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Strong coupling between a single quantum emitter and an electromagnetic mode is one of the key effects in
quantum optics. In the cavity QED approach to plasmonics, strongly coupled systems are usually understood as
single-transition emitters resonantly coupled to a single radiative plasmonic mode. However, plasmonic cavities
also support nonradiative (or “dark”) modes, which offer much higher coupling strengths. On the other hand,
realistic quantum emitters often support multiple electronic transitions of various symmetries, which could
overlap with higher order plasmonic transitions—in the blue or ultraviolet part of the spectrum. Here, we show
that despite very large detuning between a bright mode and an excitonic transition, their strong coupling can be
ensured by leveraging higher energy dark modes of the optical cavity. Specifically, when a dark mode interacts
strongly with an excitonic transition, the lower polariton of the hybridized spectrum can be pushed to energies
of the bright mode. The resulting interaction of the lower dark-mode-exciton polariton and bright mode yields
significant vacuum Rabi splitting, which hinges on the existence of the dark mode. We develop a simple model
illustrating the modification of the system response in the “dark” strong coupling regime and demonstrate single
photon nonlinearity. These results may find important implications in the emerging field of room-temperature
quantum plasmonics.

DOI: 10.1103/PhysRevResearch.2.033056

I. INTRODUCTION

Interaction of a quantum emitter (QE) with an optical cav-
ity is at the heart of modern quantum optics. In the regime of
weak QE-cavity coupling, the presence of a QE may be treated
as a perturbation that affects the eigenmode of the cavity
[1,2]. However, when the interaction between the cavity mode
and the QE is strong enough, they form dressed polaritonic
states (also called plexcitons [3]) separated by the vacuum
Rabi splitting in the energy spectrum [4–7]. As the QE and
the optical mode can no longer be treated as separate entities
in this regime, such an evolution of the system not only
modifies its optical response, but also dramatically affects
exciton transport [8] and photochemical [9–13] properties.

Strong light-matter coupling is particularly interesting in
the single-emitter limit, when unique features of the Jaynes-
Cummings ladder enable single-photon optical nonlinearities
[14,15]. Rabi splitting between single quantum dots and di-
electric high-Q microcavities was observed in a number of
works but only at cryogenic temperatures [16,17]. Plasmonic
nanocavities enable observation of strong coupling with quan-
tum dots and organic chromophores at room temperatures
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[18–22], but most of such structures are at the border between
the weak and the strong coupling regimes due to limited
coupling strength [23].

The value of the coupling strength is determined by the
transition dipole moment of the QE and the vacuum electric
field of the cavity [4,6,7]. To achieve Rabi splitting in the
visible range, the electronic transition of the QE has to be
resonant with the bright mode of the cavity in the visible
range. However, many material systems that are used to
emulate QEs, for example, colloidal quantum dots [24,25]
and excitons in transition-metal dichalcogenides monolayers
[26], also possess electronic transitions at higher energies,
which are often characterized by higher values of the oscil-
lator strength. The high oscillator strength of these transitions
could potentially be used to enhance the magnitude of Rabi
splitting if the dipolar plasmon resonance can be tuned to the
appropriate frequency range to overlap with those transitions.
However, such an approach would require tuning dipolar
plasmon resonances to the ultraviolet (UV) range, which
has a number of disadvantages, including the complexity of
optical measurements in this spectral range and the necessity
of utilizing metals with significantly high plasma frequency,
such as aluminium [27–29].

Alternatively, strong coupling between the QE and the
so-called “dark,” weakly radiative modes of conventional Ag
and Au nanoparticles has been explored [30–37]. Despite the
fact these dark modes are not observable using traditional
optical techniques (although they can be observed by electron
energy loss spectroscopy (EELS) [38–42], or in scattered
light by large clusters [43] and anapoles [44]), it might be
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possible to visualize them by further hybridization of the dark
mode-QE state with the bright mode of the resonator. We
emphasize that the terminology of plasmonic “dark” modes
has also been used for near-field plasmon modes of interacting
nanoparticles, yielding zero net dipole moment [45]. In the
weak coupling scenario, the interaction of a QE with a dark
mode leads to quenching of emission [46,47], which is why
these modes are often assumed to be detrimental for the
purposes of vacuum Rabi splitting. In the strong coupling
regime, however, Rabi splitting is relatively robust with re-
spect to quenching when the emitter is spectrally tuned to the
bright dipole mode of a plasmonic nanoparticle, as was shown
recently [31]. It has also been shown that light-forbidden
quadrupolar transitions of excitons coupled to a nanoparticle
on mirror system can lead to strong coupling [37,48].

In this work, we demonstrate theoretically that by coupling
a high-energy transition of a QE to a cavity dark mode, it
is possible to achieve observable Rabi splitting between two
bright polariton modes. The dark mode plays a role of a
tuning mechanism of the high-energy QE resonance toward
the bright plasmon mode, where the interaction can take place.
We analyze the system response with the use of a master equa-
tion approach and apply it to the case of a single QE coupled
to the plasmonic modes of a metallic nanosphere. Note that
all the parameter values correspond to a realistic geometry,
thereby suggesting a practical recipe for the realization of
vacuum Rabi splitting with a single QE at room temperature.
Our results could potentially help in understanding the micro-
scopic behavior of experimental observations of QE-plasmon
systems such as those shown in Refs. [19,20], where a single
emitter strong coupling was demonstrated but modeling the
system with a single mode for the plasmonic response yields
unrealistic values for the dipole moments of the QE [23].

II. SINGLE EMITTER COUPLED TO A DARK AND A
BRIGHT MODE

The system under study is schematically shown in
Fig. 1(a). It is composed of two cavity modes and a QE.
One of the modes is denoted as bright (“B”) since it has a
low nonradiative loss rate γ nonrad

B , while the other one is dark
(“D”) and has low radiative loss γ rad

D , such that γ rad
D /γ rad

B � 1,
and high nonradiative losses γ nonrad

D . The choice of such a
system is motivated by the existence of localized surface
plasmon resonances of a metallic nanosphere: The lowest
order mode has a dipolar nature and couples efficiently to
light, while the higher order modes are strongly confined and
appear only in the near field. The emitter couples to the bright
mode and to the dark mode with coupling strengths gB and
gD, respectively. The energy diagram sketched in Fig. 1(b)
elucidates the resulting interaction picture in this kind of
system. The emitter interacts with the dark mode, resulting
in two polariton modes separated by a “dark” Rabi splitting,
which cannot be observed in the far field. The lower of these
two polaritons, in turn, interacts with the bright cavity mode,
leading to formation of another pair of polaritonic states,
which can be observed in scattering owing to the radiative
character of the bright mode.

We apply a simple analytical model based on a master
equation with a weak drive to our system. This approach is
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FIG. 1. (a) Schematic illustration of the system under study:
a cavity with a bright mode and a dark mode couples to a QE.
(b) Sketch of the energy diagram of the three-component system.
The dark mode-emitter coupling results in “dark” polaritons; the
lower of those two in turn couples with the bright mode, resulting
in two “bright” polaritons that can be resolved in the scattering
spectrum. (c) Spontaneous emission enhancement factor (or Purcell
factor) for a 10-nm Ag nanosphere, 1 nm away from the surface
(see Appendix B for details). The green line shows the dipole
mode contribution, while the dashed line is the dark pseudomode
contribution.

also fully equivalent to the temporal coupled mode theory in
evaluating the scattering dynamics [49,50] (see Appendix A).

A. Master equation in the weak pumping limit

We use a master equation approach to calculate the scat-
tering spectra in the main text. This approach not only
corresponds to classical spectra in the weak pumping limit
but allows the modeling of quantum nonlinearities such as
saturation of the bright mode that arise in the strong pumping
limit. Here, we limit our study to the weak pumping limit and
show the photon blockade by calculating the photon statistics
of the scattered signal. The Hamiltonian of the QE-two mode
cavity system in the rotating-wave approximation is

ĤS = ωE σ̂+σ̂− + ωBâ†
BâB + ωDâ†

DâD

+ gB (̂a†
Bσ̂− + âBσ̂+) + gD (̂a†

Dσ̂− + âDσ̂+), (1)

corresponding conceptually to the system described in Fig. 2.
ωE ,B,D here denote the transition frequencies of the QE, the
bright mode, and the dark mode, respectively. âB,D are the an-
niliation operators for the bright and dark modes, respectively,
and gB,D are their corresponding coupling strengths with the
QE. The master equation with a drive term is

˙̂� = −i[Ĥ , �̂ ] +
∑

j=B,D

γ j

(̂
a j �̂ â†

j − 1

2
�̂ â†

j â j − 1

2
â†

j â j �̂

)
,

(2)

Ĥ = ĤS + Ĥdrive, (3)

Ĥdrive = −
[μE

h̄
(σ̂− + σ̂+) + μB

h̄
(̂aB + â†

B)
]
EL cos ωt, (4)
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FIG. 2. Sketch of the model corresponding to Hamiltonian (1).
A single two-level QE with lowering and raising operators σ̂−, σ̂+
is coupled to a dark cavity mode with annihilation and creation
operators âD, â†

D and to a bright cavity mode with annihilation and
creation operators âB, â†

B. The system is driven with a laser field EL

and the output field âs from (8) contains components from both the
QE and the bright mode.

where �̂ is the density operator for the emitter–bright-mode–
dark-mode system, γ j = γ rad

j + γ non-rad
j , j = B, D are the loss

rates of the bright and dark modes, respectively, μE ,B are
the dipole moments of the emitter and the bright mode,
respectively (we neglected the pumping term of the dark
mode since it couples only locally to the QE), and the system
is driven with a laser field amplitude EL and frequency ω.
Writing the Hamiltonian in the rotating frame of the driving
field and applying the rotating-wave approximation yield the
Hamiltonian in the form

Ĥ = �E σ̂+σ̂− + �Bâ†
BâB + �Dâ†

DâD

+ gB (̂a†
Bσ̂− + âBσ̂+) + gD (̂a†

Dσ̂− + âDσ̂+)

+ EE

2
(σ̂− + σ̂+) + EB

2
(̂aB + â†

B), (5)

where � j = ω j − ω and E j = −μ jEL/h̄, j = E , B, D. Since
we study the weak pumping regime, the system is rarely
in an excited state and thus the â j �̂ â†

j terms in the master
equation can be neglected. This is equivalent to considering
the effective Schrödinger equation

i
d|ψ〉

dt
= H̃ |ψ〉, (6)

with H̃ = Ĥ − i γE

2 σ̂+σ̂− − i γB

2 â†
BâB − i γD

2 â†
DâD and whose

steady-state solution yields the scattering spectrum and the
photon statistics for zero delay. To solve this equation in
the weak pumping limit, we proceed as in Refs. [48,51] and
solve for the steady state:

|ψs.s.〉 =
∑
a=g,e

2∑
b,c=0

ca,b,c|a, b, c〉 (7a)

H̃ |ψs.s.〉 = 0, (7b)

where we truncate the bright and dark excitation basis to
2, which is needed to evaluate the second-order correlation
function.

B. Scattering spectrum and photon statistics

The scattering spectrum is obtained by constructing the
scattering operator,

âs = μE σ̂− + μBâB, (8)

and computing the average over the steady-state of the associ-
ated number operator,

S(ω) = 〈ψs.s. |̂a†
s âs|ψs.s.〉. (9)

When we consider the scattering map versus the nanosphere
radius R, one should include the radius dependence of the scat-
tered operator since larger nanospheres have faster radiative
decay rates. To account for the radius dependence, we use the
radiative decay rate formula from Ref. [52]:

γ rad
B = 4ε

3/2
b

(
ωBR

c

)3[
∂

∂ω
Re{εm(ω)}

]−1

ω=ωB

, (10)

with εb being the dielectric function of the surrounding
medium, ωB being the surface plasmon resonance frequency
of the nanoparticle (here considering Ag), R being the radius
of the nanoparticle, and εm(ω) being its Drude permittivity.
The transition dipole moment μB is then given as a function
of the radiative decay rate through the Fermi golden rule
formula:

μB =
√

3h̄πεbc3

ω3
B

γ rad
B . (11)

The photon statistics of the scattered signal is studied through
the second-order correlation function for zero time delay [51]:

g(2)
ω (0) = 〈ψs.s. |̂a†

s â†
s âŝas|ψs.s.〉

〈ψs.s. |̂a†
s âs|ψs.s.〉2

. (12)

The numerator of this function describes the probability of
detecting two simultaneous scattered photons in a Hanbury-
Brown-Twiss setup. The scattering of a laser beam on a
classical system yields the coherent state value of 1 for g(2)

ω (0),
while antibunched light corresponding to the quantized nature
of the scattered radiation yields values below 1, and bunched
light such as thermal sources or photon pair sources yields
values above 1.

C. Bright mode-dark plexciton vacuum Rabi splitting

We begin our study with a quick calculation of the scat-
tering, considering a cavity with the bright mode at 3 eV
and the dark pseudomode at 3.4 eV, corresponding to an Ag
nanosphere of 10 nm diameter [see Fig. 1(c) and Appendix B
for the Purcell factor calculation]. We used a local-response
approximation for a silver nanosphere for simplicity, but this
scheme could apply to nonlocal-corrected models where the
dark pseudomode is replaced by the quadrupolar mode [53].
Also, nonlocal effects were recently shown to have negligi-
ble effect on vacuum Rabi splittings [41,54], and modeling
of strongly coupled Al-benzene systems showed an equally
strong hybrid modes [29]. For the bright- and dark-mode
linewidths, we use γ rad

B = γ non−rad
D = 0.1 eV. Furthermore, we

here assume γ rad
D = γ nonrad

B = 0. We emphasize that in this
first calculation, we fixed these decay rate values arbitrar-
ily. Later, we compute these values for the case of an Ag
nanosphere whose dielectric constant is taken from Ref. [55].
To strengthen our motivation, we examine which QEs might
be suitable for the proposed strong coupling scheme. Col-
loidal quantum dots (QDs), such as CdSe QDs, have a tran-
sition dipole moment of about 5–15 D at the wavelength of
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FIG. 3. Theoretical modeling of a generic coupled three-component system. (a) Scattering spectrum by the 3 × 3 system with the
exemplary parameters outlined in the text in the absence of the dark mode, gD = 0 (dashed), and in the presence of the dark-mode–emitter
coupling, gD = 0.4 eV (solid), and the bright-mode–emitter detuning, δE = 0.38 eV. The filled curve depicts spectral position of the QE
transition at 3.4 eV. (b) Calculated scattering spectra of the exemplary 3 × 3 system as a function of the emitter detuning δE for fixed
gD = 0.4 eV. Dashed lines depict the real parts of the lower, middle, and upper polariton frequencies of the 3 × 3 system. (c) Absolute
squared values of Hopfield coefficients |αB|2, |αD|2, and |αE |2 of the lower (left) and middle (right) polaritons vs emitter detuning δE for
gD = 0.4 eV.

600 nm [56]. At the same time, these QDs are known to have
high absorption and extinction coefficients in the UV range,
exceeding that in the visible range by at least an order of
magnitude [24,25]. Recalling that the extinction cross section
of a two-level system under weak excitation is related to its
transition dipole moment μ via σext = ωEμ2/(h̄cε0γE ) [24],
where c is the speed of light and ε0 is the vacuum permittivity,
and by assuming that the absorption peak predominantly
originates from a single electronic transition (which might be
not true in a realistic system), we may estimate the dipole
moment of the UV transition is of the order of 100 D. Based
on this simple estimation, we assign gB = 0.1 eV and gD =
0.4 eV, corresponding to a point emitter located 1 nm from the
surface of the Ag nanosphere. According to Fermi’s golden
rule formula for the radiative decay rate, this value of the
transition dipole moment results in γ rad

E ≈ 3 μeV, which is
negligible in comparison to other decay rates.

To gain initial understanding of the three-component sys-
tem behavior, we examine in Fig. 3(a) how the presence of the
dark mode affects the elastic scattering spectrum for the QE
tuned to the dark mode energy of 3.4 eV in accordance with
Eqs. (1) and (2). When the dark mode is turned off, gD = 0,
the scattering spectrum exhibits one prominent peak corre-
sponding to the uncoupled bright mode. However, when the
coupling to the dark mode is introduced via gD, the scattering
spectrum presents two peaks around 3 eV, suggesting the onset
of strong coupling between the emitter and the bright mode.

In order to corroborate the strong coupling regime upon
coupling to the dark mode, we analyze the elastic scatter-
ing from the system versus the QE detuning δE = ωE − ωB,
Figs. 3(b). As one can see, an anticrossing occurs when the QE
frequency crosses the dark mode frequency (δE ≈ 0.4 eV),
i.e., at ωE ≈ ωD. Notably, the Rabi splitting itself still occurs
at the frequency of the unperturbed bright mode around 3 eV.
The scattering peaks precisely follow eigenenergies of the
Hamiltonian [Eq. (A2)], which are shown by the dashed lines
in Fig. 3(b). The anticrossing of the eigenvalues confirms
the strong coupling regime in the system. This is the main
result of our paper that we would like to emphasize: One
can leverage high transition dipole moments of certain QEs

typically lying in the UV region to observe Rabi splittings
in the visible range, provided that the emitter additionally
interacts with a high-energy nonradiative mode.

Eigenvectors of Hamiltonian (Eq. (A2)) correspond
to three-component quasiparticles: |EPi〉 = cB|B〉 + cD|D〉 +
cE |E〉, where |B〉, |D〉, and |E〉 denote the bare bright mode,
dark mode, and QE states, respectively. The lowest, medium,
and highest energy solutions are referred to as the lower, mid-
dle, and upper polaritons (LP, MP, UP), respectively. Abso-
lute amplitudes of these contributions (Hopfield coefficients),
shown in Fig. 3(c) for the LP and MP as a function of the
QE detuning, confirm that both bright polaritons have contri-
butions from the bright and dark modes as well as the QE at
the avoided crossing position and thus indeed present mixed
light-matter states. The “bright” Rabi splitting observed in
the spectra around 3 eV occurs between the LP and MP.
Neglecting losses, we can obtain an analytical expression for
the magnitude of this splitting from the 3 × 3 Hamiltonian
(see Appendix C for the derivation of this formula):

�bright =
√

2gB

√√√√1 + ωD − ωE√
4g2

D + (ωD − ωE )2
. (13)

As one can see, it is mostly affected by the bright-emitter
coupling constant gB, which is determined by the transition
dipole moment of the emitter and the vacuum electric field of
the lower energy bright mode [4,7]. The dark-emitter coupling
constant gD, at the same time, has a negative effect on the
resulting splitting. However, it is the large coupling to the
dark mode that allows to effectively “push” the QE resonance
down to the visible region, where it can interact with the
bright mode. Looking at expression (13), one should also
note that even if gD reduces the Rabi splitting, it can only
bring it down to

√
2gB when gD → ∞. This role of the dark

mode-emitter coupling can be illustrated by the expression for
the optimal emitter–bright-mode detuning δ

opt
E , upon which

the bright mode is in zero detuning with the polariton formed
by the dark mode-QE coupling (see Appendix C):

δ
opt
E = g2

D/(ωD − ωB). (14)
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FIG. 4. Strong dark coupling in an Ag nanosphere. (a) False-color map of calculated scattering spectra of a 100 D point dipole QE 1.5
nm away from the surface of an Ag nanosphere of radius R. The emitter frequency is set to ωE = ωD, 0.35 eV away from the bright mode
(cyan vertical line). For better visibility, this map is shown in log scale. (b) Second-order correlation function g(2)

ω (0) vs R for h = 1.5 nm.
(c) Calculated scattering spectra for the same system vs the emitter-surface distance h for R = 5 nm. (d) Second-order correlation function
g(2)

ω (0) vs h for R = 5 nm.

Essentially, this equation shows that the larger the dark mode-
emitter coupling is, the higher ωE should be in order for
its hybridized resonance to overlap perfectly with the bright
mode in the visible region. To underline the importance of
the strong QE-dark mode interaction, we also provide the
scattering map when gB = 0 as well as the absorption map
for the same parameters as in Fig. 3(b), in Appendix C.

D. Single QE in the vicinity of a silver nanosphere

We further elaborate the concept of dark strong coupling
by inspecting the response of a specific nanocavity, with the
use of the master equation approach derived in the previous
paragraphs. We choose a silver spherical nanoparticle of
radius R and a QE placed at a distance h from the nanosphere
surface. As was mentioned above, the dipole moment of the
UV transition of some QEs could reach 100 D (≈2 e nm),
and the total decay rate of such a transition could be of the
order of 0.1 eV. We also compute all relevant parameters
ω j, γ j, g j, j = B, D from a Lorentzian fit of a Green’s tensor
approach [57], while γ rad

B is taken from (10) and γ rad
D is

still assumed to be zero. The dielectric function of Ag is
taken from Ref. [55], accounting for realistic values of the
nonradiative decay. For radii R between 5 and 20 nm, we
find γ rad

B between 0.1 and 5 meV, while the full decay rates
γB, γD ≈ 0.3 eV, which is typical of small nanospheres whose
field response is dominated by absorption. The map of elastic
scattering versus the nanoparticle radius presented in Fig. 4(a)
confirms that the Rabi splitting due to the dark mode coupling
is preserved for a wide range of the nanoparticle size. In this
plot, the QE detuning was placed in resonance with the dark
pseudomode so that δE = 0.35 eV, for the smallest radius of
5 nm. The observed effect appears to be much more sensitive
to the surface-emitter separation h, as Fig. 4(b) indicates. The
Rabi splitting in the vicinity of the bright mode is sustained
only up to 2 nm separation and disappears for larger distances,
where only the uncoupled bright mode and the emitter con-
tribute to scattering. This behavior originates from the dark
pseudomode strong dependence on h. With increasing h, the
coupling to the dark mode quickly diminishes, leaving only
the signatures of the bright mode in the spectrum.

In addition, we demonstrate the photon blockade for R =
5 nm versus h. The results are shown in Fig. 4(c), where we
plot the scattered photon statistics for zero delay, i.e., the
second-order correlation function (12). We show that anti-

bunched light (g(2)
ω (0) < 1) is produced following the LP since

it is a mixture of the dark plexciton and the bright mode, while
slightly bunched light (g(2)

ω (0) > 1) appears on the dark plex-
citon UP. We underline here that the antibunching is resulting
from strong interactions with both dark and bright modes,
even if the dark pseudomode is usually thought of as being
detrimental for the radiative properties of the system. Also,
even if the QE is being hybridized with two plasmon modes,
the photon statistics shows clear antibunching, indicating the
robustness of single-photon emission in this scheme. Finally,
despite the resonances being in the near UV, the single-photon
emission line is shown to be red shifted so that it can be seen in
the visible. We further discuss this effect by varying manually
the Hamiltonian with similar parameters. Results are shown in
Figs. 5 and 6. Figure 5(a) shows the scattering when the QE
frequency is tuned in resonance with the dark pseudomode
ωE = ωD, and one can see an anticrossing between the LP
and MP around gD = 0.5 eV. The UP is here not very visible
since it is strongly detuned with the bright mode. When the
MP and LP are strongly coupled, an antibunching line appears
in Fig. 5(b), and the latter is further red shifted when gD and gB

increase. In Fig. 6, we plot the same data with the same param-
eters except for the QE frequency that is artificially swept in
order to match the optimal frequency ω

opt
E = ωB + δ

opt
E , hence

maintaining the optimal Rabi splitting between the LP and
the MP. One can observe that for very high dark coupling

LP

MP

UP

FIG. 5. (a) Log-scale scattering intensity of the coupled QE
bright- and dark-mode system vs weak drive frequency ω. Here ωE =
ωD = 3.5 eV (light blue line), ωB = 3 eV and gD, gB are linearly
swept from 0 to 1 eV and 0 to 0.3 eV, respectively. (b) Zero-delay
second-order coherence function g(2)

ω (0) with the same parametriza-
tion as in panel (a). Lower, middle, and upper polariton (LP, MP,
UP) lines are shown in dashed solid lines. Decay rates were fixed
γB = γD = 0.2 eV and γE = 0.1 eV.
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LP

MP

UP

FIG. 6. (a) Log-scale scattering intensity of the coupled QE
bright- and dark-mode system vs weak drive frequency ω. All param-
eters are the same as in Fig. 5 except for ωE , which is here taken to be
the optimal frequency ω

opt
E = ωB + δ

opt
E . (b) Zero-delay second-order

coherence function g(2)
ω (0) with the same parametrization as in (a).

Lower, middle, and upper polariton (LP, MP, UP) lines are shown in
dashed solid lines.

strengths gD the UP and the emitter are very far detuned to the
blue but the antibunching line in Fig. 6(b) remains unchanged.

III. CONCLUSION

We have presented a scheme for realizing strong light-
matter coupling with use of a high-energy electronic transition
of a large oscillator strength quantum emitter. Exploiting the
nonradiative modes of a plasmonic cavity, the high-energy
transition can be tuned to lower energies, where it can couple
with the bright plasmon cavity mode leading to observable
vacuum Rabi splitting in the scattering spectrum. Results were
predicted by a simple model and verified with the use of
an effective master equation approach for realistic coupling
parameters and cavity geometries. Quantum nonlinearities
were also shown with the use of the second-order coherence
function and found to be robust with respect to dark mode cou-
pling. UV transitions of colloidal quantum dots or C excitons
of transition-metal dichalcogenides are possible candidates
for the proposed approach toward strong coupling [24,58].
This work could help in the design of QE-plasmon coupling
schemes toward the realization of efficient room-temperature
strong coupling and quantum nonlinearities.
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APPENDIX A: TEMPORAL COUPLED MODE THEORY

In the framework of coupled mode theory, the system
response is described by a ket-vector with complex ampli-
tudes |a〉 = (cB, cD, cE )T , where the subscripts B, D, E de-
note corresponding amplitudes for the bright mode, the dark
pseudomode, and the QE, respectively. The dynamics of the
amplitudes is governed by the Schrödinger-like equation

i
d|a〉
dt

= Ĥ |a〉 + s+|κ〉, |κ〉 = (κB, κD, κE )T , (A1)

where Ĥ is the system Hamiltonian, |κ〉 is the mode-radiation

coupling constants vector with components κ j =
√

γ rad
j , γ rad

j

are the radiative decay rates of each mode, and s+ is the
incident wave amplitude. The Hamiltonian of the three-mode
system reads

Ĥ =
⎛⎝ ωB − iγB/2 0 gB − iγind

0 ωD − iγD/2 gD

gB − iγind gD ωE − iγE/2

⎞⎠,

(A2)

where ω j, γ j stand for the eigenfrequencies and total decay
rates of each mode, respectively. The non-Hermitian term
with γind =

√
γ rad

B γ rad
E /4 comes from the far-field (indirect)

coupling of the bright mode with the QE [59] and can be
neglected when the QE radiative decay is much smaller than
that of the bright mode. For a harmonic excitation at frequency
ω, the steady-state solution of Eq. (1) reads |a〉 = |κ〉s+

i(Ĥ−ω)
.

Finally, the amplitude of the scattered signal in the steady-
state regime is given by s− = 〈κ|a〉.

APPENDIX B: BRIGHT- AND DARK-MODE
DECOMPOSITION: EFFECTIVE HAMILTONIAN

In the rotating-wave approximation, the non-Hermitian
Hamiltonian for the nanosphere-emitter system reads, using
the spherical orthogonal mode decomposition,

H̃m.d. =
(
ωE − i

γE

2

)
σ̂+σ̂− +

∞∑
n=1

(
ωn − i

γn

2

)̂
a†

nân

+
∞∑

n=1

gn (̂a†
nσ̂− + ânσ̂+), (B1)

where ωE is the transition frequency of the QE, σ̂−, σ̂+ is its
lowering and raising operators, respectively, and γE is its total
decay rate. The plasmonic field is modeled with creation and
annihilation operators â†

n, ân associated with frequencies ωn

and decay rates γn. Each n mode corresponds to a specific
plasmon resonance: n = 1 is the dipolar mode, n = 2 is the
quadrupolar, n = 3 is the octupolar, and so on, and each
mode n couples to the QE with coupling rate gn. In the case
of a spherical nanoparticle in the local-response approxima-
tion [41,53,54], the dipole mode is usually well separated
from the higher order modes n � 2 and the latter, being
quasidegenerate, behave effectively as a large pseudomode
when the emitter is very close to the surface of the sphere.
The quasidegeneracy of the higher order modes is valid in
the local-response approximation, where nonlocal effects are
disregarded. This may not be true for very small spheres,
whose spontaneous emission spectrum in the vicinity of the
metal surface then present nondegenerate higher order modes
[53]. However, for simplicity we will use the local-response
approximation for silver spheres of radii between 5 and 20
nm. In the case of degenerate modes, however, one could still
apply our formalism using the quadrupole mode as the dark
mode that will couple to the QE. In the following, we note
ω1 ≡ ωB, γ1 ≡ γB, â1 ≡ âB, g1 ≡ gB, and

âD = 1

gD

∞∑
n�2

gn̂an. (B2)
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The commutation relation of the original modes [̂an, â†
m] =

δnm leads to the effective dark coupling to be gD =
(
∑∞

n�2 g2
n)1/2 in order to have the dark modes normalized

and the right commutation relation [̂aD, â†
D] = 1. The effective

non-Hermitian system Hamiltonian then has the form

H̃S =
(
ωE − i

γE

2

)
σ̂+σ̂− +

(
ωB − i

γB

2

)̂
a†

BâB

+
(
ωD − i

γD

2

)̂
a†

DâD + gB (̂a†
Bσ̂− + âBσ̂+)

+ gD (̂a†
Dσ̂− + âDσ̂+). (B3)

The resonance ωD and the decay rate γD are obtained by fitting
the pseudomode by a Lorentzian function and extracting its
maximum position and full width at half maximum. The
calculation of the Lorentzian-fitted local density of states
(LDOS) from the Green’s tensor approach then yields the
parameters (gB, gD, ωB, ωD, γB, γD) that appear in the non-
Hermitian Hamiltonian [32,57,60]. The spontaneous emission
enhancement factor seen in Fig. 1(c) is then computed through
the following formula:

FP(ω) =
∑

n

u · Im{ ¯̄Gn(rE , rE , ω)}u
u · Im{ ¯̄Gfree(rE , rE , ω)}u

, (B4)

where u is the unit vector oriented along the QE dipole
moment, rE is the position of the QE, ¯̄Gn(r, r′, ω) is the nth
mode Green’s tensor, and ¯̄Gfree(r, r′, ω) is the Green’s tensor
corresponding to a QE in free space.

APPENDIX C: 3×3 HAMILTONIAN DESCRIPTION:
PARTIAL DIAGONALIZATION AND BRIGHT-MODE

SPLITTING

The Hermitian part of the Hamiltonian (B1) can be
written in a matrix form considering the single excita-
tion basis: One excitation only is exchanged between the
QE transition and the plasmon modes. Let the matrix
form of the Hamiltonian generally be written in the basis
{|e, 0, 0〉, |g, 1D, 0〉, |g, 0, 1B〉}:

H =
⎡⎣ 0 gD gB

gD �D 0
gB 0 �B

⎤⎦, (C1)

where we wrote the Hamiltonian in a rotating frame with
respect to ωE , so that �D,B = ωD,B − ωE . When an excitonic
transition strongly couples to a plasmon mode, two polaritons
[lower polariton (LP) and upper polariton (UP)] are formed
and it is convenient to diagonalize the Hamiltonian block
involving them. Also, writing the Hamiltonian in the basis of
the polaritons enables to understand how the latter effectively
couple to the other components of the Hamiltonian.

1. Diagonalization of the strongly coupled block

In the following, we consider the block � of the Hamilto-
nian (C1):

� =
[

0 gD

gD �D

]
. (C2)

The eigenvalues of this block are the following:

δ± = 1
2 (�D ± ϒ), (C3a)

ϒ =
√

�2
D + 4g2

D. (C3b)

It is convenient to introduce the angle θ parametrized as
follows:

cos θ = �D

ϒ
, (C4a)

sin θ = 2gD

ϒ
, (C4b)

tan θ = 2gD

�D
. (C4c)

It is then possible to write the block with respect to θ :

� = ϒ

[
0 1

2 sin θ
1
2 sin θ cos θ

]

= ϒ

[
0 sin θ

2 cos θ
2

sin θ
2 cos θ

2 cos2 θ
2 − sin2 θ

2

]
. (C5)

The eigenvalues can also be expressed in terms of the
parametrized angle,

δ± = ϒ

{
cos2 θ

2

− sin2 θ
2

}
, (C6)

which enables to write the transformation diagonalizing the
block as

T†�T = ϒ

[
− sin2 θ

2 0

0 cos2 θ
2

]
. (C7)

Using the decomposition of the block � in terms of θ , the
unitary transformation T containing the eigenvectors |φ±〉
associated with the eigenvalues δ± reads

T = [|φ−〉, |φ+〉] =
[

cos θ
2 sin θ

2

− sin θ
2 cos θ

2

]
. (C8)

Once it is diagonalized, the � block is expressed in the
basis of the polaritons {|φ−〉, |φ+〉}. The LP is associated
with the subscript (−) while the UP is associated with the
subscript (+).

2. Partial diagonalization of the 3 × 3 Hamiltonian

In this section, we diagonalize partially the Hamiltonian
(C1) using the results of the previous section. To do so, we
create the following transformation:

T3 =

⎡⎢⎣ cos θ
2 sin θ

2 0

− sin θ
2 cos θ

2 0

0 0 1

⎤⎥⎦, (C9)

which transforms only the � block of the Hamiltonian.
Changing the frame of reference of the Hamiltonian using this
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(   )

(  
 )

FIG. 7. Map of simulated scattering spectra vs emitter detuning
δE for the exemplary 3 × 3 system. The parameters are the same as
in Fig. 3(b), except that gB = 0.

transformation, we get

T†
3HT3 =

⎡⎢⎣ δ− 0 gB cos θ
2

0 δ+ gB sin θ
2

gB cos θ
2 gB sin θ

2 �B

⎤⎥⎦. (C10)

This Hamiltonian describes the interaction of both polaritons
with a third state. Originally, only one of the polariton com-
ponents is coupled to this state with coupling strength gB,
but the polaritons both couple to it with gB cos θ

2 for (−) and
gB sin θ

2 for (+). Another consideration is how resonant the
final system is. If the separation δ+ − δ− = ϒ is larger than
the linewidth of the third state, then only one polariton will
couple efficiently with it. Finally, let us have a closer look at
the sine and cosine factors. Using both (C3a) and (C6), we
find that these factors have the form

sin
θ

2
= 1√

2

√√√√1 − �D√
�2

D + 4g2
D

, (C11a)

cos
θ

2
= 1√

2

√√√√1 + �D√
�2

D + 4g2
D

. (C11b)

3. Optimal QE frequency and bright-mode splitting

In our system, the dark mode is located in the blue part
of the spectrum. If the splitting between the dark mode and

(   )

(  
 )

FIG. 8. Map of simulated absorption spectra vs emitter detuning
δE for the exemplary 3 × 3 system. The parameters are the same as
in Fig. 3(b).

the QE is large enough, we expect the lower polariton to
approach the resonance frequency of the bright mode and
start interacting with it. If we look at the Hamiltonian in the
partially diagonalized basis (C10), we see that the resonance
happens for δ− = �B. We call the optimal QE–bright-mode
detuning �

opt
B and using equations (C3a) we find its value:

�
opt
B = − g2

D

�D − �B
= − g2

D

ωD − ωB
. (C12)

The vacuum Rabi splitting of the bright mode is then
calculated from Eqs. (C10) and (C11) and we get

�bright = 2gB cos
θ

2
=

√
2gB

√√√√1 + �D√
�2

D + 4g2
D

. (C13)

This Rabi splitting corresponds to the one observed in Figs. 3
and 4. In addition to Fig. 3, we plot the scattering map for
gB = 0 (see Fig. 7): No splitting is observed for mode B but
we can see the dark-mode QE vacuum Rabi splitting and its
corresponding LP and UP. Finally, we show the absorption
spectra versus B-mode QE detuning in Fig. 8. The latter is
computed using the steady-state and

Abs = 〈ψs.s. |̂b†b̂|ψs.s.〉 (C14)

b̂ =
√

γ nonrad
B âB +

√
γ nonrad

D âD. (C15)

where we here set γ nonrad
B = 0.01 eV, γ nonrad

D = 0.1 eV, and we
here neglected the non-radiative decay of the QE.
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