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Exploring the future low-carbon electricity system: impacts of nuclear power and 

demand patterns 

XIAOMING KAN 

Department of Space, Earth and Environment 

Chalmers University of Technology 

 

Abstract 

To achieve the climate goals set by the Paris Agreement, the global electricity system is expected 

to transition towards a low-carbon electricity system. The future low-carbon electricity system is 

uncertain regarding both generation and demand. First, the cost of variable renewable energy 

(VRE) technologies, such as wind and solar, has been decreasing over the past decade and the 

share of  VRE in the electricity system is increasing. This trend is likely to continue for the 

foreseeable future. However, there is no consensus as to whether the goal of deep decarbonization 

of the electricity system can be accomplished without large cost escalation if nuclear power and 

fossil fuel plus carbon capture and storage (CCS) are excluded. Second, the future electricity 

demand is highly uncertain due to economic growth, e-mobility, electric heating, electric cooling, 

etc. These factors affect not only the volume of annual electricity demand, but also the inter-

temporal electricity demand pattern. The change in demand pattern may affect a low-carbon 

electricity system with a high penetration level of wind and solar, as such a system is less capable 

of load following, as compared with the conventional electricity system based on dispatchable 

thermal power plants. 

This thesis investigates the impacts of nuclear power and demand patterns on the future low-

carbon electricity system, and addresses the following research questions: What is the cost of a 

future low-carbon electricity system without nuclear power for Sweden?; and How will the 

electricity demand pattern affect the electricity system cost and the electricity supply mix? A 

greenfield techno-economic cost optimization model with a high temporal resolution for the 

electricity system is developed and used to answer these questions. 

The results of this work reveal that including nuclear power in the electricity system reduces the 

nodal net average system cost by 4% for Sweden. This implies that the economic rationale for 

Sweden as a country to invest in nuclear power is limited if there is a transition towards a low-

carbon electricity system in Europe. In addition, we find that varied electricity demand patterns 

(seasonal and diurnal variations) affect only slightly the electricity system cost, except for the 

case of summer peak, where the system cost may increase by up to 8%. The demand pattern may 

have a stronger impact on the electricity supply mix, especially solar and storage capacities, than 

on the electricity system cost.  

This thesis contributes to a better understanding of the potential future low-carbon electricity 

system. The results are beneficial in identifying the implications for the planning of the future 

electricity system, policy support for low-carbon technologies, and demand profile treatment for 

modeling studies. 

Keywords: Low-carbon electricity system, energy system modeling, variable renewable energy, 

nuclear power, net system cost,  demand pattern, electricity system cost, electricity supply mix 



 

ii 
 

  



 

iii 
 

Appended publications 

This thesis consists of an extended summary of the following appended papers, which are referred 

to in the text according to their Roman numerals: 

I. Kan, X., Hedenus, F., & Reichenberg, L. (2020). The cost of a future low-carbon 

electricity system without nuclear power–the case of Sweden. Energy, 195, 117015. 

DOI: 10.1016/j.energy.2020.117015 

 

II. Kan, X., Reichenberg, L., & Hedenus, F. (2020). The impacts of the electricity 

demand pattern on electricity system cost and the electricity supply mix: a 

comprehensive modeling analysis. Submitted to journal. 

 

 

 

 

 

Paper I: HF and RL conceived the study, with contribution from XK. XK developed the model, 

analyzed the results. XK, HF and LR wrote the paper. All authors edited and approved the final 

version of the manuscript. 

Paper II: HF and RL conceived the study, with contribution from XK. XK developed the model, 

analyzed the results. XK and LR wrote the paper with contribution from HF. All authors edited 

and approved the final version of the manuscript. 

  



 

iv 
 

  



 

v 
 

Acknowledgments 

I want to thank my supervisor Fredrik Hedenus and co-supervisor Lina Reichenberg for their 

continuous support, guidance and inspiration. Together, you have created a very nice supervisory 

team for me.  It is great fun to work with you and I feel lucky to be your PhD student. 

I also want to thank my assistant supervisor Daniel Johansson and examiner Kristian Lindgren 

for providing suggestions and helping with my PhD study. Thanks to Niclas Mattson for guiding 

me to the world of Julia and providing valuable data for my study. 

Thanks to all my friends and colleagues in the division of Physical Resource Theory for providing 

a fantastic working environment that is full of ideas and fun. Thanks to Jinxi Yang, Hanna Ek 

Fälth, Christian Azar, Wasim Shoman, Çaglar Tozluoglu and Emil Nyholm. It is always fun and 

inspiring to discuss with you. Special thanks to my officemates, Yuan Liao, Ella Rebalski, and 

Ahmet Mandev, who make my work full of joy. 

Thanks to ENSYSTRA for funding my study and building an interesting network for me. 

Finally, thanks so much to my family for always supporting and encouraging me. You are always 

there for me. I am so grateful to have you all in my life. 

 

Xiaoming Kan 

Gothenburg, January 2021 

 

 

  



 

vi 
 

 

 

  



 

vii 
 

Contents 

Abstract .......................................................................................................................................... i 

Appended publications .................................................................................................................. iii 

Acknowledgments .......................................................................................................................... v 

Introduction ................................................................................................................................... 1 

Aims .......................................................................................................................................... 2 

Contributions ............................................................................................................................. 2 

Background ................................................................................................................................... 3 

Transition towards a low-carbon electricity system .................................................................. 3 

Low-carbon electricity generation technologies ....................................................................... 3 

Variation management strategies .............................................................................................. 5 

Electricity demand pattern ........................................................................................................ 6 

Methodology ................................................................................................................................. 9 

Energy system models ............................................................................................................... 9 

The REX model ....................................................................................................................... 13 

Input data ................................................................................................................................. 15 

Reflection on the method and data .......................................................................................... 17 

Present work ................................................................................................................................ 21 

Impacts on the electricity system of excluding nuclear power for Sweden (Paper I) ............. 21 

Impacts of the electricity demand pattern on the electricity system (Paper II) ....................... 24 

Future work ................................................................................................................................. 31 

Reference ..................................................................................................................................... 33 

 

 

  



 

viii 
 

 



 

1 
 

Introduction 

Currently, the electricity system is the largest emitter of CO2 worldwide [1]. Meeting the 

ambitious goals of restricting the global temperature rise to well below 2°C above pre-industrial 

levels and pursuing efforts to limit the temperature increase to 1.5°C set by the Paris Agreement, 

would likely require reducing the CO2 emissions from the global electricity system in the coming 

decades [2]. Various low-carbon technologies, such as wind and solar power, carbon capture and 

storage (CCS) and nuclear power, are possible options for decarbonizing the electricity sector. 

The wide availability of wind and solar power and the decrease in associated costs seen in the 

past decades make wind and solar promising generation technologies for the future low-carbon 

electricity system [3]. A low-carbon electricity system based on variable renewable energy (VRE) 

differs from the conventional electricity system based on dispatchable thermal power plants. The 

chief difference is that an electricity system with a high penetration of VRE is less capable of load 

following, due to the intermittency of VRE resources [4]. Dispatchable electricity generation 

resources, such as hydropower, biomass, and biogas, are constrained by regional resource 

endowments and environmental regulations. Variation management strategies (VMSs), such as 

transmission and storage, are potential options to deal with the variable generation of wind and 

solar power [5-7]. Several studies have shown that a future low-carbon electricity system based 

on VRE in combination with transmission and storage is technically feasible [5-10] and the 

average electricity cost is comparable to the cost of the current system [6, 11-14]. However, some 

other studies argued that a low-carbon electricity system based on VRE plus transmission and 

storage may face large cost escalations if firm low-carbon technologies, such as nuclear power 

and fossil fuel-firing plus CCS, are excluded [15-17]. For the case of Sweden, nuclear power 

generated 41% of the annual electricity supply in 2014 [18], but the nuclear fleet is aging and 

decommissioning is planned in the coming decades for economic reasons. Therefore, it is 

important to understand how the exclusion of nuclear power may affect the Swedish electricity 

system, especially the electricity system cost. 

Apart from the technology options for electricity generation, the future low-carbon electricity 

system faces uncertainties and challenges related to the evolution of electricity demand.  In reality, 

economic growth, climate change, e-mobility, electric heating, electric cooling and technological 

innovation may exert strong influences on the future electricity demand, affecting not only the 

annual electricity consumption but also the demand pattern [19-28]. Some studies have presumed 

that radical changes in the electricity demand pattern may strongly affect the electricity system 

[19, 23, 27, 29]. These effects might be more evident in a low-carbon electricity system with a 

high penetration of VRE, given that it is less capable of load following due to the intermittency 

of VRE resources, as compared with the conventional electricity system based on dispatchable 
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thermal power plants [4]. However, the potential change in demand pattern is not considered in 

many energy system modeling studies [6, 30-37]. In those studies, rather historical demand 

profiles are directly used or linearly scaled up to a new value for the future electricity demand. 

Although the change in volume of the annul electricity demand might be considered, the inter-

temporal pattern of the demand profile remains almost the same. Thus, regarding the large 

uncertainty of the future electricity demand pattern, it is important to understand the impacts of 

the electricity demand pattern on electricity system cost and the electricity supply mix. 

Aims 

This thesis focus mainly on the above issues surrounding the generation and demand sides of the 

future low-carbon electricity system. Two papers are included, and the specific aims are to: 

1. Investigate the cost of a future low-carbon electricity system without nuclear power for 

Sweden, under conditions with different levels of interconnecting transmission grids 

within Sweden and between Sweden and neighboring countries; 

2. Evaluate the effects on the system cost and the electricity supply mix of applying different 

demand patterns in energy system models. 

Contributions 

Paper I identifies the generation and variation management technologies that are cost-effective 

to invest in for the future low-carbon Swedish electricity system. It introduces a new method to 

quantify the nodal net average system cost (NNASC) for a country or region in an interconnected 

electricity system. This concept incorporates the system-wide capital and operational costs of 

generation and transmission, profit of trade (revenue from exporting electricity minus the cost of 

importing electricity), and congestion rent. Compared with studies [16, 38, 39] investigating the 

focused country in isolation, assuming no cross-border electricity trade or following historical 

electricity trade pattern, the NNASC approach can reflect the impact of electricity trade on the 

system cost for a specific country or region in an interconnected electricity system. Through 

investigating the cost difference for Sweden with nuclear power relative to a system without 

nuclear power, the economic benefits of including nuclear power for the future low-carbon 

Swedish electricity system is analyzed.  

Paper II evaluates the impacts of different electricity demand patterns on the electricity system 

cost and electricity supply mix. The conditions under which the choice of demand pattern is 

influential are identified. This provides useful information to energy system modelers as to 

whether or not misleading results will be produced if they continue to employ historical electricity 

demand profiles as inputs to the model. 
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Background 

This chapter gives a brief background of the transition of electricity system. In Section 2, the 

different low-carbon generation technologies included in this study are introduced and their pros 

and cons are presented. Section 3 reviews the VMSs. Finally, Section 4 describes the evolution 

of the electricity demand pattern. 

Transition towards a low-carbon electricity system 

In 2018, electricity and heat production accounted for 41% of global CO2 emissions, being the 

largest CO2 emitter [40]. The demand for electricity is expected to grow with increases in GDP 

and population, and with extensive coupling with other sectors. If the increased electricity demand 

is met by generation using conventional fossil energy, there will be a substantial increase in CO2 

emissions. Thus, decarbonizing the electricity sector has a pivotal role to play in achieving the 

global CO2 emissions reduction target. Currently, there are several mature low-carbon electricity 

generation technologies, e.g., nuclear power and wind and solar power. In addition, decarbonizing 

the electricity sector is generally regarded as being less expensive compared with other sectors 

such as transport and energy-intensive heavy industries[41]. According to the 5th IPCC report, to 

limit the rise in average global temperatures this century to 2°C above pre-industrial levels, the 

electricity sector needs to be deeply decarbonized towards the second half of the 21st Century [1]. 

This implies significant investments in low-carbon generation technologies.   

For Europe, the European Commission has presented its strategic long-term vision for a climate-

neutral economy by Year 2050 [42]. To achieve this goal, more and more wind and solar power 

are invested in Europe for electricity supply. Apart from wind and solar power facilities, new 

nuclear power plants are being constructed in Europe. Other low-carbon electricity generation 

technologies include hydropower, biomass and biogas. In the following section, these 

technologies are briefly introduced. 

Low-carbon electricity generation technologies 

Wind and solar power exhibits a large global technical potential and the associated costs have 

been decreasing over the past decades [3], see Fig. 1. The reduction in cost is estimated to continue 

in the coming decade due to economies of scale and learning by doing [3, 43]. According to the 

International Renewable Energy Agency (IRENA), more than half of the commissioned projects 

for onshore wind and solar PV in Year 2020 will produce cheaper electricity (lower expected 

levelized cost of electricity; LCOE) than new fossil fuel-fired power plants without subsidies [43]. 

Wind and solar power accounted for 8.2% of global electricity generation in Year 2019, while the 

corresponding share in Year 2013 was only 3.4% [40]. Given the resource availability, 

technological maturity, and economic competitiveness, wind and solar are likely to be widely 
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deployed globally. However, wind and solar power has limitations. The power outputs of wind 

and solar change throughout the course of a day, season and year, depending on the weather 

conditions. Solar power, in particular, has a natural diurnal variation, as there is no solar radiation 

at night. The output of wind power also has a diurnal variation, with relatively more wind energy 

produced at night than during the day in many locations [44]. However, the diurnal variation of 

wind power is less pronounced than that of solar power. In addition, both wind and solar power 

outputs vary over large geographic areas, albeit the variation is usually larger for wind due to 

different wind conditions resulting from geographic diversities [44]. Due to the fluctuation of 

weather conditions, there may be periods when wind and solar produce more electricity than is 

actually demanded, which will lead to curtailment.  

 

Fig. 1. The development of LCOE for renewable generation technologies (IRENA, 2019).  

The future of nuclear power in Europe is uncertain. Germany, Belgium, and Switzerland have 

decided to phase out nuclear power, while Finland, France, UK and Slovakia are building new 

nuclear power plants. Apart from the problem of social acceptance linked to perceptions of 

radiation risks, the current investment cost for the third-generation nuclear power is very high. 

The investment cost of the two nuclear power plants (Olkiluoto 3 and Flamanville 3) currently 

under construction in Europe is estimated to be as high as 10000 $/kW [45]. This cost could 

probably be decreased through international standardization and the massive construction of new 

nuclear power plants. Similar to the case of Europe, the investment cost of nuclear power plant 

remains high in USA [45]. The situation is more optimistic for nuclear power plants in Russia and 

in Asian countries, where the investment costs for on-going projects are estimated at around 4000 

$/kW [45]. The cost escalation for nuclear power plant in Europe and USA is mainly driven by 

the project delay and regulations regarding large-scale construction projects set by strict nuclear 

standards [45, 46]. As for the operation of nuclear power, it usually runs as the base load. To 

integrate more effectively nuclear power with VRE, flexible operation of nuclear power has been 

proposed to provide flexibility to the future low-carbon electricity system [47, 48]. However, this 

will reduce the utilization time for nuclear power, leading to a higher LCOE for nuclear power.  
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Reservoir hydropower (hydro reservoir) and run-of-river hydropower (hydro RoR) are 

conventional renewable energy technologies that are used worldwide. Hydro reservoir is 

considered to be a flexible power source, as it is quick to react and is capable of providing full 

capacity within a timeframe of seconds to several minutes [49, 50]. For hydro reservoir, water 

can be stored for days, months or even years, depending on the reservoir size, and released 

whenever electricity is needed [51]. The resource availability for hydro power varies from one 

geographic region to another. In Europe, due to environmental regulations, the capacities of hydro 

reservoir and hydro RoR are not likely to increase in the future. One important environmental 

regulation related to hydro reservoir is the minimum environmental flow [52, 53], which  

mandates that a certain proportion of the mean annual inflow be released to satisfy the 

downstream ecosystem and human needs for water.   

As for biomass, it might be used as the source material for other sectors, such as transport and 

industry. Thus, the price for biomass might remain high due to scarcity of supply. In addition, 

large yields of biomass require a lot of land, which may cause external problems such as the 

security of food supply and deforestation [54]. Biogas can be produced from wood, manure, 

agricultural residues and waste. However, due to the scarcity of the biomass primary resource, 

the fuel supply for biogas is limited. 

Variation management strategies 

Although the output from wind and solar power fluctuates over time depending on the prevailing 

weather conditions, there are several ways to provide the flexibility needed to handle the variable 

generation associated with wind and solar on different time-scales of hours, days and seasons [5-

7, 44]. These solutions, which are termed variation management strategies (VMSs), need to be 

able to: shift electricity generation temporally (storage); move electricity generation spatially 

(trade through transmission grids); shift or curtail electricity demand to adapt to the variable 

generation of VRE (demand-side management; DSM); and curtail generated electricity when it is 

not needed. The main VMSs considered in this thesis are shown in Fig. 2. 

First, energy storage can shift the production of VRE over time. Energy storage can save wind- 

and solar-generated electricity from periods when there is overproduction to periods when the 

power output of VRE is lower than the demand. For this purpose, there are several mature storage 

technologies, such as different battery technologies and pumped hydropower. In addition, the 

surplus electricity can be applied to produce hydrogen as long-term storage. 

Second, the variation of VRE can be smoothed through the exploitation of a diversity of 

geographic locations when selecting the VRE generation sites and connecting these sites with 

transmission grids. The transmission grids enable the transfer of electricity from regions where 
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VRE generators are currently producing electricity to areas where the demand is currently not 

satisfied.  

Third, DSM technologies can shift or shed electricity demand so as to fit the fluctuating 

generation profile of VRE. The potential of DSM can be further increased when there is large-

scale sector coupling, as this provides new flexible demand, such as electric vehicle charging and 

electric heating in the integrated energy system. 

Last but not least, the excessive production of VRE can be curtailed when the level of electricity 

generation is higher than the demand for electricity.  

 

Fig. 2. Variation management strategies used in the electricity system, including storage, trade and 

curtailment. Electricity is stored and traded out during the daytime when the level of generation exceeds 

the demand. When the output of solar power ramps down sharply in the late afternoon, electricity is released 

from storage. During the night, there is both electricity release from storage and electricity trade-in. 

Electricity demand pattern 

The electricity demand pattern is reflected on the inter-temporal shape of the electricity demand 

profile. Electricity demand may be heavily affected by some important factors, such as economic 

growth, climate change, sector coupling (e-mobility and electric heating), electric cooling and 

technological developments. These factors influence not only the volume of the electricity 

demand, but also the electricity demand pattern. If there is massive diffusion of electric vehicles 

(EVs), the daily peak demand may change significantly depending on the charging strategies used 

[19]. Fig. 3 shows how different charging strategies for EVs could affect the potential demand 

patterns for Germany and the UK in Year 2050. Direct charging after work may lead to a very 

high evening peak, while the smart charging strategy may alter substantially the diurnal demand 
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pattern through shifting the peak demand towards midday hours when there is a high output from 

solar PV.   

As for the seasonal demand pattern, the widespread adoption of electric heating may drive up the 

winter peak demand, while the large-scale use of electric cooling may result in a higher peak 

demand in summer. This implies different seasonal demand patterns. Fig. 4 shows the historical 

and the simulated future seasonal electricity demand patterns for the UK [23]. The demand in 

summer remains almost constant, while the winter demand increases over time, creating a more 

pronounced seasonal variation in the demand profile. The increased winter demand is mainly 

driven by the estimated substantial increase in residential heat pumps. Similar to the case of 

electric heating, Kannan [28] estimated that the increased use of air conditioners (ACs) may 

increase the summer peak in Switzerland by 2%–23% in Year 2050. 

 

Fig. 3. Potential electricity demand profiles on weekdays under different charging strategies for electric 

vehicles in Year 2050 for Germany and the UK (Boßmann and Staffell, 2015). 
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Fig. 4. The seasonal variations in the historic and simulated future demands. The shaded areas indicate the 

historic range from 2005 to 2015, while the lines show the simulation results for 2020, 2025, and 2030. The 

dotted lines indicate the peak demand within each month, and the solid lines represent the mean value 

(Staffell and Pfenninger, 2015). 
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Methodology 

The principal method used in this thesis is the energy system optimization model for long-term 

investment planning. Energy system optimization model is widely used to generate insights for 

policy analysis and decision making for the electricity system. This chapter starts with a general 

introduction to energy system models. It is followed in Section 2 by a detailed description of the 

model developed in this thesis. The input data are summarized in Section 3. In Section 4, some 

reflections on the model and data are presented. 

Energy system models 

The energy system is a complex socio-technical system, such that the function and mechanism of 

the whole system are difficult to test and evaluate [55]. Energy system models are usually adopted 

to explore such a system [56, 57]. These models can show the potential energy system portfolios 

under different scenarios, considering resource availability, technology costs and developments, 

demand growth, and different energy and environmental policies [58-60]. For this thesis, we want 

to investigate how different generation technology options and different demand patterns may 

affect investments in the future low-carbon electricity system, and the corresponding system cost 

and electricity supply mix. To address these issues, we adopt the energy system optimization 

model with the focus on capacity investment as the investigation tool. The optimization model 

minimizes the electricity system cost, and the outcome is equivalent to that of a perfect market in 

which rational agents maximize their profits, even though our focus in this thesis is neither on the 

electricity market nor on agent behaviors.  

An optimization model consists of three important parts: the goals to be met, the decisions to be 

made, and the constraints to be satisfied [61]. For the case of an energy system optimization model, 

a linear optimization approach is usually adopted to minimize the total system cost under resource, 

technology, environmental and policy constraints. The decision variables, which are the choices 

that need to be made, normally refer to the installed capacity for generation, storage, transmission, 

the amount of DSM, as well as the hourly dispatch. Some popular energy system optimization 

models include: MARKAL [62, 63], TIMES [64] and PyPSA [65].  

Historically, energy system models were developed primarily for the conventional electricity 

system. When it comes to the modeling of an electricity system with a high penetration of VRE, 

several challenges arise, one of which is the representation of variability in electricity generation 

[60, 66]. Specifically, two important factors are related to the variability of generation: the 

temporal and spatial resolutions [60]. In addition, there might be extensive cooperation in the 

future electricity system to allow sharing of the VRE and dispatchable resources via cross-border 

transmission grids in a large spatial scope. Furthermore, the electricity system might be integrated 
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with other energy sectors, to reduce the CO2 emissions for the entire energy system. Last but not 

least, the transition pathway towards the future low-carbon electricity system is not yet clear and 

different transition pathways might result in different final configurations for the electricity 

system. The setups in energy system models regarding the five aspects (temporal resolution, 

spatial resolution, spatial scope, sectors included, and pathway) mentioned above can be 

influential on modeling results [59, 66], thus, affecting the system cost and capacity mix for the 

future electricity system. Therefore, in the following section, we characterize the energy system 

models along these five aspects. 

Temporal resolution 

Energy system models used to have a coarse temporal resolution, so as to ensure a reasonable 

solving time [60, 66]. Typically, these models use representative time-slices to represent a whole 

year [59, 60, 66, 67]. The representative time-slices might be sufficient for an energy system that 

is dominated by conventional thermal power plants, as the outputs of thermal power plants (e.g., 

coal and nuclear power plants) have little dependence upon fluctuating weather conditions [60]. 

An example of a model that uses representative time-slices is the TIMES model, in which 12 

time-slices are used to represent the day, night and peak hours for four seasons in some studies 

[68, 69]. With this approach, the capacity factor of VRE follows the fixed temporal pattern of the 

representative days in a given time period (e.g., the same diurnal generation pattern for solar 

power in the summer). However, for an electricity system with a high penetration of VRE, the 

electricity generation varies over time depending on the weather conditions. The output of VRE 

(especially that of wind power) does not maintain the same temporal pattern. In this case, a small 

set of time-slices fails to capture the variation in generation for VRE, which may lead to an 

underestimation of the variability of VRE. Poncelet et al. [70] compared the impacts of different 

temporal resolutions on the energy system and showed that a low temporal resolution can lead to 

an overestimation of the share of VRE in the generation mix and an underestimation of the 

operational cost. Similarly, Haydt et al. [71] showed that a low temporal resolution may result in 

an overestimation of the penetration level for VRE and an underestimation of the installed 

generation capacity for VRE. Likewise, Ludig et al. [72] and Pina et al. [73] found that a low 

temporal resolution fails to represent the fluctuations of VRE generation, and may lead to an 

overestimation of the share for VRE in the generation mix.  These studies [71-74] highlighted the 

importance of applying a high temporal resolution for the appropriate representation of VRE 

technologies. Therefore, an hourly temporal resolution is adopted for the studies included in this 

thesis. 
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Spatial resolution 

Spatial resolution refers to the degree to which the modeled regions are spatially aggregated. It 

affects the representation of an electricity system with a high penetration of VRE in two ways: (i) 

the representation of transmission and distribution grids; and (ii) the representation of VRE 

resources. With a coarse spatial resolution, there may be an underestimation of the transmission 

and distribution cost if the subregions are treated as copper plates, and the transmission constraints 

inside each subregion cannot be adequately represented. However, Brown et al. [11] reported that 

the grid cost accounts for a relatively low share of the total electricity system cost. In addition, 

largely aggregated regions may fail to reflect the resource diversity for VRE, as the data for VRE 

resources are usually averaged over the subregion [75]. The supply potential and economic 

performance of VRE depend largely on the regional resource endowments. Moreover, the 

variations of VRE can be smoothed by locating the generation capacity in diverse geographic 

locations with different weather conditions and connecting them via transmission grids.  Frew 

and Jacobson[75] compared the impact of different spatial resolutions on the electricity system 

and showed that, with a high spatial resolution, more generation capacity is installed on the sites 

with better output for VRE, which reduces the investment cost for generation capacity, as 

compared to the case with a coarse spatial resolution. Similarly, Hörsch and Brown [76] reported 

that a more detailed spatial resolution allows the model to allocate more generation capacity to 

the sites with better VRE resources. Therefore, it is clear that a high spatial resolution is essential 

for modeling generation infrastructure allocation and transmission grids. 

Spatial scope 

The spatial scope refers to the boundary of the electricity system covered in the model. The spatial 

scope is important for evaluating the impact of international electricity trade [66]. In particular, 

electricity can be traded from regions where VRE generators are currently producing to those 

areas where the demand is currently not satisfied, which indicates the share of VRE and 

dispatchable resources over a large geographic area. Schlachtberger et al. [6] compared the 

European electricity system with optimal interconnected transmission grids to a system in which 

all the countries are isolated from each other, and reported that isolating countries without 

international trade increases the electricity system cost by 30%. Similarly, Eriksen et al. [77] 

showed that the electricity system cost increases by 20% if cross-border electricity trade is not 

allowed. Likewise, Tröndle et al. [9] estimated that isolating countries for the sake of self-

sufficiency in the national system increases the electricity system cost by 40%, as compared to a 

continent-wide electricity system in which both the VRE and dispatchable resources are shared. 

Pattupara and Kannan [78] incorporated international electricity trade revenue into the national 

electricity system cost and observed that international trade is important for the national system, 
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as the trade revenue can offset the domestic investment cost. Therefore, it is important to reflect 

a large spatial scope in the model, given its influences on the electricity trade and system cost. 

One key implication that arises from this is the choice of spatial scope when investigating the 

national electricity system. One can look at the focused country in isolation, but this may 

underestimate the benefits of international cooperation for electricity trade via expanded 

transmission grids.  

Sectors included 

Electrification and electric fuels (power to fuel) are potential ways to decarbonize energy sectors 

other than the electricity system. These strategies can be achieved through, for example, replacing 

fossil fuel-powered infrastructures with electric ones (e.g., combustion engine vehicle vs. electric 

vehicle). Currently, more energy system models are investigating sector-coupled energy systems 

with high temporal resolution, such as PyPSA [65]. An integrated energy system, within which 

the electricity, heating, industrial and transport sectors are closely linked, can abate more CO2 

emissions and may provide greater flexibility from the demand side [79-81]. Brown et al. [8] 

investigated an integrated electricity, heating, and transport system for Europe, and showed that 

sector coupling may increase the electricity cost by 12% compared with an electricity system only; 

however, flexibilities accrued from the heating and transport sectors may reduce this cost by 17%. 

Similarly, Göransson et al. [82] estimated that the flexibilities obtained from the electrified steel 

industry and transport sector can reduce the electricity cost by 8% in Northern Europe, as 

compared to a case in which no flexibilities are provided. While these two studies [8, 82] assumed 

a certain level of sector coupling for the future energy system, it remains unclear as to what extent 

and in what way sector coupling will be implemented for the future energy system. 

Pathway/No Pathway 

In terms of the time horizon, energy system optimization models for capacity investment can 

analyze a single year (No Pathway) or a span of multiple years (Pathway) [59]. The No Pathway 

approach, also called the greenfield optimization approach, is widely used to investigate the 

optimal configuration for the future electricity system, although it does not provide insights into 

how to transition towards such a system [83, 84]. In contrast, the Pathway approach has the 

advantage that it analyzes the evolution of the energy system over a long time period. Specifically, 

the Pathway approach can be utilized to investigate mechanisms such as feedback effects, 

different learning rates for technologies, policies and regulations during the transition process, 

behavioral changes of the energy market participants, etc., as well as the corresponding impacts 

on the end-state of the energy system. Today’s generation fleet and the decisions made in 

intermediate steps may affect the configuration of the future electricity system [83, 84]. However, 
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given the long time horizon, if high temporal resolution is adopted, the computation time may 

escalate.   

Regarding the transition pathway, it can be investigated through optimizing the entire transition 

process with perfect foresight or using the myopic optimization approach. With perfect foresight, 

it is possible to evaluate the cost-effective transition pathway, while the myopic optimization 

approach optimizes the energy system for each time-step based on the results from the former 

time-step. This does not necessarily yield either a cost-effective transition pathway or a cost-

effective final configuration for the energy system. 

Energy system model settings for this thesis regarding the five aspects 

In the section above, the energy system models are characterized along five important aspects, 

i.e., temporal resolution, spatial resolution, spatial scope, sectors included, and pathway. For 

studies in this thesis, we develop a greenfield techno-economic cost optimization model REX 

(Renewable Energy eXpansion) for the future low-carbon electricity system. Instead of looking 

at the transitioning pathway or the system evolution, we focus on the static end-state of the future 

system. The rationale for this approach is that the Pathway approach introduces additional 

complexity and requires additional computation power and time commitment. Given the 

importance of temporal resolution, we use an hourly temporal resolution to represent the 

variability in generation of VRE, which is the core of this thesis. As for spatial scope, in Paper I, 

our focus is the Swedish electricity system, still we expand the system boundary to Europe to 

acquire a decent representation of cross-border electricity trade. In addition, we divide Sweden 

into four regions, Norway into five regions, and Finland into two regions. The other countries are 

modeled at the national level or are highly aggregated. We also analyze a scenario that entails an 

increased electricity demand, possibly due to sector coupling, although the potential flexibilities 

from the other sectors are not considered. For Paper II, we investigate the change in demand 

pattern (possibly due to electrification of transport, heating, etc.), and the corresponding impacts 

on the electricity system. In summary, we prioritize the temporal resolution to represent accurately 

the variability of VRE generation. As a trade-off, the spatial resolution is relatively coarse. In 

future studies, we hope to investigate further the spatial granularity (size of subregion) given the 

research aim. 

The REX model 

The REX model is a cost optimization modeling tool for capacity investment and the dispatch of 

electricity generation, transmission and storage. It employs an overnight investment approach to 

identify the minimum cost portfolio for the future electricity system. This entails a linear 

optimization problem with the objective to minimize the total annual electricity system cost, given 



 

14 
 

the constraints of meeting the electricity demand, the renewable energy resource potentials, and 

a CO2 emissions cap. The main decision variables in the model comprise: installed capacity for 

generation, storage, and transmission; the level of demand-response; and the hourly dispatch. An 

overview of the model and the associated generation technology options and variation 

management strategies are depicted in Fig. 5. 

 

Fig. 5. Overview of the REX model. The dashed-line text boxes represent the: input data (blue); renewable 

generation technologies (green); fossil fuel-fired generation technologies (red); and variation management 

strategies (orange). OCGT, Open-cycle gas turbine; CCGT, combined-cycle gas turbine; NG, natural gas. 

In the model, the nodes are labeled as r, n represents the electricity generation technology at the 

node, m represents the demand-response at the node, and t is the time of the year. The total annual 

system cost consists of the fixed annualized costs 𝐶𝑛 for electricity generation capacity 𝐺𝑟𝑛, fixed 

annualized costs 𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒  for storage 𝑆𝑟 , fixed annualized costs 𝐶𝑟𝑟′ for transmission capacity 

𝑍𝑟𝑟′, variable costs 𝑅𝑛 for electricity generation 𝑔𝑟𝑛𝑡 and variable costs 𝑅𝑚 for demand-response 

𝑑𝑟𝑚𝑡 . For storage and transmission, the variable cost is assumed to be zero. Therefore, the 

objective function of this linear optimization problem is formulated as follows: 

𝑀𝑖𝑛 ∑ 𝐶𝑛𝐺𝑟𝑛

𝑟,𝑛

+ ∑ 𝐶𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑆𝑟

𝑟

+ ∑ 0.5𝐶𝑟𝑟′𝑍𝑟𝑟′

𝑟,𝑟′

+  ∑ 𝑅𝑛𝑔𝑟𝑛𝑡 

𝑟,𝑛,𝑡

+ ∑ 𝑅𝑚𝑑𝑟𝑚𝑡

𝑟,𝑚,𝑡

.              (1) 
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Since 𝑍𝑟𝑟′  and 𝑍𝑟′𝑟 represent the capacity for the same transmission line 𝑟𝑟′, a coefficient of 0.5 

is incorporated into the transmission cost formula to avoid double counting.  

The electricity demand has to be satisfied through generation, demand-response, trade and storage. 

∑ 𝑔𝑟𝑛𝑡 +

𝑛

∑ 𝑑𝑟𝑚𝑡

𝑚

+ ∑(𝜂𝛾

𝑟′

𝛾𝑟′𝑟𝑡 − 𝛾𝑟𝑟′𝑡) +  (𝜂𝑠𝛼𝑟𝑡 − 𝛽𝑟𝑡) ≥ 𝐷𝑟𝑡 ,                                          (2) 

where 𝑔𝑟𝑛𝑡 is the electricity generation,  𝑑𝑟𝑚𝑡 is the demand-response,  𝛾𝑟𝑟′𝑡 is the electricity 

traded from node 𝑟 to node 𝑟′, 𝜂𝛾 is the efficiency of transmission,  𝛼𝑟𝑡 is the discharge from 

storage,  𝛽𝑟𝑡 is the charge into storage,  𝜂𝑠 is the round-trip efficiency of storage, and 𝐷𝑟𝑡  is the 

hourly electricity demand. The model was implemented in Julia using the framework JuMP [85] 

and was optimized using the Gurobi solver [86].  

Input data 

The geographic regions (Papers I and II) covered in the model are the EU-28 countries 

(excluding Cyprus and Malta) plus Switzerland, Norway, Serbia, Bosnia and Herzegovina, North 

Macedonia, and Montenegro. For Paper II, China is modeled as well. An example of a network 

topology for this model is shown in Fig. 6. The electricity demand is assumed to be inelastic and 

the data are taken from ENTSO-E [87] for Year 2014. For Paper II, the electricity demand data 

are treated to display typical seasonal and diurnal demand patterns, but the volume of the 

electricity demand remains constant. The CO2 emission constraint is 10 g/kWh, which is 

equivalent to a 98% reduction in CO2 emissions compared with the Year 1990 value for the 

electricity sector in Europe. 

The input data for VRE is calculated based on the GIS model of Mattsson et al. [88].  The modeled 

subregions are divided into pixels (0.01° × 0.01°). To capture more effectively the weather 

conditions and represent the corresponding capacity factors for wind and solar power, the wind 

and solar technologies are divided into five classes based on resource quality. Solar irradiation is 

used to calculate the capacity factor profiles under the assumption that the PV technology is fixed 

latitude-tilted, and the wind speed is translated into capacity factors based on the power curve for 

a typical wind farm with Vestas 112 3.075 MW wind turbines. The capacity factors are calculated 

using solar irradiation and wind speed information from the ECMWF ERA5 database [89] and 

Global Wind Atlas [90]. The available land is given as a percentage of the suitable land, namely 

the total land less the areas which are not suitable for large-scale wind and solar power plants, 

e.g., areas with high population density, forest or protected area, too deep water (for offshore 

wind). For Paper II, a population density threshold of 150 persons/km2 is adopted, the same as 

that in [88]. For Paper I, the population density threshold is scaled down to 75 persons/km2 to 

represent a more conservative estimate on the potential contribution from VRE resources. All the 
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data for VRE profiles are based on the data source in Year 2018. The assumptions about key 

technologies are listed in Table 2.  

 

Fig. 6. An example of the regions and transmission network used in the REX model (Paper I). 

Table 2 Assumptions made regarding the key technologies in the model. 

Technology Assumptions 

Transmission Transport model 

Copper plate for subregion 

Biogas Fuel supply: maximum 5% of the annual electricity consumption 

Biomass Fuel consumption and capacity keep at the current levels 

Electricity production follows the heat demand pattern in Year 2014 

Storage Battery cost is used as the reference 

Hydropower No pumped hydropower 

Capacity is kept at the current level 

Capacity data are taken from ENTSO-E statistics [91] 

Inflow for 2013 is taken from reference [6] 

Minimum environmental flow [52, 53] for hydro reservoir: hourly environmental 

flow is ≥5% of the average hourly inflow to the reservoir 

Europe regions

NO

SE

UK

IE

DK

FI

FR

SP

MED

CEN

BNL

DE

PL

BAL

Other
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Demand-response In a given time period, the aggregated consumers can curtail up to 5% of the 

demand at a cost  that lies in the range of 600–1000 $/MWh 

Wind onshore Density: 5 W/m2       

Available landa: 8% (Paper I), 10% (Paper II) 

Wind offshore Density: 8 W/m2            

Available land: 33% (Papers I and II) 

Solar PV Density: 45 W/m2 

Available land: 5% (Paper I), 6% (Paper II) 

aThe available land is given as a percentage of the suitable land, namely the total land minus the populated 

areas, natural parks, lakes, mountains, etc. 

Reflection on the method and data 

The REX model developed for this thesis has an hourly time resolution, which is important for 

revealing the variability of the VRE generation and electricity demand. However, it does have 

limitations related to spatial resolution and representation of technical operation constraints.   

For Paper I, Sweden, Norway and Finland, respectively, are divided into several subregions, 

whereas the countries located far from Sweden are modeled at the national level or are highly 

aggregated. All the subregions are treated as “copper plates”. This setup might lead to an 

underestimation of the transmission (and distribution) cost, as the transmission networks inside 

each subregion are not represented. Moreover, the transmission constraints inside each subregion 

are not taken into account in the present study. The bottlenecks of intra-country transmission 

networks may limit the amount of international electricity trade. As a result, more domestic 

generation capacity might be installed, which would drive up the cost for the national electricity 

system. Therefore, there might be an underestimation of the national electricity system cost for 

the present study, given that the transmission constraints inside each subregion are not considered. 

As for the modeling of technical constraints, there are no operational constraints for thermal 

generation technologies, such as ramping rates for nuclear power. The ramping rate influences 

the speed with which a nuclear power plant responds to the load change in the power grid [47]. 

The lack of thermal constraints is likely to lead to an overestimation of the flexibility provided by 

nuclear power, thereby underestimating the cost for the electricity system. However, for a highly 

renewable power system, Cebulla et al. [92] found that the effect on cost of a unit commitment 

representation, as compared to a merit-order representation, is negligible. 

In this thesis, we focus on the optimization of an electricity system that covers a large geographic 

area, whereby the VRE and dispatchable resources are shared and the variations are smoothed 

over the continental transmission network. A potential consequence of this approach is that the 

generation capacity is concentrated to several sites with the best VRE resource potentials. On the 
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one hand, countries with good VRE resources might install large generation capacities and create 

job opportunities and revenues for the local community, while absorbing the land use and 

environmental impacts.  On the other hand, countries with less resources might rely more on 

imports for the electricity supply and pay for the traded electricity but face potential energy 

security problems. The uneven deployment of renewable generation capacity in different 

countries may result in an uneven distribution of the associated regional impacts [93]. An 

alternative approach to optimizing the continental electricity system is to model the electricity 

system so as to include self-sufficiency for each country [9]. In this thesis, we do not impose 

additional constraints to represent self-sufficiency for each country, as we think that new 

renewable generation capacity is likely to be installed at the most profitable sites (best sites) in 

the future European electricity market. 

Another limitation relates to uncertainties linked to the weather data for wind and solar power 

generation. For a low-carbon electricity system with a high share of VRE, the level of electricity 

generation depends strongly on the weather conditions. The weather data might be different for 

different years. For the purpose of this thesis, the data for wind and solar power are based on Year 

2018. We have not investigated the resilience of the system in terms of different weather years. 

Höltinger et al. [94] investigated a highly renewable Swedish electricity system and showed that 

extreme climatic events, such as winter nights without wind, may result in a high residual load 

(electricity demand less the production of VRE), which requires more back-up capacity than the 

current balancing capacity in the system. To understand the extent to which extreme weather 

conditions could affect our results, we calculated the extra capacity required from a natural gas 

open-cycle gas turbine (OCGT) power plant to balance the system when there is no output from 

wind and solar power in Sweden, and no international electricity trade. The system without 

nuclear power requires 6.5 GW more of natural gas OCGT as back-up capacity, which increases 

the net average system cost by 4% for Sweden. If nuclear power is not included for Sweden, 

maintaining resilience within the system does not seem to change the results dramatically. 

In this thesis, we investigate the electricity system only without modeling sector coupling, 

although we do consider electricity demand increases (Paper I) and pattern changes (Paper II) 

that might result from sector coupling. With sector coupling, both the volume and pattern of the 

electricity demand may change [19, 23]. Meanwhile, additional flexibilities could be provided by 

the other sectors [79-81]. The issue, therefore, is the extent to which sector coupling affects the 

results of this thesis. For Paper I, sector coupling is likely to increase the electricity demand. We 

do analyze one scenario with a higher electricity demand for Sweden in the sensitivity analysis 

and show that a higher electricity demand promotes the economic prospects for nuclear power 

investment in Sweden. Still, it is not clear which sector might be coupled to the electricity system, 

to what level the different energy sectors might be integrated by Year 2045, and how extensive 
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the flexibilities provided by other sectors might be. For Paper II, we only consider the change in 

demand pattern while the volume of demand is kept the same. If the volume of the electricity 

demand is dramatically increased due to sector coupling the impacts of different demand patterns 

on the modeling results may be heavily influenced by the land availability constraints for VRE 

resources. 
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Present work 

This chapter presents the main results from the appended papers. It begins with the impacts on 

the nodal net average system cost if nuclear power is excluded in the Swedish electricity system. 

Thereafter, the impacts of different demand patterns on the electricity system cost and the 

electricity supply mix are considered. 

Impacts on the electricity system of excluding nuclear power for Sweden 

(Paper I) 

Motivation and research question 

Nuclear power accounts for 41% of the annual electricity production in Sweden [18], but the 

nuclear fleet is aging, and decommissioning is planned in the coming decades for economic 

reasons. Currently, there is an ongoing debate in Sweden as to whether new nuclear power plants 

should be installed after the decommissioning of existing ones. A key issue surrounding the debate 

is whether the electricity system cost will escalate if nuclear power is excluded from the future 

Swedish electricity system. Therefore, we develop a techno-economic cost optimization model 

(REX) with a high temporal resolution for the Swedish and European electricity systems, to 

investigate the cost of the future low-carbon electricity system without nuclear power for Sweden. 

The following research questions were addressed. 

1) What is the cost of a future low-carbon electricity system without nuclear power for Sweden, 

given the present interconnecting transmission capacities within Sweden and between Sweden 

and neighboring countries? 

2) How is the cost affected if additional investments in transmission within Sweden and to other 

countries are allowed?  

Methods 

In Paper I, we use the REX model to investigate the future interconnected European electricity 

system for Year 2045 with an hourly time resolution, assuming a CO2 emissions constraint of 10 

g/kWh of the electricity demand. The economic performance of the Swedish electricity system 

with and without nuclear power is evaluated based on the nodal net average system cost (NNASC). 

The European electricity system covers a large geographic area with different VRE resource 

endowments for different locations. Using a techno-economic cost optimization model to 

investigate such a system may result in concentrating investments in renewable generation 

capacity to a few sites with the best harvests. Countries may then satisfy their domestic demands 

through importing electricity from neighboring countries with better outputs and paying for the 

imported electricity. The conventional system cost concept based on generation and transmission 
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costs cannot represent the electricity system cost for an individual country, as the effect of trade 

is not considered. This problem can be solved by isolating a country and not allowing trade in 

electricity. However, this may generate misleading results, as electricity trade is important for 

electricity supply and variation management within a low-carbon electricity system with a high 

penetration of VRE [5, 6, 95]. To represent the system cost for an individual country in the 

interconnected European electricity system, we introduced the nodal net average system cost 

(NNASC) to incorporate trade profit and congestion rent 1 , in addition to generation and 

transmission costs.  

Main findings 

The availability of nuclear power has limited impacts on the NNASC for Sweden in a future 

decarbonized European electricity system. The reduction in NNASC for Sweden due to the 

availability of nuclear power is less than 4.2%, and this holds true regardless of whether or not 

there is expansion of transmission capacity (Fix and Exp cases in Fig. 7a). As is evident in Fig. 

7b, Sweden is a net importer in the current transmission case (case Fix), whereas when 

transmission is expanded optimally (case Exp) Sweden becomes a net exporter. In the optimal 

transmission cases (case Exp), Sweden receives high revenues from electricity exports. The main 

reason for this is that Sweden has a large volume of reservoir hydropower, which enables 

exportation when the supply of renewable power in Europe is scarce. When nuclear power is 

available (NUC-Exp), this effect is further enhanced, with higher net exports than in the case 

without nuclear power (NoNUC-Exp).  

 

Fig. 7. Results for system cost from the modeling of the base scenarios. a) Nodal net average system cost 

for Sweden. b) Nodal net average system cost composition for Sweden. Since the costs of storage and 

demand-response are very low for Sweden, the ‘Other cost’ in (b) refers mainly to generation-related costs.  

 
1 Congestion rent is defined as the price difference times the power flow over a transmission network 

constraint. 
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We further conduct sensitivity analyses to uncover how nuclear power, storage and transmission 

costs affect the difference in NNASC for a system in Sweden with nuclear power relative to a 

system without nuclear power. With the present transmission capacity, the maximum economic 

benefit of nuclear power for Sweden is 10.2% (Fig. 8a). For the cases of optimal transmission, 

the cost differences between the nuclear power and non-nuclear power scenarios are in the range 

of 0% –16.5% (Fig. 8b). Unsurprisingly, the upper range of the cost reductions is obtained when 

the cost of nuclear power is low. Notably, the low investment cost for nuclear power, 3500 $/kW, 

is less than two-thirds of the projected value for Europe today [96]. Furthermore, the benefit of 

investing in nuclear power increases with higher storage costs, as more costly storage increases 

the cost of a highly renewable electricity system. However, investments in nuclear power in 

Sweden enable higher levels of electricity export from Sweden to smoothen the variations in the 

European electricity system and reduce the system-wide cost. 

 

Fig. 8. The decrease in NNASC for Sweden with nuclear power compared to the case without nuclear power, using 

various assumptions related to the investment costs for nuclear power, storage and transmission. a) Cost difference 

between cases NUC-Fix and NoNUC-Fix. b) Cost difference between cases NUC-Exp and NoNUC-Exp. The results 

for the base scenarios are marked with red circles. 

Conclusions 

In Paper I, we model the European electricity system and analyze the nodal net average electricity 

system cost for Sweden. Our results show that: 
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• The economic rationale for Sweden as a country to invest in nuclear power if there is a 

transition towards a low-carbon electricity system in Europe is weak; 

• The case with the best economic prospects for investment in nuclear power in Sweden is 

when the transmission capacity is optimal, in combination with a low cost for nuclear 

power and a high cost for storage. In this case, the inclusion of nuclear power reduces the 

NNASC for Sweden by 16.5%; 

• In a highly renewable electricity system, allowing additional investment in transmission 

capacity would benefit Sweden through increased profits from electricity trading. 

Impacts of the electricity demand pattern on the electricity system (Paper II) 

Motivation and research question 

Several studies in the literature have suggested that the future electricity demand patterns may 

entail large changes in both diurnal and seasonal variations as the results of economic 

development, climate change, massive adoption of electric vehicles, electric heating, electric 

cooling, etc. [19-28]. It remains unknown as how the potential electricity demand patterns will 

affect the cost and supply mix of the future electricity system. In particular, it is not known if 

misleading results will be produced if energy system modelers use historical electricity demand 

profiles or linearly scale them up as inputs to the energy system models. 

Therefore, we evaluate the conditions under which a demand pattern is important for the modeling 

results. Specifically, we address the following research question: What are the effects on the 

system cost and the electricity supply mix of applying different demand patterns in energy system 

models? 

2. Methods 

To answer this question, we use a simple techno-economic cost optimization model with a high 

temporal resolution for the electricity system. The influences of different demand patterns are 

initially explored in a stylized case involving three interconnected regions with different VRE 

resource endowments in Europe (Fig. 9). The interconnected electricity system in the stylized 

case is modeled for 1 year with an hourly time resolution, under a cap on CO2 emissions expressed 

in grams of CO2 per kWh of electricity demand. The effects of different demand patterns on the 

system cost and the electricity supply mix are analyzed based on the modeling results. The REX 

model is then adopted to evaluate the European and Chinese electricity systems, to validate the 

results obtained from the stylized case. For both the stylized case and the cases of Europe and 

China, the electricity demand profiles are treated to display typical seasonal and diurnal demand 

patterns (Fig. 10). A summary of the method used in this study is presented in Fig. 11. 
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Fig. 9. Regions covered in the stylized case. We select three regions with typical VRE resource potentials 

and connect them with transmission grids to analyze the impacts of demand pattern on an interconnected 

electricity system. The three regions are located in the south, central and north of Europe, respectively, and 

they are accordingly labeled as South, Central and North. The data on VRE resources and the electricity 

demand pattern for Spain plus Portugal are assigned to region South. Similarly, data on VRE resources and 

the electricity demand patterns for Germany and Norway are assigned to regions Central and North, 

respectively. 

 

Fig. 10. Typical electricity demand patterns. 
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Fig. 11. Overview of the method. The input data for the electricity demand and the stylization of electricity 

demand profiles are shown in the blue dashed box. All the other input data are listed in the green dashed 

box.  

Main findings 

Results for the stylized case 

Fig. 12 shows how the average electricity system cost increases for scenarios with different 

seasonal variations, as compared to the scenario of the current demand pattern. If the demand 

profile has no seasonal variation or a winter peak (possibly due to large-scale deployment of 

electric heating), the increase in system cost is small (<3%). In contrast, the increase in system 

cost is larger (3%–8%) if the annual peak is in the summer (possibly due to massive adoption of 

ACs). In the stylized case, onshore wind power is cheap to install, and wind power has a typical 

seasonality with higher output in the wintertime than in the summertime. In addition, the variation 

of large-scale wind power can be smoothed through the expansion of transmission grids. 

Therefore, when the annual peak of the electricity demand is during the winter, the seasonal 

variation of the demand profile is in line with the seasonal pattern of wind power, and the cheap 

wind resource is deployed. In contrast, if the annual peak demand is in summer when the output 

of wind power is lower, the optimal system configuration comprises more solar power and storage, 

which drives up the system cost. Correspondingly, there are large deviations in the capacity mix 

for the optimal electricity system portfolio, especially with respect to the solar and storage 

capacities (see Fig. 13). In the scenario with the highest summer peak, the increase in system cost 

is 8%, while the investments in solar power and storage capacities increase by 54% and 95%, 

respectively, as compared to the scenario of the current demand pattern. Similar phenomena are 

observed for other scenarios. Therefore, it is clear that a change in the seasonal demand pattern 

has a stronger impact on the electricity supply mix than on the system cost. 
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Fig. 12. Increases in the average electricity system cost for the scenarios of different seasonal variations, as 

compared to the scenario of the current demand pattern. Each seasonal demand pattern (label on the x-axis) 

represents a group of scenarios with the same or similar aggregated demand profiles. The ends of the box 

are the upper and lower quartiles, so the box spans the interquartile range. The bar in the box represents the 

median value and the cross represents the average value. The whiskers are the two lines outside the box 

that extend to the highest and lowest values. 
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Fig. 13. Relationships between the differences in system cost and the deviations in the electricity supply 

mix for the scenarios of different seasonal variations, as compared to the scenario of the current demand 

pattern. The dots inside the red dashed rectangle represent the scenario with the highest summer peak, as 

described in the text. 

The impacts of different diurnal demand patterns (the underlying causes of which may be various 

charging strategies for EVs) of the demand profile on the electricity system cost are depicted in 

Fig. 14. Across all the scenarios, a higher diurnal variation slightly increases the system cost, but 

the difference in system cost between the cases of medium- and high-diurnal variation is limited 

(<3%). Similar to the impact seen for the seasonal demand pattern, a higher diurnal variation has 

a more potent impact on the electricity supply mix than on the system cost. 
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Fig. 14. Difference in the average electricity system cost for the case of high diurnal variation compared to 

the case of medium diurnal variation. Each seasonal demand pattern (label on the x-axis) represents a group 

of scenarios with the same or similar aggregated demand profiles. The ends of the box are the upper and 

lower quartiles, so the box spans the interquartile range. The bar in the box represents the median value and 

the cross represents the average value. The whiskers are the two lines outside the box that extend to the 

highest and lowest values. 

Results for the cases of Europe and China 

We also analyze the full-scale cases (Europe and China), to validate the results from the stylized 

case. As for the case of Europe, the system cost increase for scenarios with zero seasonal variation 

and a winter peak is less than 2%, while the summer peak increases the system cost by 5%. The 

cost deviation due to different seasonal demand patterns for Europe is in line with the results from 

the stylized case. In contrast, in the case of China, the system cost increases by 6% for the high 

winter peak and decreases for the summer peak. The chief reason for the discrepancy in the results 

for Europe and China is that hydro reservoirs in China are less capable of sequestering the water 

inflow as seasonal storage, as compared with the hydropower plants in Europe. Therefore, 

hydropower production in China is higher in the summertime when the water inflow is large, 

which offsets the impact of the summer peak for China. Therefore, our results regarding the 

impacts of different seasonal demand patterns based on the stylized case are only valid for Europe 

or regions with similar resource endowments.  

Conclusions 

Through investigating the impacts of different demand patterns on the modeling results for a 

stylized case and two applied cases, we show in Paper II how the demand pattern influences the 

electricity system cost and the electricity supply mix. 
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• In general, the seasonal demand pattern (zero seasonal variation, winter peak) has a limited 

impact on the system cost, except for the case of the summer peak, where the system cost 

may increase by up to 8%; 

• A higher diurnal variation has minor impacts on the system cost (<3% increase in the 

system cost); 

• The electricity demand pattern has a stronger influence on the electricity supply mix than 

on the system cost; 

• The impacts of different seasonal demand patterns on a European, highly renewable 

electricity system are consistent with the results of the stylized case, but not for the case 

of China; 

• In case the future electricity demand profile shifts from the current pattern to a summer 

peak, it is important for modelers to exercise caution regarding the assumptions made for 

the future electricity demand pattern. 
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Future work 

Following the studies presented in this thesis, there are several interesting aspects that are worth 

investigating for the future low-carbon electricity system. In Paper I, the investment in nuclear 

power in Sweden enables greater export of electricity to the highly renewable European electricity 

system. The hydropower in Nordic countries is widely regarded as the “green battery” for Europe, 

as it can provide flexible hydropower to deal with the variations in the European electricity system. 

Apart from the uncertainty linked to nuclear power policy in Sweden, Germany has decided to 

phase out nuclear power, while the UK and Finland are planning new nuclear power plants. 

Therefore, it is interesting to discover how the nuclear policy in the North Sea region could affect 

the “green battery” function of hydropower in the Nordic countries. 

In Paper II, a seasonal demand pattern with summer peak may increase the system cost by 8%, 

while the impact on solar capacity may be much larger (54%). One hypothesis is that there is a 

clear synergy between the high demand and good solar irradiation in the summer. Therefore, it is 

interesting to test this hypothesis and to explore the following questions: 

1. What is the impact of the increased cooling demand on the electricity system cost and the 

electricity supply mix, especially solar power, for the future low-carbon electricity system? 

2. How is the effect contingent on geographic location (different latitudes)? 
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