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“When we start talking about parallelism and ease of use of truly parallel
computers, we’re talking about a problem that’s as hard as any that computer

science has faced. ... I would be panicked if I were in industry.”
- John Hennessy, Stanford President (2006)
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Abstract

The emergence of big data in recent years due to the vast societal digitalization
and large-scale sensor deployment has entailed significant interest in machine
learning methods to enable automatic data analytics. In a majority of the
learning algorithms used in industrial as well as academic settings, the first-
order iterative optimization procedure Stochastic Gradient Descent (SGD), is
the backbone. However, SGD is often time-consuming, as it typically requires
several passes through the entire dataset in order to converge to a solution of
sufficient quality.

In order to cope with increasing data volumes, and to facilitate accelerated
processing utilizing contemporary hardware, various parallel SGD variants have
been proposed. In addition to traditional synchronous parallelization schemes,
asynchronous ones have received particular interest in recent literature due
to their improved ability to scale due to less coordination, and subsequently
waiting time. However, asynchrony implies inherent challenges in understanding
the execution of the algorithm and its convergence properties, due the presence
of both stale and inconsistent views of the shared state.

In this work, we aim to increase the understanding of the convergence
properties of SGD for practical applications under asynchronous parallelism, and
develop tools and frameworks that facilitate improved convergence properties
as well as further research and development. First, we focus on understanding
the impact of staleness, and introduce models for capturing the dynamics of
parallel execution of SGD. This enables (i) quantifying the statistical penalty
on the convergence due to staleness and (ii) deriving an adaptation scheme,
introducing a staleness-adaptive SGD variant MindTheStep-AsyncSGD , which
provably reduces this penalty. Second, we aim at exploring the impact of
synchronization mechanisms, in particular consistency-preserving ones, and the
overall effect on the convergence properties. To this end, we propose Leashed-
SGD , an extensible algorithmic framework supporting various synchronization
mechanisms for different degrees of consistency, enabling in particular a lock-
free and consistency-preserving implementation. In addition, the algorithmic
construction of Leashed-SGD enables dynamic memory allocation, claiming
memory only when necessary, which reduces the overall memory footprint. We
perform an extensive empirical study, benchmarking the proposed methods,
together with established baselines, focusing on the prominent application of
Deep Learning for image classification on the benchmark datasets MNIST and
CIFAR, showing significant improvements in converge time for Leashed-SGD
and MindTheStep-AsyncSGD .
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Chapter 1

Overview

“I propose to consider the question, ‘Can machines think?’ ” are the opening
words of Alan Turing in the article Computing Machinery and Intelligence,
published 1950 in Mind [1]. Realizing swiftly the danger of posing such an,
at the time, controversial question without hope to ever provide a reasonable
definition of “think” (or even “machine” for that matter) Turing circumvents
this issue simply by defining a game:

The Imitation Game, or the more widely known Turing Test, determines
whether a machine possesses human intelligence. In the test, a human evaluator
queries, by text messages, two participants, one of which is a machine. If the
evaluator cannot distinguish the human participant from the machine, it passes
the test. In the article, Turing optimistically argues against common objections
to the statement “machines can think”, and predicts “... at the end of the
century the use of words and general educated opinion will have altered so
much that one will be able to speak of machines thinking without expecting to
be contradicted”.

Undoubtedly, Turing´s prediction cannot be argued to have been fulfilled,
although significant steps have been taken towards automation by the use of
artificially intelligent machines. In recent years, Artificial Intelligence (AI) has
proven very effective, often exceeding human performance, in many application
domains, including natural language processing, image analysis and speech
recognition [2]. For example, it is estimated that during 2020, 97% of mobile
phone users are using AI-powered voice assistants.

In addition, vast digitalization of society in recent years has enabled wide
deployment of sensing technology, which has made available huge amounts of
information, sparking the research within Big Data. Subsequently, a primary
focus of AI and Machine Learning (ML) technologies have been towards data-
driven methods, meaning created with the help of, and used for analyzing,
data. Among the most prominent is the widely used Stochastic Gradient De-
scent (SGD) optimization algorithm, the credit for which is usually attributed
Augustin-Louis Cauchy who first proposed it in 1847. By iteratively processing
data, SGD enables Artificial Neural Network (ANN) training, Logistic Regres-
sion, Support Vector Machines, and other ML methods. The emergence of Big
Data research in recent years has not only affected the development in terms of
software, but to a high degree also hardware which is equipped with a growing
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2 CHAPTER 1. OVERVIEW

number of processing cores in order to accommodate for growing demand on
data analytics to scale [3].

The quote in the initial pages of this thesis, by the previous President
of Stanford John Hennessy, is from the beginning of this century, when the
end of Moore’s law was growing more apparent. The amount of processing
power that a single integrated circuit could bring was approaching a limit,
and improvements in performance were increasingly difficult and expensive to
achieve. As a result, the microprocessor manufacturing industry shifted from
the pattern of increasing the performance of conventional sequential processors,
to focus instead on equipping processing chips with a higher number of cores [4].
The new Moore’s law is to double the number of processor per chip in each new
generation of technology. Ever since, it has been the privilege of the software
development community to solve the numerous problems arising in the field of
parallel programming, in the strive to fully utilize the capability of the new
standard of processors. The interest in the field has increased rapidly due
to the significant performance gains that it entails, and while the hardware
community continuously challenges with new computing infrastructure, so does
also the software community challenge by constructing the parallel algorithms
that master it.

The rapidly growing parallel computing capability of modern hardware calls
for new algorithms for ML capable of actually utilizing it. Many algorithms
for ML are far from trivial to parallelize. Taking SGD as the primary example,
but any other iterative algorithm as well, we have usually that every iteration
requires the computation of the previous iteration to be completed, and avail-
able to be used in the next. As a consequence, parallelization would impose
either that threads work in parallel only during each individual iteration and
synchronizing at the end in a lock-step manner, or relaxing the semantics of
the original algorithm. These two main approaches to parallel SGD came to
be known as synchronous and asynchronous parallel SGD, respectively, with
fundamentally different properties in scalability, convergence and applicability.

It is easy to realize that the synchronous parallelization approach suffers
limitations in scalability due to the fact that each iteration is only as fast as
the slowest contributing thread. Hence, slow threads, i.e. stragglers, present
particularly in heterogeneous computing environments, can significantly impact
the convergence time. Asynchronous approaches alleviate this limitation,
showing improved scalability in some applications. However, the reduced
inter-thread coordination that asynchrony entails breaks the semantics of the
original SGD algorithm, and hence introduces several questions, among the
most important is how the convergence time of SGD is affected. Moreover, the
degree of synchronization that is still required, such as when accessing shared
variables, becomes a focal point. For example, degradation in convergence due
to lock-free inconsistent access is a risk, depending on the application. This can
be avoided with consistency-enforcing mechanisms, one option being locking,
however it is unclear whether or not it is worth the computational overhead it
introduces in practice.

In this thesis, we contribute to the domain of efficient parallel optimization
with SGD for fast and stable convergence in prominent machine learning appli-
cations. We target the aforementioned critical questions, exploring aspects of
synchronization, consistency, staleness and parallel-aware adaptiveness, focus-
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ing on the impact on the overall convergence. We introduce analytical models
that capture features of interest in multi-thread dynamics, providing critical
clues for the algorithm development. The theoretical work is complemented
by empirical results, benchmarking the proposed methods compared to estab-
lished baselines for common practical applications that are widely used in both
academic and industrial settings.

In Table 1.1 we provide a comprehensive list of variable notation to be used
throughout the overview chapter of this thesis.

1.1 SGD and Artificial Neural Networks

Machine learning with SGD is at its core an optimization problem:

minimize
θ

fD(θ) (1.1)

for a non-negative function f : Rd → R+. In machine learning (ML) applica-
tions, θt ∈ Rd typically represents an encoding of the learned knowledge, and fD
quantifies the performance error of the model θt on the dataset D at iteration
t. Solutions may be found using Stochastic Gradient Descent (SGD), defined
as repeating the following with data mini-batches B ∈ D sampled randomly:

θt+1 = θt − η∇̃fB(θt) (1.2)

Table 1.1: List of symbols used in the overview chapter of this thesis

Topic Symbol Meaning

Parallelism

m Number of threads

∆ Update to the shared state by a thread

τ Staleness, defined as the number of applied concurrent updates

τ̂ Assumed maximum system staleness τ̂ = maxt τt

vt The view of a thread when applying an update, vt = θt−τt
m∗C Computational saturation point

m∗S System saturation point

Optimization

f Non-negative target function

ε Precision threshold for convergence

θt Vector of trainable parameters (weights and bias) at iteration t

d Equals |θ|, i.e. optimization problem dimension

D Dataset used for training

B Mini-batch of data drawn randomly from D

b Mini-batch size b = |B|
η Step size

∇̃fB(θ) Stochastic gradient of f , computed w.r.t. batch B and parameters θ

µ Momentum parameter

ANN

y(x : θ) Output computed based on input x and parameters θ

ŷ(x) Label for x

o(l) Output vector of layer l

σ Non-linear activation function
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where ∇̃fB(θt) and an unbiased estimate of the true gradient. The choice of
the initialization point θ0 is chosen at random according to some distribution,
which as one might expect may significantly impact the convergence [5].

The negative gradient of a function constitutes the direction of steepest
descent, resulting in a trajectory corresponding to the slope of the target
function (see Figure 1.1). The iteration (1.2) is repeated until a solution θ∗ of
sufficient quality is found, i.e. fD(θ∗) < ε, referred to as ε-convergence.

Figure 1.1: Stochastic Gradient Descent is a first-order iterative numerical
optimization algorithm which repeatedly steps in the direction of steepest
descent, following the slope of the target function

The original deterministic counterpart Gradient Descent (GD) to SGD
simply lets B = D, i.e. considers the entire dataset in every iteration. The
stochastic element of random data subsampling in SGD entails two major
benefits, namely that (i) sampling and processing only small mini-batches
enables significantly faster iterations and (ii) that the algorithm is effective on
also non-convex target functions, as opposed to GD. However, SGD introduces
a new hyper-parameter, namely the batch size b, which corresponds to the level
of stochasticity or noise in the convergence. While a certain degree of noise is
necessary for enabling convergence in non-convex settings, it can be fatal when
too high, causing endless sporadic oscillation about the initialization point
θ0. In practice, b consequently requires careful tuning. A widely established
method for reducing such oscillation, while maintaining the stochasticity as
necessary, is Momentum-SGD (MSGD), defined as follows:

θt+1 ← θt + µ(θt − θt−1)− η∇̃fB(θt) (1.3)

for some momentum parameter µ ∈ [0, 1]. Momentum has become known
to significantly accelerate the convergence of SGD in many practical settings.
Especially so for target functions which are irregular and asymmetric in its
shape, forming narrow valleys. Such irregularities are in particular known to
arise in deep learning applications.

Deep Learning (DL), i.e. deep Artificial Neural Network (ANN) training,
constitutes one of the most important applications of SGD in present day.
ANNs are computational structures inspired by the biological brain and consist
of many fundamental units referred to as neurons. An ANN consists of several
non-linear transformations, known as layers, processing the input data in
consecutive steps (see Figure 1.2). Each layer is parameterized by a weight
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Figure 1.2: The input o(0) to an ANN undergoes several transformations,
parameterized by θ.

matrix and a bias vector, both constituting part of the parameter array θ,
which is learned through the optimization process (1.2). The input data, e.g.
an image, to be analyzed by the ANN is provided as initialization to the first
layer. After processing throughout the layers, this results in some output in
the last layer, corresponding to e.g. the predicted class of the input image.
Different topological properties, such as connectivity among neurons, give rise
to a diverse set neural architectures. Among the most commonly used are
Multi-Layer Perceptrons (MLPs) and Convolutional Neural Networks (CNNs):

• MLPs consist of densely-connected layers, each applying a non-linear
transformation of its input and passing the result on to the next layer:

o(l)
n = σ

|Nl−1|−1∑
i=0

θ
(l,n,w)
i · o(l−1)

i + θ(l,n,b)


where o

(l)
n is the output of neuron n ∈ {0, . . . , Nl − 1} in the l-th layer, σ

is a non-linear activation function, typically the ReLU function σ(x) =
max(0, x), and θ(l,n,w), θ(l,n,b) contains the learnable weights and bias
parameters of to the n-th neuron.

• CNNs consist of layers that convolve the input with learnable filters for
feature detection:

o
(l)
n,f = σ

(
k∑
i=0

θ
(l,f,w)
i · o(l−1)

n+i + θ(l,f,b)

)

for a number of filters f , corresponding to a 1D convolution. This can
be naturally extended to 2D, with filter matrices being convolved with
the input in both axes. Convolutional layers are sparsely connected and
reduce the number of weights to be learned. They are especially efficient
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for analysis of image (or other spatially dependent) data due to the
translation-invariant property of feature detection with convolution.

Convolutional layers are often used in combination with MaxPool layers, which
pick the maximum output of a number of consecutive neurons as the output of
the layer. This is meant to leverage detection of relevant features, as well as
significantly reduce its dimension. It will hence also decrease the total number
of learnable weights.

In the last, output, layer of an ANN, the softmax activation function

σi(x) = exi/
∑|x|
j=1 e

xj (e being Euler’s number) for each output neuron i, is
often used for classification problems. Its output satisfies the requirements on
a probability distribution function, and is consequently interpreted as such in
this context, i.e. the estimated class distribution y of an input x. Given the
true class label ŷ of the input x, the performance of an ANN for classification
is quantified by some error function, e.g. the cross-entropy loss function:

L(ŷ, y(x : θ)) = −
|out|∑
i

y(x : θ)i log(ŷi)

where y is the output of the last layer, and naturally depends on the input x and
the current state of θ. The training process of an ANN now constitutes of iter-
atively adjusting θ to minimize the error function fD(θ) = 1

|D|
∑
x∈D L(ŷ, y(x :

θ)). The BackProp algorithm is used for computing ∇θf(θ), and SGD is then
used for minimizing f , and training the ANN. In every iteration the input is
selected at random, either as single data point or as a mini-batch over which
the error is averaged.

1.1.1 Metrics of interest

The implementation of any algorithm affects its performance and usefulness
in practice. When it comes to SGD, or any other iterative optimization
algorithm for that matter, the performance is influenced by many aspects of
the implementation as well as the system on which it is executed. As described
in [6] (and Paper B in this thesis) a useful decomposition of the performance
is to consider the statistical and computational efficiency, defined as follows.

(i) statistical efficiency measures the number of SGD iterations required
until reaching ε-convergence

(ii) computational efficiency measures the number of iterations per time unit

The overall convergence rate, i.e. the wall-clock time until ε-convergence, is the
most relevant in practice. As also pointed out in [6], the convergence rate is
essentially the product:

convergence rate = statistical efficiency× computational efficiency

Consequently, when proposing new algorithms (or altering existing ones) in
this application domain that potentially change the computational efficiency,
it is not sufficient to evaluate the invention by measuring only the statistical
efficiency, i.e. counting the iterations until convergence. One must in general
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consider these metrics in conjunction, and measure the overall convergence
rate. Ideally, they should also be measured separately, as this is the only way
to truly understand from where potential improvements originate.

The aforementioned metrics become particularly important in the context of
parallel algorithms for iterative optimization, since depending on the method for
parallelization, such algorithms often have significant impact on computational
and statistical efficiency, as we shall see in the following.

1.2 Parallel SGD

With rapidly growing demands for data analysis, there is an increasing interest
in achieving the necessary scalability by utilizing parallel algorithms for SGD,
capable of utilizing modern many-core processing infrastructure as well as large
clusters of distributed computing networks. While parallelism can improve
computational efficiency, simply by managing to apply a greater number of
updates in each unit of time, the impact on the statistical efficiency, and thereby
the overall convergence rate, is unpredictable. This is mainly due to that the
original SGD algorithm is inherently sequential, requiring the computation
of each iteration to be completed in order to perform the computation of the
next. Parallelization is consequently not trivial, and requires synchronization
in every iteration (prior to applying an update) in order to not break the
original sequential semantics of SGD. Alternatively, threads can execute the
SGD algorithm, i.e. accessing and updating the shared state θ, asynchronously,
although this might not conform to the sequential semantics. These approaches
correspond to two main directions of methods for parallel SGD, referred to as
synchronous and asynchronous. These can be further categorized into several
representative methods, depending on their requirements on synchronization,
staleness, and other consistency and progress guarantees.

Most methods mentioned in this thesis were originally introduced in the
centralized shared-state context, either on a shared-memory parallel system or a
distributed one with one node acting as a parameter server, which sequentializes
updates. Most approaches can be naturally generalized to different computing
infrastructure, and also to their decentralized counterpart. However, in this
thesis we retain the focus on asynchronous SGD in the context of shared-
memory parallel systems, but keep in mind distributive and decentralizing
generalizations, with occasional remarks on that topic.

There are several representative methods for parallel SGD, which employ
fundamentally different mechanisms for synchronization. There is however a
terminological inconsistency in the literature of this domain, with opposing
notions of consistency and progress guarantees. For instance, the properties
wait-freedom and inconsistency have been attributed to parallel algorithms for
SGD due to the presence of asynchrony in the update aggregation [7,8], while in
other contexts lock-freedom refers to operations on the shared state [9]. These
terms are used in specific contexts, and refer to different levels of algorithmic
implementations of objects and methods related to SGD. The inconsistency in
notation stems from the fact that parallelization of an iterative algorithm, such
as SGD, has at least two different types, or dimensions, of synchronization.
The first relates to how updates (denoted by ∆) are aggregated (if at all),
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which we refer to as the coarse-grained synchronization dimension. The second
relates to the fine-grained synchronization for operations on the shared state,
such as reading or applying an update. Different works typically explore one
of these dimensions, or the other, and it is important to adopt a consistent
notation which distinguishes the two.

To this end, we introduce the following notation to distinguish between the
two dimensions. In the coarse-grained (∆) dimension, we have:

∆-Progress describes synchronization mechanisms regulating how updates
are aggregated. Examples of such progress properties include computing
a global iteration by averaging the update contributions from a certain
number of threads, once-in-a-while synchronization, etc. An algorithm
which does not employ such aggregation is referred to as asynchronous
(Figure. 1.4), as opposed to synchronous (Figure. 1.3) ones which e.g.
aggregate updates by averaging them in a lock-step manner.

∆-Consistency refers to conformity to a sequential execution. An algo-
rithm that allows staleness is consequently not strictly consistent with a
sequential execution.

There is a strong dependency between ∆-Progress and ∆-Consistency, since
stronger progress requires higher degree of asynchrony and staleness, which
entails higher deviation from a sequential execution.

For the second dimension, which relates to the fine-grained synchronization
for operations on the shared state θ, we adopt the following notation which
aims to conform to standard notation (summarized in Table 1.2) in established
literature on concurrent implementations of shared data objects [10]:

θ-Progress refers to progress guarantees with respect to operations on the
shared state θ, in particular read and update. This includes in particular
lock-freedom.

θ-Consistency refers to the consistency model for operations on the shared
state θ, including in particular consistent read operations, as defined in
Table 1.2.

For the remainder of this thesis, in order to distinguish between different
concepts and conform to standard notation to the greatest extent possible,
we shall use the terms progress and consistency in the latter sense, i.e. with
respect to operations on the shared state θ. The coarse-grained dimension of
synchronization of the updates (∆) is primarily referred to as asynchrony.

Table 1.2: Brief overview of the adopted convention on notation and terminology
regarding properties of concurrent operations.

Term Meaning

Lock-freedom System-wide throughput, allows starvation

Wait-freedom System-wide throughput with starvation-freedom

Consistent Read operations return a consistent snapshot
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Figure 1.3: In SyncSGD the threads’ individual gradients are aggregated by
averaging, after which a global iteration is performed. SyncSGD essentially
corresponds to parallelization on the gradient computation level.

Table 1.3 provides an overview of some of the representative methods
available in the literature which are relevant within the scope of this thesis,
and more detailed descriptions of these are provided in the following (Section
1.2.1 and 1.2.2).

1.2.1 Synchronous parallel SGD

Synchronous SGD (SyncSGD) is a straight-forward lock-step data-parallel
version of SGD where threads or nodes access the shared state θt at an iteration
t, then compute gradients based on individual randomly sampled data-batches,
see Fig. (1.3). The threads synchronize by averaging the resulting gradients
before taking a global step according to (1.2) [11]. In the original version,
SyncSGD is statistically equivalent to sequential SGD with larger mini-batch
size [15], as also shown in Paper A, and can hence be considered a method
for accelerated gradient computation. From this perspective, the SyncSGD
approach does not break the semantics of the sequential SGD algorithm, and the
vast empirical results and theoretical convergence guarantees in the literature
entail predictable performance of SyncSGD . From a scalability perspective,
since each SGD iteration is only as fast as the slowest contributing thread,
the presence of slower threads, i.e. stragglers, becomes a bottleneck. A
comprehensive overview of methods along this approach is provided in [16].

Stale-synchronous parallel (SSP) relaxes the strict synchronous semantics of
SyncSGD , allowing faster threads to asynchronously compute a bounded num-
ber of SGD steps based on a local version of the state before synchronizing [12].
This method is particularly useful in heterogeneous computing systems, where
stragglers are kept in check. SSP has been proven useful for distributed DL
applications, e.g. in [17] where a method for dynamically adjusting the staleness
threshold is proposed, enabling improvements in computational efficiency.

From a progress perspective, note that the original SyncSGD as well as

Table 1.3: Consistency and progress guarantees for different methods for parallel
SGD

Synchronous Hybrid Asynchronous

∆ Asynchronous × - - X X X

θ

Consistent X X X X × X

Lock-free × × × × X X

SyncSGD [11] Stale-synchronous [12] n-softsync [13] AsyncSGD [14] Hogwild! [9] Leashed-SGD [this thesis]
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SSP provide weak progress guarantees, since in the presence of halting threads,
the system as a whole will halt indefinitely in the synchronization step. This is
partially addressed by n-softsync, which is a further relaxed variant of SyncSGD
with partial synchronization, requiring only a fixed number n of threads to
contribute a gradient at the synchronization point. As opposed to SSP, there
is no bound on the maximum staleness. Introduced originally in the context
of centralized distributed SGD with a parameter server [13] [15], the recent
work [7] implements similar semantics in a decentralized setting utilizing a
partial-allreduce primitive which atomically applies the aggregated updates
and redistributes the result.

1.2.2 Asynchronous parallel SGD

Figure 1.4: AsyncSGD parallelizes the SGD iterations, allowing asynchronous
read (R) and update (U) operations on the shared state.

Asynchronous parallel SGD (AsyncSGD) removes the gradient averaging
synchronization step, allowing threads to access and update the shared state
asynchronously. Consequently, while an update is being computed by one
thread, there can be concurrent updates applied by other ones. Hence, we have
that AsyncSGD follows:

θt+1 ← θt − η∇̃f(vt) (1.4)

where vt = θt−τt is a thread’s view of θ and τt is the number of concurrent
updates, which defines the staleness. Updates are consequently generally
computed based on states which are older than the ones on which the up-
dates are applied. The resulting impact on the convergence is referred to as
asynchrony-induced noise, and affects, together with the overall distribution of
the stalenesses τt, the statistical efficiency.

AsyncSGD surely enables increased computational efficiency with higher
parallelism, up to a point where contention due to concurrent shared-memory
access attempts becomes too severe. We denote the corresponding number
of threads by m∗C , and at this point the system stagnates and additional
computing threads provide no additional speedup. In addition, the presence of
staleness in AsyncSGD causes decay in statistical efficiency from the asynchrony-
induced noise, which grows as more threads are introduced to the system.
Over-parallelization may thereby not only be redundant, but in fact harm
the statistical efficiency, with potentially dire consequences on the overall
convergence rate. There is hence a trade-off between computational and
statistical efficiency, which in practice requires careful tuning of the level of
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parallelism (number of threads) m. The appropriate choice of m depends
heavily on the properties of the optimization problem itself, as well as the
choice of other hyper-parameters, e.g. the step size η and the batch size b.

In the following, we give a brief overview of the literature most relevant in
the context of this thesis.

AsyncSGD and momentum. The research direction of asynchronous itera-
tive optimization is not new, and sparked due to the works by Bertsekas and
Tsitsiklis [18] in 1989. More recently, Chaturapruek et al. [14] show that, under
several analytical assumptions such as convexity (linear and logistic regression),
the convergence of AsyncSGD is not significantly affected by asynchrony and
that the noise introduced by staleness is asymptotically negligible compared
to the noise from the stochastic gradients. In [19] Lian et al. show that these
assumptions can be partially relaxed, and it is shown that convergence is
possible for non-convex problems, however with a bounded number of threads,
and assuming bounded staleness. Several works have followed, aiming at under-
standing the impact of asynchrony on the convergence. In [20] Mitliagkas et al.
show that under certain stochastic staleness models, asynchronous parallelism
has an effect on convergence similar to momentum. This work is extended in
parts of Paper A, which introduces models which capture the dynamics of
the system more accurately, leading to alternate conclusions, as well as means
to improve the statistical efficiency by asynchrony-awareness. In [21] Mania et
al. model the algorithmic effect of asynchrony in AsyncSGD by perturbing the
stochastic iterates with bounded noise. Their framework yields convergence
bounds which, as described in the paper, are not tight, and rely on strong
convexity of the target function. In the recent [8] Alistarh et al. introduces the
concept of bounded divergence between the parameter vector and the threads’
view of it, proving convergence bounds for convex and non-convex problems.

AsyncSGD and lock-freedom. Hogwild! [9], introduced by Niu et al.,
implements AsyncSGD with guarantees on lock-freedom (θ-progress) with
respect to the shared state θ. This is achieved in a straight-forward manner by
allowing uncoordinated, component-wise atomic access to the shared state θt,
as opposed to traditional consistency-preserving access implemented with locks.
This significantly reduced the computational synchronization overhead, and
was shown to achieve near-optimal convergence rates, assuming sparse updates.
AsyncSGD with sparse or component-wise updates has since been a popular
target of study due to the performance benefits of lock-freedom [22] [23]. De Sa
et. al [24] introduced a framework for analysis of Hogwild!-style algorithms
for sparse problems. The analysis was extended in [25], showing that due to the
lack of θ-consistency of Hogwild! (i.e. read operation includes partial updates)
the convergence bound increases with a magnitude of

√
d when relaxing the

sparsity assumption. This indicates in particular higher statistical penalty
for high-dimensional problems. This motivates development of algorithms
which, while enjoying the computational benefits of lock-freedom, also ensure
consistency, in particular for high-dimensional problems such as DL. This is the
main focus of Paper B, where we introduce a consistency-preserving lock-free
implementation of AsyncSGD in practice for DL. In [6] a detailed study of
parallel SGD focusing on Hogwild! and a new, GPU-implementation, is
conducted, focusing on convex functions, with dense and sparse data sets and
comparison of different computing architectures.
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AsyncSGD for DL. In [26] the focus is the fundamental limitation of data
parallelism in ML. They observe that the limitations are due to concurrent
SGD parameter accesses, during ML training, usually diminishing or even
negating the parallelization benefits provided by additional parallel compute
resources. To alleviate this, they propose the use of static analysis for identifi-
cation of data that do not cause dependencies, for parallelizing their access.
They do this as part of a system that uses Julia, a script language that per-
forms just-in-time compilation. Their approach is effective and works well for
e.g. Matrix factorization SGD. For DNNs, as they explain, their work is not
directly applicable, since in DNNs permitting “good” dependence violation
is the common parallelization approach. Asynchronous SGD approaches for
DNNs are scarce in the current literature. In the recent work [27], Lopez et al.
propose a semi-asynchronous SGD variant for DNN training, however requiring
a master thread synchronizing the updates through gradient averaging, and
relying on atomic updates of the entire parameter vector, resembling more a
shared-memory implementation of parameter server. In [28] theoretical conver-
gence analysis is presented for SyncSGD with once-in-a-while synchronization.
They mention the analysis can guide in applying SyncSGD for DL, however
the analysis requires strong convexity of the target function. [29] proposes a
consensus-based SGD algorithm for distributed DL. They provide theoretical
convergence guarantees, also in the non-convex case, however the empirical
evaluation is limited to iteration counting as opposed to wall-clock time mea-
surements, with mixed performance positioning relative to the baselines. In [30]
a topology for decentralized parallel SGD is proposed, using pair-wise averaging
synchronization. In this thesis we leverage evaluation of our proposed methods
for deep learning problems in particular, in order to make sure benchmarks are
as useful as possible in practice.

Asynchrony-adaptive SGD. Delayed optimization in asynchronous first-
order optimization algorithms was analyzed initially in [31], where Agarwal et
al. introduce step sizes which diminish over the progression of SGD, depending
on the maximum staleness allowed in the system, but not adaptive to the
actual delays observed. Adaptiveness to delayed updates during execution was
proposed and analyzed in [32] under assumptions of gradient sparsity and read
and write operations having the same relative ordering. A similar approach
was used in [13], however for synchronous SGD with the softsync protocol.
In [13] statistical speedup is observed in some cases for a limited number of
worker nodes, however by using momentum SGD, which is not the case in their
theoretical analysis, and step size decaying schedules on top of the staleness-
adaptive step size. In [33], AdaDelay is proposed, which addresses a particular
constrained convex optimization problem, namely training a logistic classifier
with projected gradient descent. It utilizes a network of worker nodes computing
gradients in parallel which are aggregated at a central parameter server with
a step size that is scaled proportionally to τ−1. The staleness model in [33]
is a uniform stochastic distribution, which implies a strict upper bound on the
delays, making the system model partially asynchronous. Paper A extends
this line of research, exploring further the idea of adapting updates based on
staleness, and studies in particular analytical foundations to motivate how.
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1.3 Problems and challenges

1.3.1 Scalability

Growing batch size. In SyncSGD , stragglers become a bottleneck, making
every iteration only as fast as the slowest thread. This issue can however
partially be reduced through relaxed semantics, such as SSP and the n-softsync
protocol (See 1.2). Moreover, the convergence of SyncSGD under increasing
parallelism is statistically equivalent to sequential SGD with a larger mini-batch
size b [15], also shown in Paper A, which is a hyper-parameter that requires
careful tuning depending on the problem. In particular, the convergence can be
worsened if b is too large [34] [35]. As discussed in section 1.2.1, this indicates
limited scalability, as over-parallization will impose large-batch properties,
which in some cases worsens the convergence [15]. This motivates further
exploration of asynchronous parallelism for scalability.

Staleness. AsyncSGD eliminates many scalability bottlenecks of SyncSGD
due to reduced inter-thread coordination (stronger ∆-progress guarantees),
however this also introduces other challenges related to asynchrony. As discussed
in section 1.2.2, asynchronous access to and update of the shared state leads to
staleness due to the fact that updates may occur by threads concurrently to the
gradient computation. The updates that are applied are hence not necessarily,
in fact rarely in practice, based on the latest shared state, as described by (1.4).
For problems satisfying assumptions on convexity, smoothness and bounded
gradients, staleness has little impact on the convergence of AsyncSGD [14].
However, for a wider class of problems staleness can have significant impact.
In particular for problems not conforming to e.g. convexity assumptions, such
as the recently relevant DL applications. Crucial steps toward understanding
how convergence is affected in AsyncSGD due to staleness were taken by
Mitliagkas et al. [20], explicitly quantifying the impact of concurrency, under a
certain statistical staleness model. The results indicate that the influence of
asynchrony has an effect similar to momentum in SGD, and a reduced step
size. Paper A extends this analysis, proposing models better capturing the
staleness dynamics, and showing that the momentum effect grows and the step
size reduces monotonically as the parallelism is increased. This indicates a
scalability limitation in convergence, which however can be partially alleviated
by using a staleness-adaptive step size (Paper A).

Progress and consistency guarantees for ∆ vs. θ. As previously men-
tioned, read and update operations on the shared state θ become focal in
AsyncSGD , since they constitute the remaining synchronization steps in the
otherwise asynchronous algorithm. There must be primitives in place to handle
concurrent attempts to read and update by several threads, and these become
bottlenecks for scalability at sufficiently high levels of parallelism. Traditionally,
a separate thread or node acting as a parameter server is responsible for pro-
viding the latest parameter state to workers, as well as processing contributing
gradients, sequentializing the updates [36]. To efficiently utilize multi-core
systems, this was extended to shared-memory implementations [9, 19, 22]. The
access to the shared state is then scheduled by the operating system, and
regulated by some synchronization method, such as locking, to ensure consis-
tency in case of concurrent read and update attempts. However, locks can
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be relatively computationally expensive, in particular when the gradient com-
putation step itself incurs little latency. In addition, the total time spent on
waiting for locks grows as more threads are introduced to the system, poten-
tially making it scalability bottleneck. By allowing completely uncoordinated
component-wise atomic read and update operations, i.e. Hogwild! [9], such
contention is eliminated, allowing significant speedup for sparse optimization
problems in particular. However, for other problems, as summarized in Table
1.3, Hogwild! introduces inconsistency when read and update operations
occur concurrently, with unpredictable impact on the convergence. There is
currently a lack of methods providing a middle-ground solutions in the lit-
erature in the realm in between these two endpoints of the synchronization
spectrum, i.e. the consistency-enforcing lock-based AsyncSGD and the lock-free
inconsistency-prone Hogwild!. This spectrum is explored further in Paper B,
and Leashed-SGD is proposed as a middle-ground solution.

Memory consumption. An additional aspect of scalability to consider is
memory consumption; standard AsyncSGD implementations in the literature
require each thread to copy the entire shared state θ prior to its individual
gradient computation. The result of the computation, i.e. the stochastic
gradient, is of the same dimension d as θ, and is stored locally until applied
to the shared state in an SGD iteration. The magnitude of d varies, however
in DL applications it is often in the magnitude of hundreds of thousands,
sometimes millions, which is why the memory consumption of the AsyncSGD
implementation needs to be carefully considered. This aspect is discussed
further in Paper B, and possible improvements are explored.

1.3.2 Convergence under asynchrony

Staleness. The staleness that arises in AsyncSGD due to parallelism sig-
nificantly impacts the statistical efficiency of the convergence; it has been
shown analytically that the number of SGD iterations to ε-convergence in-
creases linearly in the maximum staleness [24, 25]. Hence, only if the gains
in computational efficiency from parallelism are sufficiently great, will there
be an overall improvement in wall-clock time until ε-convergence. In addition,
inconsistent synchronization as in Hogwild! potentially incurs further sta-
tistical penalty; the expected number of iterations required increases linearly
in
√
d [25]. Subsequently, there are challenges in understanding whether it is

worth the computational overhead to ensure consistency for a given problem,
and which synchronization primitives are appropriate to utilize.

Synchronization. As a consequence of Amdahl’s law [37], when there is a
synchronization overhead, the achievable speedup is bounded. In the context
of AsyncSGD , this applies in particular for the computational efficiency, i.e.
how many SGD updates can be applied in a given time unit. This implies that
there is a computational saturation point m∗C for which additional threads will
not provide additional significant computational speedup. For this statement,
as well as the ones to follow in this paragraph, empirical evidence is provided
in Paper B. Moreover, due to the presence of staleness there is a degradation
of statistical efficiency coupled to parallelism in AsyncSGD [21, 26]. Hence,
as more threads are introduced to the system, more iterations are required
until reaching ε-convergence. At some level of parallelism, which we refer to
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as the system saturation point m∗S , additional threads will no longer reduce
the wall-clock time to ε-convergence, and might instead even increase it. It
can be concluded that m∗S ≤ m∗C from a simple argument of contradiction,
assuming that statistical efficiency degrades with higher parallelism. This
assumption is in accordance with results in previous literature [24, 25], and
explored further in Paper A and Paper B. There are substantial challenges
in understanding the appropriate range of the number m of threads in order
to (i) fully utilize the parallel computation ability of the system and (ii) avoid
over-parallelization, potentially harming or completely obstructing convergence.
Ideally an implementation of AsyncSGD feature resilience to tuning, providing
reliable and fast convergence over a broad spectrum of parallelism, towards
which Paper B takes significant steps.

1.3.3 Benchmarking and evaluation

Standardization. There are significant challenges in conducting empirical
evaluations and comparisons which are useful and fair within the domain
of parallel SGD, for several reasons: Firstly, there are several metrics of
interest related to convergence of SGD, the measurements of which must
be effectively aggregated as to show the overall performance. Traditionally,
in ML the statistical efficiency is the metric most used, i.e. the number
of SGD iterations until reaching sufficient performance, i.e. ε-convergence.
However, when improvements in statistical efficiency is achieved by altering
the underlying algorithm, this potentially alters the computational efficiency,
i.e. the number of SGD iterations per time unit. In such cases, it is hence
necessary that evaluations take this into consideration, and ideally provide
measurements of the overall convergence rate, i.e. the wall-clock time until
converging to a solution of sufficient quality. Secondly, the domain of shared-
memory parallel SGD lacks established universal procedures for benchmarking,
leaving the task of setting up an appropriate test environment to the individual
authors. The domain contains a wide spectrum of questions, ranging from
efficient communication protocols [38] in wide distributed DL networks to
exploring the impact of progress guarantees and synchronization in shared data
structures [9, 25]. This renders the task of designing a universal benchmarking
platform for parallel SGD including such universal procedures immensely
difficult, if not impossible. The Deep500 framework [39] takes important steps
in providing such an environment, although it focuses primarily on higher-level
distributed SGD. For instance, the framework provides a Python interface
for development, which does not facilitate exploration of for instance efficient
shared data structures for fine-grained synchronization and mechanisms for
memory management.

Hyper-parameter dependencies. Another key issue in benchmarking par-
allel SGD for machine learning is the inherent dependency between parallelism
and various hyper-parameters crucial for achieving convergence [15,20], some
of the most important being the step size η and the mini-batch size b. As
mentioned above, it is known that higher parallelism in SyncSGD exhibits
similar convergence properties as sequential SGD with a larger batch size. As
more threads or nodes are introduced to the system, the scalability of SyncSGD
can hence appear to be limited due to the statistical penalty from a too large
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value of b. This can be avoided by choosing a sufficiently small initial b for each
thread or node, which will then instead give the appearance of high scalability,
but only until a certain level of parallelism [15]. It is hence of interest in such
evaluations to provide empirical evidence from test scenarios that indicate
the general ability of the proposed method to scale independently of hyper-
parameter choices. Analogously, for AsyncSGD , there is delicate interplay
between the step size η and the staleness distribution, stemming from the fact
that stale updates correspond to gradients based on old views of the state,
and are applied with a coarsity proportional to η [32, 40]. A smaller η implies
less impact on the convergence per update, hence tends to tolerate updates
with higher staleness, and subsequently higher levels of parallelism. This can
give the appearance of good scalability, showing speedup for a larger number
of threads. It is in this case also of interest to provide empirical results that
indicate scalability independently of hyper-parameters, such as η, for instance
by testing for several choices of η.

In summary, there are challenges in establishing standardized evaluation
methodologies, making fair and useful comparisons between methods difficult.
This is mainly due to the wide span of research questions in the application
domain, and a collective strive towards standardized benchmarking platform
for various methodological aspects is imperative. In addition, the dependence
of the performance and scalability of parallel SGD algorithms on various
hyper-parameters, such as step size η and batch size b, complicate empirical
evaluations. Providing evaluations with exhaustive combinations of such hyper-
parameters is not feasible in practice, however it is necessary that some evidence
is provided that indicate that the hyper-parameters are not tuned with respect
to the test results. In this thesis, we aim to address critical questions among
the aforementioned challenges, as summarized in the following section.

1.4 Thesis contributions

1.4.1 Paper A: Convergence of staleness-adaptive SGD

The scalability limitations of traditional synchronous parallel SGD highlighted
in section 1.3.1 motivates further exploration of asynchronous parallelization,
i.e. AsyncSGD which has shown promising improvements in ability to scale for
many applications. The degradation of statistical efficiency due to staleness
is however a limiting factor, forcing the user to carefully tune the level of
parallelism in order to maintain an actual overall speedup in convergence rate,
as also highlighted in section 1.3.1. In order to address this issue, we first
propose methods to statistically model the behaviour of staleness in AsyncSGD .
The models, which are proposed based on reasoning of the dynamics of the
algorithm and its dependency on scheduling, capture the staleness distribution
in practice to a high degree of precision, and more accurately than models
previously proposed in the literature.

Based on the proposed staleness models, we provide analytical results that
quantify the side-effect of asynchrony on the statistical efficiency (Lemma
1, Chapter 2). Moreover, it enables derivation of a staleness-adaptive step
size, referred to as MindTheStep-AsyncSGD , which provably reduces this side-
effect (Theorem 4, Chapter 2), and in expectation can, depending on the
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rate of adaptiveness, alter it into the more desired behaviour of momentum
(Theorem 3, 5, Chapter 2). We prove also that the staleness-adaptive step size
is efficiently computable (Theorem 2, Chapter 2), ensuring minimal additional
synchronization overhead for maximal scalability capability, as described in
section 1.3.2. We provide an empirical evaluation of the proposed staleness
models and the adaptive step size for a relevant use case, namely DL for image
classification. The empirical results show in particular

(i) significantly improved accuracy in modelling the staleness with our pro-
posed models

(ii) reduced penalty from asynchrony-induced noise, leading to up to a ×1.5
speedup in convergence compared to baseline (standard AsyncSGD with
constant step size) under high parallelism.

1.4.2 Paper B: Framework for lock-freedom and consis-
tency

Asynchronous parallelization of SGD, i.e. AsyncSGD , significantly reduces
waiting compared to SyncSGD , as explained in the previous sections. However,
the remaining synchronization that is needed, in particular access to the
shared state, becomes focal and constitute a possible bottleneck. Motivated
by analytical results in previous literature that indicate great computational
benefits of lock-freedom, however a statistical penalty from inconsistency and
staleness, we propose Leashed-SGD (lock-free consistent asynchronous shared-
memory SGD), which is an extensible framework supporting algorithmic lock-
free implementations of AsyncSGD and diverse mechanisms for consistency,
and for regulating contention. It utilizes an efficient on-demand dynamic
memory allocation and recycling mechanism, which reduces the overall memory
footprint. We provide an analysis of the proposed framework in terms of
safety, memory consumption, and model the progression of parallel threads in
the execution of SGD, which we use for estimating contention over time and
confirming the potential of the built-in contention regulation mechanism to
reduce the overall staleness distribution.

Among the analytical results for Leashed-SGD , we have in particular guar-
antees on lock-freedom and atomicity (Lemma 2, Chapter 3), safety and
exhaustiveness and bounds on the memory consumption (Lemma 3, Chapter
3). Moreover, we model the progression of the algorithm over time, finding
in particular fixed points in the system useful for estimating potential con-
tention (Theorem 7, Corollary 5, Chapter 3) and the effect of the built-in
contention-regulating mechanism (Corollary 6, Chapter 3).

We conduct an extensive empirical study of Leashed-SGD for MLP and
CNN training (see section 1.1) for image classification. The empirical study
focuses on scalability, dependence on hyper-parameters, distribution of the
staleness, and benchmarks the proposed framework compared to established
baselines, namely lock-based AsyncSGD and Hogwild!. We draw the following
main conclusions from the empirical study:

(i) Leashed-SGD provides significantly higher tolerance towards the level of
parallelism, with fast and stable convergence for a wide spectrum, taking
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significant steps towards addressing the scalability challenges highlighted
in section 1.3.1. The baselines however require careful tuning of the
number of threads in order to avoid tediously slow convergence and are
more prone to completely failing or crashing executions.

(ii) The lock-free nature of Leashed-SGD entails a self-regulating balancing
effect between latency and throughput, leading to an overall reduced
staleness distribution, which in many instances is crucial for achieving
convergence.

(iii) For MLP training we observe up to 27% reduced median running time
for ε-convergence for Leashed-SGD compared to baselines, with similar
memory footprint. For CNN training, we observe a ×4 speedup for
ε-convergence, with a memory footprint reduction with 17% on average.

For the empirical study, a modular and extensible C++ framework is devel-
oped with the purpose of facilitating development of shared-memory parallel
SGD with varying synchronization mechanisms. Hence, we take steps towards
addressing the challenges (highlighted in section 1.3.3) that the community faces
regarding a general platform for further exploration of aspects of fine-grained
synchronization in this domain.

1.5 Conclusions

There are significant challenges for asynchronous parallel SGD methods for
machine learning to scale, due to (i) staleness and reduced update freshness
and (ii) computational overhead from synchronization for shared-memory
operations.

While higher parallelism in AsyncSGD enables more iterations per second,
its inherent staleness and asynchrony-induced noise leads to an deteriorating
statistical efficiency, requiring a growing number of iterations to achieve suffi-
cient convergence. Understanding and modelling the dynamics of the staleness
enables explicitly quantifying its side-effect on the convergence, towards which
important steps were taken in [20], however under simplifying assumptions.
Under a more practical system model, this analysis was extended in Paper A,
and used to show how adaptiveness to staleness reduces asynchrony-induced
noise, and thereby improves convergence. In addition, it allows derivation
of the proposed staleness-adaptive MindTheStep-AsyncSGD which provably
reduces this side-effect. The analytical results are confirmed in practice in
Paper A, showing increased statistical efficiency in ANN training for image
classification.

Relaxed inter-thread synchronization, with weak consistency requirements
as in Hogwild! [9], enables a straight forward way for achieving lock-freedom
in shared state operations. The significantly reduced computational overhead
allows overall speedup for sparse problems, where inconsistency consequently
has little impact [9] and asymptotic convergence bounds can be established.
However, the inconsistency has implications on the statistical efficiency, as
observed theoretically in [25] and confirmed in Paper A and Paper B. In
Paper B an interface is introduced which provides abstractions of operations
on the shared state θ, which are used in the proposed lock-free Leashed-SGD
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implementation, which guarantees consistency. The lock-free nature of Leashed-
SGD has a self-regulating effect which avoids congestion under high parallelism,
which by reducing the overall staleness distribution enables fast and stable
convergence in contexts where the baselines fail. In this context, the dynamic
memory allocation featured in Leashed-SGD allows for significantly reduced
memory footprint, which is critical in particular for DL applications where the
problems dimension can be in the order of millions.

Natural steps for future work include extending the Leashed-SGD framework
with ideas from MindTheStep-AsyncSGD , enabling staleness-adaptive updates,
as well as adaptiveness to other aspects of asynchrony and consistency consid-
erations. This is particularly interesting considering the ability of Leashed-SGD
to naturally fundamentally alter the overall staleness distribution in the system.
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Abstract

Stochastic Gradient Descent (SGD) is very useful in optimization problems
with high-dimensional non-convex target functions, and hence constitutes an
important component of several Machine Learning and Data Analytics methods.
Recently there have been significant works on understanding the parallelism
inherent to SGD, and its convergence properties. Asynchronous, parallel SGD
(AsyncSGD) has received particular attention, due to observed performance
benefits. On the other hand, asynchrony implies inherent challenges in un-
derstanding the execution of the algorithm and its convergence, stemming
from the fact that the contribution of a thread might be based on an old
(stale) view of the state. In this work we aim to deepen the understanding of
AsyncSGD in order to increase the statistical efficiency in the presence of stale
gradients. We propose new models for capturing the nature of the staleness
distribution in a practical setting. Using the proposed models, we derive a
staleness-adaptive SGD framework, MindTheStep-AsyncSGD , for adapting the
step size in an online-fashion, which provably reduces the negative impact of
asynchrony. Moreover, we provide general convergence time bounds for a wide
class of staleness-adaptive step size strategies for convex target functions. We
also provide a detailed empirical study, showing how our approach implies
faster convergence for deep learning applications.
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2.1 Introduction

The explosion of data volumes available for Machine Learning (ML) has posed
tremendous scalability challenges for machine intelligence systems. Under-
standing the ability to parallelise, scale and guarantee convergence of basic
ML methods under different synchronization and consistency scenarios have
recently attracted a significant interest in the literature. The classic Stochastic
Gradient Descent (SGD) algorithm is a significant target of research studying
its convergence properties under parallelism.

In SGD, the goal is to minimize a function f : Rd → R of a d-dimensional
vector x using a first-order light-weight iterative optimization approach; i.e.,
given a randomly chosen starting point x0, SGD repeatedly changes x in
the negative direction of a stochastic gradient sample, which provably is the
direction in which the target function is expected to decrease the most. The
step size αt defines how coarse the updates are:

xt+1 ← xt − αt∇F (xt) (2.1)

SGD is very useful in nonconvex optimization with high-dimensional target
functions, and hence constitutes a major part in several ML and Data Analytics
methods, such as regression, classification and clustering. In many applications,
the target function is differentiable and the gradient can be efficiently computed,
e.g. Artificial Neural Networks (ANNs) using Back Propagation [41].

To better utilize modern computing architectures, recent efforts propose
parallel SGD methods, complemented with different approaches for analyzing
the convergence. However, asynchrony poses challenges in understanding the
algorithm due to stale views of the state of x, which leads to reduced statis-
tical efficiency in the SGD steps, requiring a larger number of iterations for
achieving similar performance. In this work, we focus on increasing the statis-
tical efficiency of the SGD steps, and propose a staleness-adaptive framework
MindTheStep-AsyncSGD that adapts parameters to significantly reduce the
number of SGD steps required to reach sufficient performance. Our framework
is compatible with recent orthogonal works focusing on computational efficiency,
such as efficient parameter server architectures [12] [42] and efficient gradient
communication [38] [43].
Motivation and summary of state-of-the-art
Many established ML methods, such as ANN training and Regression, constitute
of minimizing a function f(x) that takes the form of a finite sum of error terms
L(d;x) parameterized by x, evaluated at different data points d from a given
set D of measurements:

fD(x) =
1

|D|
∑
d∈D

L(d;x) (2.2)

where the parameter vector x, encodes previously gathered features from D.
In this context, SGD typically selects mini-batches B ⊆ D over which fB
is minimized, and is known as Mini-Batch Gradient Descent (MBGD). This
type of SGD reduces the computational load in each step and hence enables
processing of large datasets more efficiently. Moreover, randomly selecting
mini-batches induces stochastic variation in the algorithm, which makes it
effective in non-convex problems as well.
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A natural approach to distribute work for objective functions of the form
(2.2) is to utilize data parallelism [11], where different workers (threads in a
multicore system or nodes in a distributed one) run SGD over different subsets
of D. This will result in differently learned parameter vectors x, which are
aggregated, commonly in a shared parameter server (thread or node). The
aggregation typically computes the average of the workers contributions; this
approach is referred to as Synchronous Parallel SGD (SyncPSGD) due to its
barrier-based nature. In its simple form, SyncPSGD has scalability issues due
to the waiting time that is inherent in the aggregation when different workers
compute with different speed. As more workers are introduced to the system,
the waiting time will increase unbounded. Requiring only a fixed number of
workers in the aggregation, known as λ-softsync, bounds this waiting time. The
barrier-based nature of the synchronous approaches to parallel SGD enables
a straightforward (yet expensive) linearization making the vast analysis of clas-
sical SGD applicable also to the parallel version. As a result, its convergence
is well-understood also in the parallel case, which however suffers from the
performance-degradation of the barrier mechanisms.

An alternative type of parallelization is Asynchronous Parallel SGD (Async-
SGD), in which workers get and update the shared variable x independently of
each other. There are inherent benefits in performance due to that AsyncSGD
eliminates waiting time, however the lack of coordination implies that gradi-
ents can be computed based on stale (old) views of x, which are statistically
inefficient. However, gains in computational efficiency due to parallelism and
asynchrony can compensate for this, reducing the overall wall-clock computation
time.
Challenges AsyncSGD shows performance benefits due to allowing workers to
continue doing work independently of the progress of other workers. However,
asynchrony comes with inherent challenges in understanding the execution
of the algorithm and its convergence. In this work we address mainly (i)
understanding the impact on the convergence and statistical efficiency of stale
gradients computed based on old views of x and (ii) how to adapt the step
size in SGD to accommodate for the presence of asynchrony and delays in the
system.
Contributions With the above challenges in mind, in this work we aim to
increase the understanding of AsyncSGD and the effect of stale gradients in
order to increase the statistical efficiency of the SGD iterations. To achieve this,
we find models suitable for capturing the nature of the staleness distribution in
a practical setting. Under the proposed models, we derive a staleness-adaptive
framework MindTheStep-AsyncSGD for adapting the step size in the precense
of stale gradients. We prove analytically that our framework reduces the
negative impact of asynchrony. In addition, we provide an empirical study
which shows that our proposed method exhibits faster convergence by reducing
the number of required SGD iterations compared to AsyncSGD with constant
step size. In some more detail:

• We prove analytically scalability limitations of the standard SyncSGD ap-
proach that were observed empirically in other works.

• We propose a new distribution model for capturing the staleness in Async-
SGD , and show analytically how the optimal parameters can be chosen
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efficiently. We evaluate our proposed models by measuring the distance
to the real staleness distribution observed empirically in a deep learning
application, and compare the performance to models proposed in other works.

• Under the proposed distribution models, we derive efficiently computable
staleness-adaptive step size functions which we show analytically can control
the impact of asynchrony. We show how this enables tuning the implicit
momentum to any desired value.

• We provide an empirical evaluation of MindTheStep-AsyncSGD using the
staleness-adaptive step size function derived from our proposed model, where
we observe a significant reduction in the number of SGD iterations required
to reach sufficient performance.

Before the presentation of the results in Sections 2.3-2.6, we outline prelim-
inaries and background. Following the results-sections, we provide an extensive
discussion on related work, conclusions and future work.

2.2 Preliminaries

2.2.1 Stochastic Gradient Descent

We consider the optimization problem

minimize
x

f(x) (2.3)

for a function f : Rd → R. In this context, we focus on methods to address this
minimization problem (2.3) using SGD, defined by (2.1) for some randomly
chosen starting position x0. We assume that the stochastic gradient ∇F is
an unbiased estimator of ∇f , i.e. E[∇F (x) | x] = ∇f(x) for all x. This
assumption holds for several relevant applications, in particular for problems
of the form (2.2), including regression and ANN training. We assume that the
stochastic gradient samples are i.i.d, which is reasonable since the sampling
occurs independently by different threads. For the analysis in section 2.5 we
adopt some additional standard assumptions on smoothness and convexity
which we will introduce in that section.

2.2.2 System Model and Asynchronous SGD

We consider a system with m workers (that can be threads in a multicore system
or nodes in a distributed one), which repeatedly compute gradient contributions
based on independently drawn data mini-batches from some given data set D.
We also consider a shared parameter server (that can be a thread or a node
respectively), which communicates with each of the workers independently,
to give state information and get updates that it applies according to the
algorithm it follows.

The m asynchronous workers aim at performing SGD updates according to
(2.1). Since each worker W must get a state xt prior to computing a gradient,
there can be intermediate updates from other workers before gradient from W
is applied. The number of such updates defines the staleness τt corresponding
to the gradient ∇F (xt).
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Assuming that the read and update operations can be performed atomically
(see details in Section 2.4), under the system model above, the SGD update
(2.1) becomes

xt+1 ← xt − αt∇F (vt) (2.4)

where vt = xt−τt is the thread’s view of x.
We assume that the staleness values τt constitute a stochastic process which

is influenced by the computation speed of individual threads as well as the
scheduler. Unless explicitly specified, we make no particular assumptions on
the scheduler or computational speed among threads, except that all delays
follow the same distribution with the same expected delay, i.e. E[τt] = τ̄ for
all t. We do not require the staleness to be globally upper bounded, only that
updates are eventually applied, making our system model fully asynchronous.

While we assume above that gradient samples are pairwise independent, it
is not reasonable to make the same assumption for the staleness. In fact, a stal-
eness τt is by definition dependent on writing time of concurrent updates, which
in turn are dependent on their respective staleness values. For the analysis in
Section 2.5, we assume that stochastic gradients and staleness are uncorrelated,
i.e. that the stochastic variation of the gradients does not influence the delays
and vice versa. This is also a realistic assumption, since delays are due to
computation time and scheduling and the gradient’s stochastic variation is due
to random draws from a dataset.

2.2.3 Momentum

SGD is typically inefficient in narrow valleys when the target function in some
neighbourhood increases more rapidly in one direction relative to another. Such
neighbourhoods are frequent in target functions that arise in ML applications
due to their inherent highly irregular and non-convex nature. Adding momen-
tum (2.5) to SGD has been seen to significantly improve the convergence speed
for such functions. SGD with momentum, defined in (2.5), takes all previous
gradient samples into account with exponentially decaying magnitude in its
parameter µ. As pointed out in [20], µ is often left out in parameter tuning, and
in some instances even failed to be reported [44]. However, the optimal value of
algorithmic parameters such as µ, just like α, depends the problem, underlying
hardware, as well as the choice of other parameters. Tuning µ has been shown
to significantly improve performance [5], especially under asynchrony [20].

For µ ∈ [0, 1], SGD with momentum is defined by

xt+1 ← xt + µ(xt − xt−1)− αt∇F (xt) (2.5)

2.3 On the scalability of Sync-PSGD

Optimal convergence with SyncSGD requires, as observed empirically in [15],
that the mini-batch size is reduced as the number of worker nodes increase.
We prove analytically this empirical observation. We show that, from an
optimization perspective, the effect of more workers on the convergence is
equivalent to using a larger mini-batch size, which we refer to as the effective



26 CHAPTER 2. PAPER A

mini-batch size. For maintaining a desired effective mini-batch size, which is
the case in many applications [34] [35], workers must hence use smaller batches
prior to the aggregation. Since the mini-batch size clearly is lower bounded,
there is an implied strict upper bound on the number of worker nodes that can
leverage the parallelization, which provides a bound on the scalability of the
synchronous approach.

In mini-batch GD for target functions f(x) of the form (2.2) the stochas-
ticity is due to randomly drawing mini-batches B of size b from a dataset D
without replacement. For any mini-batch size b, we have that F (x) = fB(x)
is an unbiased estimator of f(x) since

E[F (x)] = E[fB(x)] =
b

|D|
∑
i

fBi(x)

=
b

|D|
∑
i

1

b

∑
d∈Bi

L(d;x) =
1

|D|
∑
d∈D

L(d;x) = f(x)

Hence, the SGD updates are in expectation representing the entire dataset
D. Note that we assume

⋃
Bi = D. We have, however, that as the batch

size b increases, the stochasticity of F (x) diminishes. One can realize this
by considering the extreme case b = |D| for which the data sampling is
deterministic. Hence, decreasing b induces larger variance for the distribution
of F (x). This enables SGD to avoid local minima and hence be effective also
in non-convex optimization problems.

The optimal value of b is dependent on the problem and requires tuning.
In particular, it has been seen that the convergence can suffer if b is too
large [34] [35].

In the following theorem we show that by increasing the number of worker
nodes in SyncPSGD, from an optimization perspective, we get a behavior
equivalent to a sequential execution of SGD with a larger mini-batch size,
which we refer to as the effective mini-batch size.

Theorem 1 SyncSGD with m workers, all using batch size b, is equivalent to
a sequential execution of SGD with batch size m · b, reffered to as effective batch
size.

The proof appears in Appendix A. The main idea is to compute the average
of two workers, using batch size b, from which it is clear that the result is
equivalent to an execution of sequential SGD with batch size 2b. The result
follows inductively.

Since the mini-batch size is clearly lower bounded, Theorem 1 implies that
for a sufficiently large number of worker nodes, the effective mini-batch size
scales linearly in the number of workers nodes. In order to maintain reasonable
mini-batch size with sufficient variation in the updates, this implies a strict
upper bound on the number of workers nodes. Moreover, under the assumption
that there is an optimal mini-batch size b∗ for a given problem, which has
been seen to be a common assumption, we have that the maximum number
of workers possible in order to achieve optimal convergence is exactly m = b∗,
each using mini-batch size b = 1.
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2.4 The proposed framework

We outline MindTheStep-AsyncSGD for staleness-adaptive steps and analyze
how to choose a suitable adaptive step size function under different staleness
models. Proofs appear in Appendix A , while brief intuitive arguments are
presented here instead.

2.4.1 The MindTheStep-AsyncSGD Framework

We consider a standard parameter-server type of algorithm [12] [36], with atomic
read and write operations, ensuring that workers acquire consistent views of
the state x. In a distributed system, the consistency can be realized through
the communication protocol. In a multi-core system, where worker nodes are
threads and x can be stored on shared memory, consistency can be realized
with appropriate synchronization and producer-consumer data structures, with
the extra benefit that they can pass pointers to the data (parameter arrays)
instead of moving it. In Algorithm 1 we show the pseudocode for MindTheStep-
AsyncSGD , describing how standard AsyncSGD using a parameter server
(thread or node) is extended with a staleness-adaptive step.

Algorithm 1: MindTheStep-AsyncSGD

1 GLOBAL start point x0, functions F (x) and α(τ)

2 Worker W ;
3 (t, x)← (0, x0)
4 repeat
5 compute g ← ∇F (x)
6 send (t, g) to S
7 receive (t, x) from S

8 Parameter server S;
9 (t′, x)← (0, x0)

10 repeat
11 receive (t, g) from a ready worker W
12 τ ← t′ − t
13 x← x− α(τ)g
14 t′ ← t′ + 1
15 send (t′, x) to W

Note that MindTheStep-AsyncSGD as a framework essentially “modularizes”
the role of α as a parameter that can configure and tune performance, with
criteria and benefits that are analysed in the next subsection.

2.4.2 Tuning the impact of asynchrony

As pointed out in [20], asynchrony and delays introduce memory in the be-
haviour of the algorithms. In particular, in [20, Theorem 2], they quantify this
and show its resemblance to momentum, however for a constant step size. The
corresponding result for a stochastic staleness-adaptive step size is formulated
here:

Lemma 1 Let τ be distributed according to some PDF p such that P [τ = i] =
p(i). Then, for an adaptive step size function α(τ), we have

E[xt+1 − xt] = E[xt − xt−1] +

∞∑
i=0

(
p(i)α(i)−

p(i+ 1)α(i+ 1)
)
∇f(xt−i−1)− p(0)α(0)∇f(xt)

(2.6)
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The proof of Lemma 1 follows the structure the one in [20], now taking into
account the adaptive step size. The main takeaways from Lemma 1 are that,
under asynchrony, (i) the gradient contribution diminishes as the number
of workers increases1; (ii) there is a momentum-like term introduced with
parameter µ = 1 and (iii) the update depends on the series term:

Σ∇p,α =

∞∑
i=0

(
p(i)α(i)− p(i+ 1)α(i+ 1)

)
∇f(xt−i−1) (2.7)

which quantifies the potential impact of stale gradients depending on the
distribution of τ .

The issue of diminishing gradient contributions as the number of workers
increase can in theory be resolved by choosing a larger α. However, this would
require step sizes proportional to p(0)−1, which rapidly grows out of bounds
as the number of workers increase. Since large α can significantly impact
the statistical efficiency of the SGD steps in practice and in fact needs to be
carefully tuned, this poses a scalability limitation.

This is where MindTheStep-AsyncSGD can help tune the impact of asyn-
chrony, as we show in the following.

Momentum from geometric τ . Assuming a geometrically distributed
τ , the series Σ∇p,α is manifested in the convergence behaviour in the form of
asynchrony-induced memory with a momentum effect; see Theorem 3 of [20],
repeated here for self-containment:

Theorem 2 ( [20]) Let all τt be geometrically distributed with parameter p,
i.e. P[τ = k] = p(1− p)k. Then, for a constant α, the expected update (2.4)
becomes

E[xt+1 − xt] = (1− p)E[xt − xt−1]− pα∇f(xt) (2.8)

The statement of Theorem 2 is easily confirmed by substituting p(i) in (2.7)
with constant α with the geometric PDF, which yields Σ∇p,α = −pE[xt − xt−1].

Eq. (2.8) resembles the definition of momentum, with expected implicit
asynchrony-induced momentum of magnitude µ = 1 − p. As the number of
workers grow and p tends to 0, Theorem 2 suggests an implicit momentum that
approaches 1. This would imply a scalability limitation since the parameter µ
requires careful tuning.

Assuming a geometric staleness model, we show in the following theorem
how MindTheStep-AsyncSGD with a particular step size function resolves this
issue.

Theorem 3 Let staleness τ ∈ Geom(p) and

αt = C−τtp−1α (2.9)

where α is a parameter to be chosen suitably. Then

E[xt+1 − xt] = µC,pE[xt − xt−1]− α∇f(xt)

1Here it is assumed that p(0) tends to zero as the number of workers increases. This is
easily realized for our proposed CMP τ model (2.12). For the geometric staleness model we
confirm empirically in section 2.6 that this assumption holds in practice, recall that p(0) = p.
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and the implicit asynchrony-induced momentum is

µC,p = 2− (1− p)/C (2.10)

The result is confirmed by substituting α(τ) in (2.7) with the step size (2.9).
Note that the expected implicit momentum vanishes for C = (1− p)/2. More
generally:

Corollary 1 Any desired momentum µ∗ is, in expectation, implicitly induced
by asynchrony by using the staleness-adaptive step size in (2.9) with

C = (1− p)/(2− µ∗) (2.11)

Applicability of geometric τ . Each gradient staleness is comprised by
two parts, one of which is the staleness τC which counts the number of gradients
applied from other workers concurrent with the gradient computation. The
second part of the staleness, which we denote τS , counts, after the gradient
computation of a worker finishes, the number of gradients from other workers
which are applied first, which is decided by the order with which the workers
are scheduled to apply their updates. The complete staleness of a gradient
is τ = τC + τS . Note that, if we assume a uniform fair stochastic scheduler,
then τS is decided exactly by the number of Bernoulli trials until a specific
gradient is chosen, hence τS ∈ Geom(·). The geometric τ model is therefore
applicable for problems where τC << τS , i.e. when the gradient computation
time typically is smaller than the time it takes to apply a computed gradient
(eq. 2.4).

Now consider also relevant applications of SGD where the gradient com-
putation time τC is far from negligible, e.g the increasingly popular Deep
Learning, which typically includes ANN training with BackProp [41] for gradi-
ent computation. The BackProp algorithm requires in the best case multiple
multiplications of matrices of dimension d, which by far dominates the SGD
update step (2.4) which consists of exactly d floating point multiplications and
additions. For such applications the geometric τ model is hence not sufficient;
we confirm this empirically in Section 2.6. In the following, we propose a class
of τ distributions which is more suitable.

Conway-Maxwell-Poisson (CMP) τ . Considering applications with
time-consuming gradient computation such as ANN training, we aim to find a
suitable staleness model. Since now we consider (i) that τC >> τS and (ii) that
applying a computed gradient is relatively fast, we can consider the completion
of gradient computations as rare arrival events. This opts for a variant of
the Poisson distribution, such as the CMP distribution which in addition to
Poisson has a parameter ν which controls the rate of decay. We have that
τ ∈ CMP(λ, ν) if

P [τ = i] =
1

Z(λ, ν)

λi

(i!)ν
, Z(λ, ν) =

∞∑
j=0

λi

(j!)ν
(2.12)

which reduces to the Poisson distribution in the special case ν = 1, i.e if
τ ∈ CMP(λ, 1) then τ ∈ Poi(λ). For the remainder of this section we aim
to further investigate the behaviour of parallelism in SGD under the CMP
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and Poisson models, and propose an adaptive step size strategy to reduce the
negative impact and improve the statistical efficiency under asynchrony.

In a homogeneous system with m equally powerful worker nodes/threads,
we expect that the most frequent staleness observation (the distribution mode)
should relate to the number of workers. More precisely, since a sequential
execution would always have τ = 0, an appropriate choice of τ distribution
should have the mode m − 1. For the CMP distribution, we have that if
τ ∈ CMP(λ, ν) then the mode of τ is bλ1/νc, and we therefore hypothesize the
following relation:

λ1/ν = m (2.13)

For the special case ν = 1, i.e. a Poisson τ model, (2.13) enables us to
immediately choose an appropriate value for λ given the number of workers
m. In general, (2.13) simplifies the parameter search when fitting a CMP
distribution model to a one-dimensional line search, which is in practice a
significant complexity reduction.

τ -adaptive α. In the following, we argue analytically about how to
choose an adaptive step size function α(τ) for reducing the negative impact
of stale gradients. We will see how a certain τ -adaptive step size can bound
the magnitude of Σ∇p,α (2.7), and even tune the implicit asynchrony-induced
momentum to any desired value.

Theorem 4 Assume τ ∈ CMP (λ, ν), and let the adaptive step size function
be defined as follows:

α(τ) = Cλ−τ (τ !)να (2.14)

for any constant C. Then we have Σ∇p,α = 0.

Theorem 4 shows how a simple and tunable τ -adaptive step size mitigates the
Σ∇p,α quantity. The proof consists of confirming that each contribution of the

sum Σ∇p,α (2.7) vanishes when applying the definition of the CMP distribution
(2.12) and the adaptive step size (2.14).

However, from Lemma 1, we see that even though Σ∇p,α is mitigated by the
adaptive step size (2.14), the SGD steps still have a fixed implicit momentum
term of magnitude µ = 1. We show in Theorem 5 how the implicit momentum
can be tuned to any desired value through a particular choice of α(τ).

Theorem 5 Assume τ ∈ CMP (λ, ν). Then, we have that Σ∇p,α in expectation
takes the form of asynchrony-induced momentum of magnitude exactly K, i.e.

Σ∇p,α = KE[xt − xt−1]

when using the adaptive step size function:

α(τ) = c(τ)λ−τ (τ !)να (2.15)

where

c(τ) = 1− K

αeλ

τ−1∑
j=0

λj

(j!)ν
(2.16)
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Theorem 5 shows how the series term Σ∇p,α can take the form of momentum
of desired magnitude by using a particular τ -adaptive step size. The main idea
of the proof is the observation that the contributions of Σ∇p,α are simplified by
the particular choice of the adaptive factor c(τ) (2.15), and the result follows
from the definition of expectation. The c(τ) contains a sum that is O(τ) in
computation time. This indicates that such an adaptive step size function
might not scale well, since τ is expected to be in the magnitude of m. In the
following Corollary we show how this is resolved by the corresponding α(τ)
under the Poisson τ -model.

Corollary 2 Assuming τ ∈ Pois(λ), the series term Σ∇p,α takes the form of
implicit momentum of magnitude K when using the adaptive step size function:

α(τ) =

(
1− K

α

Γ(τ, λ)

Γ(τ)

)
λ−ττ !α (2.17)

where Γ(·) and Γ(·, ·) are the Gamma and Upper Incomplete Gamma function,
respectively.

Corollary 2 shows how the series Σ∇p,α is in expectation replaced by momen-
tum of any desired magnitude. Assuming Poisson τ , the O(τ) sum in (2.16)
is replaced in (2.17) by the Gamma and Upper Incomplete Gamma function,
for which there exist efficient (O(1)) and accurate numerical approximation
methods [45].

2.5 Convex convergence analysis

In this section we analyze the convergence time of MindTheStep-AsyncSGD-
type algorithms for convex and smooth optimization problems. Proofs appear
in the Appendix A , while brief intuitive arguments are presented instead.

Consider the optimization problem (2.3) where an acceptable solution x
satisfies ε-convergence, defined as

‖x− x∗‖2 ≤ ε (2.18)

We assume that the problem is addressed using MindTheStep-AsyncSGD
under the system model described in Section 2.2. Note that we consider a
staleness-adaptive step size, hence αt = α(τt) is stochastic.

For the analysis in this section, we consider strong convexity and smoothness,
specified in Assumption 1. These analytical requirements are common in
convergence analysis for convex problems [24] [33] [25] [46].

Assumption 1 We assume that the objective function f is, in expectation
with respect to the stochastic gradients, strongly convex with parameter c with L-
Lipschitz continuous gradients and that the second momentum of the stochastic
gradient is upper bounded.

E
[
(x− y)T

(
∇f(x)−∇f(y)

)
| x, y

]
≥ c‖x− y‖2 (2.19)

E [‖∇F (x)−∇F (y)‖] | x, y] ≤ L‖x− y‖ (2.20)

E
[
‖∇F (x)‖2 | x

]
≤M2 (2.21)
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The assumption (2.19) is standard in convex optimization and ensures that
gradient-based methods will converge to a global optimum. Lipschitz continuity
(2.20) is a type of strong continuity which bounds the rate with which the
gradients can vary. Due to that E[∇F (x∗)] = 0, (2.21) can be interpreted as
bounding the variance of the gradient norm around the optimum x∗.

In addition to our system model in Section 2.2, we make the following
assumption on the staleness process:

Assumption 2 The staleness process (τi) is non-anticipative, i.e. mean-
independent of the outcome of future states of the algorithm (e.g. future delays
and gradients). In particular, we have

E[τi | τt] = E[τi] for all i < t

Assumption 2 is justifiable considering that the staleness (i.e. scheduler’s
decisions) at time i should not be considered to be influenced by staleness
values τt of gradients yet to be computed.

Under Assumptions 1 and 2 above, we give a general bound on the number
of iterations sufficient for expected ε-convergence in the following theorem:

Theorem 6 Consider the unconstrained convex optimization problem of (2.3).
Under Assumptions 1 and 2, for any ε > 0, there is a sufficiently large number
T of asynchronous SGD updates of the form (2.4) such that

T ≤
(

2
(
c− LMε−1/2E [τα]

)
E [α]−

ε−1M2E
[
α2
])−1

ln (‖x0 − x∗‖2ε−1)

(2.22)

for which we have E[‖xT − x∗‖2] < ε

The main idea in the proof of Theorem 6 is to bound ||xt+1−x∗||/||xt−x∗||,
which quantifies the improvement of each SGD step. The statement then follows
from a recursive argument.

Corollary 3 Under the same conditions as in Theorem 6, there exists a choice
of a step size α such that the convergence time T is in the magnitude of O (E [τ ])
(remember E [τ ] is denoted by τ̄). In particular, letting α be

α = θ
cεM−1

M + 2L
√
ετ̄

(2.23)

for a tunable factor θ ∈ (0, 2), there exists a T such that

T ≤ M + 2L
√
ετ̄

θ(2− θ)c2M−1ε
ln(ε−1‖x0 − x∗‖2) (2.24)

The results in Theorem 6 and Corollary 3 are related to the results presented
in [24] and [25]. The main differences are that in our analysis we tighten the
bound with a factor (2− θ)−1, expand the allowed step size interval, as well
as relax the maximum staleness assumption and reduce the magnitude of the
bound from linear in the maximum staleness O(τ̂) to the expected O(τ̄).

In the following corollary, we give a general bound assuming any non-
increasing step size function α(τ).
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Figure 2.1: CNN architecture; Four convolutional layers with 3 × 3 kernels,
with intermediate MaxPool layers. First two convolutions have 32 filters, the
last two 64. The architecture has two fully connected layers, one with 256
neurons, and the output layer with 10 neurons.

Corollary 4 Under the same conditions as Theorem 6, let αt = α(τt) be a
non-increasing function of τt. Then we have the following bound on the expected
number of iterations until convergence:

T ≤
(
2cE [α]− ε−1M

(
M + 2L

√
ετ̄
)
E
[
α2
] )−1

· ln(ε−1‖x0 − x∗‖2)
(2.25)

Corollary 4 describes a general convergence bound for any step size function
α(τ) which decays in τ . We see that such step size functions also achieve the
asymptotic O(τ̄−1) bound, similar to the one for a constant α (2.24).

2.6 Experimental study

In this section we aim to evaluate the results derived in section 2.4 in a practical
setting. This is achieved by (i) measuring the accuracy and scalability of the
proposed τ -models (ii) evaluating the convergence properties of MindTheStep-
AsyncSGD with an adaptive step size function derived under the CMP/Poisson
τ models.

Setup. We apply MindTheStep-AsyncSGD for training a 4-layer Convo-
lutional Neural Network (CNN) architecture (see Fig. 2.1) on the common
image classification benchmark dataset CIFAR10 [47]. The performance of
the CNN is measured as the cross entropy between the true and the predicted
class distribution. The algorithm is evaluated on a setup with a 36-thread
Intel Xeon CPU and 64GB memory. The implementation is in Python 2.7 and
uses the standard Python multiprocessor library as well as TensorFlow [44] for
gradient computation.

CMP/Poisson τ . We evaluate the τ models (Poisson, CMP) proposed in
section 2.4 by comparing with the τ distribution observed in practice for different
number of workers. We compare our proposed τ models with distributions
proposed in other works, namely the geometric τ model [20] and the bounded
uniform τ model [33].

The distribution parameters in Table 2.1 are found through an exhaus-
tive search where we aim to minimize the Bhattacharyya distance to the τ
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Figure 2.2: Bhattacharyya distance of different τ models compared to the
observed distribution. The graph shows that the CMP τ model is the most
accurate in all tests, with the Poisson τ model as a close second. The uniform
and geometric τ models are persistently less accurate, and show poor scalability
in comparison.

τ model 2 4 8 16 20 24 28 32
p (Geom) 0.34 0.21 0.12 0.06 0.05 0.04 0.04 0.03
τ̂ (Unif) 2 5 11 22 31 37 48 48
λ (Pois) 2.0 4.0 8.0 16.0 19.7 23.8 26.5 32
ν (CMP) 6.28 5.26 4.18 3.48 0.93 0.95 0.39 0.87

Table 2.1: Optimal distribution parameters for different number of workers

distribution observed in practice. Note that: (i) For the Poisson τ model, as
hypothesized in Section 2.4, the distribution parameter λ indeed corresponds
well to the number of worker nodes. From Fig. 2.2 we see that the proposed
CMP and Poisson τ models by far outperforms the geometrical and uniform
τ models, in particular for larger number of workers. (ii) As mentioned in
Footnote 1, we confirm in Table 2.1 that P[τ = 0], i.e. p, decays as m increases.
(iii) We see in Fig. 2.2 that the CMP τ model outperforms the others in terms of
accuracy and scalability. The CMP distribution parameter ν is found through a
1-d search, and using the assumption (2.13) the other parameter λ is calculated.
The result in Fig. 2.2 therefore validates the assumption (2.13).

Convergence with τ -adaptive α. We evaluate MindTheStep-AsyncSGD
compared with standard AsyncSGD by measuring the number of epochs re-
quired until a certain error threshold is reached, epochs being the number
of passes through the dataset. The number of SGD iterations in one epoch
is d|D|/be where |D| is the size of the dataset and b the batch size. In our
experiments we have d|D|/be = 469. We consider performance in terms of
statistical efficiency, i.e. the statistical benefit of each SGD step. In practice,
the approach can be applied to any orthogonal work focusing on computational
efficiency, such as efficient parameter server architectures [12] [42] and efficient
gradient communication and quantization [38] [43].

We compare standard AsyncSGD with constant step size αc = 0.01, b = 128
to MindTheStep-AsyncSGD with an adaptive step size function according to
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Figure 2.3: AsyncSGD vs. MindTheStep-AsyncSGD comparison. The plot
shows the n.o. epochs required until sufficient performance (cross-entropy loss
≤ 0.05). The statistics are computed based on 5 runs, and the bar height
corresponds to the standard deviation.

(2.17) with α = αc, K = 1, and λ = m. In addition, we bound the step
size α(τ) ≤ 5 · αc to mitigate issues with numerical instability in the SGD
algorithms, and (very infrequent) gradients with τ > 150 are not applied.

In principle, given a sufficiently small αc, speedup can always be achieved
by using an adaptive step size strategy α(τ) which overall increases the average
step size. To ensure a fair comparison, the adaptive step size function α(τ) is
normalized so that

Eτ [α(τ)] = αc (2.26)

where the expectation is taken over the real τ distribution observed in the
system. Enforcing (2.26) ensures that any potential speedup is achieved due
to how the step size function α(τ) adaptively changes the impact of gradients
depending on their staleness, and not because of the overall magnitude of the
step size.

Fig. 2.3 shows how MindTheStep-AsyncSGD exhibits persistently faster
convergence for different number of workers. For many workers (m = 28, 32)
MindTheStep-AsyncSGD requires significantly fewer epochs compared to stan-
dard AsyncSGD to achieve sufficient performance. Observe that for m = 32
the average speedup is ×1.5 while the worst-case is ×1.7.

2.7 Related work

Orthogonal to this work, there are numerous works dedicated to optimizing the
effectiveness of SGD by utilizing data sparsity, topology of the search space, and
other properties of the problems. One example is introducing momentum to the
updates, originally proposed in [48], however not in the context of SGD. Apart
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from this, there are several variation of SGD in the sequential case introducing
adaptivness to aspects of the problem topology, such as Adagrad, Adadelta,
RMSprop, Adam, AdaMax, and Nadam (cf. [49] and references therein).

In [20] Mitliagkas et al. show that under certain stochastic delay models,
asynchrony has an effect on convergence similar to momentum, referred to as
asynchrony-induced or implicit momentum, where more workers imply a larger
magnitude of the effect. In [50] these similarities are investigated further, and
it is shown that AsyncSGD and momentum shows different convergence rates
in general and that AsyncSGD is in fact faster in expectation. Since it has
been seen [5] that the magnitude of momentum can have significant impact
on convergence, the result by Mitliagkas et al. would imply a harsh scalability
limitation of AsyncPSGD. In this paper, we show that under the same τ model
as in [20], MindTheStep-AsyncSGD can in theory mitigate this issue, and even
allow the expected asynchrony-induced momentum to be tuned implicitly by
the rate of adaptation. In addition, in this work we propose a different class
of τ distribution models, and show how they better capture the real τ values
observed in a deep learning application. From our proposed models we derive
an adaptive step size function α(τ) which we show significantly reduces the
number of SGD steps required for convergence.

Below we give a brief overview of works on synchronous distributed SGD.
Under smoothness and convexity assumptions, in [11] and [51], synchronous
distributed SGD with data-parallelism was observed and proven to accelerate
convergence. This was implemented on a larger scale by Dekel et al. [52] where
the convergence rates were improved under stronger analytical assumptions.
In [12] the synchronization is relaxed using a Stale Synchronous Parameter
Server with a tunable staleness threshold in order to reduce the waiting-time,
which is shown to outperform synchronous SGD. In [15] Gupta et al. give a
rigorous empirical investigation of practical trade-offs the number of workers,
mini-batch size and staleness; the results provide useful insights in scalability
limitations in synchronous methods with averaging. We address this issue in
this paper from a theoretical standpoint and explain the results observed in
practice. This is discussed in detail in Section 2.3.

The study of numerical methods under parallelism is not new, and sparked
due to the works by Bertsekas and Tsitsiklis [18] in 1989. Recent works [14] [19]
show under various analytical assumptions that the convergence of Async-
PSGD is not significantly affected by asynchrony and that the noise introduced
by delays is asymptotically negligible compared to the noise from the stochastic
gradients. This is confirmed in [14] for convex problems (linear and logistic
regression) for a small number of cores. In [19] Lian et al. relax the theoret-
ical assumptions and establish convergence rates for non-convex minimization
problems, assuming bounded gradient delays and number of workers. Lock-free
Async-PSGD in shared-memory, i.e. Hogwild!, was proposed by Niu et al. [9]
and was shown to achieve near-optimal convergence rates assuming sparse
gradients. Properties of Async-PSGD with sparse updates have since been
rigourously studied in recent literature due to the performance benefits of
lock-freedom [22] [24]. The gradient sparsity assumption was relaxed in the
recent work [25] which magnified the convergence time bound in the order of
magnitude ∼

√
d, d being the problem dimensionality.

Delayed optimization in completely asynchronous first-order optimization
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algorithms was analyzed initially in [31], where Agarwal et al. introduce step
sizes which diminish over the progression of SGD, depending on the maximum
staleness allowed in the system, but not adaptive to the actual delays observed.
In comparison, in this work we relax the maximum staleness restriction and
derive a strategy for adapting the step size depending on the actual staleness
values observed in the system in an online fashion. Adaptiveness to delayed
updates during execution was proposed and analyzed in [32] under assumptions
of gradient sparsity and read and write operations having the same relative
ordering. A similar approach was used in [40], however for synchronous SGD
with the softsync protocol. In [13] speedup in statistical efficiency is observed in
some cases for a limited number of worker nodes, however by using momentum
SGD, which is not the case in their theoretical analysis.

The work closest to ours is AdaDelay [33] which addresses a particular
constrained convex optimization problem, namely training a logistic classifier
with projected gradient descent. It utilizes a network of worker nodes computing
gradients in parallel which are aggregated at a central parameter server with
a step size that is scaled proportionally to τ−1. The staleness model in [33]
is a uniform stochastic distribution, which implies a strict upper bound on
the delays, making the system partially asynchronous. In comparison, in this
work we analyze the convergence of MindTheStep-AsyncSGD for non-convex
optimization, relax the bounded gradient staleness assumption, as well as
evaluate more delay models both theoretically and empirically. Moreover,
we validate our findings experimentally by training a Deep Neural Network
(DNN) classifier using real-world dataset, which constitutes a highly non-
convex and high-dimensional optimization problem. In addition, we provide
convergence analysis in the convex case for MindTheStep-AsyncSGD , where
we show explicitly a probabilistic time bound for ε-convergence, for any step
size function decaying in the staleness τ .

2.8 Conclusions and Future Work

In this paper, we first analytically confirm scalability limitations of the standard
SyncSGD , which were observed empirically in other works; we thus motivate
the need to further investigate asynchronous approaches. We propose a new
class of τ -distribution models, show analytically how the parameters can be
efficiently chosen in a practical setting, and validate the models empirically, as
well as compare to models proposed in other works.

We derive and analyse adaptive step size strategies which reduce the im-
pact of asynchrony and stale gradients, using our framework MindTheStep-
AsyncSGD . We show that the proposed strategies enable turning asynchrony
into implicit asynchrony-induced momentum of desired magnitude. We provide
convergence bounds for a wide class of τ -adaptive step size strategies for convex
target functions. We validate our findings empirically for a deep learning
application and show that MindTheStep-AsyncSGD with our proposed step
size strategy converges significantly faster compared to standard AsyncSGD .

The concept of staleness-adaptive AsyncSGD has been under-explored,
despite that, as shown here, it significantly improves scalability and helps
maintain statistical efficiency. Continuing to investigate asynchrony-aware SGD,
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is therefore of interest. Future research directions also include further studying
the nature of the staleness, i.e. effect of schedulers and synchronization methods,
for understanding the impact of asynchrony and for choosing appropriate
adaptive strategies.
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Appendix A

Appendix - Paper A

Proof of Theorem 1 Consider the case with two worker nodes. Assuming that
the batches are disjoint, which is likely for large datasets, each SGD step is of
the form

xt+1 =

(
xt − α∇fB1(xt)

)
+
(
xt − α∇fB2(xt)

)
2

= xt −
α

2
(∇fB1

(xt) +∇fB2
(xt))

For mini-batch GD, i.e. a target function of the form (2.2), and with mini-batch
size b, the above formula becomes:

xt+1 = w − α

2

(
∇1

b

∑
d∈B1

L(d, xt) +∇1

b

∑
d∈B2

L(d, xt)

)
From linearity of the gradient, we have

xt+1 = w − α∇ 1

2b

∑
d∈B1∪B2

L(d, xt)

= w − α∇fB1∪B2
(xt)

that corresponds to the SGD step with batch size 2b. This inductively implies
the theorem statement. �

Proof of Theorem 3 We have from (2.4)

xt+1 − xt = −αt∇F (vt)

= xt − xt−1 − (xt − xt−1)− αt∇F (vt)

= xt − xt−1 + αt∇F (vt−1)− αt∇F (vt)

Since the gradient and staleness processes are independent, we take first
expectation conditioned on the staleness

E[xt+1 − xt | τt, τt−1] = E[xt − xt−1 | τt, τt−1]

+ αt∇f(vt−1)− αt∇f(vt)

39
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Now, take expectation w.r.t. the stochastic staleness τt, τt−1

E[xt+1 − xt] = E[xt − xt−1]

+ E[αt∇f(vt−1)]−E[αt∇f(vt)]

= E[xt − xt−1] +

∞∑
i=0

P [τ = i]
α∇f(xt−i−1)

Cip

−
∞∑
i=0

P [τ = i]
α∇f(xt−i)

Cip

= E[xt − xt−1] + p

∞∑
i=0

(1− p)iα∇f(xt−i−1)

Cip

− p
∞∑
i=0

(1− p)iα∇f(xt−i)

Cip

= E[xt − xt−1]− α∇f(xt) +

∞∑
i=0

(1− p)iα∇f(xt−i−1)

Ci

−
∞∑
i=1

(1− p)iα∇f(xt−i)

Ci

= E[xt − xt−1]− α∇f(xt)

+

∞∑
i=0

(
(1− p)i

Ci
− (1− p)i+1

Ci+1

)
α∇f(xt−i−1)

= E[xt − xt−1]− α∇f(xt)

+

∞∑
i=0

(1− p)i

Ci

(
1− 1− p

C

)
α∇f(xt−i−1)

= E[xt − xt−1]− α∇f(xt)

+

(
1− 1− p

C

) ∞∑
i=0

p(1− p)i

Cipi+1
α∇f(xt−i−1)

= E[xt − xt−1]− α∇f(xt)

+

(
1− 1− p

C

)
E[αt∇f(vt−1)]

= E[xt − xt−1]− α∇f(xt) +

(
1− 1− p

C

)
E[xt − xt−1]

=

(
2− 1− p

C

)
E[xt − xt−1]− α∇f(xt)

�

Proof of Theorem 4 We have

Σ∇p,α =

∞∑
i=0

(
p(i)α(i)− p(i+ 1)α(i+ 1)

)
∇f(xt−i−1)
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Substituting p(i) for the CMP PDF (2.12) gives

Σ∇p,α =
1

Z(λ, ν)

∞∑
i=0

λi

(i!)ν

(
α(i)− λα(i+ 1)

(i+ 1)ν

)
∇f(xt−i−1) (A.1)

Now, applying the adaptive step size (2.14) gives

Σ∇p,α =
C

Z(λ, ν)

∞∑
i=0

λi

(i!)ν
α

(
λ−i(i!)ν−

λ

(i+ 1)ν
λ−(i+1)((i+ 1)!)ν

)
∇f(xt−i−1)

=
C

Z(λ, ν)

∞∑
i=0

λi

(i!)ν
α

(
(i!)ν

λi
− (i!)ν

λi

)
∇f(xt−i−1) = 0

�

Proof of Theorem 5 Let Ψ(i) = α(i)− λα(i+1)
(i+1)ν , and hence

Σ∇p,α =
1

Z(λ, ν)

∞∑
i=0

λi

(i!)ν
Ψ(i)∇f(xt−i−1)

Applying the adaptive step size (2.15) gives

Ψ(i) =
i!ν

λi
eλα (c(i)− c(i+ 1))

Now,

Ψ(i) = K ⇔ c(i)− c(i+ 1) =
K

αeλ
λi

i!ν

⇔ c(i) = c(i− 1)− K

αeλ
λi−1

(i− 1)!ν

= c(0)− K

αeλ

i∑
j=1

λi−j

(i− j)!ν
= c(0)− K

αeλ

i∑
j=1

λj

(j)!ν

Since α(0) = α, we have c(0) = 1. Now we have

Σ∇p,α = K

∞∑
i=0

1

Z(λ, ν)

λi

(i!)ν
∇f(xt−i−1)

= KE [∇f(vt−1)] = KE [xt − xt−1]

�

Proof of Corollary 2 Under the Poisson τ model, which is CMP with ν = 1,
(2.16) rewrites to

c(i) = 1− K

αeλ

τ−1∑
j=0

λj

(j!)
= 1− K

α

Γ(i, λ)

(i− 1)!

= 1− K

α

Γ(i, λ)

Γ(i)
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�

Proof of Theorem 6

‖xt+1 − x∗‖2 = ‖xt − αt∇F (vt)− x∗‖2

= ‖xt − x∗‖2 + α2
t ‖∇F (vt)‖2 − 2αt(xt − x∗)T∇F (vt)

= ‖xt − x∗‖2 + α2
t ‖∇F (vt)‖2 − 2αt(xt − x∗)T∇F (xt)

+ 2αt(xt − x∗)T
(
∇F (xt)−∇F (vt)

)
Under expectation, conditioned on the natural filtration FXt =

(
(τi)

t
i=0,

(
∇F (vi)

)t
i=0

)
of the past of the process, we have

E
[
‖xt+1 − x∗‖2 | τt,FXt−1

]
= ‖xt − x∗‖2

− 2αtE
[
(xt − x∗)T

(
∇F (xt)−∇F (x∗)

)∣∣FXt−1

]
+ 2αtE

[
(xt − x∗)T

(
∇F (xt)−∇F (vt)

)∣∣FXt−1

]
Applying the assumptions (2.19)-(2.21) gives

E
[
‖xt+1 − x∗‖2

∣∣τt,FXt−1

]
≤ ‖xt − x∗‖2 +M2α2

t

− 2αtc‖xt − x∗‖2 + 2αtL‖xt − x∗‖‖xt − vt‖
= (1− 2cαt)‖xt − x∗‖2 +M2α2

t

+ 2αtL‖xt − x∗‖‖xt − vt‖
= (1− 2cαt)‖xt − x∗‖2 +M2α2

t

+ 2αtL‖xt − x∗‖
τt∑
i=1

xt−i+1 − xt−i‖

≤ (1− 2cαt)‖xt − x∗‖2 +M2α2
t

+ 2αtL

τt∑
i=1

‖xt − x∗‖αt−i‖∇F (vt−i)‖

The gradient process does not influence the expected delays, so we first con-

sider the expectation conditioned on the gradient process (∇)t0 :=
(
∇F (vi)

)t
i=0

E
[
‖xt+1 − x∗‖2

∣∣τt, (∇)t0
]

≤ (1− 2cαt)E
[
‖xt − x∗‖2

∣∣τt, (∇)t0
]

+M2α2
t

+ 2Lαt

τt∑
i=1

E
[
αt−i‖xt − x∗‖

∣∣τt, (∇)t0
]
‖∇F (vt−i)‖

From the non-anticipativity of the delay process we have

E
[
αt−i‖xt − x∗‖ | τt, (∇)t0

]
= E

[
E [αt−i‖xt − x∗‖ | xt] | τt, (∇)t0

]
= E

[
‖xt − x∗‖E [αt−i | xt] | τt, (∇)t0

]
= E [αt−i] E

[
‖xt − x∗‖ | (∇)t0

]
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Since the delays and gradients are identically distributed we have E[αi] =
E[αj ] for all i, j. Taking expectation conditioned on the last delay τt and
applying Hölder’s inequality gives

E
[
‖xt+1 − x∗‖2 | τt

]
≤ (1− 2cαt)E

[
‖xt − x∗‖2

]
+M2α2

t

+ 2LτtαtE [αt]
√

E [‖xt − x∗‖2]
√

E [‖∇F (vt)‖2]

and the full expectation satisfies

E
[
‖xt+1 − x∗‖2

]
≤ (1− 2cE [αt])E

[
‖xt − x∗‖2

]
+M2E

[
α2
t

]
+ 2LME [τtαt] E [αt]

√
E [‖xt − x∗‖2]

As long as the process has not yet converged, i.e. E
[
‖xt − x∗‖2

]
> ε, we

have

E
[
‖xt+1 − x∗‖2

]
≤ E

[
‖xt − x∗‖2

]
(1− 2cE [αt]

+ ε−1M2E
[
α2
t

]
+ 2LMε1/2E [τtαt] E [αt])

=: E
[
‖xt − x∗‖2](1− δ)

⇒ E
[
‖xT − x∗‖2

]
≤ E

[
‖x0 − x∗‖2

]
(1− δ)T

⇒ T ≤ − ln(1− δ)−1 ln
E
[
‖x0 − x∗‖2

]
E
[
‖xT − x∗‖2

]
< δ−1 ln

(
E
[
‖x0 − x∗‖2

]
ε−1
)

for any T such that E
[
‖xT − x∗‖2] > ε. Equivalently, expected convergence is

implied by T exceeding the bound above, which concludes the proof. �

Proof of Corollary 3 Let ρ = cεM−1

M+2L
√
ετ̄

. From Theorem 6 we have the improve-

ment factor

δ = 2
(
c− LMε1/2E [τα]

)
E [α]− ε−1M2E

[
α2
]

= 2cα− ε−1M
(
M + 2L

√
ετ̄
)
α2

= cρ−1α(2ρ− α)

so δ > 0 when 0 < α < 2ρ, and the improvement is maximized for θ = 1. Now,
using the choice (2.23) of step size, we have

δ = cρ−1θρ(2ρ− θρ)

= θ(2− θ)cρ

Substituting for ρ, the convergence bound of Theorem 6 rewrites to (2.24) �

Proof of Corollary 4 Since αt is a non-increasing function in τt we have

E [τtα(τt)] = E [τtα(τt)]−E [τ̄α(τt)] + E [τt] E [α(τt)]

= E [(τt − τ̄)(α(τt)− α(τ̄))] + E [τ ] E [α]

≤ E [τ ] E [α]

Using this property, (2.22) rewrites to (2.25) �
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Abstract

Stochastic Gradient Descent (SGD) is an essential element in Machine Learning
(ML) algorithms. Asynchronous parallel shared-memory SGD (AsyncSGD),
including synchronization-free algorithms, e.g. Hogwild!, have received in-
terest in certain contexts, due to reduced overhead compared to synchronous
parallelization. Despite that they induce staleness and inconsistency, they have
shown speedup for problems satisfying smooth, strongly convex targets, and
gradient sparsity. Recent works take important steps towards understanding
the potential of parallel SGD for problems not conforming to these strong
assumptions, in particular for Deep Learning (DL). There is however a gap in
current literature in understanding when AsyncSGD algorithms are useful in
practice, and in particular how mechanisms for synchronization and consistency
play a role.

We contribute with answering questions in this gap by studying a spec-
trum of parallel algorithmic implementations of AsyncSGD , aiming to under-
stand how shared-data synchronization influences the convergence properties
in fundamental DL applications. We focus on the impact of consistency-
preserving non-blocking synchronization in SGD convergence, and in sensitivity
to hyper-parameter tuning. We propose Leashed-SGD , an extensible algo-
rithmic framework of consistency-preserving implementations of AsyncSGD ,
employing lock-free synchronization, effectively balancing throughput and la-
tency. Leashed-SGD features a natural contention-regulating mechanism, as
well as dynamic memory management, allocating space only when needed. We
argue analytically about the dynamics of the algorithms, memory consumption,
the threads’ progress over time, and the expected contention. The analysis
further shows the contention-regulating mechanism that Leashed-SGD enables.

We provide a comprehensive empirical evaluation, validating the analytical
claims, benchmarking the proposed Leashed-SGD framework, and comparing
to baselines for two prominent DL applications: Multi-Layer Perceptrons
(MLP) and Convolutional Neural Networks (CNN). We observe the crucial
impact of contention, staleness and consistency and show how, thanks to the
aforementioned properties, Leashed-SGD provides significant improvements
in stability as well as wall-clock time to convergence (from 20-80% up to 4×
improvements) compared to the standard lock-based AsyncSGD algorithm and
Hogwild!, while reducing the overall memory footprint.
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3.1 Introduction

The interest in Machine Learning (ML) methods for data analytics has peaked
in the last decade due to their tremendous impact across various applications.
Parallel algorithms for ML, utilizing modern computing infrastructure, have
gained particular interest, showing high scalability potential, necessary in ac-
commodating for significant growing data demands as well as data availability.
Parallelization schemes for Stochastic Gradient Descent (SGD) have been of
particular interest, since SGD serves as a backbone in many widely used ML
algorithms and has proven effective on convex problems (e.g. linear, logistic
regression, SVM), as well as non-convex (e.g. matrix completion, deep learning).

The first-order iterative minimizer SGD follows the simple rule (3.1) of

moving in the direction of the negative stochastic gradient ∇̃f with a step size
η, of a differentiable target function f : Rd → R, quantifying the error of a ML
model:

θt+1 = θt − η∇̃f(θt) (3.1)

where θt contains the learned parameters of the model at iteration t, typically
encoding features of a given data-set. Iterations, calculating over batches of one
or multiple data samples each, typically repeat until ε-convergence, i.e. reaching
a sufficiently low error threshold ε. As in SGD each update relies on the outcome
of the previous one, data parallelization is challenging. Still, several approaches
have been proposed, distinguished into synchronous and asynchronous ones:
Synchronous SGD (SyncSGD) is a lock-step parallelization scheme where
the gradient computation is delegated to threads/nodes, then aggregated by
averaging before taking a global step according to eq. (3.1) [11]. In its original
form, SyncSGD is statistically equivalent to sequential SGD with larger data-
batch [15] [53]. This method is well-understood and widely used, e.g. in federated
learning [54]. However, its scalability suffers as every step is limited by the
slowest contributing thread. In addition, higher parallelism implies an impact
on the convergence, inherent to large-batch training [34]. Semi-synchronous
variants have shown improvements [7, 55], relaxing lock-step semantics and
requiring only a subset of threads to synchronize, hence reducing waiting. In
the recent [7] it was seen that requiring only a few, even just one, thread at
synchronization, implies significant speedup due to less waiting and higher
throughput, motivating further study of asynchronous parallel SGD.
Asynchronous SGD (AsyncSGD) on the other hand employs parallelism on SGD
algorithm level, allowing threads to execute (3.1) on a shared vector θ with less
coordination, and has shown superior speedup compared to SyncSGD in several
applications [9, 56]. It was first introduced for distributed optimization with a
parameter server sequentializing the updates. In this context it was proven that
the algorithm converges for convex problems [31] despite the presence of noise
due to stale updates. A relaxed variant, Hogwild! [9], allowing completely
uncoordinated component-wise reads and updates in θ, showed substantial
speedup, however only on smooth convex problems with sparse gradients. This,
besides staleness, also introduces inconsistency incurred by non-coordinated
concurrent reads and writes on θ, penalizing the statistical efficiency. Only if
parallelization gains counterbalance the latter penalty, will there be an actual
improvement in the wall-clock time for convergence.
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Challenges

There are substantial analytical results and empirical evidence that Async-
SGD [9,14,31,57] provides speedup for problems satisfying varying assumptions
on convexity, strong convexity, smoothness and sparsity assumptions, e.g. Lo-
gistic regression, Matrix completion, Graph cuts and SVM training. Recently,
a target of study is parallelism in SGD for wider class of more unstructured
problems, not conforming to strict analytical assumptions, such as Artificial
Neural Network (ANN) training, or Deep Learning (DL) in general. Recent
works [16, 58] explore aspects of data-parallelism in the context of distributed
and parallel SGD for DL. However, for empirical results using abstraction
libraries, such as TensorFlow and Keras, in Python implementations, with its
inherent limitations in parallelism and performance, makes time measurements
unreliable. As a consequence, the existing literature address the topic mostly
from an analytical standpoint, and empirical convergence rates are almost
exclusively measured in statistical efficiency, i.e. n.o. iterations, as opposed
to actual wall-clock time. With new methods that potentially affect the com-
putational efficiency, i.e. time per iteration, such results can be delusive, with
unclear usefulness in practice. Moreover, such implementations have limited
capability of fine-grained exploration of aspects of synchronization mechanisms
and consistency, the critical impact of which on the convergence properties
has been observed analytically; (i) It was shown in [24] that the number of
iterations until convergence increases linearly in the magnitude of the maximum
staleness and (ii) in [25] that inconsistency due to Hogwild!-style updates
further increases the same bound with a factor of

√
d, d being the size of θ.

There is a need for further exploration of how synchronization, lock-freedom
and consistency impacts the actual wall-clock time to convergence, to facilitate
work in development of standardized platforms for accelerated DL.

For DL applications, convergence of sufficient quality is challenging to
achieve, requiring exhaustive neural architecture searches and careful tuning of
many hyper-parameters. Unsuccessful such tuning typically results in models
never converging to sufficient quality, or even executions which crash due to
numerical instability in the SGD steps [59]. The step size η is among the most
important hyper-parameters, while data-batch size, momentum, dropout, also
play a significant role. Tuning is vital for the convergence and end performance,
and is a time-consuming process. On one hand, parallelism in SGD is crucial
for speedup, but it introduces new hyper-parameters to tune, such as number of
threads, staleness bound and aspects of synchronization protocol. In addition,
AsyncSGD introduces noise due to staleness, further impacting convergence
and potentially causing unsuccessful executions. There is hence a need for
methods enabling speedup by parallelism tolerant to existing parameters, and
avoiding the overhead of tuning additional ones related to parallelism.

Focal point and contributions

In summary, there are challenges in understanding the dynamics of asynchrony
and consistency on the SGD convergence [26] in practice as outlined in Fig.
3.1, in particular for applications as DL. Understanding better the tradeoff
between computational and statistical efficiency is a core issue [6]. It is known
that consistency helps in AsyncSGD [25]. However, whether it is worth the
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overhead to ensure consistency with locks or other synchronization means, to
improve the overall convergence, is a research question attracting significant
attention, as we describe here and in the related work section.

We study asynchronous SGD in a practical setting for DL. In a system-level
environment, we explore aspects of synchronization, lock-freedom and consis-
tency, and their impact on the overall convergence. In more detail, we make
the following contributions:

• We propose Leashed-SGD (lock-free consistent asynchronous shared-memory
SGD), an extensible algorithmic framework for lock-free implementations
of AsyncSGD , allowing diverse mechanisms for consistency and for regulat-
ing contention, with efficient on-demand dynamic memory allocation and
recycling.

• We analyze the proposed framework Leashed-SGD in terms of safety, memory
consumption and we introduce a model for estimating thread progression
and balance in the Leashed-SGD execution, estimating contention over time
and the impact of the contention-regulation mechanism.

• We perform a comprehensive empirical study of the impact of synchronization,
lock-freedom, and consistency on the convergence in asynchronous shared-
memory parallel SGD. We extensively evaluate Leashed-SGD , the standard
lock-based AsyncSGD and its synchronization-free counterpart Hogwild!
on two DL applications, namely Multi-Layer Perceptrons (MLP) and Con-
volutional Neural Networks (CNN) for image classification on the MNIST
dataset. We study the dynamics of contention, staleness and consistency
under varying parallelism levels, confirming also the analytical observations,
focusing on the wall-clock time to convergence.

• We introduce a C++ framework supporting implementation of shared-
memory parallel SGD with different mechanisms for synchronization and
consistency. A key component is the ParameterVector data structure, pro-
viding an abstraction of common operations on high-dimensional model
parameters in ANN training, providing a modularization facilitating further
exploration of aspects of parallelism.

The paper is structured as follows: In section 3.2 we outline preliminaries
and key notions for describing Leashed-SGD , as well as its contention and
staleness dynamics in sections 3.3 and 3.4. The comprehensive empirical study
is presented in 3.5, followed by further discussion of related work in section 3.6,
after which we conclude in section 3.7.

3.2 Preliminaries

Here we give a brief background, along with a more refined description, for the
questions and the metrics in focus.

3.2.1 SGD and DL

Artificial Neural Networks (ANNs) are computational structures of simple units
known as neurons, inspired by the biological brain. Neurons are arranged into
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Figure 3.1: Convergence rate is the product of computational and statistical
efficiency, sensitive to hyper-parameters tuning. We show the significant
impact of lock-free synchronization on these factors and on reducing the
dependency on tuning, enabling improved convergence.

layers, each performing a non-linear transformation of the output from the
previous layer, parameterized by a set of learnable weights. The input layer is
initialized as the input to be analyzed, e.g. an image to be classified. The output
layer gives the final output, e.g. the class of an image. Different types of layer
arrangements give rise to a diverse class of ANN architectures, with different
applications. Among the most prominently used are Multi-Layer Perceptrons
(MLPs) and Convolutional Neural Networks (CNNs) [60], where MLPs consist
of layers densely connected through a weight matrix, and CNNs of sparsely con-
nected performing filter convolutions, used in conjunction with MaxPool down-
sampling layers. More information on MPLs and CNNs appears in Appendix B.

The aforementioned weights and filters consist of parameters, learned
through the training process. We refer to the collection of all such parameters
belonging to an ANN, flattened into a 1D array, as the parameter vector, denoted
as θt, at iteration t of SGD. This abstraction is used in subsequent sections when
arguing regarding consistency and progress. Non-linear activation functions
are applied after each layer, where common choices are the ReLU function
σ(x) = max(0, x) for all layers except the last, where instead the softmax acti-

vation function σi(x) = exi/
∑|x|
j=1 e

xj , for each output neuron i, is used in order
to acquire a predicted probability distribution. With this, an error measure
f(θ) can be defined, the minimization of which constitutes the training process.

The metrics of interest are (i) statistical efficiency, i.e. the number of
SGD iterations required until reaching an error threshold f(θ∗) < ε, i.e. ε-
convergence (ii) computational efficiency measuring the wall-clock time per
iteration and, most importantly (iii) the overall convergence rate, i.e. the
wall-clock time until ε-convergence, of most relevance in practice.

3.2.2 System Model

We consider a system with m concurrent asynchronous threads, with access
to shared memory through atomic operations to read, write and read-modify-
write, e.g. CompareAndSwap (CAS), FetchAndAdd (FAA) [10] on single-word
locations. Each thread A computes SGD updates (3.1) according to a pre-
defined algorithm, in the context outlined in the previous paragraphs. Since A
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must read the current state θt prior to computing the corresponding stochastic
gradient ∇f(θt), before A’s updates take place, there can be intermediate,
referred to as concurrent updates, from other threads, The number of such up-
dates, between A’s read of the θt vector and A’s update to apply its calculated
gradient ∇f(θt), defines the staleness τ of the latter update. When there is
lack of synchronization, as in Hogwild!, a total order of the updates is not
imposed, and the definition of the staleness of an update is not straightforward;
we adopt a definition similar to [25]. We refer to Section (3.3) for details on
how the staleness is calculated for the different algorithms, and thereby the
total order of the updates. Under the system model above, we have that the
asynchronous SGD updates according to (3.1) instead will follow

θt+1 ← θt − η∇f(vt) (3.2)

where vt = θt−τt is the thread’s view of θ.

3.2.3 Synchronization methods and consistency

For consistency on concurrently accessed data, different methods for thread
synchronization exist, the most traditional one being locks for mutually exclusive
access. Non-blocking synchronization avoids the use of locks. [10]. A common
choice is lock-free synchronization, ensuring that in the presence of concurrent
object accesses, some are able to complete in a bounded number of steps,
thus guaranteeing system progress. Such synchronization mechanisms usually
implement a retry loop involving CAS or equivalent, in which a thread might
need to repeat, in case another thread has succeeded.

Besides progress guarantees, to argue about concurrent data accesses, we
consider data consistency. The most common is atomicity (aka linearizability,
with non-blocking synchronization), and it implies that concurrent object op-
erations act as if they are executed in sequence, affecting state and returning
values according to the object’s sequential specification [10].

3.2.4 Problem overview

In the following, we focus on exploring the effectiveness of asynchronous parallel
algorithms for SGD, for training Deep Neural Networks (DNNs). We study
the computational and statistical efficiency for different applications, and the
overall time to ε-convergence. We explore in particular the effect of different
synchronization mechanisms on consistency, contention and staleness, and the
resulting impact on the convergence and memory consumption.

3.3 The Leashed-SGD framework

In the following we define Leashed-SGD along with the proposed ParameterVec-
tor data structure’s common interface, containing the values of the parameter
vector, as well as metadata used for memory recycling. We also express Async-
SGD and Hogwild! using this interface; both are well established versions of
parallel SGD implementations [9, 31]. Modified versions, optimized for specific
applications, have been proposed, e.g. in [61], however not in the context of
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DL. In the following, we use them as general baselines, representative of the
classes of consistent asynchronous SGD algorithms and the synchronization-free,
inconsistent Hogwild!-style ones.

3.3.1 Introducing ParameterVector

Considering (3.1), each worker in parallel SGD reads the shared data object θ,
computes a gradient and updates the former. We propose a set of core compo-
nents for this type of data structure, ParameterVector , providing possibilities
to get parameter values and submit updates. An instantiation of Parameter-
Vector can be local or shared among threads. For concurrent accesses to it, its
implementation can provide certain consistency and progress guarantees (cf.
section 3.2). Hence studying shared memory data-parallel SGD implementa-
tions with synchronization in focus, is to study implications of the properties of
the algorithmic implementations of the parameter vector seen as shared object.

Algorithm 2: ParameterVector core components

1 Float[d] theta // vector of dimension d
2 Int t← 0 // sequence number of the most recent update of theta
3 Int n rdrs← 0
4 Bool stale flag ← false, deleted← false

5 Function rand init():
6 theta← N (0, 0.01)

7 Function safe delete():
8 if stale flag ∧ n rdrs = 0 ∧ CAS(deleted, false, true) then
9 delete theta

10 Function start reading():
11 param.n rdrs.fetch add(1)

12 Function stop reading():
13 n rdrs.fetch add(−1)
14 self.safe delete()

15 Function update(δ, η):
16 t.fetch add(1)
17 for i = 0, . . . , d− 1 do
18 theta[i]← theta[i]− η · δ[i]

Algorithm 2 describes the core components for the algorithmic implementa-
tion of ParameterVector . A main one is the array theta of dimension d (typically
a very large number in DL applications, e.g. in the well-known AlexNet [62]
CNN architecture there are 62,378,344 parameters). A read of the parameters
can be accomplished by getting a pointer to theta, while function update()

performs the addition (3.2) on theta. Notice that algorithm 2 does not provide
specific synchronization for protecting reads of updates, which is instead left
to the algorithmic implementation’s “front-end” to specify, depending on the
demands of consistency. It provides however additional methods and metadata
for keeping track of accesses and for recycling memory, as explained further in
this section. While there is some resemblance with a multi-word register [63,64],
two significant issues here are (i) the nature of the update, which is a bulk Read-
Modify-Write operation and (ii) the very large value of d, posing challenges
both from the memory and from the timing (retry loop size) perspectives.
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Algorithm 3: AsyncSGD

1 GLOBAL ParamVector PARAM
2 GLOBAL Float η // step size
3 GLOBAL Lock mtx // for accessing shared parameters
4 Initialization;
5 PARAM ← new ParamV ector()
6 PARAM.rand init() // randomly initialize parameters
7 Each thread;
8 local grad← new ParamV ector() // local gradient memory
9 local param← new ParamV ector()

10 repeat
11 mtx.lock()
12 local param.theta = copy(PARAM.theta)
13 mtx.unlock()
14 local grad.theta← comp grad(local param.theta)
15 mtx.lock()
16 PARAM .update(local grad.theta, η)
17 mtx.unlock()

18 until convergence;

3.3.2 Baselines outline

Algorithm 3 shows the lock-based AsyncSGD , one of the baselines, achieving
consistency in the reads and the updates of the parameters through locking.
This introduces an overhead, influencing the thread interleaving, with unclear
implications on staleness and statistical efficiency. This is further explored in
Section 3.5. There is one shared variable of type ParameterVector , PARAM ,
and two local ones to each thread, one with a copy of the latest state of
the shared parameter vector (local param) and one for storing the gradient
(local grad). Hogwild!’s algorithmic implementation is similar to Algorithm 3,
except that the locks are removed, since no synchronization happens among the
threads accessing the parameter vector. Certain overhead is thus eliminated,
however at the cost of inconsistency in the parameter updates. The algorithm
outline is available in Appendix B. For problems with sparse gradients the
lack of synchronization will not significantly impact the convergence, since the
update() operation will only influence a few of the d components in theta. For
DL applications though, its influence is not well understood.

3.3.3 Leashed-SGD: Lock-free consistent AsyncSGD

The key points and arguments supporting Leashed-SGD , which is shown in
pseudocode in Algorithm 4, using ParameterVector core components from
Algorithm 2, are as follows:
P1. Local calculation and sharing of new parameter values: Each thread
manages its update locally new param, and attempts to publish the result
in a single atomic CAS operation (line 31), switching a global pointer P to
point to its new instance (Fig. 3.2). As a successful CAS replaces the previous
“global” vector, copies of parameter vectors that become global are totally
ordered on their sequence number, t. A vector that has been replaced using
the aforementioned CAS, is labeled as stale through a boolean flag (stale flag
in ParameterVector) that is one of the data structure’s fields.
P2. Memory recycling: Since a new ParameterVector is needed for each such
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Algorithm 4: Leashed-SGD

1 GLOBAL ParamVector ** P // address to latest pointer (cf. Fig. 3.2)
2 GLOBAL Float η // step size
3 GLOBAL Int Tp // persistence threshold

4 Function latest pointer():
5 repeat
6 latest param← ∗P // fetch latest pointer
7 latest param.start reading() // prevent it from being recycled
8 if ¬latest param.stale flag then
9 return latest param

10 else
11 latest param.stop reading() // avoid returning stale vector, let it be

recycled and repeat to get a fresher one

12 until break ;

13 Initialization;
14 init pv ← new ParamV ector() // pointer to initial parameters
15 init pv.rand init() // randomly initialize parameters
16 P ← &init pc // address of initial pointer

17 Thread i;
18 local grad← new ParamV ector() // local gradient memory
19 repeat
20 latest param← latest pointer()

21 local grad.theta← comp grad(latest param.theta)
22 latest param.stop reading()

23 new param← new ParamV ector() // new parameters
24 Int num tries← 0 // prepare for the LAU-SPC loop
25 repeat
26 latest param← latest pointer()

27 new param.theta = copy(latest param.theta)
28 new param.t = latest param.t
29 latest param.stop reading()

30 new param.update(local grad.theta, η)

31 succ = CAS
(
P, latest param, new param

)
32 if succ then
33 latest param.stale flag ← true
34 latest param.safe delete()

35 else
36 num tries← num tries+ 1
37 if num tries > Tp then
38 delete new param
39 break

40 until succ;

41 until convergence;



54 CHAPTER 3. PAPER B

update, a simple yet efficient recycling mechanism of stale and unusable ones
ensures that the memory used is bounded. Besides the label for marking a
ParameterVector instance as stale (ensuring no new readers, making it a can-
didate for recycling), the field n rdrs, indicates whether the ParameterVector
should persist due to active readers.
P3. Lock-free atomic reads of the shared vector: To access the global Pa-
rameterVector threads acquire a pointer to the most recent by accessing P .
Through that pointer, the thread can access and use the theta and metadata
of that ParameterVector , in particular for calculating the gradient without
copying. While a ParameterVector V is in use, V.n rdrs is non-zero (it is
atomically increment-able and decrement-able in the start reading() and
stop reading() functions). Note that the update of the global pointer P ,
and the marking of the previous global vector as stale, are two operations.
Hence, for a thread to acquire the latest ParameterVector in a concurrency-safe
manner, this must be done in a retry loop, in latest pointer(). Due to this
fact and how the global pointers are updated, a read preceded by another read
will not return parameter values older than its preceding read returned.
P4. Conditions for safe recycling: For reclaiming the memory of a Parameter-
Vector V , the V.stale flag must be true and V.n rdrs must be zero. The first
condition ensures that the ParameterVector instance is not the most recently
published, and its address is no longer available to any thread (Algorithm 4,
line 31), ensuring no additional future accesses. The second condition ensures
that no thread is currently accessing V , with the exception when a thread
just acquired a pointer that just became stale, which subsequently will repeat
after the staleness check that follows in line 8. Note that stale instances of
ParameterVector will be reclaimed by the last thread to access it, when calling
stop reading().
P5. Lock-free atomic updates of the shared vector: The publish is attempted
through a CAS invoked in a retry loop, and if it fails, another thread must
have succeeded. Update attempts are repeated until CAS succeeds, or until
a persistence bound Tp decided by the user has been exceeded. The loop thus
implies lock-free progress guarantees. For Tp = 0 it implies similar semantics as
the LoadLinked/StoreConditional primitive, hence its name LoadAndUpdate-
StorePersistenceConditional (LAU-SPC ). Note that bounded Tp essentially
implies bounded retries. As formulated in (3.2), due to asynchrony, the gra-
dients can be applied on a different ParameterVector instance than the one
that was used to compute the gradient. Hence, after finishing the gradient
computation, threads acquire the pointer to the most recent published Param-
eterVector instance a second time (Figure 3.2), on which the update will be
applied. The result is then a candidate for publishing, the success of which is
decided as described above, implying update atomicity.

Based on the previous paragraphs, (in particular on points P1, P3 and P5,
respectively points P2 and P4) we have:

Lemma 2 Reads and updates of the θ vector by Leashed-SGD, latest pointer()

function and LAU-SPC loop, satisfy lock-freedom and atomicity.

Lemma 3 The memory recycling in Leashed-SGD (i) is safe, i.e. will not
reclaim memory which can be used by any thread for reading or updating and
(ii) bounds the memory to max 3m ParameterVector instances simultaneously.
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Figure 3.2: Illustration of data access in AsyncSGD and Hogwild! (left)
and Leashed-SGD (right). For AsyncSGD the read and write operations are
protected through mutual exclusion. For Leashed-SGD , each thread accesses
θt only through a read operation, then computes the update at a new memory
location, becoming a candidate for θt+τ

A note on memory consumption

Note that AsyncSGD and Hogwild! need 2m+1 instances of ParameterVector
constantly. In Leashed-SGD threads compute gradients based on a published
ParameterVector instance, which will never be altered by any thread. After
the gradient computation is finished, additional memory is allocated for new
parameters. This mechanism enables an overall reduced memory footprint, in
particular when gradient computation is time consuming. This is confirmed
empirically in section 3.5.

3.4 Contention and staleness

In the following we analyze the dynamics and balance of the proposed Leashed-
SGD , the effect of the persistence bound, and its impact on the contention and
staleness.

3.4.1 Dynamics of Leashed-SGD

We analyze the dynamics of the threads, their progression under concurrent
execution of Leashed-SGD . The model is similar to a G/G/1 queue, but with
arrival and departure rates λt, µt varying over time, depending on the current
state of the system.

Table 3.1: Summary of experiments

Experiment overview
Step Architecture Description N.o. threads m Precision ε Step size η Outcome
S1 MLP∗ Hyper-parameter selection 1-68 50% 0.01− 0.09 Fig. 3.3, 3.4
S2 MLP∗ High-precision convergence 16 50%, 10%, 5%, 2.5% 0.05 Fig. 3.5-3.7
S3 CNN∗ Convergence rate 16 75%, 50%, 25%, 10% 0.05 Fig. 3.8
S4 MLP∗ High parallelism 24, 34, 68 75%, 50%, 25%, 10% 0.05 Fig. 3.5-3.7
S5 MLP∗, CNN∗ Memory consumption 16, 24, 34 any 0.05 presented in text∗
∗Details appear in Appendix B
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For a single thread executing the gradient computation, the rate of arrival to
the LAU-SPC (retry) loop is λ(1) = 1/Tc, where Tc is the gradient computation
time. For an m-thread fully concurrent execution, the arrival rate scales propor-
tionally to the number of threads currently outside the LAU-SPC loop, hence
λ(m) = (m− n)λ(1) where n denotes the number of threads in the retry loop.
Similarly, for the departure rate from the LAU-SPC loop we have µ(1) = 1/Tu
where Tu is the execution time the ParameterVector update(). In summary:

λ
(m)
t =

m− nt
Tc

, µt =
nt
Tu

(3.3)

We then describe the dynamics of how threads enter and leave the LAU-SPC
retry loop of Leashed-SGD as follows:

nt+1 = nt +
m− nt
Tc

− nt
Tu

(3.4)

where nt is the number of threads executing the retry loop at time t. Note that
the system (3.4) has a fixed point n∗ = (Tc/Tu+1)−1m at which the number of
threads in the retry loop will stay constant. Note that n∗ rewrites to n∗/m =
Tu/(Tu+Tc), i.e. that thread balance at the fixed point depends solely on the rel-
ative size of the update time Tu, highlighting the importance of the ratio Tu/Tc.
In section 3.5 we show closer measurements of Tc, Tu for different applications.

In the following, we study how nt progresses for Leashed-SGD , stability
and convergence about the fixed point.

Theorem 7 Assume we have an m-thread system where threads arrive to and
depart from the Leashed-SGD LAU-SPC loop with the rates in (3.3). Then, we
have that the number nt of threads in the retry-loop at time t is given by

nt =
1− (1− T−1

c − T−1
u )t

1 + Tc/Tu
m+ (1− T−1

c − T−1
u )tno (3.5)

where Tc, Tu denotes the time for gradient computation and update, and n0 is
the initial number of threads in LAU-SPC.

The proof appears in Appendix B.

Corollary 5 The fixed point n∗ is stable, and the system will converge towards
limt→∞ nt = n∗ for any initial n0.

The result is confirmed by taking t→∞ in (3.5).
The above results enable understanding of the dynamics of how threads

progress throughout the execution, in particular that they converge to a balance
between gradient computation and the LAU-SPC , which will be used in the
following.

3.4.2 Persistence analysis

The persistence bound implies a threshold on the maximum number of failed
CAS attempts in Leashed-SGD , before threads compute a new gradient. This
implies an increase, denoted by γ > 0, in departure rate from the LAU-SPC
retry loop, proportional to the number of threads currently in the retry loop
as follows:

µt =
nt
Tu

(1 + γ) (3.6)
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Corollary 6 Under the same conditions as in Theorem 7, but using the de-
parture rate (3.6), the fixed point moves to

n∗γ =
( Tc
Tu

(1 + γ) + 1
)−1

m (3.7)

Note that (i) n∗γ < n∗ and (ii) n∗γ vanishes as γ grows, showing the contention-
regulating capability through a persistence bound, i.e. an increased γ.

As pointed out in [53], the complete staleness τt of an update ∇f(vt)
according to (3.2) is comprised of two parts: τt = τ ct + τst where τ ct counts the
number of published updates concurrent to the computation of ∇f(vt), and τst
counts the ones that compete with the update in focus and are scheduled before
it; in particular here, the latter counts the competing updates in the LAU-
SPC loop that succeed before that update. Considering now the estimation
E[τst ] ≈ n∗γ , it follows that the persistence mechanism described above for
reducing contention effectively regulates the additional staleness component
due to scheduling of ready gradients.

E.g., consider Tp = 0: for each published update there was no failed CAS,
hence no other update was published after the corresponding gradient was
used. Then τst = 0, which is the maximum staleness reduction possible here.
In section 3.5 we study this empirically, showing it holds in practice and is
effective for regulating contention and tune the staleness.

3.5 Evaluation

We present the results from our extended empirical study, benchmarking
the methods in Section 3.3, studying influence of consistency and associated
synchronization, on the metrics described in Section 3.2: convergence rate,
statistical and computational efficiency, and memory consumption. The algo-
rithms included are sequential SGD (SEQ), Lock-based AsyncSGD (ASYNC),
Hogwild! (HOG), and Leashed-SGD with persistence ∞, 1, 0 (LSH ps∞,
LSH ps1, LSH ps0).

3.5.1 Implementation

The algorithms and the framework are implemented with C++, with OpenMP
[65] for shared-memory parallel computations, and Eigen [66] for numerical.
The framework extends the MiniDNN [67] C++ library for DL. For imple-
menting the ParameterVector and Leashed-SGD , a substantial refactoring
was accomplished, extracting all learnable parameters into a collective data
structure, the ParameterVector . This abstraction forms an interface between
SGD algorithm constructions and DL operations, enabling implementation of
consistency of different degrees through various synchronization methods. The
proposed framework Leashed-SGD application-specific and apply as paralleliza-
tion of SGD for any optimization problem, in particular of high dimension. For
the empirical evaluation an extensible framework is implemented in conjunction
with ANN operations, facilitating further research exploring algorithms for
parallel SGD for DL with various synchronization mechanisms.
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Figure 3.4: Computational efficiency, i.e. wall-clock computation time per SGD
iteration. Computation time remains constant for the baselines under higher
parallelism, although the many executions fail completely to converge, and
would be wasted time in practice. The self-regulative property of Leashed-SGD
on the other hand increases the computation time moderately under high
parallelism, balancing latency and throughput under contention, and can hence
achieve stable convergence in far more instances.

3.5.2 Experiment setup

We evaluate the methods of Section 3.3 for two DL applications, namely MLP
and CNN training on the MNIST benchmarking dataset [68]. The proposed
method, however, facilitates generic implementations of SGD, and is applicable
over a broad spectrum of optimization problems. We choose to focus the
evaluation around benchmarking on DL problems in order to evaluate on
relevant applications, as well as to challenge the proposed method, keeping in
mind the non-convex and highly irregular nature of the target functions such
problems constitute. Moreover, it is in this domain where better understanding
of how to support the processing infrastructure is the most needed. MNIST
contains 60,000 images of hand-written digits ∈ {0, . . . 9}, each belonging to
one of ten classes, sampled in mini-batches of 512. The details of the MLP
and CNN architectures are available in Appendix B. The size of the parameter
vector θ are d = 134, 794 and d = 27, 354 for MLP and CNN, respectively.
The experiments are conducted on a 2.10 GHz Intel(R) Xeon(R) E5-2695
system with 36 cores on two sockets (18 cores per socket, each supporting two
hyper-threads), 64GB memory, running Ubuntu 16.04.

Box plots in the figures contain statistics (1st and 3rd quantiles, minimum
and maximum) from 11 independent executions of each setting; outliers are indi-
cated with the symbol +. Where executions fail to reach the required precision ε,
the measurement is not included as basis for the box. Such execution instances,
and those that fail due to numerical instability from staleness, are indicated
as ’Diverge’ and ’Crash’, respectively. This information is highlighted because
failing DL training executions due to noise from staleness or hyper-parameter
choices is a common problem in practice [59]. It is vital that training succeeds,
and that the execution time thereby is not wasted. The threshold ε is specified
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Figure 3.5: ε-convergence rate for MLP with m = 16 threads to high precision
(top), m = 34 threads (middle) and maximum parallelism m = 68 threads
(bottom). The baselines (ASYNC, HOG) show an overall slower convergence
and higher number of executions that fail before reaching the high precision
(e.g. ε = 10%), especially under maximum parallelism m = 68, where no
baseline execution managed to reach ε = 50% of the error at initialization.
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Figure 3.6: MLP training progress over time with m = 16 threads (top),
with m = 34 threads (middle) and maximum parallelism m = 68 threads
(bottom). The proposed framework (LSH psX, persistence bound X) converges
significantly faster relative to baselines (ASYNC, HOG). Under maximum
parallelism, the baselines completely fail to converge and oscillate around the
initialization point.
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Figure 3.7: Staleness distribution over time for MLP with m = 16 threads (top),
m = 34 threads (middle) and maximum parallelism m = 68 threads (bottom).
The effect from the contention-regulating persistence bound (ps∈ {0, 1,∞}) is
clear, and effectively reduces the overall staleness distribution. Under maximum
parallelism m = 68 the ability of the proposed framework (LSH) to self-regulate
the balance between latency and throughput becomes clear, with overall lower
staleness as well as naturally appearing clusters of threads with higher update
rate. The baselines show overall higher staleness distributions, as well as high
irregularity for ASYNC due to contention about the locks.
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Figure 3.8: ε-convergence rates to different precision for CNN training with
m = 16 threads; LSH ps0 shows 400s median 10%-convergence time, compared
to ∼ 500s for the baselines, with two executions showing remarkable 10%-
convergence time of below 100s, i.e. a 4× speedup relative to the best baseline
convergence rate of 375s (top) training progress over time (middle) and staleness
distribution (bottom). The proposed framework (LSH) consistently shows
improved convergence rate, as well as solution of lower error.
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in terms of percentage of the target function at initialization f(θ0) ≈ 2.3.

3.5.3 Experiment outcomes

The steps of our experiment methodology, summarized in Table 3.1, are as
follows:

S1. Convergence and hyper-parameter selection: We benchmark the conver-
gence of the algorithms considered under a wide spectrum of parallelism, and
for varying step size η. In this step the executions are halted at ε = 50% in
order to acquire an overview of the general scalability and relative performance
among the evaluated methods. The results are presented in Fig. 3.3-3.4,
showing a complete picture of the convergence rate and computational effi-
ciency under varying parallelism, the metric of interest being the wall-clock
time required until reaching ε-convergence. The baselines are at best with
m = 16 threads and η = 0.005, which we choose as a yardstick for further
tests to ensure a fair comparison, and to stress-test Leashed-SGD . The results
of the step size test appears in Appendix B, showing higher capability of the
proposed Leashed-SGD to converge for larger η.

S2. High-precision convergence for MLP: Using the setting selected accord-
ing to the above, we benchmark the algorithms and their convergence rate
for reaching high precision (ε = 2.5%). We pay attention to the staleness τ
distribution, to gain understanding based also on the results of section 3.4.
Using m = 16, η = 0.005, we benchmark Leashed-SGD and baselines to high-
precision 2.5%-convergence, measuring the wall-clock time (Fig. 3.5, top).
Leashed-SGD shows competitive performance, with faster convergence and
smaller fluctuations. In particular, LSH ps∞ reaches ε = 2.5% error within 65s
median (compared to baselines’ 89s and 80s). As hypothesised in section 3.4,
Fig. 3.7 confirms that the staleness distribution is significantly reduced by the
persistence bound.
S3. Convergence rates for CNN: We study the convergence for the CNN applica-
tion, benchmarking time to convergence for increasing precision ε, studying the
staleness and convergence over time. The proposed Leashed-SGD shows fewer
diverging executions, with significant improvements in time to high precision
convergence with up to 4× speedup relative to the baselines AsyncSGD (Fig.
3.8). Measurements of memory consumption and computation times (Tc, Tu)
appear in Appendix B. Due to the sparse nature of the CNN topology, the gra-
dient computation vs. update application time ratio Tc/Tu is high, leading to a
significantly reduced memory footprint (with 17% on average) of Leashed-SGD .
S4. Higher parallelization for MLP: We stress-test the methods, with m = 24,
m = 34 (max. solo-core parallelism) and m = 68 (max. hyper-threading).
The results appear in Fig. 3.5-3.7, showing Leashed-SGD provides significantly
improved convergence and stability, with improved staleness.
S5. Memory consumption: We perform a fine-grained continuous measurement
of the memory consumption of all algorithms considered, for MLP and CNN
training. For the CNN application, Leashed-SGD reduces the memory con-
sumption by 17% on average thanks to dynamic allocation of ParameterVector
and efficient memory recycling. The detailed plots appear in Appendix B.
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3.5.4 Summary of outcomes

Leashed-SGD shows overall an improved convergence rate, stable under varying
parallelism and hyper-parameters, and significantly fewer executions that fail
to achieve ε-convergence. In presence of contention, the lock-free nature enables
Leashed-SGD to self-regulate the balance between throughput and latency, and
converge in settings where the baselines fail completely. Even the case that
with Tp =∞, i.e. without starvation-freedom, we see persistent improvements
relative to the baselines, demonstrating in this demanding context too, a useful
property, namely that lock-freedom balances between system-wide throughput
and thread-associated latency [69–71].

3.6 Related Work

The study of numerical methods under parallelism sparked due to the works
by Bertsekas and Tsitsiklis [18]. Distributed and parallel asynchronous SGD
has since been an attractive target of study, e.g. [14,19,22,57], among which
Hogwild! [9]. In the recent [8] the concept of bounded divergence between the
parameter vector and the threads’ view of it is introduced, proving convergence
bounds for convex and non-convex problems. De Sa et. al [24] introduced
a framework for analysis of Hogwild!-style algorithms. This was extended
in [25], showing the bound increases with a magnitude of

√
d due to inconsis-

tency, implying higher statistical penalty for high-dimensional problems. This
strongly motivates studying algorithms which, while enjoying the computa-
tional benefits of lock-freedom, also ensure consistency. To our knowledge, this
has not been done prior to the present work.

In [21] the algorithmic effect of asynchrony in AsyncSGD is modelled by
perturbing the stochastic iterates with bounded noise. Their framework yields
convergence bounds, but as described in the paper, are not tight, and rely on
strong convexity.

In [6], with motivation related to ours, a detailed study of parallel SGD
focusing on Hogwild! and a new, GPU-implementation, is conducted, focus-
ing on convex functions, with dense and sparse data sets and comparison of
different computing architectures. Here we propose an extensible framework
of consistency-preserving algorithmic implementations of AsyncSGD together
with Hogwild!, that covers the associated design space of AsyncSGD algo-
rithms, and we focus on MLP and CNN, which are inherently more difficult
to parallelise.

In [26], as in this work, the focus is the fundamental limitation of data
parallelism in ML. They, too, point out that the limitations are due to con-
current SGD parameter accesses, usually diminishing or even negating the
parallelisation benefits. To alleviate this, they propose the use of static analysis
for identification of data that do not cause dependencies, for parallelising their
access. They do this as part of a system that uses Julia, a script language that
performs just-in-time compilation. Their approach is effective and works well
for e.g. Matrix factorization SGD. For DNNs, that we consider in this paper,
as they explain, their work is not directly applicable, since in DNNs permitting
“good” dependence violation is the common parallelization approach.

There are works introducing adaptiveness to staleness [13, 32, 33] and in
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particular in [53] for a deep learning application. This research direction is
orthogonal to this work and can be applied in conjunction with the algorithms
and synchronization mechanisms considered here.

Asynchronous SGD approaches for DNNs are scarce in the current literature.
In the recent work [27], Lopez et al. propose a semi-asynchronous SGD
variant for DNN training, however requiring a master thread synchronizing
the updates through gradient averaging, and relying on atomic updates of the
entire parameter vector, resembling more a shared-memory implementation
of parameter server. In [28] theoretical convergence analysis is presented for
SyncSGD with once-in-a-while synchronization. They mention the analysis
can guide in applying SyncSGD for DL, however the analysis requires strong
convexity. [29] proposes a consensus-based SGD algorithm for distributed DL.
They provide theoretical convergence guarantees, also in the non-convex case,
however the empirical evaluation is limited to iteration counting as opposed to
wall-clock time measurements, with mixed performance positioning relative to
the baselines. In [30] a topology for decentralized parallel SGD is proposed,
using pair-wise averaging synchronization. In the recent [7] a partial all-reduce
relaxation of SyncSGD is proposed, showing improved convergence rates in
practice when synchronizing only subsets of the threads at a time, due to higher
throughput, complemented with convergence analysis for convex and non-convex
problems. In particular, the empirical evaluation shows only requiring one
thread (i.e. AsyncSGD) gives competitive performance due to the wait-freedom
that follows from the lack of synchronization.

3.7 Conclusions

We propose the extensible generic algorithmic framework Leashed-SGD for
asynchronous lock-free parallel SGD, together with ParameterVector , a data
type providing an abstraction of common operations on high-dimensional model
parameters in ANN training, facilitating modular further exploration of aspects
of parallelism and consistency.

We analyze safety and progress guarantees of the proposed Leashed-SGD , as
well as bounds on the memory consumption, execution dynamics, and contention
regulation. Aiming at understanding the influence of synchronization methods
for consistency of shared data in parallel SGD, we provide a comprehensive
empirical study of Leashed-SGD and established baselines, benchmarking on
two prominent deep learning (DL) applications, namely MLP and CNN for
image classification. The benchmarks are chosen in order to challenge the
proposed model against the baselines, and provides new useful insights in the
applicability of AsyncSGD in practice.

We observe that the baselines, i.e. standard implementations of AsyncSGD ,
are very sensitive to hyper-parameter choices and are prone to unstable exe-
cutions due to noise from staleness. The proposed framework Leashed-SGD
outperforms the baselines where they perform the best, and provides a balanced
behaviour, implying stable and timely convergence for a far wider spectrum of
parallelism.

The methods are implemented in an extensible C++ framework, interfac-
ing DL operations with parallel SGD algorithms, facilitating further research
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exploring algorithms for parallel SGD for DL with various synchronization
mechanisms.
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Appendix B

Paper B

On MLPs and CNNs

MLPs consist of several stacked densely-connected layers of neurons, each
applying a non-linear transformation of the input and passing the result to the
next layer:

o(l)
n = σ

|Nl−1|−1∑
i=0

θ
(l,n,w)
i · o(l−1)

i + θ(l,n,b)


where o

(l)
n is the output of neuron n ∈ {0, . . . , Nl − 1} in the lth layer, σ is a

non-linear activation function, typically the ReLU function σ(x) = max(0, x),
and θ(l,n,w), θ(l,n,b) contains the learnable weights and bias parameters of to
the nth neuron.
CNNs consist of convolutional layers, convolving the input with learnable
filters for feature detection:

o
(l)
n,f = σ

(
k∑
i=0

θ
(l,f,w)
i · o(l−1)

n+i + θ(l,f,b)

)

for a number of filters f , corresponding to a 1D convolution, but can be
naturally extended to 2D. Convolutional layers are sparsely connected, reducing
the number of weights to be trained, and are especially efficient for analysis of
image/spatial data due to the translation-invariant property of feature detection
with convolution. Convolutional layers are often used in combination with
MaxPool layers, which map the output of a number of consecutive neurons
onto their maximum. This significantly reduces dimension of the signal and
the learnable weights.

We refer to the collection of all parameters θ(l,n,w/b), θ(l,f,w/b) belonging
to an ANN flattened into a 1D array as the parameter vector, denoted as θt,
at iteration t of SGD. This abstraction is used in subsequent sections when
arguing regarding consistency and progress.

In the output layer of an ANN, the softmax activation function σi(x) =

exi/
∑|x|
j=1 e

xj , for each output neuron i, is often used for classification problems,

69
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outputting an estimated class distribution y of an input x. Given the true
class/label ŷ, the ANN performance is quantified by the cross-entropy loss
function:

L(ŷ, y(x : θ)) = −
|out|∑
i

y(x : θ)i log(ŷi)

where y contains the outputs from the last layer, and depends on the input
x and the current state of θ. The training process for ANNs then constitutes
of iteratively adjusting θ to minimize the error function f(θ) = L(ŷ, y(x : θ)).
The BackProp algorithm is used for computing ∇θf(θ), and SGD is then used
for minimizing f , and training the ANN. In every iteration the input is selected
at random, either as single data point or as a batch considered in conjunction.

Analysis - complementary material

Proof sketch - Lemma 2: The first claim (i) follows from the definition of
the safe delete operation of the ParameterVector , ensuring that the memory
of an instance PCt is reclaimed only if stale flag = true (P points to a
newer instance, ensuring no new readers of PCt), n readers = 0 (no readers
currently) and that the memory has not already been reclaimed. The second
claim (ii) is realized by the fact that the memory recycling mechanism is
exhaustive, i.e. ParameterVector instances that will not be used further by
any thread will eventually be reclaimed through the delete operation in line
10 of Algorithm 1. The reason is the following: each thread that finishes its
use of a ParameterVector instance will call the stop reading operation, which
in turn calls safe delete, which reclaims the memory if safe, according to the
above, i.e. it holds that the instance is currently not in use and will not be in
the future. If that is not the case, then the threads that are currently using the
instance will each eventually invoke the safe delete operation, the last of which
will perform the reclamation. Now, from Algorithm 3 it is clear that in the
worst case each thread has a unique latest param on which it is active reader,
and an additional two ParameterVector (new param and local grad), giving
in total 3m. �

Proof of Theorem 3 From (4), we have

nt = nt−1 +
m− nt−1

Tc
− nt−1

Tu
= (1− 1/Tc − 1/Tu)nt−1 +m/Tc

= . . .

=
m

Tc

t−1∑
i=0

(1− 1/Tc − 1/Tu)i + (1− 1/Tc − 1/Tu)tn0

=
m

Tc

1− (t− 1/Tc − 1/Tu)t

1/Tc + 1/Tu
+ (1− 1/Tc − 1/Tu)tn0

�
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Algorithm 5: Hogwild! expressed using the ParameterVector in-
terface
1 GLOBAL ParamVector PARAM
2 GLOBAL Float η // step size

3 Initialization;
4 PARAM ← new ParamV ector()
5 PARAM.rand init() // randomly initialize parameters

6 Each thread;
7 local grad← new ParamV ector() // local gradient memory
8 local param← new ParamV ector()
9 repeat

10 local param.theta = copy(PARAM.theta)
11 local grad.theta← comp grad(local param.theta) // gradient
12 PARAM .update(local grad.theta, η)

13 until convergence;

Evaluation - complementary material

The details of the ANN architectures implemented in the evaluation (Section
5) are shown in Table B.1 and B.2 for MLP and CNN, respectively.

Layer Layer details
# Type # Neurons Act. fcn.

1-3 Dense 128 ReLU
4 Dense 10 Softmax

Table B.1: MLP Architecture, d = 134, 794

Layer Layer details
# Type # Filters # Neurons Kernel Act. fcn.

1 Conva 4 - (3,3) ReLU

2 Poolb - - (2,2) ReLU
3 Conva 8 - (3,3) ReLU

4 Poolb - - (2,2) ReLU
5 Dense - 128 - ReLU
6 Dense - 10 - Softmax

aConvolutional layer bMaxPool layer

Table B.2: CNN Architecture, d = 27, 354

Convergence and hyper-parameter selection

Figure B.1 shows the convergence rate for different values of step size η. The
baselines AsyncSGD and Hogwild! show the best performance for η = 0.005,
which is hence used in the subsequent test stages.
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Figure B.1: Step size tuning (top), confirming the choice η = 0.005, and
statistical efficiency (bottom), showing 50%-convergence

Gradient computation and update time - Tc, Tu

The distribution of the wall-clock time to compute and apply gradients, respec-
tively, are shown in Figure B.2. Despite having a lower dimensionality, the
gadient computation time Tc is higher for CNN. This is due to the topological
nature of the convolutional layer, where filters are strided along the input
image pixel by pixel. This requires in practice a large number of smaller
matrix multiplications, as opposed to MLP which instead consists of few but
significantly larger ones. However, the time to apply one gradient Tu is smaller
in the CNN application, since the θ vector is smaller.

Since the dimension d of the ParameterVector is significantly smaller for the
CNN (d = 27, 354) compared to the MLP (d = 134, 794), the time Tu to apply
an update is smaller, but due to the topological nature CNNs, the gradient
computation time Tc is relatively high. The detailed measurements appear in
the ; they are in the order of magnitude Tc = 40ms and Tu = 0.6ms for MLP,
and Tc = 110ms and Tu = 0.3ms for MLP. This results in lower contention
in the LAU-SPC . As a consequence the contention-regulating effect of the
Leashed-SGD algorithms does not kick in, hence showing similar staleness
distribution as the baselines. The proposed Leashed-SGD nevertheless shows
significant improvement in the convergence rate.

Memory consumption

Figure B.3 shows the distribution of the memory consumption of the different
algorithms for MLP and CNN training. The measurements were acquired using
the UNIX ps command, collected with second granularity.
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Figure B.2: Gradient computation and parameter update times Tc, Tu (top,
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