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ABSTRACT

Context. Based on the finding that molecular hydrogen is unobservable in cold molecular clouds, the column density measurements
of molecular gas currently rely either on dust emission observation in the far-infrared, which requires space telescopes, or on star
counting, which is limited in angular resolution by the stellar density. The (sub)millimeter observations of numerous trace molecules
can be effective using ground-based telescopes, but the relationship between the emission of one molecular line and the H2 column
density is non-linear and sensitive to excitation conditions, optical depths, and abundance variations due to the underlying physico-
chemistry.
Aims. We aim to use multi-molecule line emission to infer the H2 molecular column density from radio observations.
Methods. We propose a data-driven approach to determine the H2 gas column densities from radio molecular line observations. We
use supervised machine-learning methods (random forest) on wide-field hyperspectral IRAM-30m observations of the Orion B molec-
ular cloud to train a predictor of the H2 column density, using a limited set of molecular lines between 72 and 116 GHz as input, and
the Herschel-based dust-derived column densities as “ground truth” output.
Results. For conditions similar to those of the Orion B molecular cloud, we obtained predictions of the H2 column density within a
typical factor of 1.2 from the Herschel-based column density estimates. A global analysis of the contributions of the different lines to
the predictions show that the most important lines are 13CO(1–0), 12CO(1–0), C18O(1–0), and HCO+(1–0). A detailed analysis dis-
tinguishing between diffuse, translucent, filamentary, and dense core conditions show that the importance of these four lines depends
on the regime, and that it is recommended that the N2H+(1–0) and CH3OH(20–10) lines be added for the prediction of the H2 column
density in dense core conditions.
Conclusions. This article opens a promising avenue for advancing direct inferencing of important physical parameters from the molec-
ular line emission in the millimeter domain. The next step will be to attempt to infer several parameters simultaneously (e.g., the column
density and far-UV illumination field) to further test the method.
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1. Introduction

Atoms and molecules have long been thought to be versa-
tile tracers of the cold neutral medium in the Universe, from
high-redshift galaxies to star-forming regions and protoplane-
tary disks because their internal degrees of freedom bear a
signature that reveals clues about the physical conditions of
their environments. Atoms and molecules are affected by many
processes: photoionization and photodissociation by far-UV pho-
tons, excitation by collisions with neutrals and electrons, radia-
tive pumping of excited levels by far-UV or IR photons, gas
phase chemical reactions, condensation on grains, solid state
reactions in the formed ice, (non)-thermal desorption, etc. More-
over, this chemical activity is tightly coupled with gas dynamics.
Chemistry affects the gas motions because (1) the ionization
state controls the coupling to the magnetic field; and (2) the
line radiation from molecules (mostly rotational lines) and atoms
(fine structure lines in the far-IR) is the main cooling agent of
the neutral gas over a broad range of astrophysical environments,
controlling the equation of state and therefore affecting the
dynamics. Conversely, the gas dynamics affects the chemistry
because it produces steep and time-variable density and veloc-
ity gradients, which change the rates of molecule formation and
destruction. Numerical models of interstellar clouds face the dif-
ficulty of combining sophisticated chemical codes (addressing
the molecule formation and destruction processes) with turbu-
lent gas dynamics. This is a tremendous challenge given the
non-linearity of fluid dynamics, the rigidity of chemical reac-
tions, and the wide range of time scales involved (Valdivia et al.
2017; Clark et al. 2019). It is, therefore, important to acquire
self-consistent data sets that can be used as templates for this the-
oretical work and, at the same time, to document the diagnostic
capabilities of molecular lines accurately.

The recent development of spectrometers in the (sub)-
millimeter domain (e.g., IRAM-30m/EMIR, NOEMA, ALMA)
opens new avenues to fulfill this goal. First, wide band spec-
trometers now allow us to simultaneously observe tens of lines
instead of a single one along each line of sight. The first stud-
ies using these capabilities were sensitive (∼3−8 mK) unbiased
spectral surveys at 1, 2, and 3 mm targeting a few specific lines
of sight (e.g., Horsehead WHISPER: Pety et al. 2012, TMC1:
Gratier et al. 2016, ASAI: Lefloch et al. 2018). Firstly, these
studies show the power of multi-line studies to constrain the
physics and the chemistry of molecular clouds. Secondly, the
increase in sensitivity now makes it possible to detect these lines
over large areas (several square degrees), paving the way for an
era of quasi systematic hyperspectral imaging in the millimeter
domain. The ORION-B project (Outstanding Radio-Imaging of
OrioN-B, co-PIs: J. Pety and M. Gerin) is a IRAM Large Project
using the 30m telescope that aims to improve the understanding
of the physical and chemical processes of the interstellar medium
by mapping a large fraction of the Orion B molecular cloud
(5 square degrees) with a typical resolution of 27′′(∼50 mpc at
400 pc, the typical distance to the Orion B cloud) and 200 kHz
(or 0.6 km s−1) over the full 3 mm atmospheric band.

In an early study, Pety et al. (2017) showed how tracers
of different optical depths like the CO isotopologues allow us
to fully trace the molecular medium, from the diffuse enve-
lope to the dense cores, while various chemical tracers can be
used to reveal different environments. However, extracting the
information contained in these multi-line observations requires
powerful statistical tools. A clustering algorithm applied to the
intensities of selected molecular lines revealed spatially con-
tinuous regions with similar molecular emission properties,

corresponding to different regimes of volume density or far-UV
illumination (Bron et al. 2018). In addition, a global principal
component analysis of the line integrated brightnesses revealed
that some combinations of lines are sensitive to the column den-
sity, the volume density, and the UV field (Gratier et al. 2017). In
this paper, we go one step further by checking whether it would
be possible to build a quantitative estimate of the H2 column
density and if so, how that could be done, based on the molecu-
lar emission and valid over a large range of conditions. Indeed,
this is a prerequisite to classify the interstellar medium into its
different phases such as diffuse, translucent, and dense regimes
(Pety et al. 2017), and to identify its underlying structure, in par-
ticular, its filamentary nature (André et al. 2010; Orkisz et al.
2019). Such a method could also be used to estimate the mass of
the different (velocity-separated) components of a giant molec-
ular cloud, for instance, the linear mass of the filaments relative
to their more diffuse environment. The H2 column density is
also required to compute molecular abundances from observed
molecular column densities and compare these with the outputs
of astrochemical codes.

To do this, we focus on supervised learning methods. Super-
vised learning is a general set of machine learning methods used
to learn how to assign a class or infer the value of a given quan-
tity from a set of measured observables. These methods need
a training set for which we know both the measured features
and the searched class or value. Here, we use: (1) the emis-
sion of selected spectral lines over a fraction of the observed
field of view as input observables; and (2) the dust-traced col-
umn density as a proxy of the gas column density. Indeed,
multi-wavelength observations of dust thermal emission in the
submillimeter range and the subsequent fit of the spectral energy
distribution is one of the most successful methods for deriving
total column density maps of the interstellar medium. Between
2009 and 2015, the Herschel Observatory instruments PACS (70,
100, 160 µm) and SPIRE (250, 350, 500 µm) mapped a fraction
of the sky with an angular resolution of ∼40′′ or better. In par-
ticular, large programmes have been dedicated to this task, for
example, the HiGal survey mapping of the inner Galactic plane
(68◦ > l > −70◦ and |b| < 1◦ Molinari et al. 2016), or the Gould
Belt survey (André et al. 2010). However, since the end of the
Herschel mission, and until its potential successor SPICA that
could be launched in the 2030s, only SOFIA/HAWK+ is cur-
rently able to measure the far-IR dust emission. Ground-based
or ballon-borne submillimeter telescopes will map the interstel-
lar medium with even higher angular resolution but the lack of
data at shorter wavelengths will make the estimation of the dust
temperature highly uncertain. This means that dust temperatures
would have to be approximated when deriving the dust-traced
column density. This method will likely lead to systematic errors.
Hence, devising an accurate method for estimating the H2 col-
umn density, which only relies on ground-based (sub-)millimeter
facilities, is important.

This paper is structured as follows. Section 2 introduces the
data sets and Sect. 3 formalizes the problem. Section 4 intro-
duces our concepts and methods. Section 5 discusses how we
applied them in practice. Section 6 compares the performances
of different methods. Section 7 discusses which lines are the
most important for inferring the H2 column density. Section 8
presents a discussion on whether the column density predictor
can be used on noisier data or on data from sources more distant
from the Sun than Orion. In this section, we also discuss how the
method can be generalized to other physical parameters, such as
the far-UV illumination. Section 9 presents our conclusions.
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Table 1. Spectral properties of the observed lines.

Species Quantum numbers Frequency s (a) Noise (b)

Simplified Complete [MHz] # [K]

12CO (1–0) J = 1→ 0 115 271.202 1 0.11
13CO (1–0) J = 1→ 0 110 201.354 1 0.04

C18O (1–0) J = 1→ 0 109 782.173 1 0.04

C17O (1–0) J = 1→ 0 112 358.982 1 0.06

H2CO (1–0) 10,1→ 00,0 72 837.948 3 0.11

HCO+ (1–0) J = 1→ 0 89 188.525 3 0.05

HC13O+ (1–0) J = 1→ 0 86 754.288 3 0.06

HCN (1–0) J = 1→ 0, F = 2→ 1 88 631.848 3 0.06

HNC (1–0) J = 1→ 0 90 663.568 3 0.06
12CN (1–0) N = 1→ 0, J = 3/2→ 1/2, F = 5/2→ 3/2 113 490.970 1 0.07
12CS (2–1) J = 2→ 1 97 980.953 1 0.04
32SO (3–2) J = 3→ 2, N = 2→ 1 99 299.870 1 0.04

CCH (1–0) N = 1→ 0, J = 3/2→ 1/2, F = 2→ 1 87 316.898 2 0.05

c-C3H2 (2–1) 21,2→ 10,1 85 338.890 2 0.04

N2H+ (1–0) J = 1→ 0, F1 = 2→ 1, F = 3→ 2 93 173.764 3 0.05

CH3OH (2–1) J = 2→ 1, K = 0→ 0, (A+) 96 741.375 1 0.04

SiO (2–1) J = 2→ 1 86 846.985 1 0.06

H+ 40α 40α recombination line 99 022.953 1 0.02

Notes. (a)Number of the IRAM-30 m tuning setup the line was observed
with (see Sect. 2.1 for details). (b)Typical noise level in channels of
0.5 km s−1 measured on the cubes that were smoothed at an angular
resolution of 40′′.

2. Data

2.1. Molecular emission from IRAM-30m observations

The acquisition and reduction of the molecular data set used in
this study is presented in detail in Pety et al. (2017), but the field
of view has been extended to the North and East by ∼60%. In
short, the data were acquired at the IRAM-30m telescope by
the ORION-B project in only three frequency tunings: the first
from 92.0 to 99.8 GHz (LSB band) and from 107.7 to 115.5 GHz
(USB band); the second from 84.5 to 92.3 GHz (LSB band) and
from 100.2 to 108.0 GHz (USB band); and the third from 71.0 to
78.8 GHz (LSB band) and from 86.7 to 94.4 GHz (USB band).
The data were acquired from August 2013 to February 2015 for
the two first tunings and in August 2016 for the third tuning.

The selection of the studied lines was performed based on
the spectra averaged over the observed field of view. Table 1
lists the 18 selected lines and their associated tuning setup. A
velocity interval of 80 km s−1 was extracted around each line and
the spectral axis was resampled onto a common velocity grid.
The systemic velocity of the source is set to 10.5 km s−1 and the
channel spacing is set to 0.5 km s−1, which is the highest velocity
resolution achieved for the 12CO (1−0) line. This implies that the
noise is more and more correlated from one channel to the next
as the rest frequency of the line decreases.

The studied field of view covers 0.9◦ × 1.6◦ towards the
Orion B molecular cloud part that contains the Horsehead
nebula, and the HII regions NGC 2023, NGC 2024, IC 434,
and IC 435. Compared to Pety et al. (2017), Gratier et al.
(2017), Orkisz et al. (2017), Bron et al. (2018), it addition-
ally comprises the northern molecular edge that contains the
hummingbird filament studied in Orkisz et al. (2019). All
the cubes were gridded onto the same spatial grid to ease
the analysis. The projection center is located on the Horse-
head at 05h40m54.270s,−02◦28

′
00.00

′′
. The maps are rotated

counter-clockwise by 14◦ around this position. The angular
resolution ranges from 22.5 to 35.6′′. The position-position-
velocity cubes of each line were smoothed to a common angular
resolution of 40′′ to avoid resolution effects during the analysis.
This was done by convolution with a Gaussian kernel of width

θkernel =

√
402 − θ2

beam, where θbeam is the telescope beam for
each observed line in arcsec. A pixel size of 20′′ was used to
ensure Nyquist sampling and to avoid too strong correlations
between pixels. At a distance of 400 pc (Menten et al. 2007;
Zucker et al. 2019, 2020), the sampled linear scales range from
∼80 mpc to ∼11 pc.

From the position-position-velocity cubes, we computed
maps of both the peak temperature and the integrated inten-
sity (moment 0)1. The peak temperature is just the maximum
of the spectrum intensity over the 80 km s−1 velocity range. The
integrated intensity is computed over a velocity window that is
decided as follows. Starting from the peak intensity velocity, all
adjacent channels whose intensity is larger than zero are added
to the velocity window (Pety 1999). This process is iterated five
times, each time starting from the next intensity maximum. Up
to five velocity components may, hence, be present on each line
of sight.

While the line integrated intensity can be used as a proxy for
the column density of the species along the line of sight, at least
for some column density interval, we also include the line peak
temperature to take into account the possible effect of the excita-
tion temperature on the relationship between the column density
and the integrated intensity. As discussed by Pety et al. (2017),
we expect variations of the gas temperature (and thus of the exci-
tation temperature) across the targeted field of view because it is
exposed to the intense far-UV illumination produced by young
OB stars in the more or less embedded H II regions. For optically
thick lines, the line peak temperature can be viewed as a proxy
for the line excitation temperature where the brightness temper-
ature approaches the excitation temperature. For an (faint) opti-
cally thin line, the map of peak temperature is proportional to the
excitation temperature times the column density per velocity bin.
Using both the line area and the peak temperature partly lifts the
degeneracy between excitation and amount of gas along the line
of sight (see e.g., the companion article by Roueff et al. 2020).

2.2. N(H2) column density derived from dust thermal
emission observed with Herschel

To get an independent measurement of the column density
for the Orion B cloud, we use the dust continuum observa-
tions from the Herschel Gould Belt Survey (André et al. 2010;
Schneider et al. 2013) and from the Planck satellite (Planck
Collaboration I 2011). The fit of the spectral energy distribu-
tion by Lombardi et al. (2014) gives us access to the spatial
distributions of the dust opacity at 850 µm and of the effective
dust temperature. As in Pety et al. (2017), we converted τ850 µm

to visual extinctions using AV = 2.7× 104 τ850 mag, and we use
NH/AV = 1.8× 1021 cm−2 mag−1 as conversion factor between
visual extinction and hydrogen column density: NH = NHI +
2NH2 . Over the observed field of view, the column density of
atomic hydrogen accounts for less than one visual magnitude of
extinction (Pety et al. 2017). We thus choose to neglect this con-
tribution in this study. Figure 1 shows the spatial distribution of
this dust-traced column density.

1 The data products associated with this article are available at
https://www.iram.fr/~pety/ORION-B
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Fig. 1. Spatial distribution of the dust-traced H2 column density derived
from Herschel data (André et al. 2010; Lombardi et al. 2014). The dot-
ted grid is used to define the training and test sets. The white square in
the bottom right around the Horsehead region corresponds to the test
set where the random forest predictions will be compared to the obser-
vations. This subset is never used during the training phase. Only the
remainder of the map is used as the training set.

We do not claim that the dust-traced column density used
here is a perfect measure of the underlying N(H2) column den-
sity. We just wish to check whether the molecular emission alone
is able to predict this dust-traced column density. If this method
is efficient, the next step will be to anchor it on additional sources
of information (see Sect. 8.5).

2.3. Information content

Figures 2 and 3 show the spatial distribution of the input vari-
ables (integrated intensities and peak temperatures of the lines)
and target variable (the dust-traced H2 column density). Table 2
lists, among other properties, the minimum and maximum val-
ues of the peak temperature maps for the 18 selected lines, as
well as the derived dynamic range computed as the ratio of the
maximum over the minimum value. The dynamic range spans
values between ∼20 and ∼700. The dynamic range of the column
density is ∼400.

The input and targeted variables have different noise proper-
ties. Indeed, the dust-traced H2 column density is derived at high
signal-to-noise ratio (S/N) over the full field of view. We can
safely assume that the targeted variable is noiseless even though
it may be affected by systematic biases in its derivation. On the
contrary, large fractions of the field of view is measured at low
S/N of the input variables. This is particularly clear on the maps
of the peak temperature, which emphasize the noise pattern at
S/N lower than 3. The noise pattern suggests that setups #1 and

#2 were mainly observed through vertical scanning, while setup
#3 was only observed through horizontal scanning. It also sug-
gests non-negligible variations of the noise levels either because
of the weather (mostly summer versus winter weather but also
degrading weather during one observing session) or because
of the large variation of the telescope elevation between the
beginning and the end of an observing session.

3. Astrophysical goal: to determine whether it is
possible to accurately predict the H2 column
density based on molecular emission

Figure 10 of Pety et al. (2017) shows the joint distributions of
the dust visual extinction (proportional to the dust-traced col-
umn density of matter along the line of sight, Nd

H2
) and of the

line integrated intensity (Wl) for a selection of the detected lines,
l. This figure shows a clear monotonic relationship with low scat-
ter between Nd

H2
and Wl for most of the lines. On one hand, there

often exists an interval of column densities for which the rela-
tionship between Nd

H2
and Wl is linear to a good approximation

for one line, but the column density interval depends on the line.
On the other hand, these relationships are in general non-linear.
This is clear when looking at the relationship between I12CO(1−0)

and Nd
H2

. The integrated intensity stays undetected at low column
density and it saturates at high column density. This property is
generic for any single molecular line, implying that setting up a
predictor of the column density from a single line will always
fail in some regime.

Taking into consideration that: (1) the relationships between
Nd

H2
and Wl are monotonic; and (2) the interval of column den-

sities over which Nd
H2
∝ Wl to first order depends on the line,

this opens up the interesting possibility that a joint analysis of
the molecular lines could allow us to devise a predictor of the
column density. Building on these empirical facts, Gratier et al.
(2017) applied the simplest global analysis of the existing cor-
relations in a multi-dimensional data set, that is, the principal
component analysis. Figure 10 from Gratier et al. (2017) shows
the joint histogram of the first principal component and the dust-
traced column density. This histogram shows a tight correlation
between these two quantities with a Spearman’s rank correla-
tion of 0.90 over more than two orders of magnitude in column
density, from 1021 to 1023 H2 cm−2. Moreover, this correlation
does not saturate any more at either low or high column density.
However, it is not exactly linear.

We now assume that there exists a non-linear continuous
function F of the line intensities that predicts the dust-traced col-
umn density. Our goal in this article is to quantitatively estimate
an approximation (noted f ) of this function, F. This estimation
will be affected by S/N issues since the line intensity measure-
ments are limited by the sensitivity of the observations, that is,
our measurements are generally done at an intermediate S/N. We
can write our estimation problem as

Nd
H2

= f (Tl,Wl) + e, (1)

where Tl,Wl is the vector of the peak temperatures and inte-
grated intensities of lines l, and e represents the sum of all
uncertainties. In this estimation problem, the measurements may
also suffer from systematic biases. For instance, the dust-traced
column density may underestimate the amount of matter along
the line of sight when the emission from warm dust hides the
emission from colder dust (Pagani et al. 2015). In the absence
of a more quantitative knowledge of such systematic biases, they
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Fig. 2. Spatial distribution of the line integrated intensity for some of the detected lines in the 3 mm band, plus the dust-traced far-UV illumination
(bottom left panel) and the dust-traced H2 column density (top right corner). The color-scales are logarithmic to reveal the distribution of faint
signal and positive noise. The maps are rotated counter-clockwise by 14 degrees from the RA/Dec J2000 reference frame. The spatial offsets are
given in arcsecond from the projection center located at 05h40m54.270s,−02◦28

′
00.00

′′
.

cannot be separated from the physical relationship in the estima-
tion, f . They will therefore be de facto included in the function,
f , which we try to recover.

Getting an accurate estimate of the H2 column density
from molecular line emissions is a long-standing quest in the
study of stellar formation. Methods followed the development of
(sub)millimeter telescopes, receivers, and spectrometers. They
can be divided into two main categories. The first category

relies on an empirical linear relationship between the H2 col-
umn density and the integrated emission of the (1–0) line of the
most abundant tracer of molecular gas, namely, 12CO. Bolatto
et al. (2013) explain that this method, known as the XCO-factor
method, relies on the fact that giant molecular clouds seem, on
average, close to the virial equilibrium. The statistical nature of
the basis for this method implies that it mostly works at relatively
large linear scale (>∼10−50 pc). Several studies (Leroy et al. 2011;
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Fig. 3. Spatial distribution of the line peak temperature for some of the detected lines in the 3 mm band, plus the dust-traced far-UV illumination
(bottom left panel) and the dust-traced H2 column density (top right corner). The color-scales are logarithmic to reveal the distribution of faint
signal and positive noise. The maps are rotated counter-clockwise by 14 degrees from the RA/Dec J2000 reference frame. The spatial offsets are
given in arcsecond from the projection center located at 05h40m54.270s,−02◦28

′
00.00

′′
.

Genzel et al. 2012) have shown that the XCO factor depends on
the metallicity of the inter-stellar medium to take into account
varying fraction of CO dark gas, i.e., H2 gas without enough
dust to shield the destruction of CO from the surrounding far
UV field.

The second category of methods invert a radiative transfer
model to obtain the column density of the associated molecular
species from the line intensities or observed spectra. Chemical
models estimating the abundances relative to H2 are then used to
infer NH2 from the molecular column densities. This method is
usually applied on the main CO isotopologues. In this category,

Dickman (1978); Dickman et al. (1986) derived the mean 13CO
abundance relative to H2. Frerking et al. (1982), Bachiller &
Cernicharo (1986) and Cernicharo & Guelin (1987) expanded to
other CO isotopologues, showing that the threshold for detect-
ing C18O is higher than that for 12CO or 13CO. Goldsmith et al.
(2008) and Pineda et al. (2010) used a modified version with
a variable [CO]/[H2] abundance ratio deduced from the Black
and van Dishoeck PDR models (see e.g., Visser et al. 2009).
By comparing 12CO and 13CO (1–0) emission maps with dust
extinction maps, Ripple et al. (2013) showed that the relation-
ship between the 13CO column density and Av is non-linear,
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Table 2. Observed spectral lines and dust-traced properties.

Species Transitions Peak temperature Integrated intensity
Max. Min. Max/Min FoV (a) Mean RMS (b) RMS/Mean FoV (a) Mean RMS (b) RMS/Mean

[K] [K] — [%] [K] [K] — [%] [ K km s−1] [ K km s−1] —
12CO (1–0) 61.7 0.141 437 87 13.94 10.27 0.74 92 51.44 45.14 0.88
13CO (1–0) 34.3 0.050 686 75 3.36 3.70 1.10 79 7.72 9.14 1.18
C18O (1–0) 6.6 0.032 206 33 0.35 0.51 1.44 39 0.52 0.92 1.77
C17O (1–0) 1.3 0.042 31 4 0.19 0.08 0.43 10 0.17 0.29 1.70
H2CO (1–0) 6.2 0.096 64 5 0.33 0.18 0.55 9 0.89 0.82 0.92
HCO+ (1–0) 8.8 0.051 171 47 0.47 0.58 1.24 68 1.67 1.80 1.07
HC13O+ (1–0) 2.1 0.053 39 2 0.18 0.08 0.46 3 0.38 0.30 0.80
HCN (1–0) 12.4 0.045 273 28 0.32 0.40 1.24 43 1.74 2.33 1.34
HNC (1–0) 6.3 0.051 121 14 0.25 0.28 1.16 22 0.88 0.98 1.11
12CN (1–0) 6.9 0.011 593 12 0.28 0.26 0.94 22 0.59 1.37 2.32
12CS (2–1) 15.3 0.025 605 28 0.24 0.47 1.93 35 0.41 1.04 2.52
32SO (3–2) 6.8 0.025 264 18 0.18 0.25 1.38 24 0.24 0.51 2.13
CCH (1–0) 6.0 0.036 165 14 0.18 0.17 0.92 29 0.31 0.53 1.69
c-C3H2 (2–1) 1.0 0.031 34 4 0.12 0.05 0.43 10 0.34 0.28 0.81
N2H+ (1–0) 5.1 0.038 131 2 0.16 0.10 0.64 4 0.50 0.86 1.71
CH3OH (2–1) 2.4 0.022 108 3 0.11 0.06 0.51 13 0.12 0.29 2.37
SiO (2–1) 1.0 0.053 18 0 0.17 0.05 0.31 1 0.32 0.24 0.76
H+ 40α 0.4 0.002 154 1 0.06 0.02 0.33 1 0.06 0.24 3.83
Dust-traced properties Max. Min. Max/Min FoV (a) Mean RMS RMS/Mean

N(H2) 2.5× 1023 cm−2 6.2× 1020 cm−2 396 100% 4.0× 1021 cm−2 4.9× 1021 cm−2 1.22
G0 4.5× 104 ISRF 1.5× 100 ISRF 29 231 100% 7.4× 101 ISRF 4.5× 102 ISRF 6.11

Notes. (a)Percentage of the field of view above 3σ. (b)Standard deviation of the data (signal plus noise).

indicating variations of the 13CO abundance. Barnes et al. (2018)
analyzed a recent large survey of the main CO isotopologues to
determine a W12CO(1−0)-dependent XCO conversion factor. Their
analysis assumes that the excitation temperature is the same for
the 12CO and 13CO lines, as well as a constant [13CO]/[12CO]
abundance. These two assumptions are shown to be incorrect
at least in the Orion B molecular cloud by Bron et al. (2018)
and Roueff et al. (2020).

In summary, the first category pursues a a direct connection
between the line intensity and the H2 column density, while the
second category relies on the estimation of the species abun-
dances. Beam filling factor may be an issue in the latter category
if it changes the apparent abundance. The current study belongs
to the first category.

4. Principle: regression in machine learning

In this section, we briefly define the different machine-learning
concepts that we use later in this article. It is mostly an intuitive
presentation aimed at astronomers who don’t necessarily have a
background in machine-learning methods. The main algorithm
we use in this paper is called random forest, which was invented
by Leo Breiman. Details of its theoretical basis can be found in
Breiman (2001)2. An introduction can be found in Hastie et al.
(2001, Chap. 15).

4.1. Supervised machine-learning method called regression

Trying to solve Eq. (1) for an approximation of F is a generic
machine-learning class of problems known as regression. This
approximation of F, which we note as f , is called the regression

2 See also https://www.stat.berkeley.edu/~breiman/
papers.html

model. The quantity to be predicted is often called the “depen-
dent” or “target” variable. In our case, it will be the dust-traced
column density. The function variables (that is, the observables)
are often called “features.” In our case, these will be the mea-
sured molecular integrated intensities and peak temperatures.
Each line of sight (image pixel) constitutes one measurement
of Eq. (1). The regression consists in finding an estimate of F
based on the data set. It is a “supervised” method, meaning that
it needs to be trained on a dataset for which the solution of the
problem is known before the trained method is applied to other
datasets.

4.2. Training set, test set, and quality of fit

We use a standard supervised learning workflow by first dividing
the full data set into a “training set,” comprising the majority
of the observed data on which the best internal parameters of
the model are fitted, and a “test set,” which is not seen by the
fitting or training algorithm. The quality of the fit is checked
by computing the mean square error (MSE) between the value
predicted by the model and the observed quantity. There are two
kinds of MSE. On one hand, the training MSE is used to fit the
model on the training set. On the other hand, the test MSE is
computed to assess how the model behaves with regard to data it
has not been trained on.

While the regression fit minimizes the training MSE, the
final goal is to predict correct values for samples outside of the
training set, that is, to minimize the “test” MSE. Small test and
training MSE values are expected when the model function is
estimated well. This indicates that the model can predict the
dust-traced column density based on the values of the molecular
intensities on data that have never been used during the fitting
procedure. However, finding a test MSE that is much larger than
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the training MSE is a symptom of a problem known as “overfit-
ting.” In this case, the estimated model function learned not only
the searched underlying physics, but also the specifics of the data
set measurements, in particular, the noise properties. This can
occur, for instance, when the model complexity (i.e., the number
of unknown parameters) is too large compared to the information
content of the data.

4.3. Variance and bias of the model estimation

The accuracy of the fitted model, that is, achieving the minimum
test MSE, always results from a trade-off between the variance
and the bias of the estimated model function (see Sect. 7.3 of
Hastie et al. 2001 and Sect. 3.2 of Bishop 2006).

The variance refers to the amount of variation that would
affect our estimate of F if the training data set was different.
There are different causes of variability in the estimation of F.
Firstly, the training set may cover only part of the relevant phys-
ical conditions. In our case, we could have failed to sample one
of the different column density regimes well enough: either the
diffuse or translucent gas, dense cores, etc. Secondly, the condi-
tion of the observations, for example, the S/N, can be different
from one training set to another.

The bias refers to the fact that there can be a mismatch
between the actual complexity of F and the complexity implied
by a choice of function family. No matter the amount of data you
have in your training sample, trying to fit a non-linear function
by an hyper-plane will result in a bias.

Minimizing the test MSE requires selecting a supervised
learning method that will find the best trade-off between the
variance and the bias. Achieving a low bias but a high vari-
ance is easy: any model that goes through all the points of the
training data set will do this; it is then completely dependent
on the specific noise of the training set and, thus, it is over-
fitted. Conversely, achieving a low variance but a high bias is
just as easy: using the mean of the training data set as model
will give this result. The challenge is to find the optimal trade-
off between the variance and the bias. As a function of model
complexity, variance is minimized at zero complexity and bias is
minimized at infinite complexity (or one that is large enough to
be an interpolation).

4.4. Decreasing the regressor variance through bagging

Bagging is one of the two standard algorithms used to decrease
the variance of a regression method. The other one, called boost-
ing, is not treated in this article. Bagging is an abbreviation
for bootstrap aggregating. It is thus related to the bootstrap
method, which is often used in astrophysics to estimate random
uncertainties in properties inferred from a given data set.

The bootstrap method randomly creates a large number of
subsamples of the input data set. In this drawing, replacement
is authorized, meaning that the same data point can be chosen
multiple times. A regression is then carried out on each sub-
sample and the predicted values are computed for each point of
each subsample. The aggregation part computes the average of
all the predictions. This average becomes the predicted model.
It is intuitive to assume that the reduction of the variance comes
from the averaging process. This, nevertheless, also assumes that
the errors of individual models are uncorrelated. The bias is con-
served in this algorithm. In particular, a low bias method will
give a low-bias bagged method. A practical advantage of bag-
ging is that it is easily parallelisable, implying short computation
times.

4.5. Regression trees

Regression trees are a type of regression method that uses a
recursive set of binary splitting on the values of the input vari-
ables to estimate the target variable. The choice of the split
point is made to minimize a cost function. To put it simply, the
regression tree poses a series of binary questions to the data,
each question narrowing the possible prediction until the method
gains enough confidence to assert that this prediction is the right
one.

To explain in further detail, at one dimension, the training
set is made of couples (xi, yi) that are linked by a to-be-estimated
function, f , and the residuals, ei:

yi = f (xi) + ei. (2)

The function, f , is an approximation of the data in the form
of a step function with steps of variable heights and lengths.
To obtain it, the method explores all the potential ways to split
the values of the x axis into two categories. For each potential
split, it computes the MSE of the two resulting classes. It then
chooses the split value that minimizes the average of the two
MSE weighted by the number of elements in each class. The out-
come of this process is a threshold value of x that splits the data
set into two classes called tree branches. The decision point is a
node of the tree. The process is then iterated in each branch lead-
ing to new nodes and branches. The process is stopped when the
maximum depth of the tree is reached or a branch contains less
than a given number of data points. The predicted value is then
computed as the mean of the y values for these points. The first
decision point is called the root node. By construction, it’s the
one that reduces the final MSE the most. It is called the strongest
predictor. A generalization to a multi-dimensional function is
straightforward. All the dimensions are split one after the other
and the first decision is made along the dimension that minimizes
the weighted average of the MSE of the two resulting branches.

Regression trees have several advantages. They make no
assumption, either on the basis of the functional form of the
learned relationship or on the shape of the underlying probability
density of the data set. They thus belong to the class of non-
parametric methods. Regression trees are non-linear regressors
by nature. They are easy to understand and, thus, to interpret.
In particular, the relative importance of the features is easy to
extract. Finally, they do not require any normalization nor cen-
tring of the data. This last point is a key advantage for us as
Gratier et al. (2017) showed that normalization is difficult when
the S/N is low for a number of features.

Regression trees, nevertheless, have several drawbacks. A
large tree depth brings high flexibility and thus ensures a low
bias, but it also makes these trees prone to overfitting. They
are unstable, meaning that a small variation in the training set
can lead to a completely different regression tree. This implies
that their variance is large and that there is no guarantee that
the outcome is the globally optimal regression tree. However,
most of the drawbacks can be overcome by using a random forest
method.

4.6. Random forest

A random forest can overcome the instability and high variance
of a regression tree by averaging the predictions from many such
trees that include two sources of randomness. First, the input data
set is bootstrapped. However, introducing only this kind of ran-
domness would produce highly correlated trees in case the data
set contains several strong predictors (i.e., a split decision along
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a given dimension that largely decreases the MSE). Indeed, these
strong predictors will be consistently chosen at the top levels of
the tree. So, random forests introduce a second source of ran-
domness at each decision point: instead of minimising the MSE
along all the dimensions, it minimizes it along a random subset
of the dimensions. Hence, a random forest is a regression method
made of bagged regression trees (first kind of randomness) that
are split on random subsets of features at each split (second kind
of randomness). This not only reduces the variance but it also
speeds up the computations because the introduction of random-
ness is done on both a subset of the data and a subset of the
dimensions.

4.7. Model complexity versus interpretability

Later in this paper, we show that linear regressors fall short in
capturing all of the non-linearities of the relationships between
molecular emission and N(H2) column density. This calls for a
more flexible method. Neural networks are a well-known exam-
ple of a method that performs well in complex machine learning
tasks (see, e.g., Boucaud et al. 2020) but the interpretation of
their output is usually difficult. Having an interpretable result
is an important criterion for us as we aim to understand the
properties of the interstellar medium. Firstly, we put more con-
fidence in the predictions if the interpretation is physically and
chemically sound. Secondly, the learned relationships between
features and predicted values should provide meaningful insights
into the physical and chemical properties of the molecular inter-
stellar medium. Random forests represent a good compromise
in complexity versus interpretability as they are able to learn
non-linear relationships while keeping the properties that make
physical interpretation possible and that allow us to understand
a posteriori how the predictions have been obtained.

5. Application

The random forest implementation that we use is the
RandomForestRegressor class from the sklearn python
module (Pedregosa et al. 2011).

5.1. Quality of the regression and generalization: mean error
and RMSE

We monitor the quality of the regressor and its generalization
power by computing the mean error and the root mean square
error (RMSE) either on the test or training sets. To do this,
we compute the residuals, that is, the difference between the
observed and predicted values of the column density for each
pixel, and then we compute its mean and RMSE. The RMSE
quantifies the distance between the observations and the predic-
tions, while the mean error informs us on potential global biases
of the regressors and predictors.

While the mean square error (MSE) is used in machine learn-
ing because it is simpler and, thus, makes it faster to compute as
it does not involve the computation of the square root, the results
we present from this point on use the root mean square error. This
choice enables us to have values that can be directly compared
to the predicted quantity and it gives to first order an estimation
of the uncertainty on the predictions. Moreover, there is no loss
of generality as the square root is a monotonous function.

5.2. Separation of the data into training and test sets

The molecular emission is spatially coherent over a large num-
ber of pixels for two reasons. First, Nyquist sampling implies

that neighbor pixels are correlated. Second, the underlying phys-
ical properties of the molecular emission are spatially correlated
across pixels. Standard methods to divide the data sets into
training and test sets, which are based on random draws of the
observations, would lead to two correlated sets, weakening the
results obtained on the test set. Furthermore, choosing a test
region where the physical and chemical properties are well-
known is desirable to ease the interpretation of the regression
results. Figure 1 shows our choice of training and test sets. We
divide the observed region into 40 rectangles of 12.7′ × 13.3′ or
38× 40 pixels.

The test set is chosen as the rectangle containing the Horse-
head Nebula, which has been extensively studied (Pety et al.
2005, 2012; Goicoechea et al. 2006; Gerin et al. 2009; Guzmán
et al. 2011, 2012; Gratier et al. 2013; Fuente et al. 2017) and is
shown as a bold white rectangle in Fig. 1. Figure 4 zooms in into
this test set in all tracers used in this study. For the first tuning
setup of the IRAM-30 m data set, the noise increases by about
a factor two on an horizontal band towards the southern edge of
the test set. This is due to degrading weather conditions when
observing this particular region. The Horsehead is a pillar that
has been sculpted through photoionization of the Orion B molec-
ular cloud by the O star σ-Ori located about 0.5 of a degree away
or 3.5 pc. The Horsehead is thus surrounded by the IC 434 HII
region that is not completely devoid of diffuse molecular emis-
sion either in the background or in the foreground. As a pillar, it
contains two dense cores: one at the top of its head and the other
one in its throat. These nevertheless exhibit lower column den-
sity than some of the dense cores in the NGC 2024 region. The
Horsehead dense cores are surrounded by translucent or diffuse
gas whose contact with the far-UV illumination produces several
photo-dissociation regions. To the south of the pillar, there are a
few isolated clumps that contain less column density and which
are more illuminated in far-UV. The test set thus contains many
different physical and chemical regimes. This region is never
used during the training part. The 39 other rectangles are used
to train the algorithm.

5.3. Considering whether the test set belongs to the same
parameter space as the training set

Supervised learning methods are often biased when used to pre-
dict points outside the span of the training set. It is thus important
to be able to check whether another data set (e.g., the test set) will
belong to the same parameter space as the training set. We need
to compute the likelihood that a point belongs to the probabil-
ity distribution function (PDF) of the training set. To do this, we
model this PDF with a sum of simple analytic functions (instead
of e.g., using kernel density estimators) because this method is
still tractable for high-dimensional data sets.

Gaussian mixture models (GMM, see Sect. 6.8 of Hastie
et al. 2001 or Sect. 2.3.9 and 9.2 of Bishop 2006) are flexible
methods that give a synthetic probabilistic description of a data
set in terms of a finite sum of multidimensional Gaussian PDF.
Here, we use the GaussianMixture class from sklearn to fit a
sum of n 36-dimensional Gaussians to the training set. The num-
ber of Gaussian components in the mixture is a free parameter
that we optimize as follows. For each n in {1, 5, 10, 20, 40, 80},
we train a Gaussian Mixture Model on two-thirds of the training
set, selected randomly. We then compute the mean likelihood,
that is, the average of the values taken by the GMM for each of
the points belonging to the third part not seen during training.
This process is repeated three times to improve the estimation of
the mean likelihood. The number n of Gaussians that maximizes
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Fig. 4. Zoom of the spatial distribution of the integrated intensity (top) and peak temperature (bottom) towards the Horsehead nebula.

the mean likelihood is then selected. We find that n = 10 is the
optimal value. We also checked different kinds of constraints
on the covariance matrix and we found that the best results are
obtained when the covariance matrix is left unconstrained.

Once the Gaussian mixture model (i.e., the PDF consisting
of the sum of the weighted individual 10 36-D Gaussians) is fit-
ted to the training set, we compute the value that the Gaussian
mixture PDF takes for each point of any data set. Figure 5 shows
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erence

between the means of two histograms. The encoding of this set
with the estimated Gaussian mixture is clearly not adapted. Con-
versely, the mean number of bits needed to encode the three other
random sample is comparable, i.e., the mean costs in bits to en-
code the training set, the test set, or a set of points drawn from
the GMM are similar. The Gaussian mixture is thus adapted for
these three sets.

Fig. 5. Probability distribution function of the value of the Gaussian
mixture fitted on the training set, for each data point. The log2-
likelihood shown on the horizontal axis can be interpreted as the number
of bits (to within a constant value) required to encode each point of the
sample. The blue, orange, green, and pink colors show the distributions
for the training set, the test set, a set of points uniformly drawn in the
same multi-dimensional space, and a set of points randomly drawn in
the Gaussian Mixture, respectively. The vertical lines show the associ-
ated means of the negative log2-likelihood. Bottom panel: zoom of the
top one.

the histogram of the negative log2-likelihood values for the train-
ing set, the test set, a random set following the GMM PDF, and
a random set uniformly sampling the hypercube spanning the
whole training set. This latter set is obtained by sampling inde-
pendently each parameter from a uniform distribution between
the minimum and maximum values that are defined in the third
and fourth columns of Table 2, which list the minimum and
maximum values of the peak temperature for each line. The top
panel of this figure shows that the test and training sets are well
related compared to the random sampling. When zooming on
the negative log2-likelihood range that only contains the test and
training sets, the histograms are slightly different (the test-set
histogram has a higher wing at low negative log2-likelihood), but
most of the points of both sets span the same range of negative
log2-likelihood.

Appendix A shows that the negative log2-likelihood of a
sample X with respect to a PDF f can be interpreted as the quan-
tity of information, that is the number of bits necessary to encode
X with f (up to the constant offset − log2 ∆ related to the resolu-
tion ∆ of the quantification). Figure 5 can thus be interpreted as
the histogram of the quantity of information necessary to encode

the different sets. The mean cost for a uniformly drawn set of
points (green histogram) is much larger than for the three others
samples, by approximately 3500 bits, computed as the differ-
ence between the means of two histograms. The encoding of this
set with the estimated Gaussian mixture is clearly not adapted.
Conversely, the mean number of bits needed to encode the three
other random sample is comparable, i.e., the mean costs in bits to
encode the training set, the test set, or a set of points drawn from
the GMM are similar. The Gaussian mixture is thus adapted for
these three sets.

5.4. Optimization of the random forest regressor

Some algorithms have additional parameters, named hyper-
parameters, which can be tuned to improve the quality of the
regressor. In the case of random forests, the generalization per-
formance can be optimized by tuning three hyper-parameters: (1)
the maximum tree depth; (2) the fraction of features randomly
chosen to train each node of each individual regression tree; and
(3) the number of trees in the forest.

The values of these hyper-parameters are optimized to obtain
the best generalization behavior of the predictor to previously
unseen data. The goal is to have a predictor that is general enough
to learn the complex non-linear relationship between observed
features and the predicted quantity without learning the noise
in the data set. The standard way of tuning the values of these
hyper-parameters is to isolate a part of the training set as a
validation set. We randomly put aside 4 out of 39 training rectan-
gles as the validation set. The training procedure is repeated for
different (fixed) values of the hyper-parameters. The best hyper-
parameter values are then chosen as the ones that minimize the
RMSE on the validation set. We also wish to maximize the
amount of data used for training in case the validation set con-
tains rare meaningful events (e.g., dense cores). To achieve this,
random permutations of the validation sets are implemented and
the hyper-parameters are chosen as the ones that are optimal over
the average of the different validation sets. In our case, the best
parameters are the ones that give the best average performance
over ten such cross-validation draws.

We implemented a grid search to optimize these three
hyper-parameters. Figure 6 shows the RMSE averaged over the
ten cross-validation draws as a function of the three hyper-
parameters as described in Sect. 5.2. The red cross shows the
values of the hyper-parameters that minimize the RMSE: 300
for the number of trees, 32 for the tree maximum depth, and 30
randomly selected features (i.e., 75% of the total number of fea-
tures). The optimization of the number of trees and maximum
tree depth is particular because we expect that adding more trees
monotonically increases the performance by reducing the vari-
ance. The most important piece of information here is that that
the RMSE does not vary much when the number of trees is larger
than 10, the maximum tree depth is larger than 16, and the frac-
tion of randomly selected features is larger than 25%. This makes
the overall random forest estimator robust to changes of these
hyper-parameter values.

6. Comparison of the random forest prediction with
two simpler methods

In order to show the power of the random forest predictor, we
compare its performance with two other methods. We focus on
the generalization performance of the predictors. This implies
that we only check the prediction power on the test data set that
has never been seen during the training phase.
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Fig. 6. Variations of the root mean square error (RMSE) between the predicted and the observed Nd
H2

computed on the validation set when
optimizing the random forest hyper-parameters: (1) the number of trees in the forest, (2) the maximum depth of one tree, and (3) the number of
features (line peak temperatures and integrated intensities) randomly chosen to train each individual regression tree of the forest. Bi-dimensional
(top) and mono-dimensional (bottom) cuts going through the minimum RMSE over the full cube. The space of acceptable parameters is shown
inside the black contours (minimum plus 10%). The minimum values are shown as the red crosses in all cases.

6.1. Multi-linear regression with or without a non-linear
processing of the line intensities

Firstly, a standard ordinary least square method gives us
the minimal achievable regression accuracy. We use the
LinearRegression class from sklearn with the keyword
normalize = True to apply a standard pre-whitening, that is,
subtracting the mean and dividing by the standard deviation.

Secondly, we compare to the result obtained by Gratier et al.
(2017). In this study, the linear principal component analysis
(PCA) was preceded by the application of a asinh function to
the original data set:

T (x) = a asinh(x/a), (3)

where a is a constant cutoff. This non-linear transformation
allowed us to take care of the specific properties of the his-
tograms of the molecular emission. They are made of a Gaussian
core around zero reflecting the noise properties and a power law
tail that reflects the signal. The application of the asinh function
had the double advantage of (i) applying a logarithm transform to
the values above the asinh cutoff a to linearize the power law tail,
while (ii) keeping the noise unchanged below the asinh cutoff a.
This latter property allowed us to keep all the data set without
noise clipping in the analysis. We use a common value of the
asinh threshold a = 0.08 K or = 0.08 K km s−1 for the peak tem-
peratures and integrated intensities, respectively, as in Gratier
et al. (2017). After applying this transformation, we again use
the LinearRegression class from sklearn with the keyword
normalize = True as above.

6.2. Spatial distributions of the predictions and of the
residuals

The first two columns of Fig. 7 show the spatial distribution of
the observed and predicted column densities. The last column
shows the ratios of the observed and predicted column densities
for the three methods, on a logarithmic scale. It is thus equal
to the difference between the logarithms of the predicted and
observed column densities.

The residuals (right column of Fig. 7) indicate that all three
regressions deliver column density predictions within a typi-
cal factor of two (i.e., ±0.3 dex). This means that it is indeed
possible to predict the column density of the gas within a fac-
tor of two based only on the 3 mm line emission. However,
the residuals between the predicted and observed values of
log (NH2/ cm−2) never look like random noise. This implies that
the generalization of the column density predictor is imperfect in
the three cases.

The comparison of the spatial distributions of the predicted
column densities and the residuals for the three regression meth-
ods clearly shows that the linear regression is less successful than
the other two non-linear methods. The left-right blue-red pattern
indicates that the dense gas column density is clearly under-
estimated while the diffuse-translucent gas column density is
overestimated for the linear predictor. The non-linear predictors
perform better overall (lower contrast in the residuals).

The difference between the asinh pre-processing predictor
and the random forest one is more subtle. The contrast of the
residual image is slightly less pronounced for the random for-
est predictor. It does better than the asinh pre-processing in the
dense cores, under the Horsehead muzzle, and in the diffuse-
translucent gas above the Horsehead pillar. However, the back of
the Horsehead (its mane) appears bluer in the residual maps of
the random forest predictor.

6.3. Joint distributions of the predicted and observed column
density, and the histograms of their ratios

In order to quantitatively compare the three different meth-
ods, Fig. 8 shows the joint distributions of the predicted and
observed column densities, as well as the histograms of their
ratios. Table 3 lists the RMSE over the test set, the maximum
root square error, as well as the mean of the ratios. These val-
ues here quantify the performance of the generalization of the
method.

A linear regression gives a double-peaked histogram of the
column density log-residuals (i.e., the base-10 logarithm of the
ratio of the predicted over observed column density). This comes
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Fig. 7. Comparison of the generalization performances of three predictors. Top row: linear method. Middle row: linear method with a non-linear
pre-processing. Bottom row: random forest. All results are computed on the Horsehead pillar, i.e., the test set. Left and middle columns: spatial
distribution of the observed and predicted column density. Both images share the same color scale. Right column: ratio of the predicted column
density over the observed one. The limits of the color scale correspond to a ratio interval from 1/3 to 3.

from the fact that the prediction overestimates the low column
densities and underestimates the high column densities. The lin-
ear regression on the asinh of the intensities delivers a much
better statistical agreement. Most of the predictions are close to
the measured values even though there still is some scatter in
particular at intermediate column densities. The joint histograms
show that the asinh slightly underestimates the column den-
sity around 6.3× 1021 cm−2 and slightly overestimates it above
1.6× 1022 cm−2. The random forest predictor shows the least dis-
persion around the actual column density. All these properties
translate into the fact that the histogram of the log-residuals is
closest to a Gaussian for the random forest predictor.

These results are quantitatively confirmed by the values of
the RMSE and the maximum absolute error listed in Table 3.
The RMSE indicates that the predictors infer the column density

within 20, 30, and 40% with a maximum error of a factor 1.8,
2.1, and 2.3, for the random forest, the asinh pre-processing, and
the linear predictor, respectively. An additional piece of informa-
tion is that all three methods over-estimate the column density
by 20, 10, and 6% for the asinh pre-processing, the random for-
est and the linear predictors, respectively. This could be due to
the fact that we tried to infer a positive quantity from noisy
measurements where the centered noise sometimes hides the
signal.

More quantitatively, we estimated the standard deviation on
the mean error and MSE as

σMean error =
√

var/N and σMSE =
√

2/N var, (4)

where N is the number of pixels in the test set, and var is the vari-
ance of the error, that is, the difference between the logarithm of
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Fig. 8. Comparison of the generalization performances of three predictors. Top row: linear method. Middle row: linear method with a non-linear
pre-processing. Bottom row: random forest. All results are computed on the Horsehead pillar, i.e., the test set. Left column: joint Probability
Distribution Function (PDF) of the predicted column density and of the observed one. The contours are the PDF isocontours enclosing 25, 50, and
75% of the datapoints. Points whose density falls below these values are shown as black dots. The oblique lines have a slope of 1. They indicates
ratio values of 1.0 (plain), 0.5 and 2.0 (dashed), 0.1 and 10.0 (dotted). Right column: histogram of the ratio of the predicted column density over
the observed one on a logarithmic scale. The dotted lines show the Gaussian of same mean and width.

the predicted and observed values. The values listed in Table 3
shows that the difference between the mean errors associated
with the random forest, and the asinh pre-processing methods
is much larger than the sum of the associated standard devia-
tions. A similar result is obtained for the mean square errors of
the two methods. These two results mean that the random for-
est method yields a significantly better prediction than the asinh
pre-processing.

6.4. Uncertainty

The fact that a random forest is an ensemble method can be
leveraged to associate an uncertainty value to each predicted
quantity. At the prediction step, the regression trees yield a set
of 300 values and the mean of these values is the prediction of
the random forest algorithm. It is thus possible to compute the
value at a given percentile of the cumulative distribution of these
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Table 3. Statistical comparison of the performances of three regression methods on the test set (the Horsehead pillar).

Method Hyper-parameters Max. error (a) Mean error (a) RMSE MSE
dex dex dex dex

Linear regression 0 0.37 0.026± 0.003 0.14 0.0182± 0.0007
Linear regression on asinh(I) 1 0.33 0.075± 0.002 0.11 0.0070± 0.0003
Random forest 3 0.26 0.040± 0.002 0.09 0.0060± 0.0002

Method Hyper-parameters Max. error (a) Mean error (a) RMSE MSE
10dex 10dex 10dex 10dex

Linear regression 0 2.34 1.062 1.38 1.043
Linear regression on asinh(I) 1 2.14 1.190 1.29 1.016
Random forest 3 1.82 1.096 1.23 1.014

Notes. (a)The maximum and mean errors are absolute errors on log(NH2/ cm−2).

Fig. 9. Median column density and quantile intervals for each pixel of
the test set ordered by increasing observed column density. The blue
dots display the associated observed column densities.

300 values. Specifically, we compute the values for the {2.3%,
15.9%, 84.1%, 97.7%} percentiles, which would correspond to 1
and 2σ uncertainty intervals for a Gaussian distribution.

Figure 9 compares the median prediction surrounded by
the uncertainty intervals that comprise 68 and 95% of the
trees with the column density of each pixel with the observed
value. This confirms that column densities are well estimated
between 2.5× 1021 cm−2 and 1.6× 1022 cm−2, and slightly over-
estimated outside this interval. Nevertheless, the observed values
are within the 95%–uncertainty interval for more than 90% of
the test set.

The largest discrepancies between the observed and pre-
dicted values happen when the observed column density is lower
than 2.5× 1021 cm−2. In this range, the column densities are most
often over-predicted for the three methods tested in this section.
This could be related to the fact that 12CO (1–0) is overluminous
in the diffuse gas, as already observed by Liszt & Pety (2012).
Indeed, diffuse gas is actually present around the Horsehead pil-
lar in the second velocity component between 2 and 8 km s−1,
as mentioned in Pety et al. (2017). This behavior may have not
been properly learned due to the lack of a clean example in the
training set.

7. Contribution of the different lines to the
performance of the predictor

In the previous section, we show that the random forest predic-
tor is able to approximate the column density with a precision

of 20% on data points that belong to the same parameter space
as the training set. We now try to quantify the contribution of
the different molecular lines to this result. This question can be
answered on both the training and test sets, as they belong to
similar distributions of the input observables and targeted physi-
cal quantity. The advantage of the training set is that it contains
40 times as many points. The advantage of the test set is that the
spatial variations of the input and targeted variables show shapes
that are easy to describe. We thus use the training set to obtain
global trends and the test set to discuss finer trends.

7.1. Lines that contribute the most

A first interpretative tool is the quantification of the line impor-
tance, that is, how much each line contributes to the prediction of
Nd

H2
. To do this, we first keep the value of the RMSE computed

on the training set as a reference. We then randomly permute
the values of the intensities for a given line, all other intensi-
ties remaining constant. We finally compute the RMSE on the
prediction using this shuffled data set. The increase in RMSE is
the importance associated with the line. This importance has the
same unit as the predicted quantity and it measures how much
the performance would be degraded when the species is replaced
by a noise that keeps the shape of the probability distribution
function. For each line of sight, we simultaneously shuffle the
values of the peak intensities and of the integrated intensity val-
ues of a given molecular line to estimate the overall importance
of this line. Moreover, we try to check whether all lines have
a significant contribution. We thus added two random data sets
as additional input features to check which lines bring in more
information than plain noise. We used two different random data
sets to check that the result is not biased by any given random
drawing.

The top panel of Fig. 10 shows the line importance by
decreasing value for our data set. We first see that all lines bring
more information than plain noise. Second, the (J = 1−0) line of
13CO, 12CO, C18O, HCO+, HNC, N2H+, CCH, and the (J = 2−1)
line of 12CS have the largest line importance. Shuffling the 13CO
samples increases the RMSE by ∼0.22 dex (i.e., a factor 1.65
multiplying the reference factor of 1.2). The least important of
these eight lines still increases the RMSE by 0.01 dex (or a fac-
tor 1.02), when shuffling its samples. Shuffling the data of any
other line increases the RMSE by less than 0.01 dex.

Another way of visualising this effect is to build predic-
tors with an increasing number of lines ordered by decreasing
feature importance. The bottom panel of Fig. 10 clearly shows
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Fig. 10. Contribution of the different lines (both integrated intensity
and temperature peak) to the quality of the random forest fit of the train-
ing data set. Noise #1 and 2 are two additional random sets of input
data. Top: quantitative improvement of the quality of the fit (RMSE fea-
ture importance) for each available line. Bottom: evolution of the RMSE
(filled circles) and maximum absolute error when each line is progres-
sively added into the training phase in the order defined in the top panel.
These results are computed on the training set. The RMSE values on
each diagram are commensurate to log(NH2/ cm−2).

that adding more than the four of the most important lines only
marginally increases the overall performance of the prediction.
In other words, it seems that only four lines (the J = 1−0 line of
the three main CO isotopologues, and HCO+) can predict Nd

H2

almost as well as when all the lines are included. We refine this
statement further in Sect. 7.3. Adding more than the first eight
lines even seems to bring no added value. This also shows that
the random forest method is rather insensitive to the presence of
“noisy” data in the input features.

7.2. Where the lines contributes to the prediction

To confirm these quantitative measures, Fig. 11 shows the evo-
lution of the spatial distribution of the predicted column density
and of the associated residuals around the Horsehead pillar when

Observed Predicted Predicted/Observed

13C
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Fig. 11. Evolution of the prediction of the column density when adding
molecular tracers one by one during the training phase. Left and mid-
dle columns: spatial distribution of the observed and predicted column
densities. Both images share the same color scale. Right column: ratio
of the predicted column density over the observed one. The limits of the
color scale correspond to a ratio interval from 1/5 to 5.

building random forest predictors that are trained on an increas-
ing number of lines ordered by their decreasing importance.

We see that the predictor trained only on the 13CO (1–0)
line is able to recover the shape of the Horsehead pillar. This
implies that this line contributes to differentiate the column den-
sity between translucent and denser gas. Adding the contribution
of the 12CO (1–0) line changes the residual maps mostly in the
regions made of diffuse gas (red part on the right side). However,
a predictor trained on these two lines alone provide a rather poor
estimation of the column density in either the halo that surrounds
the Horsehead pillar or the dense cores (e.g., the dense core at
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Fig. 12. Spatial distribution of the contribution of the integrated intensity and the peak temperature of the eight most important lines to the
estimation of log (NH2/ cm−2). All the maps share the same color look-up table to emphasize the relative contributions across pixels and lines.

the top of the Horsehead or in its throat). Adding the C18O (1–
0) line is important to improve the estimation within the denser
parts (Horsehead spine and dense cores), while including the
HCO+ (1–0) line improves the estimation of the column density
in the far-UV-illuminated transition region between the translu-
cent and denser gas. Completing the line sample with the HNC
and N2H+ (1–0) lines slightly changes the contrasts of the pre-
dicted images but this seems a second-order effect as the shape
of the residuals does not change much when adding these lines.
The most important change comes from the contribution of the
N2H+ (1–0) line to the dense cores inside the Horsehead pillar.

Looking at the structure of regression trees, and random
forests, it is possible to compute the contribution of each line,

l, to the H2 column density. Indeed, it is possible to show3 that
the predicted value of the column density at pixel (i, j) can be
written as

log N(i, j) = log N0 +
∑

l = 1,L

log Nl(i, j), (5)

where log N0 is the mean of the column density over the training
data set, and log Nl is the quantitative contribution of each line
(either integrated line profile or peak temperature) to the pre-
dicted value of the column density at pixel (i, j). Figure 12 shows
3 A demonstration can be found at http://blog.datadive.net/
interpreting-random-forests/
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the spatial distribution of the contribution of the eight lines most
important to predict the column density. The first striking result
is that all contribution maps show well-behaved structures (with
extremely few exceptions), even though all lines are not detected
over the full field of view. This suggests again that the column
density estimate is rather insensitive to noise.

The contribution maps also allow us to quantitatively refine
the scenario above. They confirm that the 13CO, 12CO, C18O,
and HCO+ (1–0) lines are the first-order corrections to the mean
value of the column density. The integrated intensity of 13CO
contributes the most to the predictor. Its contribution map shows
that it is important over the whole area. It contributes posi-
tively where the column density is high and negatively in the
most far-UV illuminated regions. This coincides with the visual
impression that the contribution map recovers well the shape
of the Horsehead pillar. This is expected because the 13CO line
traces most of the gas without being too optically thick. The sec-
ond biggest contributor is the 12CO (1–0) line. It also contributes
positively where the gas is translucent (see e.g., the clumps south
of the Horsehead pillar). It is almost neutral (white or light blue
around the Horsehead) where the gas is diffuse and it contributes
negatively (dark blue) where the HII region dominates. The over-
all visual impression is that the 12CO line is important to predict
the diffuse to translucent part of the column density along the
line of sight. The next two main contributors are the HCO+

and C18O (1–0) lines. They contribute in two complementary
physical regimes. The C18O line contributes mostly where the
gas is dense with a positive contribution at the highest densities
(Horsehead spine) and a negative contribution at lower densities
(nose, mane, feet). Conversely, the HCO+ line contributes mostly
on the photo-dissociation regions that surround more or less
dense gas. The comparison of the contribution maps of the inte-
grated intensity and peak temperature for these four lines shows
that the integrated intensities contribute more to the estimation
of the column density. The peak intensities provide second order
corrections, sometimes of opposite signs (clearest on the C18O
line contributions) to the prediction of log (NH2/ cm−2). This
suggests that these two parameters indeed play different roles
in the estimation of the column density.

The next four most important lines are the J = 1−0 lines of
HNC, N2H+, CCH, and the J = 2−1 line of 12CS. HNC, and
N2H+ contribute mostly on the densest parts of the Horsehead
pillar, that is, the dense cores and their surroundings. A strik-
ing feature is that the HNC peak temperature contributes one
of the most important corrections in the places where the gas
is dense, while its integrated intensity does not play a role in
the prediction. This property is probably related to the detec-
tion pattern of this line in Fig. 4, which shows that the spatial
distribution of the peak temperature is more contrasted or struc-
tured than the integrated line emission for the HNC line. Indeed,
its integrated intensity varies between about 1 and 3 K km s−1

(it appears mostly red) everywhere it is detected in the horse-
head pillar, while its peak temperature varies from about 0.3 to
2 K (its color varies from green to white) on the same region.
Another striking feature is that the N2H+ (1–0) peak temperature
contribution map is structured even in regions where this line
is not obviously detected. This probably means that the random
forest has learned that a correction is needed when the N2H+

line stays undetected. Finally, the CCH (1–0) and 12CS (2–1)
lines contribute smaller corrections in photo-dissociation regions
and UV-shielded dense gas, respectively. The peak temperature
and integrated intensity of both lines contribute corrections of
similar magnitude.

Fig. 13. Spatial distribution of the four following masks: 1 ≤ Av < 2
in black, 2 ≤ Av < 6 in brown, 6 ≤ Av < 15 in orange, and 15 ≤ Av in
yellow.

7.3. The physical regime each line contributes to

The line importance discussed in Sect. 7.1 is computed on the full
training set that indifferently mixes all physical regimes. How-
ever, the contribution maps discussed in the previous section
clearly showed that some lines are more important in certain par-
ticular physical regimes. We thus now ask whether some other
lines are important for a given physical regime of column densi-
ties. Using the same categories as discussed in Pety et al. (2017),
we compute the line importance on four subsets of the train-
ing set (see Fig. 13): 1 ≤ Av < 2 (diffuse gas: 14 377 pixels),
2 ≤ Av < 6 (translucent gas: 34 635 pixels), 6 ≤ Av < 15 (fila-
ments: 8 723 pixels), and 15 ≤ Av (dense cores: 1 545 pixels).
Figure 14 shows the line importance diagrams for the four
different intervals of visual extinction.

The 13CO line is important for the estimation of the col-
umn density in all kinds of environments, except in dense cores.
However, it is the most important only in the translucent gas.
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Fig. 14. Contributions of the different lines (both integrated intensity and temperature peak) to the quality of the log (NH2/ cm−2)-fit of the training
set, depending on the range of visual extinction. These results are computed on the training set. Noise #1 and 2 are two additional random sets of
input data.

In diffuse gas, it contributes much less to the accuracy than the
12CO (1–0) line. In the filamentary gas, it contributes less than
the C18O and HNC (1–0) lines. The 12CO (1–0) line is important
in all regimes. However, while it completely dominates the esti-
mation in diffuse gas, its importance regularly decreases when
the visual extinction increases. The CCH (1–0) line plays a role
in diffuse and translucent gas and almost no role in the two larger
visual extinction regimes. The HCO+ (1–0) line plays an impor-
tant role in diffuse and translucent gas (third line after the 12CO
and 13CO (1–0) lines), and some role in relatively dense gas (6th
line for filaments) when it is exposed to far-UV illumination. Its
role is minor in the prediction for dense cores.

The C18O and HNC (1–0) lines play major roles in rela-
tively dense gas, that is, among the filaments and dense cores.

Finally, the N2H+ and CH3OH lines are the most important ones
to accurately predict the column density in dense cores where
the CO isotopologues are depleted. This finding clearly indicates
that line importance (as defined here) must be interpreted with
caution when the populations of the different physical regimes
are unbalanced in the training data set. A change in the RMSE
value appears larger when a physical regime that is impacted is
over-represented and vice-versa.

Figure 15 shows the contribution of the most important lines
to the logarithm of the (NH2/ cm−2) column density as a function
of the visual extinction. One red point per pixel of the test set is
plotted. The black histograms show the median values of all data
points falling in a regularly sampled interval of the logarithm of
the visual extinction. As the test set does not contain many pixels
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Fig. 15. Contribution of the most important lines to the logarithm of the H2 column density around the mean column density of the training set as
a function of the visual extinction. One red points per pixel of the test set is plotted. The black histograms show the median values of all data points
falling in a regularly sampled interval of the logarithm of the visual extinction. The black error bars show the range of values where 50% of the
points in the current bin are located. The vertical dotted lines show visual extinctions of 1.1, 2.2., 5.0, 10.0, and 18.0. Except the 13CO (1–0) line
that contributes at all Av and the noise sample that does not contribute at any Av, the other lines contribute inside a given Av range. The lines are
sorted from top to bottom and then from left to right by increasing values of the minimum Av at which they start to contribute.

at high visual extinction, the typical contribution of each line at
Av >∼ 10 is not as well constrained as at lower visual extinction.
The scatter around each typical value of the histogram comes
from two sources. Tunings 2 and 3 are noisier than tuning 1 (see
Table 1 for the list of relevant lines). However, noise does not
explain all the observed scatter. A large fraction of the scatter
comes from the fact that the combined measurement of several
lines is indeed required to yield an accurate value of the column
density at any given Av.

For each line, the contribution is computed as the sum of the
contribution of the line peak temperature and integrated inten-
sity. These contributions have to be added to the mean logarithm
of the column density computed over the training set to get the
column density value of the considered pixel of the test set. A
contribution value of zero implies that the line has no impact at
the associated visual extinction. This is clearly the case of the
noise feature. A value of −0.2 or 0.2 implies that the line inten-
sities require to multiply the column density by 0.63 or 1.58,
respectively. This is the case of the 13CO (1–0) line that requires
to multiply the average column density by a factor ∼0.6 below
Av ∼ 5 and by a factor ∼1.6 above Av ∼ 10. Except for the 13CO
(1–0) line that contributes at every Av and the noise sample that
does not contribute at any Av, the other lines contribute inside a
given Av range. The lines are sorted from top to bottom and then
from left to right by increasing values of the minimum Av at
which they start to contribute. The 12CO (1–0) line contributes
at Av <∼ 5, HCO+ (1–0) line in the range of 1 <∼ Av <∼ 10. The
C18O and HNC (1–0) lines contribute at Av >∼ 5, while the N2H+

(1–0) and CH3OH (2–1) lines start to contribute at Av >∼ 10 and
contribute even more at Av >∼ 18.

7.4. Comparison with previous works on the Orion B
molecular cloud

The results of this analysis shed a new light on the role of
the molecular lines in tracing different gas density regimes in
previous studies of the Orion B molecular cloud.

The main lines contributing to an accurate estimation of the
H2 column density – the J = 1−0 lines of 12CO, 13CO, C18O,
and HCO+– had already been identified as effective tracers of the
density regime by Bron et al. (2018). In particular, the three main
CO isotopologues trace the transition from diffuse (∼102 cm−3)
to relatively dense (∼103 cm−3) gas well, with an increasing
importance of the rarer isotopologues at higher densities. Bron
et al. (2018) also showed that adding the HCO+ (1–0) line brings
sensitivity (1) to higher density regions (up to ∼105 cm−3); and
(2) to far-UV illuminated regimes in the regions of lower den-
sities (≤103 cm−3). While the latter result is confirmed by this
study, the former result, that is, the role of HCO+ in detecting
regions of higher densities is in opposition to the random forest
results, where this tracer only plays a minor role in the dense
medium. This probably comes from the methodological differ-
ences between the two studies. Firstly, Bron et al. (2018) used a
discrete clustering approach, while we use a continuous method
here. Secondly, Bron et al. (2018) only used a subset of the lines
studied here.

The qualitative study of the correlation between molecular
line intensities and column densities performed by Pety et al.
(2017) also contains results that are quantitatively confirmed by
the current analysis. The 13CO (1–0) and C18O (1–0) lines were
already identified overall as good tracers of the H2 column den-
sity, meaning that they have a monotonous relationship with low
scatter over a broad range of column densities. The contribution
of the different molecular lines to the random forest estimator of
the column density in various extinction regimes (see Fig. 14)
is consistent with the earlier results from Pety et al. (2017).
In particular, the HCO+ (1–0) line is confirmed to contribute
at low extinctions, despite its high critical density, while the
actual best tracers of dense gas are the N2H+ (1–0) and CH3OH
(2–1) lines. This latter point was already observed by Gratier
et al. (2017), who noted the strong anti-correlation of these lines
with the emission of CO isotopologues in dense gas where CO
depletion occurs. The role of the CCH (1–0) as a tracer of dif-
fuse, far-UV illuminated regions was noted by Pety et al. (2017);
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Table 4. Statistical comparison of the performances with two simpler
regression methods on the test set (the Horsehead pillar).

Method Max. error (a) Mean error (a) RMSE
dex dex dex

XCO-factor 3.31 −0.370± 0.011 0.57
Random forest on CO isotopologues 0.32 +0.020± 0.003 0.11
Random forest on all lines 0.26 +0.040± 0.002 0.09

Method Max. error (a) Mean error (a) RMSE
10dex 10dex 10dex

XCO-factor ∼2× 103 0.426 3.71
Random forest on CO isotopologues 2.08 1.046 1.29
Random forest on all lines 1.82 1.096 1.23

Notes. (a)The maximum and mean errors are absolute errors on
log (NH2/ cm−2).

Gratier et al. (2017); Bron et al. (2018), and by earlier studies of
the Horsehead photo-dissociation region (e.g., Pety et al. 2005,
2012; Pilleri et al. 2013; Guzmán et al. 2015).

Previous studies of Orion B have also used a single molecular
tracer as a simple proxy for the H2 column density, either for the
bulk of the cloud (13CO J = 1−0 in Orkisz et al. 2017) or for
the dense filaments and pillar regimes (C18O J = 1−0 in Hily-
Blant et al. 2005; Orkisz et al. 2019). Figures 14 and 15 show
that these qualitative choices of tracers are relatively well-suited
for the targeted density regimes.

8. Comparison, generalization, limitations, and
perspectives

In this section, we first discuss how random forest predictor of
the column density we found compares with simpler approaches
as the standard XCO-factor method. We then discuss how the
found random forest predictor of the column density can be
used on noisier or smoothed data sets. We also try to general-
ize the method to predict the far-UV illumination and discuss
the fact that other physical variables partly control the 3 mm line
strengths. Finally, we propose additional sources of information
that could help to better constrain the physical conditions inside
a giant molecular cloud.

8.1. Comparison with simpler approaches to infer the H2
column density from molecular lines

As explained in Sect. 3, the three main CO isotopologues
are often used to derive the H2 column density because they
are among the easiest detectable molecular lines in molecular
clouds. Figures 16 and 17 show the performance to predict NH2

of two simpler approaches. We first use the standard XCO-factor
method, that is:

NH2 = XCO W(12CO J = 1−0) (6)

with XCO = 2× 1020 cm−2 ( K km s−1)−1. (7)

Secondly, we trained a random forest predictor using only (1–0)
lines of the three main CO isotopologues, that is, 12CO, 13CO,
and C18O. Table 4 lists the maximum error, mean error, and
RMSE for these two methods and the random forest trained on
all lines used in this article.

The XCO-factor method overall yields a poor inference of
the column density in the Horsehead pillar. This behavior

is well-known: the XCO-factor method only brings reasonable
results when considering large fractions of a giant molecular
cloud. By fitting the value of the XCO factor, we could, in prin-
ciple, improve the mean error of the method on the test set but
the large dispersion of the results would remain identical. A ran-
dom forest trained on the three main CO isotopologues yields a
much better inference of the column density. Its mean error is
even lower than the random forest trained on all our lines. This
implies that the simpler method is less biased but the histogram
of the difference between the logarithms of the predicted and
observed column densities is not centred on zero. This means
that the predicted values are more often either under or over-
estimated. This also implies a significantly larger RMSE. Lines
such as the (1–0) lines of HCO+, CCH, HNC, and N2H+ are
important for yielding more consistent results over the full range
of visual extinction.

8.2. Noise and distance effects

Our training and test sets have been observed with a decent value
for the S/N. We thus wonder whether it is possible to use the
random forest prediction of the column density on observations
that have low S/N To explore the predictive power of the method
when confronted with noisy observations, we have computed the
mean error and RMSE on the predicted column density when
adding gradually increasing Gaussian noise to each channel of
each spectra of the test set. The same noise rms value is used for
all lines simultaneously.

The left panel of Fig. 18 shows the results of this procedure.
The effect is negligible when the added noise RMS is lower than
0.1 K in channels of 0.5 km s−1. Both the mean error and the
RMSE increase slowly for values of added noise between 0.1 and
∼3 K. They then increase swiftly for larger noise values. These
noise values have similar orders of magnitudes than the mean
peak temperatures listed in Table 2. The mean peak temperatures
belong to the [0.1, 0.5 K] interval for all lines except H40α that
anyway plays a negligible role here, and the J = 1−0 line of 13CO
and 12CO whose mean temperature are 3.4 and 14.0 K, respec-
tively. This means that the detection of a given line is enough to
make a first estimate of the H2 column density. This also implies
that the column density predictor could be used on most observa-
tions taken today in millimeter astronomy as the ORION-B data
set was obtained at the highest telescope velocity possible at the
IRAM-30m telescope, that is, between 16 and 18′′ s−1 (this limit
coming from the data rate).

Our training and test sets also belong to one of the closest
giant molecular clouds. We also consider the maximum distance
at which it is still possible to use random forest prediction of the
column density. We assume that our observations of other molec-
ular clouds at larger distances from the Sun are made with the
same telescope. This means that the linear resolution decreases
with the distance, that is, the images of the input and predicted
variables are consistently smoothed with increasing Gaussian
kernels and then downsampled. The right panel of Fig. 18 shows
the results. We conclude that it is possible to use the random
forest predictor trained at the highest angular resolution up to a
distance eight times as great while maintaining a similar level of
precision. The predicted column density is then, of course, the
beam-diluted column density.

8.3. Generalization to the prediction of the far-UV illumination

The far-UV illumination is another key parameter in the physics
of molecular clouds. Thus, our next step is to check whether it
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Observed Predicted Predicted/Observed

Fig. 16. Performance of the standard XCO method to predict the column density from the 12CO (1–0) integrated line intensity. Top: spatial distribu-
tion of the observed and predicted H2 column density (left and middle panels), and of the ratio of the predicted column density over the observed
one (right panel). Bottom: joint histogram of the predicted column density as a function of the observed one (left panel), and histogram of the ratio
of the predicted column density over the observed one on a logarithmic scale. These results are computed on the Horsehead pillar, i.e., the test set.

is possible to quantitatively infer the far-UV illumination from
the 3 mm molecular emission, that is, to check whether the pro-
cedure described above can be generalized to other physical
quantities.

In far-UV illuminated regions, the dust emission is closely
linked to the far-UV photon flux. Pety et al. (2017) converted the
dust temperature map into an approximate map of the far-UV
radiation field G0 in units of the Habing Interstellar Stan-
dard Radiation Field (ISRF, Habing 1968), using the simple
approximation of Hollenbach et al. (1991) for face-on PDRs

G0 =

( Tdust

12.2 K

)5

. (8)

Shimajiri et al. (2017) compared this estimation with another
estimation directly using the far-IR intensities at 70 and 100 µm.

Both estimates agree within 30%. Given the complex geometry
of molecular clouds with respect to the illuminating stars and the
presence of far-UV shielded dust emission, the deduced values
of G0 should only be trusted at order-of-magnitude levels. As
for the observed column density used to train the random forest
(see Sect. 2.2), we do not claim that our dust-traced estimation of
the far-UV illumination is a perfect measure of G0. Another way
of looking at this is to state that we only aim to predict the dust
temperature from the 3 mm molecular emission alone here, as we
try to predict log G0 that is linearly related to log Tdust. However,
our long-term goal is to infer the values of the parameters that
control the underlying physics. That is why our main efforts are
aimed at checking whether the 3 mm molecular emission alone
is able to predict this dust-traced G0 with all its caveats (see also
Sect. 8.5).
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Observed Predicted Predicted/Observedlog10NH2 obs log10NH2 pred diff

21.2 21.4 21.6 21.8 22.0 22.2 22.4 22.6
log10(NH2/cm 2)

0.4 0.2 0.0 0.2 0.4
log10NH2 pred log10NH2 obs

Fig. 17. Performance of a random forest regression trained only on the three main CO isotopologues. The layout of the figure is identical to Fig. 16.

We used the same input features, the same training and test
sets, and the same methods as those used to learn how to infer the
H2 column density. Figure 19 shows the results. Quantitatively,
the mean error on log G0 is 0.081 dex (i.e., a factor of 1.21), the
RMSE is 0.25 dex (a factor of 1.8), and the maximum absolute
error is 0.78 dex (a factor of 5.9). The prediction of the observed
far-UV illumination is typically off by a multiplicative factor of
1.2 with a multiplicative scatter of 1.8 and errors of up to a factor
of six. These values must be interpreted keeping in mind that the
observed far-UV illumination around the Horsehead pillar spans
slightly more than one order of magnitude. The joint distribution
of the predicted and observed values of G0 shows a large scatter
in the ranges 10−15 and 50−80. The histogram of the predicted
over observed values shows a maximum around a factor 1.6, a
secondary maximum around a factor 1.0, plus two other over-
densities compared to a Gaussian of same mean and width at
factors of 0.5 and 2.5. The comparison of the spatial distributions

shows that the predicted G0 has variations that are much less
smoothed than those of the observed G0, along with large errors
in diffuse gas and dense photo-dissociation regions.

These results are not as good as for the column density. We
interpret the lower quality prediction of G0 by the fact that the
far-UV illumination is related to the third principal component
in the work of Gratier et al. (2017). This only explains ∼5% of
the correlations present in the input data set, compared to 60%
for the first principal component that is correlated to the column
density. This means that G0 is more difficult to extract from the
current set of line intensities detected in the 3 mm band. This set
mainly contains one rotational transition per molecular species,
most often the ground level one. It has been shown (see e.g., the
companion paper Roueff et al. 2020) that these transitions probe
the molecular column densities quite well, but that they are less
efficient for constraining the excitation conditions of the species.
It is expected that the sensitivity to G0 would be increased
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Fig. 18. Evolution of the accuracy (RMSE and mean error) of the log (NH2/ cm−2) preditcor when changing the condition of observations. Left:
Gaussian noise of zero mean and a given standard deviation is added to the line spectrum. The median noises belong to the [0.03 and 0.11 K]
interval depending on the line. Right: the line emission maps are smoothed in order to simulate an observation at a distance between 0.4 and
12.8 kpc.

by adding information on the molecular excitation in warmer
gas since the populations in higher energy levels are altered in
regions illuminated by a high radiation field. This means that the
line set should be complemented by higher level transitions of
a subset of the species probed in the 3 mm band. This “excita-
tion signature” will complement the “chemical signature” that is
already present in the 3 mm line sample.

8.4. Confounding variables

The intensity of a given line depends not only on the total column
density of matter, but also on the molecule abundance, and the
excitation conditions (kinetic temperature, density of neutrals,
and electrons). The latter quantities, thus, can act as confounding
variables in the relationship F between the total column density
Nd

H2
and the input intensities Il. The lack of knowledge of these

confounding variables implies that somewhat different values of
the dust-traced column density are possible for a given set of line
intensities, and thus acts as a source of uncertainty (of unknown
distribution). In the absence of ancillary knowledge beyond the
line intensities, the best estimation of the column density pre-
dictor nevertheless exists: It is the conditional expectation of
the dust-traced column density, given the knowledge of the line
brightnesses, mathematically 〈Nd

H2
|I1, ..., IL〉. In this paper, we

ignore the effect of the confounding variables on the ground
that the correlation between the line intensities in the PCA anal-
ysis are largely dominated by the first component which is, in
turn, highly correlated with the column density. The presence of
confounding variables induces a small additional uncertainty on
the relationship between the dust-traced column density and the
line intensities, which would need additional information to be
lifted.

8.5. Other potential sources of information to improve the
predictions of the gas column density and far-UV
illumination

The dust-traced column density (Nd
H2

) used in this article to
train the random forest represents an approximate measure of
the actual gas column density. Given the range of extinction, it is
assumed that all gas is molecular and H I represents only a small
fraction of the total gas column. Indeed, the column density of

atomic-hydrogen-dominated gas (i.e., a very low molecular frac-
tion) accounts for less than one visual magnitude of extinction in
the studied field of view (Pety et al. 2017). A second assumption
is the constancy of the dust-to-gas ratio over the whole region.
Our study shows that the knowledge of the emission of a small
number (six to eight) of 3 mm molecular lines is sufficient to pre-
dict the dust-traced column density in regions where the visual
extinction is mostly associated with molecular gas.

In other regions, and especially when dealing with larger spa-
tial scales, the dust thermal emission is associated with both
atomic and molecular gas and is therefore used to determine
the total gas column. At large scales (>10 pc), and because
the molecular gas is more concentrated than the atomic gas,
the total gas column is often dominated by the contribution of
atomic hydrogen. This applies to the large-scale halos around
giant molecular clouds in our Galaxy as well as in external
galaxies (e.g., Leroy et al. 2009). Remy et al. (2017, 2018b,a)
shows that a fraction of the total gas column, called the CO-
dark, remains unaccounted for when tracing the atomic gas with
the H I 21 cm line and the molecular gas with the 12CO (1–0)
emission using a simple linear method. The composition of the
CO-dark gas (or more generally dark neutral medium) is actu-
ally a mixture of atomic gas when the 21 cm H I line becomes
optically thick, and molecular gas with low CO abundance (e.g.,
Liszt et al. 2018, 2019). The regions dominated by H I or by the
CO-dark gas have low to moderate extinctions. The emission in
12CO (1–0) is too weak in this gas to be easily detected at the
sensitivity of typical observations.

While the random forest method is efficient for molecular
cloud conditions as in those of Orion B, it will have to be tested
in other regions to check how it behaves with regard to other
data sets. Data sets covering a parameter space too far from that
of ORION-B, as defined in Sect. 5.3, will have to be joined to
the ORION-B data to generalize the training. When the physi-
cal space is, finally, correctly sampled, users should be able to
apply the predictor. More generally, this method still needs to
be anchored on more diverse data sets. These could be grids
of models of photo-dissociation regions, which predict the line
brightness of many species as a function of the column density
for different physical regimes (Le Petit et al. 2006). Dust extinc-
tion maps derived from star counts (Capitanio et al. 2017) or
from maps of the gamma ray fluxes (Remy et al. 2017, 2018b,a)
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Fig. 19. Top: spatial distribution of the observed and predicted far-UV illumination (left and middle panels), and of the ratio of the predicted
illumination over the observed one (right panel). Bottom: joint histogram of the predicted illumination as a function of the observed one (left
panel), and histogram of the ratio of the predicted illumination over the observed one on a logarithmic scale. These results are computed on the
Horsehead pillar, i.e., the test set.

would also provide independent estimates of the total column
density, although at a lower spatial resolution than the molecular
data. Finally, it would be interesting to complement the 3 mm
molecular observations with velocity-resolved observations of
the key H I 21 cm and 158 µm [C II] lines. Both lines would
provide complementary information about the neutral gas not
emitting in 12CO (1–0). As one of the strongest cooling lines,
[C II] is also expected be a good probe of the far-UV illumination
in combination with the 3 mm lines (Pabst et al. 2017, 2019).

9. Conclusions

In this paper, we show that it is possible to derive an estimator of
the H2 column density from a set of molecular line observations.

We used observations from the ORION-B data set to train the
random forest on both the line integrated intensities and their
peak temperatures. We obtained the following results.

– When compared to linear regression on raw intensities
or after a non-linear (asinh) processing of the intensities,
the random forest regression delivers the best statistical
agreement and thus provides the best generalization power.
Indeed, the mean biases have a similar magnitude but the
error variances and the maximum errors are the smallest for
the random forest predictor.

– On average, eight lines play the strongest role in the predic-
tion of the H2 column density. The J = 1−0 lines of the three
main CO isotopologues and HCO+ dominate the perfor-
mance of the prediction. The J = 1−0 lines of HNC, N2H+,
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CCH, and the J = 2−1 line of 12CS make a contribution as
second order corrections.

– A deeper analysis shows that the 12CO (1–0) line is the most
important line in diffuse gas (Av <∼ 2), the 13CO (1–0) line
in translucent gas (2 <∼ Av <∼ 5), the C18O (1–0) line in the
filament gas (5 <∼ Av <∼ 15), and the N2H+ (1–0) and CH3OH
(20 − 10) lines in dense cores (15 < Av).

– The accuracy of the method over a large range of visual
extinction depends on the number of lines measured. In par-
ticular, the intensity from a single line can not alone bring an
accurate H2 column density under all the physical regimes,
for example, when the gas is more far UV-illuminated or less.

– The prediction of the far-UV illumination field using the
same method is less successful, probably because the set
of lines we use is not sensitive enough to the excitation
conditions of the gas.

This work gives further support to the use of the CO isotopo-
logues for deriving the total column density in molecular gas.
It indicates that acquiring the three main isotopologues should
be preferred over targeting a single CO line because they are
sensitive to different ranges of visual extinction (e.g., diffuse,
translucent, dark lines of sight). To further progress on the
understanding of the physical conditions of molecular clouds, a
detailed understanding of the variations of the CO isotopologue
excitation conditions and relative abundances is needed. This
will be the subject of further articles in this series, starting with
a companion article by Roueff et al. (2020), which derives accu-
rate excitation temperatures and column densities of the three
main CO isotopologues.
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Appendix A: Interpreting the negative
log2-likelihood of a set of points

If X is a discrete random variable whose probability distribu-
tion is pi = P(X = xi) with

∑
i pi = 1, Q(X = xi) =− log2 pi can be

interpreted as the quantity of information associated to the event
X = xi (see, e.g., Cover & Thomas 1991). For instance, having
knowledge of an unlikely event corresponds to a large quantity
of information.

Moreover, the quantity of information of a couple of
independent events is simply the sum of both quantities.
Indeed, Q(X = xi,Y = y j) = Q(X = Xi) + Q(Y = y j), because
P(X = xi,Y = y j) = P(X = xi)P(Y = y j). For a source of
information X, the statistical mean of Q(X) is

〈Q(X)〉p =−〈log2 pX〉p =−
∑

i

pi log2 pi. (A.1)

According to Shannon coding theory, the quantity H(X) =
−∑

i pi log2 pi, called the (Shannon) entropy, is equal to the num-
ber of bits required to encode the information. It thus allows one
to quantify the quantity of information of a source X.

In practice, the distribution pi of X may be unknown, but
we can postulate that the source X is described by another
probability distribution qi. The expectation,

〈Qq(X)〉p =−〈log2 qX〉p =−
∑

i

pi log2 qi, (A.2)

is the number of bits necessary to encode the same source (i.e.,
X), but with q (which is known) instead of p (which is unknown).
It is a straightforward path to showing that

〈Qq(X)〉p =−〈log2 pX〉p +

〈
log2

pX

qX

〉
p
. (A.3)

We thus yield

〈Qq(X)〉p = H(X) +K (p|q) , (A.4)

where H(X) is the unknown entropy of the source (i.e., the num-
ber of bits necessary to encode the source X) and K (p|q) is the

Kullback-Leibler divergence. We can then show that K (p|q) ≥
0. Thus, the entropy is the minimum amount of information
required to encode the source, X, and the Kullback-Leibler diver-
gence represents the number of bits that needs to be added when
we encode the source X with q instead of p, that is, the cost (in
bits) of choosing the wrong probability density, q.

When we quantify a continuous random variable X with
resolution ∆ to get a discrete random variable X∆, we can show

H(X∆) + log ∆ 7→ h(X) when ∆ 7→ 0, (A.5)

where

h(X) =−
∫

fX(x) log fX(x)dx (A.6)

is called the differential entropy. An important difference
between entropy and differential entropy is that h(X) can be
negative because of the log ∆ offset. Nevertheless, the previous
interpretation of the Kulback-Leibler divergence (i.e., the
cost of choosing a different probability density instead of the
actual one) remains valid up to a constant offset related to the
quantification resolution. In others words, if we assume that
there exists an unknown density fX of X, but we use the density
g instead of f , we get

−〈log2 gX〉 f = h(X) +K( f |g), (A.7)

where the Kullback-Leibler divergence K( f |g) =
∫

f log f
g

is
always positive.

Figure 5 shows the histograms of the negative log2-
likelihood of the estimated Gaussian mixture for different data
sets. It thus represents (within an unknown offset) the quantity
of information that is necessary to encode the data sets with the
Gaussian mixture model. The green histogram shows that the
information cost is very high for a uniformly distributed random
set, while it is similar for the training set and the test set.

A27, page 27 of 27


	Quantitative inference of the H2 column densities from 3mm molecular emission: case study towards Orion B
	1 Introduction
	2 Data
	2.1 Molecular emission from IRAM-30m observations
	2.2 N(H2) column density derived from dust thermal emission observed with Herschel
	2.3 Information content

	3 Astrophysical goal: to determine whether it is possible to accurately predict the H2 column density based on molecular emission
	4 Principle: regression in machine learning
	4.1 Supervised machine-learning method called regression
	4.2 Training set, test set, and quality of fit
	4.3 Variance and bias of the model estimation
	4.4 Decreasing the regressor variance through bagging
	4.5 Regression trees
	4.6 Random forest
	4.7 Model complexity versus interpretability

	5 Application
	5.1 Quality of the regression and generalization: mean error and RMSE
	5.2 Separation of the data into training and test sets
	5.3 Considering whether the test set belongs to the same parameter space as the training set
	5.4 Optimization of the random forest regressor

	6 Comparison of the random forest prediction with two simpler methods
	6.1 Multi-linear regression with or without a non-linear processing of the line intensities
	6.2 Spatial distributions of the predictions and of the residuals
	6.3 Joint distributions of the predicted and observed column density, and the histograms of their ratios
	6.4 Uncertainty

	7 Contribution of the different lines to the performance of the predictor
	7.1  Lines that contribute the most
	7.2 Where the lines contributes to the prediction
	7.3 The physical regime each line contributes to
	7.4 Comparison with previous works on the OrionB molecular cloud

	8 Comparison, generalization, limitations, and perspectives
	8.1 Comparison with simpler approaches to infer the H2 column density from molecular lines
	8.2 Noise and distance effects
	8.3 Generalization to the prediction of the far-UV illumination
	8.4 Confounding variables
	8.5 Other potential sources of information to improve the predictions of the gas column density and far-UV illumination

	9 Conclusions
	Acknowledgements
	References
	Appendix A: Interpreting the negative log2-likelihood of a set of points


