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Abstract—UML Class diagrams are commonly used to describe
the designs of systems. Such designs can be used to guide
the construction of software. In practice, we have identified
two main types of using UML: i) FwCD refers to diagrams
are hand-made as part of the forward-looking development
process; ii) RECD refers to those diagrams that are reverse
engineered from the source code; Recently, empirical studies
in Software Engineering have started looking at open source
projects. This enables the automated extraction and analysis
of large sets of project-data. For researching the effects of
UML modeling in open source projects, we need a way to
automatically determine the way in which UML used in such
projects. For this, we propose an automated classifier for decid-
ing whether a diagram is an FwCD or an RECD. We present
the construction of such a classifier by means of (supervised)
machine learning algorithms. As part of its construction, we
analyse which features are useful in classifying FwCD and
RECD. By comparing different machine learning algorithms,
we find that the Random Forest algorithm is the most suitable
algorithm for our purpose. We evaluate the performance of
the classifier on a test set of 999 class diagrams obtained from
open source projects.

1. Introduction

In the early stages of the SDLC, class diagrams may
be used to represent the architectural software design. As
development progresses, class diagrams can be used to
represent information that is closer to the construction of the
system. During or after the implementation of source code,
a class diagram may be recovered using reverse engineering
techniques. Such a reverse engineered class diagram is
closely based on the source code and reflects the fine-grain
implementation structure of software systems [1].

Hebig et. al [2] present Lindholmen dataset which is a
repository of UML diagrams built to serve as an informative
collection of UML models. This repository holds more
than 26,000 UML class diagrams and includes links to the

projects on GitHub where the diagrams were found. As
such it forms a valuable resource for empirical studies on
projects that use some forms of UML modeling. We argue
that different practices of UML use (such as use of forward-
design (FW) and reverse engineering (RE) diagrams) could
lead to different effects on various aspects of software
systems. However, these effects are often overlooked within
a small set of softwares. The automated classification of
FwCD and RECD will hopefully enable researcher to study
the effects on a bigger population of open source software
systems.

Goal. This study aims at providing an automated classifica-
tion model for classifying Forward-designed Class Diagram
(FwCD) [3] and Reverse Engineered Class Diagram (RECD)
[3]. We apply supervised machine learning techniques as the
method for the classification of diagrams. We use a dataset
of 999 class diagrams that are collected from Lindholmen
dataset. In order to obtain a ground truth, this dataset is
labelled by experts that have experience in working with
UML diagrams. The classification features are extracted
based on (i) experts judgment, (ii) the work by Osman and
Chaudron [4], and (iii) the work by Nugroho and Chaudron
[5]. We evaluate 11 classification algorithms that cover the
diverse type of algorithms in supervised machine learning,
in order to select the best classification algorithm for this
problem.

Contribution. The contributions of this study are the fol-
lowing: (i) identification of features that can be used to
classify FwCD and RECD diagrams, (ii) a suitable machine
learning algorithm for classifying FwCD and RECD, (iii) a
dataset with ground truth for classifying FwCD and RECD
and, (iv) comparative analysis of the performance of various
machine learning algorithms for our problem.

This paper is structured as follows. Section 2 discusses
the related work. Section 3 describes the research questions.
Section 4 explains the approach. The analysis of results is
in Section 5. This followed by conclusions in Section 6.
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2. Related Work

To our best knowledge, there is no work that is directly
focused on automatically classify of FwCD and RECD.
Therefore, we broaden our discussion to works that have
used class diagram information (e.g. metrics) and machine
learning classification algorithms for classification purposes.

Maneerat and Muenchaisri [6] proposed a method for
predicting bad-smell from software design model. This study
used 27 standard software metrics proposed by Abreu in [7].
Halim [8] proposed a method to predict fault-prone classes
using the complexity metrics of UML class diagram. The
prediction models were built using two classification algo-
rithm i.e. Naive Bayes and k-Nearest Neighbors. Bagheri
and Gasevic [9] investigated through controlled experimen-
tation whether a set of structural metrics can be good predic-
tors of the three main sub-characteristics of maintainability:
analyzability, changeability, and understandability.

Nugroho performed a study on predicting defects based
on diagram metrics [5]. For this he developed metrics that
aim to capture the level of detail/abstraction of UML dia-
grams. Examples of the metrics that they propose are: the
percentage of association-relations that has labels, the per-
centage of methods that have signatures. His study showed
that higher level of detail in UML models correlates with
fewer defects in source code. This suggests that when our
classifier uses level of detail metrics, it might also be
used in quality assurance of models. Osman et. al [10]
proposed an approach to condense reverse engineered class
diagram by using machine learning techniques. They used
standard object-oriented design metrics i.e. size measures
and coupling measures. Based on this work, Thung et. al
[11] improved the classification result by adding Network
measure (e.g. Baycenter, PageRank).

3. Research Questions

This section describes the research objective and asso-
ciated questions.

The overall goal of this study is to automatically dis-
tinguish forward-designed class diagrams from reverse en-
gineered diagrams. To this end, we need to find out the
following: RQ1: Which features of UML diagrams are in-
fluential predictors for classifying diagrams into FwCD and
RECD? And also, RQ2: Which machine learning algorithms
are suitable for this task?

4. Approach

This section describes our approach that consists of
Data collection, Features extraction & Creating ground truth,
Model learning, and Evaluation of results.

4.1. Data Collection

For this study, we use UML class diagrams images
that were collected from the Lindholmen dataset [2]. By

scanning 4443 projects, we collected 2000 class diagrams
that are stored in various image file formats. We refined
the dataset by selecting reasonable-quality images and by
removing duplicate images for the dataset. We finalized a
list of 999 class diagram images for this study. The dataset
can be found at [12].

Because the collected class diagrams were stored in
image formats, it was necessary to extract the (model)
content of the diagrams in a file format: for this we used the
XMI (XML Metadata Interchange) standard. The conversion
of UML class diagrams in image formats into XMI format
was done using the Image2UML tool [13]. In doing so,
we extended the Image2UML tool’s capabilities to capture
additional information such as operator parameters to which
the original version did not support.

4.2. Feature Extraction & Ground Truth

Supervised machine learning needs a labelled dataset
for learning purposes. As there are no explicit rules on
how to distinguish FW- from RE-diagrams, this labelling
was done manually by three selected UML experts who
have at least five years of experience on using UML class
diagrams. The labelling process consists of two phases: (i)
All the experts gathered together in a brainstorming session
to outline the characteristics of FwCD and RECD. After
the experts defined the FwCD and RECD characteristics,
we randomly selected 30 class diagrams images from the
dataset and let the experts discuss and refine the original
characteristics for classifying the diagrams. (ii) Each expert
is randomly assigned a set of 323 class diagrams. For each
diagram, every expert needs to classify it into different cat-
egories: “FW Design”, “RE Design” and “For Discussion”.
Diagrams in “For Discussion’ were discussed in follow-up
group meetings. The loop of individual classification and
group discussion is continued until all class diagram images
are classified into FW and RE.

In earlier work, Osman et. al [4] reported several char-
acteristics that are typical of UML diagrams that are ob-
tained by reverse engineering technique (by using selected
commercial UML-CASE tools). These characteristics are the
basis for our selection of candidate classification features. To
this set, we added features that the aforementioned experts
elicited when labelling diagrams as FwCD and RECD. More
detailed explanations on the candidate features are described
in Table 1. Finally, we merge the data file with the label
information (isFwd - “Yes” or “No”).

4.3. Model Learning

Mining data is experimental. There is no algorithm that
fits all situations and all purposes. We start the selection of
machine learning algorithm by conducting an exploratory
experiment on a range of machine learning algorithms.

The algorithms in this experiment are selected from
the different set of algorithms representative for different
approaches. For example, Decision Trees, Stumps, Tables
and Random Trees or Forests all divide the input space up
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TABLE 1. LIST OF FEATURES & INFOGAIN RESULTS

No Features Description Data
Type

InfoGain
Value

1 avgParaOper Average parameter per op-
eration

Numeric 0.3191

2 numPara The total number of pa-
rameter in the class dia-
gram

Numeric 0.2897

3 extOperPara “true” if the operation pa-
rameter exist and “false”
if it is not exist

Nominal
(Binary)

0.2371

4 avgOperCls Average operation per
class

Numeric 0.2249

5 maxOperCls Select the highest number
of operation (for a class)
in the class diagram

Numeric 0.1602

6 avgAssocCls Average association per
class

Numeric 0.1597

7 numCls The total number of
classes in the class
diagram

Numeric 0.1319

8 numAssoc The total number of as-
sociation in the class di-
agram

Numeric 0.1304

9 numOper The total number of oper-
ation in the class diagram

Numeric 0.1265

10 numOrpCls The total number of or-
phan classes in the class
diagram

Numeric 0.858

11 avgOrpCls Average orphan classes
per class diagram

Numeric 0.0668

12 avgAttrCls Average attribute per class Numeric 0.0605
13 numAttr The total number of at-

tribute in the class
Numeric 0.0551

14 maxAttrCls Select the highest number
of attribute (in a class) in
the class diagram

Numeric 0.0377

15 extOrpCls “true” if the orphan (un-
connected) classes exist
and “false” if it is not exist

Nominal
(Binary)

0.0238

16 numAssocType Count the number of as-
socation type that exist in
the class diagram

Numeric 0.0118

into disjoint smaller sub-spaces and make a prediction based
on the occurrence of positive classes in those sub-spaces.
K- Nearest Neighbour (k-NN) and Radial Basis Functions
(RBF) Networks are similar local approaches, but the sub-
spaces here are overlapping. In contrast, Logistic Regression
and Naive Bayes model parameters are estimated based
on potentially large numbers of instances and can thus be
seen as more global models [10]. OneR [14] is selected to
represent the simplest classification algorithm compared to
the algorithms mentioned above. We use the result of ZeroR
as the baseline (only on the accuracy measurement). ZeroR
shows the probability of a guess of whether a class diagram
is ReCD or FwCD. The detail explanations of the aforemen-
tioned algorithms can be found at [15]. The classification
models are constructed by using all aforementioned (16)
features. The stratified 10-fold cross-validation is used for
evaluating the classification model performance. To ensure a
more accurate validation result, the 10-fold cross-validation
is repeated ten (10) times for every classification model.
This activity is supported by WEKA tool [15].

4.4. Evaluation of Results

To measure predictive power of predictors, we used the
information gain with respect to the class [15]. Univari-
ate predictive power means measuring how influential a
single predictor is in prediction performance. This study
uses this analysis for the data exploration. We use WEKA’s
Information Gain Attribute Evaluator (InfogainAttrEval) in
conducting this experiment. The WEKA’s InfogainAttrEval
produces a value from 0 to 1. The higher value of InfoGain
(close to 1) denotes a stronger influence of the predictor.

In general, we use three evaluation measures to evaluate
the classification algorithms performance i.e. (i) Percentage
of correct (accuracy) [16], (ii) Precision [17] and, (iii) Recall
[17]. If required, we extend this evaluation into more detail
measures such as F-Measure [18] and Area Under Receiver
Operating Characteristic (ROC) Curve (a.k.a AUC) [19].

5. Result and Findings

This section evaluates the performance of the selected
features and the classification algorithms.

5.1. RQ1: Analysis of Selected Features

Table 1 shows InfoGain results for our 16 features.
(predictors) produce InfoGain score >0. This result shows
that every single feature used in this study has some pre-
dictive power. The average number of operation parameters
(avgParaOper) is the most influential predictor. The three
most influential features are related to the operation param-
eters. Meanwhile, the other most influential features are the
average number of operations per class (avgOperCls) and
the maximum number of operation per class (maxOperCls).
Both features are related to the operations in class diagrams.
Thus, this result indicates that the class diagram operations
plays a major role in classifying the RECD and FwCD. In
the future, we would like to evaluate the influence of a group
of features in classifying FwCD and RECD. We also plan
to analyze the correlation between features and come out
with better predictor/feature set.

5.2. RQ2: Classification Model Performance

The accuracy value for ZeroR is 80.68, which means
our dataset is imbalanced: the majority of the class diagram
in the dataset is RECD. The results show (see Table 2) that
all classification models produce a significant improvement
compared to ZeroR. The relative improvement of accuracy
values ranges from 7% to 10%.

The second baseline is OneR. The OneR classification
algorithm uses only one (most influential) feature to con-
struct the classification model. This benchmark experiment
is conducted because according to Holte [14], there is a
possibility that a simple algorithm works well in a dataset.
OneR represents the simplest classification model. Thus,
complex classification algorithms should perform better to
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TABLE 2. CLASSIFICATION PERFORMANCE

Performance
Measure

Accuracy Precision Recall F-Measure AUC

OneR 88.01 0.94 0.91 0.92 0.84
Decision Table 88.33 0.93 0.93 0.93 0.93
Naive Bayes 88.10 0.97 0.88 0.92 0.91
RBFNetwork 89.32 0.95 0.91 0.93 0.92
Logistic Reg. 88.90 0.94 0.93 0.93 0.94
SVM 87.28 0.88 0.97 0.93 0.71
K-NN (1) 89.16 0.93 0.93 0.93 0.88
K-NN (5) 87.89 0.93 0.92 0.92 0.93
Decision Stump 87.69 0.98 0.87 0.92 0.89
J48 88.59 0.94 0.91 0.93 0.85
Random Tree 87.89 0.92 0.93 0.93 0.81
Random Forest 90.74 0.95 0.93 0.94 0.96

produce a significant improvement because they require
greater computational effort (e.g. for extracting all features).
The results show that the performance of SVM, k-NN (5),
Decision Stump and Random Tree are slightly lower than
OneR (based on accuracy value). Thus, we exclude these
algorithms from further evaluation.

After benchmarking the classification algorithms against
the baselines, we compare the classification algorithms’
performance based on precision and recall. Decision Table,
Logistic Regression, k-NN (1) and Random Forest show a
balance score between precision and recall. Hence, based on
this result, Decision Table, Logistic Regression, k-NN (1)
and Random Forest are suitable algorithms for our problem
and dataset. Based on the F-Measure and AUC score, the
Random Forest is the best performing classification algo-
rithm for our purpose.

We see there is a possibility to enhance this work by
the following: (i) reconfigure the classification parameter,
(ii) combination of classification algorithms, (iii) extend
our approach to larger datasets, and (iv) classifying class
diagrams into application domains by using text mining
techniques.

6. Conclusions

This work presented the construction and evaluation of
an automated classifier for differentiating forward-designed
(FwCD) from reverse-engineered (RECD) class diagrams.
This classifier was constructed using machine learning algo-
rithms. We investigated various properties of class diagrams
as features of our classifier. We have shown that the features
that relate to parameters of operations are the most influen-
tial features for this classification purposes. We found that
Random Forest is the most suitable classification algorithms
for our classification model.

As for the conclusion, this study has formulated an au-
tomated classification model to classify FwCD and RECD.
The classification model performed reasonably well based
on the scores benchmark. As part of our future work, we
would like to apply this model to our recently collected
corpus of class diagrams (in total 24000+) from Lindholmen
dataset. Through this research, we expect to get an under-
standing of the different ways in which UML diagrams are

used in open source projects and ultimately an understanding
of the effectiveness of various modeling and documentation
practices.
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