assumed that differ-

nt chemical fractions would be extracted at different rates. More- 

ver, we hypothesized that permeates represent sub-samples of 

he same original sample and not a set of wholly independent 

amples. These assumptions were tested by viewing model residu- 

ls to ensure randomness, investigating the degree of autocorrela- 

ion between components representing different FDOM fractions, 

nd through cross-validation to ensure that highly similar mod- 

ls were reached using different subsets of the dataset. The ob- 

ained models were split-half validated as follows: The data set 

as divided into two randomly-sampled halves consisting of ap- 

roximately half the number of bulk and half the number of avail- 

ble SPE-permeate EEMs, then the models obtained from each half 

ompared visually and statistically. 

All internal (within study) comparisons between spectra were 

ased on the Tucker congruence coefficient (TCC) for excita- 

ion spectra and the shift- and shape sensitive congruence (SSC) 

or emission spectra, where values larger than 0.95 signified 

ndistinguishable spectra ( Lorenzo-Seva and ten Berge, 2006 ; 

ünsch et al., 2019 ). Since the SSC is more sensitive toward differ- 

nces between spectra, this validation is more stringent than us- 

ng TCC on both emission and excitation spectra. Inter-study com- 

arisons with 145 fluorescence models describing DOM fluores- 

ence was carried out using the OpenFluor database ( Murphy et al., 

014b ). All spectra with TCC ex > 0.97 and TCC em 

> 0.98 were ex- 

orted and compared further. 

. Results & Discussion 

The whole-water samples from the drinking water treatment 

lant exhibited typical properties for water dominated by terres- 

rial DOM: for the two DOC samples, carbon concentrations were 

.3 and 3.7 mg / L and the specific ultraviolet absorbance was 2.8 

nd 2.9 L x mg x C 

−1 x m 

−1 . The fluorescence properties were

ighly similar across all ten bulk samples once concentration ef- 

ects were removed by unit-variance scaling ( Fig 2 A, C). For ex- 

mple, the coefficient of variation (standard deviation divided by 

ean multiplied by 100) for peaks “T” (excitation / emission 275 

 340), “C” (highest signal seen for excitation / emission 320-360 

420-460), and “D” (excitation / emission 390 / 509) was 7.5, 1.6, 

nd 5.6 % ( Coble, 2007 ; Lochmüller and Saavedra, 1986 ). Similarly, 

he humification ( Ohno, 2002 ), freshness ( Parlanti et al., 20 0 0 ), and

uorescence indices ( Maie et al., 2006 ) were stable in all whole- 

ater samples (0.89 ± 0.8 %, 0.67 ± 1.3 %, and 1.43 ± 0.9 %, re- 

pectively). The spectra of bulk fluorescence EEMs varied most in 

he range of excitation / emission (ex/em) 350-430 / 450-500 and 

50-290 / 310-280 ( Fig. 2 C). For reference, an average whole-water 

EM is provided in Figure S3A. 

An attempt to obtain a valid PARAFAC model from only the 

en whole-water EEMs was unsuccessful (Fig. S4) because the 

mall data set lacked the variability required by PARAFAC to dis- 

inguish between several highly-correlated fractions. This failure 

s evidenced by models with between two and seven compo- 

ents containing one or more components with atypical features 

Fig. S4, highlighted components), including multiple distinct emis- 

ion peaks and nonsensical excitation spectra lacking absorption 

etween consecutive absorption bands. Due to the small number 

f samples, only a two-component model could be split-half vali- 

ated. 
4 
. The augmentation approach 

Augmenting the original whole-water data set with the 37 SPE 

ermeates added the missing chemical and mathematical variabil- 

ty needed to acquire a valid PARAFAC model. The first indica- 

ion of success was the significantly increased spectral variability 

n the raw EEMs ( Fig. 2 B, D) which can be seen by the increased

ariation in predefined fluorescence peaks (definitions above and 

ig. 2 ). The coefficient of variation of peaks “C” and “D” increased 

rom 1.6 % and 5.6% in whole-water samples to 6.4% and 14.1 % 

n the augmented data set, respectively. Similar results were seen 

or fluorescence indices covering different wavelength regions of 

he ultraviolet-visible EEM ( Fig. 2 B, D). The average EEM in the 

ugmented data set also had visibly higher contributions of emis- 

ion at short wavelengths (low end of the visible spectrum, Fig. S3, 

anel B compared to panel A). 

In contrast to the model from only whole-water samples, the 

omponents in the augmented data set matched commonly ob- 

erved spectra in fluorescent DOM. Models with between three and 

ix components described between 99.61 and 99.95% of the aug- 

ented data set. A seven-component model was excluded from 

urther consideration since it seemed to overfit the data by us- 

ng multiple highly similar components and multimodal emission 

eaks (Fig. S5, bottom panel). 

Considering the component loadings and modelling error, the 

ix-component model was the most appropriate representation of 

he augmented data set. The model consisted of components with 

mission maxima at 330, 390, 410, 450, and 510 nm ( Fig. 3 ). The

omponents will henceforth be referred to by their longest ex- 

itation and sole emission maximum (e.g. C 280 /330 ). Components 

 280/330 , C 320/390 , C 300/410 , C 320/450 , C 350/450 , and C 380/510 had Stokes

hifts between 0.64 and 1.14 eV ( Table 2 ). Fluorescence emission of 

he whole-water samples was dominated by C 300/410 , C 350/450 , and 

 380/510 , which each contributed between 22 and 25 % to the over- 

ll modelled fluorescence on average, followed by C 320/390 , C 320/450 

ith approx. 10 and 13 % on average. Lastly, an average of 6.5 % of

he whole-water EEMs were attributable to C 280/330 ( Table 2 , see 

able for standard deviation of these averages). 

Each of the three SPE sorbents differed in their removal ef- 

ciency for different spectra. This meant that the autocorrela- 

ion between components in the entire augmented data set was 

ever severe (Fig. S6). In contrast, whole-water EEMs are often 

ighly autocorrelated because dilution primarily affects all frac- 

ions of DOM simultaneously ( Murphy et al., 2013 ; ( Stedmon and 

arkager, 2005 ); Yamashita et al., 2008 ). Since the decomposition 

f fluorescence EEMs with PARAFAC assumes that no two fluo- 

escence phenomena covary perfectly in their spectra or fluores- 

ence intensities, severe autocorrelations may invalidate a model 

 Bro, 1997 ; Murphy et al., 2013 ). In future applications of EEM- 

ARFAC, the augmentation of whole-water EEMs with SPE perme- 

tes thus provides a new method to decrease the autocorrelation 

etween EEMs in a data set by introducing independent variability 

hat would not occur naturally. 

After the initial model exploration, the six-component model 

escribing the augmented data set was successfully split-half vali- 

ated. Two models derived from random data set halves (contain- 

ng half of whole-water samples and SPE permeates each) were 

ighly similar to the model derived from the entire augmented 

ataset ( Fig 3 ). It should be noted that a split-half validation is 

sually conducted by modeling independent samples. Identifying 

he same model independently subsequently indicates that the 

odel is an appropriate representation of the data set ( Bro, 1997 ). 

n our study, the augmented data set consisted of ten independent 

hole-water samples and 37 dependent SPE permeate samples. 

andom halves thus partly consist of samples that originated from 

he fractionation of the same whole-water sample. In this case, 
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Fig. 2. Variability of the fluorescence EEMs in the analyzed data sets. The left panel shows the variability in the small dataset (N = 10); the right panel shows the variability 

in the augmented data set (N = 47). For all graphs, the EEMs were normalized to unit variance in the sample mode to remove quantitative differences between them. (A, 

B): Variability in bulk parameters relative to the average composition in the ten whole-water EEMs. A values of 1 signifies no change relative to the average whole-water 

EEM. (C, D): Standard deviation EEM (calculated after normalizing) demonstrating the most variable regions in both data sets. FrI: Freshness index, HIX: Humification index, 

FluI: Fluorescence index. T, C, D: fluorescence intensites at different excitation/emission positions in the EEM (see text for description). 

Fig. 3. Validation of the six-component PARAFAC model. Top-row: Contour-plots of the six validated PARAFAC components (named by their longest excitation peak position 

and single emission maximum). Bottom-row: Spectral loadings of the six-component PARAFAC models describing the full augmented data set and two random halves of the 

full augmented data set. For the two random halves, five bulk samples and 18 or 19 augmentation samples were randomly selected and stored in separately-modelled data 

sets. The number of samples (N) is given as the number of bulk samples (first number) and the number of augmenting EEMs (second number, SPE permeates). 
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xternal comparisons with previously published models should be 

ncluded to increase confidence in the identified model. Such com- 

arisons are discussed below. 

In the augmented data set, the SPE permeates outnumber the 

hole-water samples. This raises the possibility that the identi- 

ed model could fit the SPE permeates better than the whole- 

ater samples. The lack-of-fit for permeates and whole-water sam- 

les was therefore compared to assess the appropriateness of 

he model for the whole-water samples. The percentage of unex- 

lained fluorescence was largest for the SAX permeates and ap- 
5 
roximately equal for the remaining permeates and whole-water 

amples (Fig. S7). The larger residual for SAX permeates was likely 

 consequence of the high removal efficiency of the SAX resin 

hich resulted in low fluorescence intensities and a high propor- 

ion of measurement noise. In contrast, the whole-water samples 

ere described well by the model and sample leverages indicated 

hat permeates and whole-water samples were equally important 

or the model (Fig. S7A). The overall model error was low and 

pectral residuals were reasonably flat and typical for DOM fluo- 

escence. (Fig. S7B-C, Fig. S8). Overall this confirmed that whole- 
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Table 2 

Properties of the six validated PARAFAC components. Average contribution to whole-water fluorescence is the average relative component score across the ten whole- 

water samples ( ± standard deviation). The stokes shift was calculated as described elsewhere ( Lakowicz, 2006 ). For the number of OpenFluor matches, a threshold of 

TCC > 0.97 (excitation) and TCC > 0.98 (emission) was applied. The provided synonyms refer to similar components found in one-sample PARAFAC studies. 

Comp. 

Ex / Em 

max. (nm) 

Average contribution 

(whole-water, %) Stokes Shift (eV) 

OpenFluor 

Matches Synonyms 

C 280 /330 

279 /326 6.5 ± 0.6 0.64 23 - 

C 320 /390 318 /390 10.1 ± 0.4 0.72 7 C 405 ( Wünsch et al., 2017 ) 

C 300 /410 297 /409 25.5 ± 1 1.14 4 F 420 ( Murphy et al., 2018 ) 

C 320 /450 318 /445 13.2 ± 0.6 1.11 17 C 450 ( Wünsch et al., 2017 ) & F 450 

( Murphy et al., 2018 ) 

C 350 /450 345 /445 22.3 ± 0.7 0.81 7 - 

C 380 /510 381 /506 22.4 ± 0.8 0.80 34 C 510 ( Wünsch et al., 2017 ) & F 520 

( Murphy et al., 2018 ) 
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ater samples and permeates were equally well approximated by 

he model despite differences in sample size. However, future ap- 

lications of the augmentation approach may require adjustments 

n data preprocessing, particularly data scaling to carefully balance 

odel outcome and sample weighting. 

The DOM samples from the Göta Älv had relatively high con- 

entrations of DOC along with abundant fluorescence emission. 

iven the abundance of whole-water fluorescence signals, the 

onitoring of SPE permeates still recovered reasonable fluores- 

ence signals despite the loss of material through the extraction. 

n applications where the fractionated whole-water sample has lit- 

le fluorescence emission to start with (e.g. marine samples), the 

ugmentation approach may require modification. For example, it 

ay be not be feasible to obtain reasonable fluorescence signals 

rom SPE permeates. In this case, it may be necessary to focus on 

he SPE extract instead of the permeate. An elution of the SPE- 

OM with an increasing concentration of methanol and / or ace- 

one will likely reveal similar variability in terms of fluorescence 

omposition. 

.1. Solid-phase extraction performance 

In addition to new opportunities for fluorescence decomposi- 

ion, the monitoring of SPE permeates also allows the character- 

zation of DOM polarity similar to the Polarity Rapid Assessment 

ethod ( Rosario-Ortiz et al., 2007 ). Contrary to usual protocols for 

PL and C18 sorbents, but similar to the Polarity Rapid Assess- 

ent Method, samples were not acidified in our study. Rather, pH 

as kept at ambient levels (pH 6.8) to avoid possible pH-induced 

hanges to the fluorescence spectra of DOM ( Esteves et al., 1999 ). 

fter passing 45 mL though each cartridge, the SPE sorbents re- 

oved an average of 31 % (PPL), 52 % (NH2), and 78 % (SAX) of

hole-water fluorescent DOM from the extracted sample. All sor- 

ents were most efficient at the beginning of the extraction pro- 

ess and performance decreased with increasing permeate volume 

Fig. S9A). Among the three tested sorbents, the permeate fluores- 

ence properties changed least for PPL. In contrast, permeate fluo- 

escence properties during NH2 and SAX extractions changed con- 

iderably (Fig. S9B). 

The noticeably low efficiency of the PPL sorbent was expected 

ue to the circumneutral pH during extraction. In contrast, the 

fficiency of the NH2 sorbent was comparable to previously re- 

orted values for extractions of Suwanee River NOM at pH 2, while 

he SAX sorbent appeared more efficient than previously reported 

 Li et al., 2017 ). We observed that none of the SAX-extract could

e eluted with methanol and that the sorbent remained discol- 

red after the attempted elution (data not shown). Since extraction 

fficiencies are commonly estimated by comparing whole-water 

nd methanol-eluate DOC ( Dittmar et al., 2008 ), the previously re- 

orted low extraction efficiencies of the SAX sorbent may simply 

e an artefact of the failure to elute extracted DOM instead of a 
6 
ack of DOM adsorption onto the sorbent. In this context, contin- 

ous or sporadic fluorescence-based monitoring of permeates dur- 

ng the extraction process may help to better understand the ex- 

raction process of DOM in future studies. 

The performance of SPE sorbents depends on the interaction 

etween DOM and sorbent. Analyzing permeates may thus pro- 

ide some degree of insight into the chemical properties of the ex- 

racted fluorescence components and the SPE process itself. Future 

tudies could compare the extractability of FDOM at different pH 

r the extractability between DOM from different sources at a con- 

tant pH. Four of the six identified components (C 280/330 , C 300/410 , 

 320/450 , and C 380/510 ) showed significant spectral overlap with a 

revious study that investigated the SPE performance of the PPL 

orbent for marine DOM samples ( Fig. 4 ). However, a comparison 

n SPE performance between the two studies is beyond the scope 

f this work, since the two studies deviate with respect to both 

ample pH and DOM source. 

.2. Comparison of fluorescence components with previous studies 

Recent studies argue for the ubiquitous occurrence of flu- 

rescence spectra in DOM across a wide range of different 

quatic environments ( Ishii and Boyer, 2012 ; Murphy et al., 2018 ; 

ünsch et al., 2017 ). Quantitative assessments of similarity have 

een made for all studies where data was available in reposi- 

ories. The longest emitting component C 380/510 matches reoccur- 

ing component C2 identified by Ishii and Boyer (2012), C 530 in 

in & Guo (2020) , C 510 in Wünsch et al (2017) , and ubiquitous

 520 in Murphy et al. (2018) . Furthermore, C 300/410 and C 320/450 

 Table 2 ) match further components that occur ubiquitously in dif- 

erent environments ( Murphy et al., 2018 ). C 320/450 and C 320/390 

ere also found in a single-sample PARAFAC study describing 

DOM in the Milwaukee River ( Lin and Guo, 2020 ). These find- 

ngs provide further evidence for the ubiquitous occurrence of cer- 

ain fluorescence spectra in DOM and increase confidence in the 

dentified six-component model. Furthermore, the agreement be- 

ween previous single-sample studies and the approach presented 

erein shows that intricate photochemistry ( Murphy et al., 2018 ) 

r chromatography-type ( Lin and Guo, 2020 ; Wünsch et al., 2017 ) 

ractionations can be replaced by or amended with a simplified 

ethodology. 

We further compared the fluorescence spectra identified in 

ur study to 159 available PARAFAC models in the OpenFluor 

atabase ( Murphy et al., 2014b ). Between four (C 300/410 ) and 34 

C 380/510 ) highly-similar components were identified (TCC ex ≥ 0.97 

nd TCC em 

≥ 0.98, Fig. 4 G-L, Table 2 , Supplementary Table 1). 

udged by a overall match criterion of TCC Ex x TCC Em 

, the most sig- 

ificant matches included DOM describing Arctic Fjords (C 300 /330 , 

.996) , tropical rivers in Venezuela (C 320 /390 , 0.991), the deep 

est Indian Ocean (C 300 /410 , 0.996), Microcystis aeruginosa cul- 

ures (C 320 /450 , 0.983), Baltic Coastal Sea Ice (C 350 /450 , 0.991), and 
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Fig. 4. Spectral Comparisons. (A-F): Comparison of DOM fluorescence spectra from Göta älv river (near Kungälv, this study) with spectra from four published studies. 

Pantanal Lake 3 ( Murphy et al., 2018 ): Single sample PARAFAC model (photodegradation) of a clear water lake in the Amazon basin (Lat/Lon: -19.58/ -57.01); Arctic Fjords 

( Wünsch et al., 2018 ): Model based on approx. 200 samples of three saltwater-influenced fjord systems at high latitudes. Rio Negro ( Wünsch et al, 2017 ): Single-sample 

PARAFAC model (molecular size) of a black water river in the Amazon basin (Lat/Lon: -2.613/-60.94). Millwaukee River and Veterans Lagoon ( Lin & Guo, 2020 ): Single-sample 

PARAFAC model (field flow-field fractionation) of terrigenous river and eutrophic lake DOM. The minimum TCC em was 0.98, TCC ex ranged from 0.83-0.99. (G-L): Similarities 

with matching fluorescence components from published studies archived by OpenFluor ( Murphy et al., 2014b ). OpenFluor matches were restricted to TCC Ex > 0.97 and 

TCC Em > 0.98. 
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he Otonabee River as source water for biofiltration experiements 

C 380 /510 , 0.985) ( Bittar et al., 2015 ; Kim et al., 2020 ; Peleato et al.,

016 ; Stedmon et al., 2007 ; Wünsch et al., 2018 ; Yamashita et al.,

010 ). References to all OpenFluor matches are provided in the 

upporting information. 

In relation to the total number of compared studies, the low 

ate of matches may suggest that our study identified rare compo- 

ents. However, we previously demonstrated that many published 

ARAFACpublished models likely rely on too few components in 

he visible wavelength range ( Wünsch et al., 2019 ). In contrast, our 

tudy identified four components with emission maxima in the 

isible spectrum. A degree of divergence to many of OpenFluors 

eference spectra is therefore to be expected. 

The model in our study includes a component with broad emis- 

ion peaking at 450 nm (C 320/450 ) that found few close matches in 

he OpenFluor database. This component may occur less frequently 

i.e. is specific to the modelled data set) or more likely, it repre- 

ents the combined signal from multiple unresolved fractions. Fu- 

ure applications of the augmentation approach for different sam- 

les should help to better constrain the distribution and spectral 

roperties of this component. 

Numerous previous studies have observed that distinguishing 

ignals in the ultraviolet-A emission range is especially difficult 

 Murphy et al., 2018 ; Murphy et al., 2010 ). In the ultraviolet-A

mission range, 1 st order Raman and Rayleigh scatter intersect, 

nd the energy output of fluorometer lamps is noticeably low 

 Cory et al., 2010 ). Nonetheless, EEM-PARAFAC models often fea- 

ure at least one ultraviolet-A-emitting component ( Wünsch et al., 

019 ). In our study, the only “protein-like” fluorescence spectrum 

bserved (C 280 208 /330 ) did not resemble a typical tryptophan-like 

pectrum but instead emitted at shorter wavelengths. Since the 

odel residuals were relatively flat in the tryptophan-like region, 

t is most likely that C 280 2 /330 represents a mixture of multiple 

ltraviolet-A-emitting signals that could not be further separated 

ue to similar extractability with different SPE sorbents and overall 

ow abundance of signals. Future implementations of the augmen- 

ation approach should focus on improving the separation in this 

egard. Emission in the ultraviolet-A range is often associated with 

abile DOM and capturing the turnover of this material depends on 

here being models that accurately reflect this material. 
7 
. Conclusions & Future Directions 

It is often claimed that at least 50 environmental samples are 

equired for it to be possible to reliably isolate the underlying fluo- 

escence spectra of DOM. The approach presented herein achieved 

his using only a few whole-water samples combined with a sim- 

le experiment to generate solid-phase extraction permeates (PPL, 

AX, and NH2 sorbent). We demonstrated the successful appli- 

ation of this approach by resolving the optical properties of six 

ndependently-varying fluorescent fractions in DOM samples from 

 Swedish drinking water treatment facility. 

While there is mounting evidence that certain fluorescence 

pectra occur ubiquitously in terrestrially- and autochthonously- 

erived DOM, most published studies do not include them. Spec- 

ral libraries like OpenFluor facilitate comparisons between stud- 

es, but a logical next step is to incorporate the growing knowl- 

dge about ubiquitous spectra into a next-generation modeling 

pproach. This requires rapid, reliable, and highly-reproducible 

ethods for resolving overlapping signals and isolating inde- 

endent fluorescence spectra from small DOM datasets. The ap- 

roaches presented here represent another critical step in this 

irection. 

In addition to aiding the identification of fluorescence phenom- 

na, studying FDOM behavior during extraction offers valuable in- 

ights into the chemical properties of these phenomena. Future 

esearch should aim to combine this approach with others that 

eliver insights into e.g. apparent molecular size ( Guéguen et al., 

013 ; Lin and Guo, 2020 ; Romera-Castillo et al., 2014 ), photo- 

hemistry ( Murphy et al., 2018 ; Timko et al., 2015 ), or polarity

 Koch et al., 2008 ). 

ata availability 

All raw (inner-filter effect corrected, and Raman-calibrated), 

rocessed (major scatter peaks and outlier data removed) fluo- 

escence data, as well as model loadings and scores are avail- 

ble as ∗.mat, ∗.csv, and 

∗.ods files at https://doi.org/10.11583/ 

TU.13200347. 
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