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a b s t r a c t 

For ferritic stainless steels, TiN has effectively been used as an inoculant to produce equiaxed grain struc- 

tures in casting and welding. However, it is not established whether TiN would be an effective inoculant 

in additive manufacturing. In this study, the effectiveness of TiN as an inoculant in a ferritic stainless steel 

processed by laser powder-bed fusion is studied. An alloy without Ti is fabricated and compared to an al- 

loy designed to form a high amount of TiN early during solidification. The work shows that the presence 

of TiN provides general grain refinement and that TiN-covered oxide particles are effective in enabling 

columnar-to-equiaxed transition in certain regions of the meltpool. The applied approach of pre-alloying 

powders with inoculant-forming elements offers a straightforward route to achieving fine, equiaxed grain 

structures in additively manufactured metallic materials. It also shows how oxygen present during the 

process can be utilized to nucleate effective inoculating phases. 

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Additive Manufacturing (AM) of metallic materials using 

owder-bed fusion based techniques, typically results in columnar 

rain structures at the mesoscale due to directional heat flow dur- 

ng solidification [1] . Such grain structures may be susceptible to 

racking [ 2 , 3 ] and result in anisotropic properties, thereby com- 

licating design of components with reliable and predictable me- 

hanical behavior. Based on solidification theory [4] , the transition 

rom columnar to equiaxed grain structure can be inducedby re- 

ucing the thermal gradient at the solidification front or increas- 

ng the cooling rate, which in turn increases the solidification front 

elocity. Additionally, it is also possible topromote equiaxed grain 

rowth by modifying the alloy composition to increase the consti- 

utional supercooling or by introducing large amounts of hetero- 

eneous nucleation sites (inoculating phases withlow undercool- 

ng for nucleating the solid). These approaches have been utilized 

n AM [5] by altering the process parameters such as scan speed, 

eam shape, beam diameter, scan rotation [6–8] , and by using in- 

culants to change the solidification conditions [ 3 , 9–11 ]. Success- 

ul grain refinement in different material systems by modifying 

he feedstock powder through ex situ addition of inoculant-forming 

anoparticles have been reported on [ 3 , 9 ]. However, the practi- 
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al difficulties of how to incorporate these nanoparticles into the 

eedstock powder and safety concerns should be recognized. Pre- 

lloying the powder with inoculant-forming elements, on the other 

and, allows for in situ formation of the inoculating phase during 

rinting [ 10 , 11 ]. 

Recently, Karlsson et al. [12] reported on a ferritic stainless steel 

ISI441 produced by L-PBF from an unmodified feedstock powder 

aving excellent mechanical properties ( > 679 MPa yield strength) 

ttributed to a very fine grain size ( < 1.8 μm). For this class of

teels, TiN is reported to be an effective ferrite inoculant in both 

asting and welding [ 13 , 14 ], given the low lattice mismatch be-

ween TiN and ferrite, and favorable interfacial energies. However, 

t is not well-established whether TiN is an effective inoculant for 

errite for AM. The purpose of this study is hence to explore if 

rain refinement can be achieved under L-PBF conditions by in situ 

ormation of TiN inoculants during the AM process with ferritic 

teels as a model alloy. 

Two ferritic stainless steel model alloy powders based on the 

ISI 441 composition, one without Ti (Ti-free), and one with higher 

mount of Ti (Ti-high) than AISI 441 to delineate the effect of Ti, 

ere designed to be nitrogen gas atomized. Computational ther- 

odynamics based on the Calphad method [15] was applied for 

he model alloy design and the Ti-high composition was selected 

ased on: (i) maximum solubility of N in the liquid phase (~ 0.1 
rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

Measured chemical compositions (wt.%) of powder and as-built ferritic stainless steels without and with Ti. 

Alloy Cr Ti N C Ni Si Nb Mn Co V Mo O Cu P Al Fe 

Ti-free powder 17.7 < 0.01 0.079 0.017 0.27 0.43 < 0.01 0.83 0.02 0.04 0.05 0.057 < 0.01 0.011 0.007 Bal. 

Ti-free as-built 17.8 < 0.01 0.08 – 0.25 0.6 < 0.01 0.79 0.02 0.04 0.04 0.068 < 0.01 0.012 < 0.01 Bal. 

Ti-high powder 18.7 0.85 0.14 0.021 0.12 0.52 0.27 0.92 0.01 0.06 0.04 0.038 0.01 0.012 0.023 Bal. 

Ti-high as-built 19.1 0.73 0.097 – 0.15 0.77 0.29 0.86 0.02 0.07 0.04 0.046 0.01 0.011 < 0.01 Bal. 

Fig. 1. Phase fractions at equilibrium as a function of temperature calculated for the (a) Ti-free and (b) Ti-high as-built compositions listed in Table 1 (the major elements 

in the oxygen-rich and intermetallic phases are indicated in the legend): different types of high temperature oxides are predicted to form for the two compositions. TiN and 

Ti-rich corundum are predicted to form during solidification before ferrite for the Ti-high composition. 
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ass%) at typical gas atomization temperatures, and a tradeoff be- 

ween (ii) maximizing the amount of inoculating phase, TiN, sta- 

le at the solidification temperature of the ferrite phase, while (iii) 

imiting the stability of the intermetallic phases Laves (Fe 2 (Ti,Nb)) 

nd σ -phase that becomes stable below 970 °C in this case. The 

aves and σ -phase are both undesired due to their embrittling ef- 

ect on the mechanical properties [ 16 , 17 ]. The amounts of minor

lements were specified to be as low as possible. 

The two alloy powders were fabricated by means of nitrogen 

as atomization by Kanthal AB and were sieved to 10 – 45 μm size 

ange. Cubes with dimensions 5 mm x 5 mm x 5 mm were built 

y means of L-PBF in an EOS M100 machine. The following process 

arameters were used: 110 W, 800 mm/s, 80 μm hatch distance, 

0 μm layer thickness. The printing atmosphere was argon and 

he oxygen levels were maintained at > 0.1vol% during the process. 

ressure in the printing chamber was 1 atm at 20 °C and the build

late was not pre-heated. The resulting densities were greater than 

9.9% for both materials. The powder compositions and the com- 

ositions of the as-built materials, measured by ICP-OES and LECO 

nalysis, are shown in Table 1 . 

Figure 1 shows the equilibrium phase fraction versus tempera- 

ure for both Ti-free and Ti-high as-built compositions calculated 

sing Thermo-Calc Software TCFE Steels/Fe-alloys database version 

0 [18] . Trace elements were not included in the calculations. For 

he Ti-free composition, ferrite is the major solid phase expected 

o form, with a small fraction of ionic liquid consisting of Si 4 + , 
n 

2 + , Al 3 + , O 

2 −, which is predicted to solidify as spinel phase.

or the Ti-high composition, TiN is expected to form during so- 

idification before ferrite formation. Also, Ti-rich ionic liquid is ex- 

ected to solidify as Ti-rich corundum. In casting, it has been 

emonstrated that TiN itself preferentially nucleates on complex 

itanium-containing oxides (TiO x ) like Ti 2 O 3 Ti 3 O 5 , Ti 2 O [14–18] ,

esulting in TiN-covered particulate complexes, which act as effec- 

ive ferrite inoculants to produce equiaxed grain structures. Hence, 

he oxygen pickup during atomization, powder handling, and L- 
2 
BF process,can be expected to lead to corundum formation, which 

ould favor TiN nucleation in the Ti-high composition. 

The as-built microstructures were characterized using electron 

icroscopy. Samples for scanning electron microscopy (SEM) were 

ectioned parallel to the build direction and prepared by grinding 

nd polishing to 1 μm diamond finish, followed by final polishing 

sing colloidal alumina and silica solutions (50 and 40 nm-sized 

articles, respectively). The grain structure was analyzed by elec- 

ron backscattered diffraction (EBSD) in a focused ion beam (FIB) 

ova 600 nanolab dual beam field emission gun (FEG) FIB-SEM. 

he EBSD measurements were performed at 20 kV using a Sym- 

etry CMOS EBSD detector from Oxford Instruments. The EBSD 

ata was processed using MTEX v5.2.8 crystallographic Toolbox 

nd Matlab R2018b. Complementary backscattered electron imag- 

ng was performed using a Jeol 7800F FEG-SEM. The particles in 

he materials were further studied by transmission electron mi- 

roscopy (TEM). For the Ti-high material, FIB lamella was lifted 

rom a fine-grained region; in the Ti-free material the sample was 

xtracted by random positioning. The FIB lamellae were thinned 

o electron transparency by rough milling at 30 kV followed by fi- 

al milling at 5 kV. TEM was performed in a Jeol 2100F FEG-TEM 

perated at 200 kV. Chemical analysis was performed by energy 

ispersive spectroscopy (EDS) using a X Max N windowless EDS de- 

ector. 

Comparing the builds fabricated from the Ti-free and Ti-high 

owders, it is clear that the same build strategy and process 

arameters result in very different microstructures as shown in 

igure 2 . The Ti-free material ( Figure 2 a) has a microstructure with

arger grains extending over several build layers and a < 001 > fiber 

exture parallel to the build direction ( Figure 2 c). The Ti-high ma- 

erial ( Figure 2 b) has a finer microstructure with columnar and 

quiaxed regions outlining the separate melt pools and the texture 

eems more randomized ( Figure 2 d). Though both materials dis- 

lay lognormal grain size distributions ( Figure 2 e), the mean grain 

ize decreases from 14.2 ± 1.1 μm to 1.2 ± 0.01 μm (95% confi- 
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Fig. 2. EBSD inverse pole figure colored maps showing the microstructure in the (a) Ti-free and (b) Ti-high materials; build direction pole figures for the (c) Ti-free and 

(d)Ti-high materials; and (e) the grain size distribution of the two materials (note that both the pole figures and the grain size distribution are based on larger data sets 

than the ones shown in (a) - (b)). 
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ence) by the addition of Ti and the whole distribution is shifted 

o smaller grain sizes. There is evidently significant grain refine- 

ent in the Ti-high case. 

To better understand the grain refinement mechanism, pos- 

ible inoculating particles in the two different microstructures 

ere analyzed by SEM and TEM. The Ti-free material contains a 

ne dispersion of particles evenly distributed within the grains 

 Figure 3 a). STEM HAADF and EDS show that these particles are 

pherical Cr-Si-Mn-Al-containing oxides ( Figure 3 e, g and h). The 

i-high material is found to have a different distribution of par- 

icles in the fine-grained regions compared to the columnar re- 

ions ( Figure 3 b). In the fine-grained regions, particles are seen 

istributed randomly within the grains ( Figure 3 c) and a major- 

ty of them have diameters greater than 20-30 nm (histogram in 

igure 4 ). In the columnar region, particles are also seen. They are, 

owever, finer with a majority sized 20 nm or smaller ( Figure 3 d,

istogram in Figure 4 ). From STEM HAADF imaging ( Figure 3 f) of a

ne-grained region, it is seen that the particles are cuboidal with 

rregular shapes and appear in most cases to consist of clusters of 

 few particles. A STEM EDS line measurement ( Figure 3 j) over a

article cluster ( Figure 3 i) shows that the core is Ti-Al-rich oxide, 

nd the outer parts have a higher concentration of Ti and N. It 

hould be noted, however, that the energy of Ti L and N K lines

re overlapped in EDS, and N in the presence of Ti has therefore 

een estimated by peak deconvolution comparing with the Ti L/K 
3 
ine ratio. Since N is detected only in the outer parts of the parti- 

le where the O content is low, these particle clusters presumably 

ave a Ti-Al-oxide-core and outer layer of TiN. 

Hence, there is a clear difference between the Ti-free and Ti- 

igh materials, both in terms of grain structures and second phase 

articles. Since the main difference between the two compositions 

s the amount of Ti ( Table 1 ), the effect of adding Ti and the forma-

ion of TiN in situ can be delineated through a comparison of the 

wo structures. There are three aspects that elucidate this effect: 

he presence of different types of particles in the Ti-free and Ti- 

igh materials, the different sizes of particles in the columnar and 

quiaxed regions of the Ti-high material, and finally the observed 

rain structure at the meltpool scale. 

Firstly, consistent with the fact that there is oxygen present 

lready in the powder ( Table 1 ), a fairly uniform distribution of 

xygen-rich particles throughout the build for both Ti-free (Cr-Si- 

n-Al-O) and Ti-high (Ti-Al-O) materials can be seen ( Figure 3 ). 

his is expected for L-PBF processed materials, where nano-oxides 

re typically found owing to oxygen from the feedstock powder 

nd L-PBF process conditions [19] . For the Ti-free material, the 

hermodynamic calculations ( Figure 1. a) predict the spinel phaseto 

e stable. It was not possible to confirm the crystal structure and 

t is not clear based on the morphology whether the oxides are 

pinel [19] . Through previous studies [ 13 , 20 ], it has been shown

hat oxide particles are not effective nucleation sites for ferrite 
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Fig. 3. Distribution, morphology and chemistry ofparticles: SEM backscattered electron images showing (a) homogeneous distribution of particles in the Ti-free material and 

(b) a different distribution of particles found in columnar and equiaxed zones of the Ti-high material, as seen clearly in the zoomed-in images of (c) equiaxed region and 

(d) columnar region; STEM HAADF images showing the particle morphology in (e) Ti-free and (f) Ti-high materials (equiaxed zone); STEM-EDS line scans of (g) the spherical 

particles in Ti-free material and (h) the irregular shaped particles found in Ti-high material (equiaxed zone). 
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s a very high undercooling is required. Therefore, there is no 

noculating effect of oxygen-rich particles on the grain structure 

or the Ti-free material. On the other hand, the Ti-high material 

eems to have TiN encapsulating Ti-Al-O particles, which can act 

s inoculants. This is consistent with thermodynamic calculations 

 Figure 1 b), which show that TiN and Ti-rich corundum are stable 

p to temperatures close to 20 0 0 K. Therefore, the observed par- 
4 
icle clusters ( Figure 3 f) have most likely formed by nucleation of 

iN on corundum particles early in the solidification process, since 

he peak temperatures during L-PBF can reach 250 0-30 0 0 K [21–

3] . In fact, these particle clusters are very similar to TiO x /TiN clus-

ers reported in the case of casting [ 24 , 25 ] which act as inoculants,

lthough at a much finer scale in this study, suggesting that TiN 

referentially nucleated on the oxides rather than homogeneously 
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Fig. 5. Schematic showing the conditions and the distribution of particles at differ- 

ent parts of the meltpool that influence the grain morphology. 
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n the liquid [26] . Accordingly, the presence of oxygen, which can 

e difficult to completely avoid during powder handling and L-PBF 

rocessing, seems to be advantageous in enabling the in situ for- 

ation of TiN inoculants for grain refinement. 

Next, the implications of different particle sizes in the colum- 

ar and equiaxed regions of the Ti-high material ( Figure 3 c and 

) on nucleation and growth of new grains are analyzed. At L-PBF 

onditions, the undercooling required for heterogeneous nucleation 

nd growth of equiaxed grains has to be viewed in relation to the 

ndercooling for epitaxial growth of columnar grains from the un- 

erlying, already solidified material, which is the competing mech- 

nism. The undercooling for columnar growth (driven by thermal 

radient) can be anywhere between a few degrees to a few tens 

f degrees, depending on the process parameters [ 14 , 27 ]. Based on

ucleation theory, Nakajima et al . [20] calculated the critical nu- 

leus size of TiN for effective nucleation of ferrite to 7.4 nm and 

alidated it experimentally. The undercooling required for further 

rowth of nuclei into equiaxed grains is, however, dependent on 

he inoculant particle size on which they nucleate and can be very 

igh if the particle size is very small. According to Greer et al. 

28] , the undercooling required for the growth ( �T fg ) of nuclei that

orm on the inoculant surface as a function of the inoculant parti- 

le size can be calculated as: 

T fg = 

4 σSL 

�S v d 

here σ SL is the solid-liquid interfacial energy, �S v is the en- 

ropy of fusion per unit volume and d is the particle size. Tak- 

ng σ SL as 0.045 J m 

−2 and �S v as 7.2646 • 10 5 J m 

−3 K 

−1 calcu-

ated using theThermo-Calc Software v2020b TCFE Steels/Fe-alloys 

atabase version 10 [18] , the undercooling as a function of the in- 

culant particle size is shown in Figure 4 . In line with these cal-

ulations, the particles in the equiaxed region seem to be more ef- 

ective for nucleation and growth of ferrite than the much smaller 

articles in the columnar region due to lower undercooling, also in 

omparison with the undercooling required for columnar growth 

 Figure 4 ). To predict the columnar-to-equiaxed transition more ac- 

urately, the local thermal conditions also need to be known. 

Finally, considering the grain structure at the meltpool scale, a 

olycrystalline structure in the Ti-free material is observed where 

he grains themselves in many cases span several layer thicknesses. 
ig. 4. Undercooling for equiaxed growth on inoculant particle as a function of the 

article size (black curve with y-axis on the left): The particles in the equiaxed re- 

ion of Ti-high material are larger than those in the columnar region (given by the 

wo histograms showing the probability of the inoculant particle size as indicated 

y the y-axis on the right, based on measurements from SEM images) and there- 

ore more favorable for nucleating equiaxed grains, when compared with the un- 

ercooling required for columnar growth (rough range indicated by the green line 

egment). 
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5 
his is a typical structure observed in L-PBF processed materials 

nd is mainly dependent on the local thermal gradients, which can 

e influenced by the scan speed and scan rotation [ 7 , 29 ]. Regard-

ng the texture, it is also interesting to note that the < 001 > fiber

exture, as observed for the Ti-free material ( Figure 2 c), is found 

n ferritic stainless steels produced by strip casting [30] with a 

igh directionality in heat transfer which resembles the present 

ituation. The more randomized texture ( Figure 2 d) in the Ti- 

igh material further indicates that the solidification conditions 

ave been modified. In the Ti-high material, firstly, columnar-to- 

quiaxed transition in morphology is seen within each meltpool. 

his can be explained by the presence of TiN-oxide particle clus- 

ers, present in larger sizes in the equiaxed regions and smaller 

izes in the columnar regions. Furthermore, local thermal gradi- 

nt (G) is expected to be higher and solidification velocity (V) is 

xpected to be lower at the bottom of the meltpool compared to 

he top, which favors columnar growth [31] . This is depicted in a 

chematic in Figure 5 . Moreover, there is significant refinement in 

rain size in the Ti-high material compared to the Ti-free material 

n both columnar and equiaxed regions ( Figure 2 a and b). Refine- 

ent of the columnar grains is potentially due to them nucleating 

n the fine, equiaxed structure at the top of previous meltpools in 

he underlying solid layer. 

In summary, the efficacy of in situ formed TiN as an inoculant 

or ferritic stainless steel in L-PBF was demonstrated by comparing 

he structures of a Ti-free base alloy and an alloy with Ti. Though 

ne oxygen-rich particles were present in both cases, they were 

f different types and in the case of the alloy with Ti, covered 

y TiN, which enabled grain refinement and columnar-to-equiaxed 

ransition. TiN, which has traditionally been used as an inoculant 

n casting and welding, may therefore also be used in L-PBF, fur- 

her aided by the presence of oxygen-rich inclusions. This paves 

he way for design of new powders pre-alloyed with alloying el- 

ments that form inoculating phases in situ during AM. Further- 

ore, the oxygen level of the powder and possible pick-up during 

he process may also be utilized as a design strategy to nucleate 

uitable inoculating phases. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 



A. Durga, N.H. Pettersson, S.B.A. Malladi et al. Scripta Materialia 194 (2021) 113690 

A

g

t

(

v

i

n

k

k

d

v

R

 

 

 

 

 

 

 

[

 

[  

[
[  

[  

[

[
[

[
[

[  

[  

[

cknowledgements 

This study was performed within the strategic innovation pro- 

ram Metalliska Material through the project Design of novel ma- 

erials and processes for next generation additive manufacturing 

DEMA), financed by the Swedish Governmental Agency for Inno- 

ation Systems (VINNOVA), Formas and Energimyndigheten. The 

ndustrial project partners Höganäs AB, Kanthal AB, Quintus Tech- 

ologies AB, Sandvik Materials Technology and Jernkontoret are ac- 

nowledged for valuable input. Roger Berglund, Kanthal AB, is ac- 

nowledged for materials supply, chemical analysis and valuable 

iscussions. LN and GL also acknowledge support from VINNOVA 

ia LIGHTer Academy. 

eferences 

[1] F. Yan , W. Xiong , E.J. Faierson , Materials (Basel) 10 (2017) 1260 . 

[2] N.J. Harrison , I. Todd , K. Mumtaz , Acta Mater 94 (2015) 59–68 . 
[3] J.H. Martin , B.D. Yahata , J.M. Hundley , J.A. Mayer , T.A. Schaedler , T.M. Pollock ,

Nature 549 (2017) 365–369 . 
[4] J.D. Hunt , Mater. Sci. Eng. 65 (1984) 75–83 . 

[5] D. Zhang , A. Prasad , M.J. Bermingham , C.J. Todaro , M.J. Benoit , M.N. Patel ,
D. Qiu , D.H. StJohn , M.A. Qian , M.A. Easton , Metall. Mater. Trans. A. 51 (2020)

4341–4359 . 

[6] N. Raghavan , R. Dehoff, S. Pannala , S. Simunovic , M. Kirka , J. Turner , N. Carlson ,
S.S. Babu , Acta Mater 112 (2016) 303–314 . 

[7] S. Sun , K. Hagihara , T. Nakano , Mater. Des. 140 (2018) 307–316 . 
[8] T.T. Roehling , R. Shi , S.A. Khairallah , J.D. Roehling , G.M. Guss , J.T. McKeown ,

M.J. Matthews , Mater. Des. 195 (2020) 109071 . 
[9] X.P. Li , G. Ji , Z. Chen , A. Addad , Y. Wu , H.W. Wang , J. Vleugels , J. Van Humbeeck ,

J.P. Kruth , Acta Mater 129 (2017) 183–193 . 
6 
[10] K.V. Yang , Y. Shi , F. Palm , X. Wu , P. Rometsch , Scr. Mater. 145 (2018) 113–117 . 
[11] A.B. Spierings , K. Dawson , T. Heeling , P.J. Uggowitzer , R. Schäublin , F. Palm ,

K. Wegener , Mater. Des. 115 (2017) 52–63 . 
12] D. Karlsson, C. Chou, N. Holländer Pettersson, T. Helander, P. Harlin, 

M. Sahlberg, G. Lindwall, J. Odqvist, U. Jansson, Addit. Manuf. (2020), doi: 10. 
1016/j.addma.2020.101580 . 

[13] B.L. Bramfitt , Metall. Trans. 1 (1970) 1987–1995 . 
[14] V. Villaret , F. Deschaux-Beaume , C. Bordreuil , J. Mater , Process. Technol. 233 

(2016) 115–124 . 

[15] H. Lukas , S.G. Fries , B. Sundman , Computational thermodynamics: the Calphad 
method, Cambridge university press, 2007 . 

[16] M.P. Sello , W.E. Stumpf , Mater. Sci. Eng. A. 527 (2010) 5194–5202 . 
[17] T.J. Nichol , A. Datta , G. Aggen , Metall. Trans. A. 11A (1980) 573–585 . 

[18] J.-O. Andersson , T. Helander , L. Höglund , P. Shi , B. Sundman , Calphad. 26 (2002)
273–312 . 

[19] F. Yan , W. Xiong , E. Faierson , G.B. Olson , Scr. Mater. 155 (2018) 104–108 . 

20] K. Nakajima , H. Hasegawa , S. Khumkoa , M. Hayashi , Metall. Mater. Trans. B.
34B (2003) 539–547 . 

21] W. Huang , Y. Zhang , J. Manuf. Process. 42 (2019) 139–148 . 
22] P. Bian , J. Shi , X. Shao , J. Du , Int. J. Adv. Manuf. Technol. 104 (2019) 3867–3882 .

23] U. Scipioni , A.J. Wolfer , M.J. Matthews , J.R. Delplanque , J.M. Schoenung , Mater.
Des. 113 (2017) 331–340 . 

24] Y. Hou , G. Cheng , Metall. Mater. Trans. B. 50 (2019) 1322–1333 . 

25] Y. Hou , G. Cheng , H. Cheng , Metall. Mater. Trans. B. 51 (2020) 709–721 . 
26] J. Fu , Q. Nie , W. Qiu , J. Liu , Y. Wu , Mater. Charact. 133 (2017) 176–184 . 

27] S.S. Babu , J.W. Elmer , J.M. Vitek , S.A. David , Acta Mater 50 (2002) 4763–4781 . 
28] A.L. Greer , Phil. Trans. R. Soc. Lond. A. 361 (2003) 479–495 . 

29] T. Ishimoto , S. Wu , Y. Ito , S. Sun , H. Amano , T. Nakano , ISIJ Int 60 (2020)
1758–1764 . 

30] H.T. Liu , Z.Y. Liu , Y.Q. Qiu , G.M. Cao , C.G. Li , G.D. Wang , Mater. Charact. 60

(2008) 79–82 . 
31] J.P. Oliveira , A.D. Lalonde , J. Ma , Mater. Des. 193 (2020) 1–12 . 

http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0001
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0001
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0001
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0001
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0002
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0002
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0002
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0002
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0003
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0003
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0003
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0003
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0003
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0003
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0003
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0004
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0004
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0005
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0005
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0005
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0005
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0005
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0005
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0005
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0005
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0005
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0005
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0005
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0006
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0006
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0006
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0006
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0006
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0006
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0006
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0006
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0006
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0007
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0007
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0007
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0007
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0008
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0008
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0008
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0008
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0008
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0008
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0008
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0008
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0009
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0009
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0009
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0009
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0009
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0009
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0009
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0009
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0009
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0009
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0010
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0010
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0010
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0010
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0010
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0010
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0011
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0011
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0011
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0011
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0011
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0011
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0011
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0011
https://doi.org/10.1016/j.addma.2020.101580
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0013
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0013
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0014
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0014
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0014
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0014
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0014
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0015
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0015
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0015
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0015
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0016
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0016
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0016
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0017
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0017
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0017
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0017
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0018
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0018
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0018
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0018
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0018
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0018
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0019
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0019
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0019
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0019
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0019
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0020
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0020
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0020
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0020
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0020
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0021
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0021
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0021
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0022
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0022
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0022
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0022
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0022
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0023
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0023
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0023
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0023
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0023
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0023
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0024
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0024
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0024
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0025
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0025
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0025
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0025
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0026
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0026
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0026
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0026
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0026
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0026
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0027
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0027
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0027
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0027
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0027
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0028
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0028
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0029
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0029
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0029
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0029
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0029
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0029
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0029
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0030
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0030
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0030
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0030
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0030
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0030
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0030
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0031
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0031
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0031
http://refhub.elsevier.com/S1359-6462(20)30812-5/sbref0031

	Grain refinement in additively manufactured ferritic stainless steel by in situ inoculation using pre-alloyed powder
	Declaration of Competing Interest
	Acknowledgements
	References


