
On the Use of Equivalence Classes for Optimal and Suboptimal Bin Packing
and Bin Covering

Downloaded from: https://research.chalmers.se, 2025-06-18 04:07 UTC

Citation for the original published paper (version of record):
Roselli, S., Hagebring, F., Riazi, S. et al (2021). On the Use of Equivalence Classes for Optimal and
Suboptimal Bin Packing and Bin Covering. IEEE Transactions on Automation Science and
Engineering, 18(1): 369-381. http://dx.doi.org/10.1109/TASE.2020.3022986

N.B. When citing this work, cite the original published paper.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

On the Use of Equivalence Classes for Optimal and Sub-Optimal Bin
Packing and Bin Covering

Downloaded from: https://research.chalmers.se, 2021-02-19 15:24 UTC

Citation for the original published paper (version of record):
Roselli, S., Hagebring, F., Riazi, S. et al (2020)
On the Use of Equivalence Classes for Optimal and Sub-Optimal Bin Packing and Bin Covering
IEEE Transactions on Automation Science and Engineering

N.B. When citing this work, cite the original published paper.

©2020 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained from
the IEEE.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)

1

On the Use of Equivalence Classes for Optimal
and Sub-Optimal Bin Packing and Bin Covering

Sabino Roselli1, Fredrik Hagebring1, Sarmad Riazi1, Martin Fabian1, Knut Åkesson1

Abstract—Bin packing and bin covering are important opti-
mization problems in many industrial fields, such as packaging,
recycling, and food processing. The problem concerns a set of
items, each with its own value, that are to be sorted into bins
in such a way that the total value of each bin, as measured
by the sum of its item values, is not above (for packing) or
below (for covering) a given target value. The optimization
problem concerns minimizing, for bin packing, or maximizing,
for bin covering, the number of bins. This is a combinatorial
NP-hard problem, for which true optimal solutions can only
be calculated in specific cases, such as when restricted to a
small number of items. To get around this problem, many sub-
optimal approaches exist. This paper describes formulations of
the bin packing and covering problems that allows to find the
true optimum for instances counting hundreds of items using
general purpose MILP-solvers. Also presented are sub-optimal
solutions that come within less than 10% of the optimum, while
taking significantly less time to calculate, even ten to 100 times
faster, depending on the required accuracy.

Note to Practitioners—A typical case for bin covering is in
food processing where food items are automatically sorted into
trays of similar weight, so that the overweight is minimized.
Another application is in recycling, where items like batteries
should be put in crates of similar weight, so that the crates do
not exceed a target weight, due to later manual handling, but
at the same time we want as few crates as possible. This is a
bin packing problem. On an industrial scale these tasks are
fully automated. Though modern software tool’s efficiency to
solve bin sorting problems have increased significantly in later
years, the problems are inherently tough in the sense that the
solution time grows exponentially with the number of items.
This limits the problem sizes that can be solved to optimality
within reasonable time. Therefore, much research has focused
on heuristic rules that give reasonable solving times while not
giving the true optimal number of bins. However, in many
cases the true optimal solution is preferable, and sometimes
even necessary, so this is an industrially interesting problem.
This paper describes an approach to solve the bin packing
and covering problems to the true optimum that increases the
limit of the number of items that can typically be handled.
This is done by observing that items of same value need not
be distinguished. Instead, we can formulate packing/covering
problems over item values rather than individual items, and
sort integer numbers of these values into bins, which allows to
solve to optimum for more than 500 items in reasonable time.
In addition, by redefining what we mean by same value, we
can consider more items to have the same value and achieve
even better calculational efficiency.

Work supported by VR SyTeC (2016-06204), and the Chalmers
Production Area of Advance. Department of Electrical Engineering
Chalmers University of Technology Göteborg, Sweden. Part of this work
was presented in CASE 2019. 1{rsabino, fredrik.hagebring,
sarmad.riazi, fabian, knut}@chalmers.se.

I. INTRODUCTION

The (one-dimensional) bin sorting problem concerns sort-
ing items with given values into bins such that the value of a
bin, counted as the sum of its included values, conforms to
a specified target value, while at the same time optimizing
the total number of bins. Two (dual) variants of this problem
exist, bin packing [1] where the bin values cannot go over,
and bin covering [2] where the bin values cannot go under,
respectively, the target value. The problems are NP-hard [1]
combinatorial optimization problems, meaning that there is
no general algorithm that can solve either problem for an
arbitrary number of items in reasonable time.

Due to this, different heuristic algorithms to provide sub-
optimal solutions while guaranteeing a bound from the
optimum and having polynomial complexity have been a
long-time active field of research. Recent surveys of related
problems are presented in [1] for approximative algorithms
and in [3] for exact algorithms.

Recent work on bin sorting is based on branch-and-
price based algorithms, see e.g. [4]. Pseudo-polynomial
formulations, [5], [6], [7], allow a more compact formulation
and avoid the complexity introduced in the implementation
of branch-and-price based algorithms. Of interest in some
practical applications is also temporal extensions, [8], where
the capacity of a bin must be consumed within a given time
window.

In our previous work on the subject [9], we presented
a model to solve the bin covering problem to optimality
by means of Mixed Integer Linear Programming (MILP),
and we showed through a computational analysis of more
than 800 problem instances that a MILP solver is able
to handle quickly large sized instances. In this work we
extend the analysis to include also bin packing, and we
provide mathematical proof of the validity of our claims
on top of which we implemented the above-mentioned
formulation. We also present a sub-optimal approach based
on a simplification of the original instances that exploits
the feature of our new formulation and guarantees close to
optimal results.

In industrial problems there are often additional con-
straints that are not included in text book formulations
of the sorting problems. An example from an industrial
application: for bin covering problems it might be allowed
to go a few percent below the target weight for certain bins
as long as the average bin value is on or above target.
Algorithms that are tailor made for textbook formulations
of the sorting problems might have problems to generalize
to such modified versions of the problem. In industrial
applications general purpose solvers are thus often preferred
due to their ability generalize to new problem formulations.
So, though we in this paper treat only the text book versions
of bin sorting, we do so by focusing on formulations that

2

can be given as input to general-purpose MILP solvers, and
we evaluate the efficiency of these formulations.

First is presented the standard formulation that can be
found in most text books. This formulation was first in-
troduced by [10] and is typically useful only for a small
number of items. Then is given the “subset” formulation,
which removes the identities of the bins and thus allows to
solve for a much larger number of items and bins. Thirdly
is given the “equivalence class” formulation, which further
removes the identities between items of same values, and
hence allows to solve for even larger numbers of items
and bins. As explained later on in the paper, the idea of
equivalence classes leads to define combinations of items
that meet the target requirement (i.e. the cumulative value
of such items is below the target for the bin packing and
above it for the bin covering); such combinations are given
the name of packages in this paper and, to the best of
our knowledge, they have first been introduced by [11] to
implement a specific purpose algorithm to solve bin covering
problem, and then used in [12] to implement a branch and
price algorithm, while we use it to develop a linear-integer
model for a general purpose solver. Also, we improve the
concept by defining a subset of packages among which
bins can be selected that still leads to the optimal solution.
In other words, we do not need to enumerate all possible
combinations of items in order to find the optimal solution,
but only a rather small portion of it.

The contributions to this paper are: (i) improving the
concepts of equivalence classes by introducing the notion of
skinny and fit bins for the bin covering and the bin packing
respectively; proving that the the optimal solution of an
instance of the bin packing (covering) is only composed by
fit (skinny) bins; (iii) develop a heuristic method for both the
bin covering and bin packing problem, based on equivalence
classes, that significantly reduces the computation time while
still guaranteeing close to optimum results; (iiii) evaluating
the method against other algorithms for bin sorting problems
by running it over different sets of benchmark instances.

In the next section the general bin sorting problem is
described, giving three different MILP formulations, two
of which exploit the fact that prospective bins can be pre-
calculated to make the MILP solver’s job easier. Then
Section III presents how the combinatorial explosion can be
further mitigated by restricting the number of pre-calculated
bins, while still guaranteeing optimal solutions. Section IV
then describes how the number of pre-calculated bins can
be made even smaller, but then not guaranteeing optimal
solutions. The experimental results of Section V shows the
computational benefits of both the optimal formulations, and
the sub-optimal formulation that comes within less than 10%
of the optimum, while achieving a significant reduction in
computation time. The paper is concluded in Section VI.

II. BIN SORTING

Bin sorting is a generic term for the two (dual) problems
of bin packing and bin covering. The bin sorting problem
concerns a set of items V = {v1, v2, . . . , vn}, each with
a value so that there can be defined an ordering between
the items, such that v1 ≥ v2 ≥ · · · ≥ vn. For notational
simplicity, except for in a few places, the distinction between
an item and its value will not be made; note though that
items are unique, whereas two items can have the same

values. Given a subset V ′ ⊆ V we denote its minimum and
maximum values as min(V ′) and max(V ′), respectively.

A bin bj ⊆ V is a subset of V . For a bin bj we can define
its value Bj as the sum of the item values it contains, that
is, Bj =

∑
vi∈bj vi.

The bin sorting problem can now be defined as a tuple
〈V, t, ./〉, where t is a target value that defines a bound on
the bin values, and ./ is ≤ for bin packing, and ≥ for bin
covering. The problem is now to find an optimal solution
Bopt = {b1, b2, . . . , bm}, which is a partition of V with the
minimum, for packing, or maximum, for covering, number
m of bins, such that ∀bj ∈ Bopt, Bj ./ t. It is assumed that∑
vi∈V vi > t, and ∀vi ∈ V vi < t.
Since we in large parts of the paper simultaneously deal

with both covering and packing, we have introduced a non-
standard notation of our own (such as “target” t instead of
“capacity” c). This so, since the communities dealing with
the respective problems do not always agree on the notation.
Furthermore, the term “bin covering” is sometimes used to
denote a different problem, where the number of bins is
fixed and the problem is maximizing the number of packed
items while not exceeding the target value for any bin [13].

A. The Standard Formulation
One way to formulate the bin sorting problem is as a

mixed linear integer programming (MILP) problem, where
the decision variables represent bins and the allocation of
items to the bins. Let bj (j = 1, . . . , n) be 0-1-variables
representing whether a certain bin is used (bj = 1) or not
(bj = 0), and let xij (i, j = 1, . . . , n) be 0-1-variables
representing whether the value vi is assigned to the j’th
bin (xij = 1), or not (xij = 0). The MILP problem can
then be formulated as:

min /max

n∑
j=1

bj subject to (1)

n∑
j=1

xij = 1 ∀i = 1, . . . , n (2)

n∑
i=1

xij · vi ./ bj · t ∀j = 1, . . . , n (3)

xij ∈ {0, 1} ∀i, j = 1, . . . , n (4)
bj ∈ {0, 1} ∀j = 1, . . . , n (5)

The objective function (1) is the sum over all the variables
representing whether a certain bin is used or not, and since
these are binary 0-1-variables, the sum is the number of
used bins; this sum is to be minimized for bin packing
and maximized for bin covering. Constraint (2) guarantees
that each item is assigned to exactly one bin. Constraint (3)
guarantees that the value of each used bin is on or below (./
is ≤) the target value t for bin packing, and on or above (./
is ≥) the t for bin covering. Constraints (4) and (5) define
the domains of the decision variables.

For bin covering, Constraint (2) can actually be relaxed to
≤ 1, since not all values are necessarily placed in some bin.
However, such surplus values (see below) cannot constitute
a bin on their own, and since there is no upper bound
on the bins, the surplus values may be put on any bin
without altering the optimal solution. In fact, with a rigorous

3

definition of the surplus values, we can always remove the
surplus values from the optimal solution, and the surplus-
free solution will still be optimal.

B. The Subset Formulation
A less trivial approach to formulate the bin sorting prob-

lem as a MILP problem is to enumerate the prospective
bins by sort the items into packages that fulfill the target
constraint, and then formulate a problem of choosing the
smallest or largest number of such packages. If we gener-
ate all possible such packages, the MILP-solver will have
freedom enough to find the optimal number of packages.

Let pj ⊆ V be a package such that
∑
vi∈pj vi ./ t. Note

that contrary to bins, different packages may share items,
that is, for some packages pi and pj with i 6= j it may hold
that pi ∩ pj 6= ∅. Let Pi = {pj |vi ∈ pj} be the set of all
packages that include the item vi. We call the elements of
Pi overlapping, and there are n such sets.

Given the set of k generated packages, and with a slight
abuse of notation we use pj to denote a 0-1-variable rep-
resenting whether the package pj is used (pj = 1) or not
(pj = 0), we can formulate the MILP problem as:

min /max

k∑
j=1

pj subject to (6)∑
pj∈Pi

pj = 1 ∀i = 1, . . . , n (7)

pj ∈ {0, 1} ∀j = 1, . . . , k (8)

Similarly to (1), the objective function (6) sums over
all the variables representing whether a package is used
or not, and since these are 0-1-variables, the sum is the
number of used packages; this sum is to be minimized, or
maximized, for bin packing and bin covering, respectively.
Constraint (7) guarantees that exactly one of the overlapping
packages is used, which prohibits multiple inclusion of the
same item into the optimal solution, and so guarantees that
the chosen set of packages partition V (this is what makes
the chosen packages bins). Again for the bin covering the
constraint may be relaxed into a less then equality, since
the maximisation will make sure that as many packages as
possible are chosen; on the other hand, without the more
restrictive constraint, the bin packing problem would always
yield a solution counting zero bins. Constraint (8) simply
defines the domains of the pj variables.

C. Equivalence class formulation
Though the subset formulation of Section II-B goes a long

way to mitigate the computational complexity, observing that
for large bin sorting problems we can have, and typically
do have, many items with equal values, we can give an
even more compact problem formulation, where equal values
are not viewed as distinct items, but rather as a single item
with a multiplicity equal to the number of actual such same-
valued items. This is done by collecting equal items into
equivalence classes, and instead of enumerating each item
of such a class, formulate the optimization problem over
integer decision variables related to the number of items in
each equivalence class.

Consider a bin sorting problem 〈V, t, ./〉. Let an equiva-
lence class Eq be a subset of equal valued items of V ; that
is, Eq = {vi ∈ V |vi = w} for a fixed value w. Obviously,
min(Eq) = w. Let p denote the number of all equivalence
classes. The set of p equivalence classes partition V .

We call a tuple 〈Eq, fq〉 of an equivalence class Eq and
a factor fq , a selection. The factor is used to denote the
number of items from the equivalence class that are selected
in a certain situation. Of course, 0 ≤ fq ≤ |Eq|, and
obviously there is a finite number of distinct selections.

Let a package class PC i = {〈E1, f1,i〉, . . . , 〈Ep, fp,i〉}
be a set of selections over all equivalence classes, such that∑

〈Eq,fq,i〉∈PC i

min(Eq) · fq,i ./ t, (9)

where ./ is ≤ for bin packing and ≥ for bin covering,
and the objective is to minimize and maximize, for packing
and covering, respectively. Let k denote the number of all
possible package classes.

Since all package classes contain all equivalence classes,
albeit many with a zero factor, all package classes overlap,
which then becomes an uninteresting observation (contrary
to Section II-B).

Given a set of k generated package classes, and with some
abuse of notation let PC i be an integer that represents how
many “instances” of the package class PC i that are included
in the optimal solution, then the optimization problem can
be formulated as:

min /max

k∑
i=1

PC i subject to (10)

k∑
i=1

fq,i · PC i = |Eq| ∀q = 1, . . . , p (11)

PC i ≥ 0 ∀i = 1, . . . , k (12)

The objective function (10) sums over all the variables
representing the number of each package class instance;
this sum is to be minimized for bin packing and maximized
for bin covering. Constraint (11) sums for each equivalence
class over all the package classes and multiplies with the
factor for each respective package class, to get the total
number of used values from the specific equivalence class.
Naturally, this number cannot exceed the number of values
in the equivalence class for the package class, and has to be
exactly equal to the number of values in the equivalence
class in order to avoid trivial solutions with zero bins.
Constraint (12) simply sets zero as the lower bound for the
number of instantiations of the respective package classes.

An upper bound for PC i could be pre-calculated, but it
is not clear whether this will have any impact on the com-
putational complexity, and this has not been investigated.

For brevity, we will in the following use the term package
in place of package class.

III. OPTIMAL SOLUTIONS

Though theoretically possible, generating all packages is
practically intractable; we can do this only for small n.
And though generating all possible package classes is more
tractable than generating all packages, it still amounts to a
huge computational effort for large bin sorting problems.

4

However, we can calculate the packages in a more clever
way, by observing that the optimization criterion really
means that the resulting bins of an optimal solution should
be as close to the target value as possible. Calculating such
packages saves a lot of computational effort, as is shown in
Section V.

In this section we will argue for why and how we can
calculate a specific subset of all possible packages, but still
get an optimal solution from the subset and equivalence class
formulations of Section II. For clarity, we will here treat
packing and covering separately in their own subsections.

In both cases, we have a bin sorting problem 〈V, t,≤〉
for packing, and 〈V, t,≥〉 for covering. The total value over
all n items of V is W = v1 + v2 + · · · + vn. A feasible
solution ft = {b1, b2, . . . , bm} to a bin sorting problem, is a
solution where for each bin, Bj ≤ t for packing, and Bj ≥ t
for covering, and an optimal solution is a feasible solution
where the number of bins m is minimized for packing, and
maximized for covering.

Let us also note the distinction between bins and pack-
ages. Bins partition V so that no item in V can be in more
than one bin, whereas packages can share items; it is the
task of the bin sorting solver to select among the packages
so that a single item does not appear in more than one bin.

A. Bin Packing
A feasible solution ft = {b1, b2, . . . , bm} for a bin

packing problem 〈V, t,≤〉 is said to be true if all items of
V are sorted.

For a feasible solution, all bins bj are on or below target,
that is Bj ≤ t. For bin packing we want to minimize the
number of bins. Thus, it seems to make sense to have bins
that are as close to the target (but not above) as possible.

Definition 1: A bin (or package) is said to be fit if adding
the least valued item from V gets it above the target value.
That is, a bin bj is fit if

Bj +min(V) > t.

Definition 2: Let V v be a set of virtual items, such that
V v ∩ V = ∅ and vk = min(V) for all vk ∈ V v .
The virtual items are not in the original problem formulation
but are introduced as possible items that can be put in bins
to complete a bin into a fit bin, in order to guarantee fit
solutions. However, we show later that virtual items can be
removed from a solution and thus a true solution can be
generated.

A feasible solution ff = {b1, b2, . . . , bm} for a bin
packing problem 〈V, t,≤〉 is said to be fit if all items of
V , plus an arbitrary number of virtual items, are sorted, and
all bins in ff are fit.

Lemma 1: For a bin packing problem 〈V, t,≤〉, a feasible
true solution ft exists if and only if a feasible fit solution
ff exists.

Proof: First we show that to a feasible true solution ft
we can add virtual items to non-fit bins to make a feasible
fit solution ff .

Assume a non-fit bin bj , thus Bj + min(V) ≤ t. Add
b(t−(Bj+min(V)))/min(V)c number of virtual items to bj , the
bin is now fit by definition since adding one additional
virtual item makes the value of the bin be larger than the
target value t. This can be done for any non-fit bin in ft.

Second, we show that we can remove (virtual) items from
the bins of ff and get feasible true solution.

Assume a fit solution ff . Let Bf be the sum of the
values of all bins for a feasible fit solution ff . Then the
total number of virtual items is equal to b(Bf−W)/min(V)c.
If this number of virtual items are removed from the bins in
ff , the total number of items of value min(V) in all bins
will be equal to |En| and thus the modified solution will
be true. Note that removing virtual items from a bin can
only decrease its value, and since a fit bin is by definition
already below the target, so will the reduced bin be. The
total number of items of value min(V) will be equal to or
larger than b(Bf−W)/min(V)c, thus it is possible to remove
b(Bf−W)/min(V)c items of value min(V). Consider any set
of bins that is the result of removing b(Bf−W)/min(V)c items
of value min(V) from the bins of the fit solution ff . The
set of reduced bins result in a feasible solution for the true
problem, since all bins have a value less than the target value
and the number of items for every value will be equal to the
number of values in the equivalence class for the same value.

Theorem 1: Let Btopt be an optimal true solution to the
bin packing problem 〈V, t,≤〉, and let Bfopt be an optimal
fit solution to the same problem. Then

|Btopt| = |B
f
opt|.

Proof: If there exists a feasible solution for the fit
problem that is optimal, then no better solution than that
exists and, according to Lemma 1, there must exist a feasible
solution for the true problem that yields the same result and
thus no better solution can exist.

B. Fit package generation

As mentioned, a major issue with the equivalence classes
approach to solve bin packing problems is the computation
of all package classes that might form part of the optimal
solution. Computing and then filtering the power set of
V is computationally heavy even for relatively small size
problems, therefore a less demanding procedure is required.
Given the aforementioned notions, the computation of all fit
package classes can be formulated as a Constraint Satisfac-
tion Problem (CSP).

Regard the bin packing problem 〈V, t,≤〉, with the equiv-
alence classes Eq (q = 1, . . . , p). Let fq (q = 1, . . . , p) be
the factor for Eq , that is, an integer variable representing
how many values from Eq that are chosen to form a package
class. Let F be an integer number such that F = bt/min(V)c.
The CSP formulation is as follows:

0 ≤ fq ≤ F ∀q = 1, . . . , p (13)
p∑
j=1
q 6=j

(
min(Ej) · fj + (fq + 1) ·min(Eq)

)
> t

∀q = 1, . . . , p (14)

Constraint (13) limits the factor for each equivalence class
to be at most as large as the value F ; constraint (14) states
that the sum of values contained in a fit package goes above
the target value as soon as we increase the value of any
factor by one.

5

Finding a satisfiable solution to this CSP problem means
to find a combination of values that, together will result in
a fit package class. To obtain the whole set of fit package
classes, it is possible to set up another problem with the
same constraints, plus one constraint ruling out the solution
just found. Let S = {f∗1 , . . . , f∗p } be the solution of the CSP
problem, where f∗i ∀i = 1, · · · , p is the factor selected for
the equivalence class p, then the additional constraint is:

¬
(∧
f∗
i ∈S

(fi = f∗i)
)

(15)

Constraint 15 ensures that the solution found in the
previous iteration cannot be selected in the current one, so
that the solver has to find a new one. In order to find the
complete set of fit package classes, one has to set up a loop
and, for each iteration, add the constraint to rule out the last
solution found for the new CSP problem. The loop goes on
until the problem becomes unsatisfable, which means that
all package classes have been found.

Example of Equivalence Class Formulation: Con-
sider the bin packing problem 〈V, t,≤〉, with V =
〈50, 50, 40, 40, 10, 10〉 and t = 100.

There are three equivalence classes, all of size 2:
E1 = 〈50, 50〉
E2 = 〈40, 40〉
E3 = 〈10, 10〉

And there will also be 8 virtual items of value 10. We need
to be able to form feasible packages by using the CSP model
in Section III-B and, since we only have two items of value
10 and the target is 100 we need 8 virtual items.

The CSP will now yield all packages that are “just below
the target”, meaning that if the smallest items from V is
added, namely item of value 10, the total value will outreach
the target value 100

PC 1 = {〈E3, 10〉}
PC 2 = {〈E2, 1〉, 〈E3, 6〉}
PC 3 = {〈E2, 2〉, 〈E3, 2〉}
PC 4 = {〈E1, 1〉, 〈E3, 5〉}
PC 5 = {〈E1, 1〉, 〈E2, 1〉, 〈E3, 1〉}
PC 6 = {〈E1, 2〉}

For readability, only the equivalence classes Eq with factors
fq > 0 have been included above. Now, regarding only the
non-zero factors for each equivalence class in the package
classes, constraint (11) becomes:

PC 4 + PC 5 + 2 PC 6 ≥ 2

2PC 2 + 2 PC 3 + PC 5 ≥ 2

10 PC 1 + 6 PC 2 + 2 PC 3 + 5 PC 4 + PC 5 ≥ 2

(16)

We only have two items of value 10 and, in PC4

and PC5, E3 has multiplicity 1, while in PC6 E3 has
multiplicity 2, hence the coefficients in the first inequality.
The bin packing requires that all items are placed into
bins, therefore there should be an equality sign; when
we generated packages though, we used virtual bins also,
therefore now we need to allow for more items than actually
available in V , but not less, hence the ”≥” sign. The same
procedure applies to the other two equivalence classes as
shown in second and third inequality. Since the problem is
a minimization, most of the virtual items will not be used
(the ones left are not enough to form another bin), therefore

the solution will be optimal with respect to V (as explained
in detail later on).
Then, the objective is:

minPC 1 + PC 2 + PC 3 + PC 4 + PC 5 + PC6.

C. Bin Covering

For bin covering we want to maximize the number of
bins, and hence it seems to make sense to have bins that are
as close to the target (but not below) as possible.

Definition 3: A bin (or package) is said to be skinny if
removing from it its least valued item gets it below the target
value. That is, a bin bj is skinny if

Bj −min(bj) < t.

A feasible solution fs = {b1, b2, . . . , bm} for a bin
covering problem 〈V, t,≥〉 is said to be skinny if all bins
in fs are skinny, and an arbitrary number of items of V is
sorted. The items of V that are not sorted are called the
surplus items. A feasible solution ft = {b1, b2, . . . , bm} to
a bin covering problem 〈V, t,≥〉, is said to be true if all
items are sorted.

Lemma 2: For a bin covering problem 〈V, t,≥〉, a fea-
sible true solution ft exists if and only a feasible skinny
solution fs exists.

Proof: Regard a true feasible solution ft =
{b1, b2, . . . , bm}. For each non-skinny bin bj , we can itera-
tively remove its least valued item min(bj) until bj becomes
skinny. Obviously, the resulting skinny solution will have the
same number of bins as ft.

Regard a skinny feasible solution fs = {b1, b2, . . . , bm}.
This has a set of non-sorted surplus items, Vsur. These items
can be put on arbitrary skinny bins to make the bins non-
skinny. Doing so for a bin bj ∈ fs will increase the value Bj
which means that it is still on or above target. Thus, we can
from the skinny feasible solution generate a true solution ft.

For both implications, the number of bins is preserved.
Theorem 2: Let Btopt be an optimal true solution to the

bin covering problem 〈V, t,≥〉, and let Bsopt be an optimal
skinny solution to the same problem. Then

|Btopt| = |Bsopt|.

Proof: If there exists a feasible solution for the skinny
problem that is optimal, then no better solution than that
exists and, there must exist a feasible solution for the true
problem that yields the same result and no better solution
can exist.

D. Skinny package generation

As for the bin covering, it is possible to setup a Constraint
Satisfaction Problem based on the definition of Fit Bin and
run it multiple time to produce, at each iteration, a different
valid package, until the problem becomes unfeasible; then
we know we have found all feasible packages.

Regard the bin covering problem 〈V, t,≥〉, with the equiv-
alence classes Eq (q = 1, . . . , p). Let fq (q = 1, . . . , p) be
the factor for Eq , that is, an integer variable representing

6

how many values from Eq that are chosen to form a package
class. The CSP formulation is as follows:

0 ≤ fq ≤ |Eq| ∀q = 1, . . . , p (17)

fq > 0⇒
p∑
j=1
q 6=j

(
min(Ej) · fj + (fq − 1) ·min(Eq)

)
< t

∀q = 1, . . . , p (18)

Constraint 17 limits the factor for each equivalence class
to be at most as large as the size of the equivalence class
itself; constraint 18 states that the sum of values contained
in a skinny package goes below the target value as soon
as we reduce the value of any factor by one. Unlike the
corresponding constraint for the bin packing problem, in this
case it is necessary to specify that we can only reduce a value
if it is larger than zero.

Let S = {f∗1 , . . . , f∗p } be the solution of the CSP problem,
where f∗i ∀i = 1, · · · , p is the factor selected for the
equivalence class p, then the additional constraint is:

¬
(∧
f∗
i ∈S

(fi = f∗i)
)

(19)

In order to find the complete set of skinny package
classes, one has to set up a loop and, for each iteration,
add the constraint to rule out the last found for the new
CSP problem. The loop goes on until the problem becomes
unsatisfiable, which means that all package classes have
been found.

Example of Equivalence Class Formulation: Consider
the bin covering problem 〈V, t,≥〉, with V and t as in section
III-B and so are the equivalence classes.

We can generate four skinny package classes:
PC 1 = {〈E1, 2〉}
PC 2 = {〈E1, 1〉, 〈E2, 2〉}
PC 3 = {〈E1, 1〉, 〈E2, 1〉, 〈E3, 1〉}
PC 4 = {〈E2, 2〉, 〈E3, 2〉}

For readability, only the equivalence classes Eq with factors
fq > 0 have been included above. Now, looking only at the
non-zero factors for each equivalence class in the package
classes, constraint (11) becomes:

2 PC 1 + PC 2 + PC 3 ≤ 2

2 PC 2 + PC 3 + 2 PC 4 ≤ 2

PC 3 + 2 PC 4 ≤ 2

(20)

Since the the bin covering does not require all items to be
allocated to binsl, the equality constraint can be relaxed,
hence the inequalities above.

Finally, the objective is:

maxPC 1 + PC 2 + PC 3 + PC 4.

One optimal solution is to select PC 1 once (PC 1 = 1)
and PC 4 once (PC 4 = 1). However, another optimal
solution is to select two ”instances” of PC 3 (PC 3 = 2).
Both of these are of course skinny solutions.

So, we really only need to generate fit (for packing)
and skinny (for covering) packages and package classes to
get optimal solutions from the subset and equivalence class
formulations. This saves a lot of computational effort, as
shown in Section V.

IV. SUB-OPTIMAL SOLUTIONS

The equivalence class formulation significantly improves
the runtime performance of the optimizer compared to the
naı̈ve formulation, as shown in Section V. Nevertheless, BC
is still a combinatorial NP-hard problem and for some prob-
lems, calculating the true optimum might be expensive in
terms of computational effort. The alternative is to consider
heuristic methods that can provide a sub-optimal solution in
a shorter time. Based on the equivalence classes approach, a
heuristic method was developed to simplify the problem and
calculate a suboptimal solution faster. One hypothesis that
led to the heuristic is that the number of package classes
related to a BC problem 〈V, t,≥〉 does not depend entirely
on |V |, but rather on the number of equivalence classes and
their cardinality; the more different values, the more possible
combinations, the more package classes.

Therefore, the goal of such method is to provide a set
of approximated equivalence classes, C∗, where a certain
number of consecutive exact equivalence classes are merged
together. We call the approximated equivalence classes
chains.

Let E = 〈E1, E2, . . . , Ep〉 be the set of p number of
equivalence classes over the values of V , ordered so that
min(Ei) < min(Ei+1) (for i = 1, . . . , p − 1). Let C be a
set of chains, sets of one or more consecutive equivalence
classes from E, C =

⋃p−l+1
i=1 {Ei, Ei+1, . . . Ei+l−1} for l =

1, . . . , p, and let the size of a chain be the sum of the sizes
of the equivalence classes it is composed of; for Cj ∈ C,
‖Cj‖ =

∑
Ei∈Cj

|Ei|.
Note that chains will have common elements (equivalence

classes), just as packages, therefore it is possible to define
the set Oi of all chains containing a certain value.

Example of Chains Generation: E = 〈E1, E2, E3, E4〉,
p = 4, with min(Ei) < min(Ei+1) for i = 1, . . . , 3,

C =
⋃p−l+1
i=1 {Ei, Ei+1, . . . Ei+l−1} for l = 1, . . . , p

{E1}, {E2}, {E3}, {E4}, l = 1, i = 1, . . . , p

{E1, E2}, {E2, E3}, {E3, E4}, l = 2, i = 1, . . . , p− 1

{E1, E2, E3}, {E2, E3, E4}, l = 3, i = 1, . . . , p− 2

{E1, E2, E3, E4} l = 4, i = 1, . . . , p− 3

A. Heuristic for the bin packing problem

When it comes to the bin packing problem, a way to
generate the above mentioned chains is to merge exact
equivalence classes as explained in the above section and
to assign to all the values of the resulting approximated
equivalence class the largest value of all classes that have
been merged. This is done so that the solution generated
when solving the simplified problem is valid: if a value
smaller than the one belonging to the largest class merged
were to be assigned to the approximated class, the optimal
solution to the simplified problem might be smaller than
the optimal solution to the original problem and, therefore,
unfeasible.

Definition 4: Let define the minimum theoretical number
of bins M as the number of bins we could achieve if we
could break down the items into smaller ones and reallocate
the overweight from each bin to form other ones: M =
W/t. Such value can be achieved by relaxing the integrality

7

constraint in the initial problem, as pointed out in [11] where
such value is defined as lower bound.

Let the chain El−m be the result of merging the equiv-
alence classes El, Em, where min(El) < min(Em). Then
min(El−m) = min(Em), |El−m| = |El|+ |Em|.

|El−m| ·min(El−m) = (|El|+ |Em|) ·min(Em) >

|El| ·min(El) + |Em| ·min(Em)

The gain γ is then:

min(Em) · (|El|+ |Em|)−
|El| ·min(El) + |Em| ·min(Em) =

|El| · (min(Em)−min(El))

The new minimum theoretical number of bins is M ′ =
(W+γ)/t. The gain can be used to decide which classes
is better to merge when simplifying an instance. Using a
greedy algorithm it is possible to quickly generate all chains
and calculate γ for each of them. It is then possible to
formulate a MILP model to select the chains that produce
the minimum loss, given a desired number of equivalence
classes d.

Let xi (i = 1, . . . , k) be 0-1-variables representing
whether the chain Ci is chosen (xi = 1) or not (xi = 0).
The MILP formulation is as follows:

min

k∑
i=1

xi · γi (21)

p∑
i=1

xi = d (22)∑
xi∈Oj

xi = 1 ∀j = 1, . . . , p (23)

xi ∈ {0, 1} ∀i = 1, . . . , k (24)

The objective function (21) is the sum of all gains for
the chains that are chosen. Constraint 22 states that exactly
d chains have to be chosen. Constraint (23) states that
overlapping chains are mutually exclusive. Finally, (24) sets
the variable domains to be binary.

Note that the heuristic has been developed bearing in mind
that, with a normal distribution, there are only a few values
at the edges of the bell curve, while most of the values
appear in the middle of it. Therefore, while containing the
same number of values, the chains that are closer to the
edges will contain more classes from E, involving a larger
loss than the ones closer to the centre. However, as those
values are smaller in number compared to the ones in the
middle, the overall loss seems not to be significant.

B. Heuristic for the bin covering problem
Once again it is possible to draw inspiration from the

results achieved for the bin packing problem to develop
a working heuristic method for the bin covering problem
too. By merging equivalence classes it is in fact possible to
generate a simplified problem that provides a sub optimal
solution. This time it is required to assign to the resulting
equivalence class the value of the items from the class with
the smallest values, in order to generate a valid solution.
Since this is a maximization problem, it makes more sense
to talk about loss σ (rather than a gain) that affects the

maximum (instead of minimum) theoretical number of bins.
Once again this value corresponds to the optimum of the cost
function for the bin covering when relaxing the integrality
constraint.

It is possible to calculate the loss σ related to the merging
of two or more equivalence classes in terms of decrease in
the total value W and, therefore, of the maximum theoretical
number of bins M.

Let the chain El−m be the result of merging the equiv-
alence classes El, Em, where min(El) < min(Em)). Then
min(El−m) = min(El), |El−m| = |El|+ |Em|.

|El| ·min(El) + |Em| ·min(Em) >

|El−m| ·min(El−m) = min(El) · (|El|+ |Em|)
The loss σ is then:

|El|·min(El) + |Em| ·min(Em)−
min(El) · (|El|+ |Em|) =
(min(Em)−min(El) · |Em|)

The new maximum theoretical number of bins is M ′ =
(W−σ)/t. Setting up exactly the same MILP model as in IV-A
it is possible to find the set of merged classes that minimizes
the gain while guaranteeing a desired number of equivalence
classes for the simplified problem.

Example of Chain Optimization: Consider the example
shown in Section IV, and assume that the values and sizes
of the equivalence classes are respectively min(E1) = 13,
|E1| = 10, min(E2) = 15, |E2| = 7, min(E3) = 20, |E3| =
12, min(E4), |E4| = 3. If the desired number of classes is
d = 2 we can compute the loss for each chain based on (21)–
(24):

C1 = {E1} σ(C1) = 0

C2 = {E2}, σ(C2) = 0

C3 = {E3}, σ(C3) = 0

C4 = {E4}, σ(C4) = 0

C5 = {E1, E2}, σ(C5) = 7 · (15− 13) = 14

C6 = {E2, E3}, σ(C6) = 12 · (20− 15) = 60

C7 = {E3, E4}, σ(C7) = 3 · (25− 20) = 15

C8 = {E1, E2, E3},
σ(C8) = σ(C5) + 12 · (20− 13) = 98

C9 = {E2, E3, E4},
σ(C9) = σ(C6) + 3 · (25− 15) = 90

C10 = {E1, E2, E3,E4},
σ(C10) = σ(C8) + 3 · (25− 13) = 134

According to constraint (22) only d chains can be selected:

C1 +C2 +C3 +C4 +C5 +C6 +C7 +C8 +C9 +C10 = 2

According to constraint (23) some chains are mutually
exclusive, so each equivalence class must be picked exactly
once. As stated before, chains are sets, but with some abuse
of notation, we here use them as binary variables to state
whether a chain is selected (Ci = 1) or not (Ci = 0).

C1 + C5 + C10 = 1

C2 + C5 + C6 + C8 + C9 + C10 = 1

C3 + C6 + C7 + C8 + C9 + C10 = 1

C4 + C7 + C9 + C10 = 1

8

Finally, the objective function to minimize is:

C1 · σ(C1) + C2 · σ(C2) + C3 · σ(C3)

+C4 · σ(C4) + C5 · σ(C5) + C6 · σ(C6) + C7 · σ(C7)

+C8 · σ(C8) + C9 · σ(C9) + C10 · σ(C10)

V. COMPUTATIONAL ANALYSIS

We ran an extensive analysis over 1500 generated prob-
lems, comparing both the standard and the equivalence class
formulations for both the bin packing and bin covering prob-
lem; we also compare the standard and equivalence classes
formulations for the bin packing problem over different
benchmark sets from the literature:
• Falkenauer [14]: two sets with 80 instances each;
• Scholl [15] three sets with 720, 480 and 10 instances

respectively;
• Schwerin [16] two sets with 100 instances each;
• Wäscher [17] a set with 17 instances;
• Schoenfield [18] a set with 28 instances.

All instances have been solved using the state-of-the-art
MILP solver Gurobi 9 [19]. The time limit is 1200 sec-
onds and the solver has been used with its default setting.
All the experiments were performed on an Intel Core i7
6700K, 4.0 GHZ, 32GB RAM running Ubuntu-16.04. The
implementation of all the models presented in this paper,
as well as the benchmark instances are available on https:
//github.com/sabinoroselli/bin covering-packing.git

To generate the instances we approximated a normal
distribution. The parameters to generate instances are the
number of items, the range of values, the average value
of such range (which is the mean of the distribution) and
the standard deviation. Since the results show a skewed
distribution, we reported the median and upper and lower
quartile for each category.

The first set of tests, reported in Table III has been run
using the standard formulation to solve both the covering
and the packing problem. The number of items ranges from
10 to 70 and the target value ranges from 300 to 900.
The values of the items range from 130 to 170 and the
value of the deviation ranges from 10 to 90; finally, five
different instances are generated for each set of parameters
by changing the random generation seed. Results show that
different values for the deviation do not affect the running
time significantly so they are not shown explicitly in the
table: for each size and target value, the average over 25
instances is shown (five different values of deviation times
five different random seeds).

Results from this first simulation show that, as expected,
an increasing number of items makes the problem harder to
solve. It is interesting though, to notice that even for rela-
tively high number of items, there are still many instances
that can be solved almost instantly which means that also
large problems can have trivial solutions. What does affect
the complexity of the instance, according to the results, is
the target value t; though there are some outliers, most of the
unsolved instances for the covering problem have a target
value of 500, while for the packing problem it is 700.

In the second set of tests the number of items ranges
from 60 to 500, while the other parameters are the same
as in the previous tests. For the instance classes counting
200 to 500 items and with a target value of 800 and 900 it

was only possible to solve one instance, therefore it was not
possible to calculate the quartiles. The results, summarized
in Table IV show, as for the tests run for the standard for-
mulation, an increasing amount of time required to find the
optimal as the number of items and the target value increases
(given a certain distribution and, thus, a certain number of
equivalence classes). Unlike the standard approach though,
the equivalence classes formulation seems to have a more
steady trend: the former’s performance is heavily affected
by the intrinsic hardness of a specific instance, being able
sometimes to immediately solve large size instances with
a large target value, while getting stuck on relatively small
sized instances; on the other hand, the latter’s behaviour is
more predictable and steadily increases with the instances
parameters, as shown in Figure 1. Also, the comparison of
Table III and Table IV show tighter values of the quartiles
for the equivalence classes formulation; this mean that the
solving time for a given class of instances (in terms of
generated packages for example) is more predictable.

Another conclusion we can draw from the data is the
strong correlation between the solving time and the number
of packages, which in turn is affected by the target value and,
to a lesser extent, by the number of objects. A larger target
value means an exponentially higher number of possible
combinations to form skinny (or fit) packages; also having
a higher number of items in each equivalence class means
that it is possible to form more combinations of them that
make valid packages, though this is true only up to a certain
value. For instance, if the target value is 300, having two or
200 items of value 200 does not make any difference.

For this reason, an instance with 60 items and a target
value of 300 only yields a few thousand packages, while the
same instance with a target value of 900 can count millions
of them. As mentioned before, the increase in the number
of items also causes an increase in the number of packages,
which seems nonetheless to happen within the same order
of magnitude.

Though the number of packages has a direct impact on the
solving time, the equivalence class formulation still proves to
be efficient to solve very large sized problems, being scalable
in terms of number of items (which is usually the limitation

Fig. 1: Comparison of model formulations (STD stands for standard and EQU for
equivalence classes) and sorting type over generated problems.

https://github.com/sabinoroselli/bin_covering-packing.git
https://github.com/sabinoroselli/bin_covering-packing.git

9

TABLE I: Comparison of the standard formulation and the equivalence class formula-
tion over the benchmark instance sets, showing the number of solved instances within
one minute and the average time calculated over the instances that did not time out.
For each instance set it is reported the total number of instances and the number
of instances that generate less than ten million packages. The ’-’ is used when no
instance is solved, while the ’*’ means that the package generation algorithm run out
of memory.

Instances STD EQU

Complete Set ≤ 10× 106 solved average solved average

Falkenauer U 80 80 16 34.11 80 1.64
Falkenauer T 80 80 10 30.07 80 0.76

Scholl 1 720 313 185 26.92 294 1.29
Scholl 2 480 54 50 6.86 48 7.69
Scholl 3 10 7 0 - 0 -

Schwerin 1 100 100 51 32.23 26 48.49
Schwerin 2 100 100 40 37.72 5 53.66

Wäscher 17 0 0 - * *
Schoenfield 28 0 0 - * *

for the standard approach). Even so, the package generation
time via a greedy algorithm and the model generation
time are directly proportional to the number of generated
packages and for very hard instances they might not be
negligible. Figure 2 shows how the package generation time
increases with respect to the number of packages (bench-
mark instances from the Scholl set have been employed to
evaluate the package generation efficiency): it is still close
to one minute for instances leading to four million packages
but it goes up to about fifteen minutes for instances of around
ten million packages.

The driving force behind the package generation compu-
tation time is its space complexity, i.e the amount of memory
space required by the algorithm. Allocating, writing and
reading to memory takes time. The standard form of a MILP
model assumes constraints of the form Ax ≤ b, represented
by (11) in our model. Thus, k packages generated from q
equivalence classes requires the allocation of q× k integers
to store the final constraint. This implies that the space
complexity of the package generation, without considering
the implementation, is at least O(kq) if generating a model
in standard form. Since the number of possible packages
k grows exponentially with larger target values and the
number of unique items, quickly outgrowing the number

Fig. 2: Evaluation of package generation time (in seconds) against number of generated
packages (log scale).

of equivalence classes, the space complexity constitutes a
major challenge with larger instances.

For example, the largest benchmark instances we could
solve before running out of memory counted around thirty
million packages. Many instances included more than one
hundred equivalence classes. Storing the constraint coef-
ficients as 32 bit integers would in those cases require
3e7 · 100 · 4 = 12e9 byte or 12 gigabyte.

Potential improvements to the package generation can
be divided into two types: (i) reduction of the number of
generated packages and (ii) reduction of allocated memory
for each package. The first type is by far the strongest
and will improve all parts of the process, not only the
package generation itself. This can even be considered the
main target of the whole equivalence classes approach and
especially with the formulation of skinny/fit packages in
Section III and the heuristics in Section IV. The second type
of improvement depends on the specific implementation of
the model and the package generation. The idea is to reduce
the memory allocation by formulating a more condense
optimization model. Constraints can often be transformed
such that they are represented with less coefficients.

Though we have not investigated the subject, we believe
that there is room for improvement of the implementation in
future work. For example, consider (16) and (20) where we,
for readability, only included non-zero elements. This is one
way to represent the same constraint with less coefficients.
These types of more condense formulations can be done also
in the actual optimization model. Another interesting idea is
to reduce the memory allocation of the packages using more
efficient data structures. The current package generation
constructs a list where each package is represented by its
equivalence classes, individually. One could instead generate
a tree structure that represents all packages, where each node
is an equivalence class and branches indicate how many of
this class to use in the final package. The depth of such tree
would be equal to the number of equivalence classes and
each leaf would constitute an unique package. Preliminary
experiments has shown that this method greatly decreases
the memory allocation of the package generation for some
of the benchmark instances, allowing much larger instances
to be processed and decreasing the computation time. Future
work is required to incorporate such tree structure in the
subsequent optimization and to further evaluate the improve-
ment to the space complexity on a larger set of instances.

Table I shows the performance of the equivalence classes
method over different sets of benchmark instances. In order
to compare our formulation to the other relevant algorithms
we found in the literature, we refer to Table I and Table
II of [3], where such algorithms are evaluated using the
same benchmark sets listed above, and setting the time
limit to one minute (the implementation for such algorithms
is available at the authors web page [20]). Though the
computers used are different, we believe that the comparison
still gives a hint of the method’s potential. Nonetheless,
we decided to run the benchmark instances again for the
standard formulation (called Basic ILP in [3], since the
authors used a different solver). Moreover, the algorithms
listed in those tables, are specifically tailored to solve the
bin packing problem, while our formulation provides a
linear program that can be fed to any solver (or extended
with additional constraints) and so can be done with the

10

standard formulation. Therefore we decided to make a more
rigorous comparison between the standard formulation and
the equivalence classes formulation.

As already discussed when commenting on Table IV, the
number of generated packages directly affects the solving
time when using the equivalence classes approach; therefore
we only considered instances counting less than ten million
packages. Table I shows the number of instances in each
set and, next to it, the number of instances that lead to
generate less than ten million packages. The equivalence
class formulation is much faster than the standard formula-
tion for the Falkenauer sets and can deal with all instances
in less than 2 seconds each. When it comes to the Scholl
instances, in the first set the equivalence class formulation
is still much faster and can deal with almost twice as
many instances before the time limit, while it performs very
similarly, though slightly worse, in the second set. Neither
method can deal with any of the instances in the third set.
The standard formulation performs considerably better than
the equivalence class formulation in both Schwerin sets, both
in terms of instances solved and average time. Finally, the
standard formulation cannot solve any of the instances from
either the Wäscher or the Schoenfield set within the time
limit, while the equivalence class formulation cannot even
get started, since the computer ran out of memory while
generating the packages.

A possible remedy to handle such hard instances is to
reduce the number of classes by merging them into chains as
described in sections IV-B and IV-A. The heuristic does not
guarantee an optimal value to the original problem, but it can
drastically reduce the number of packages, thus speeding up
the model generation tremendously, while producing close-
to-optimal results. Table II shows an example for both the
covering and the packing problems where the number of
equivalence classes is progressively reduced from the orig-
inal number, shown on the first line, which would give the
true optimal solution. The instance is evaluated considering
two different target values: 450 is an exact multiple of 150
(the mean value of the items) while 525 is as far as possible
from being an exact multiple. Also, two different values
for the deviation are selected: 10 (corresponding to the data
shown in the upper part of Table II) and 90 (corresponding
to the remaining data); neither of the two parameters seem
to largely affect the accuracy. What we can see though, is
a dramatic reduction in the number of generated packages
as the number of classes decreases, while the optimal value
for the simplified instances is still close to the optimum for
the original one.

VI. CONCLUSIONS

In this paper we have presented alternative formulations to
solve both the bin covering and the bin packing problem; we
have shown that these formulations perform particularly well
when the number of different values in the problem instance
is limited. In such cases, our formulations allow to solve
problems counting hundreds of items in a considerably short
time. This feature can prove useful for industrial applications
where the number of items is high but the range of values is
limited, such as battery recycling (for bin packing) or fixed
tray weight sorting in food processing (bin covering). When
this is not the case, our formulations allow for problem
simplification by means of merging equivalence classes that

still provides a close to optimal solution, while dramatically
reducing the computation time. Moreover, the concept of
skinny/fit packages can constitute a solid base to improve
existing specific-purpose algorithms such as those given
by [3], which we intend investigate further.

ACKNOWLEDGEMENTS

The authors thank Folkmar Frederik Ramcke for imple-
menting the algorithms for package generation.

REFERENCES

[1] E. G. Coffman, J. Csirik, G. Galambos, S. Martello, and D. Vigo,
“Bin packing approximation algorithms: survey and classification,”
in Handbook of combinatorial optimization. Springer New York,
2013, pp. 455–531.

[2] S. F. Assmann, D. S. Johnson, D. J. Kleitman, and J.-T. Leung, “On
a dual version of the one-dimensional bin packing problem,” Journal
of algorithms, vol. 5, no. 4, pp. 502–525, 1984.

[3] M. Delorme, M. Iori, and S. Martello, “Bin packing and cutting stock
problems: Mathematical models and exact algorithms,” European
Journal of Operational Research, vol. 255, no. 1, pp. 1–20, 2016.

[4] G. Belov and G. Scheithauer, “A branch-and-cut-and-price algorithm
for one-dimensional stock cutting and two-dimensional two-stage
cutting,” European Journal of Operational Research, vol. 171, no. 1,
pp. 85 – 106, 2006.

[5] F. Brandão and J. P. Pedroso, “Bin packing and related problems:
General arc-flow formulation with graph compression,” Computers
& Operations Research, vol. 69, pp. 56 – 67, 2016.

[6] F. Clautiaux, S. Hanafi, R. Macedo, M. Émilie Voge, and C. Alves,
“Iterative aggregation and disaggregation algorithm for pseudo-
polynomial network flow models with side constraints,” European
Journal of Operational Research, vol. 258, no. 2, pp. 467 – 477,
2017.

[7] M. Delorme and M. Iori, “Enhanced pseudo-polynomial formulations
for bin packing and cutting stock problems,” INFORMS Journal on
Computing, vol. 32, no. 1, pp. 101–119, 2020.

[8] M. Dell’Amico, F. Furini, and M. Iori, “A branch-and-price algorithm
for the temporal bin packing problem,” Computers & Operations
Research, vol. 114, pp. 1 – 16, 2020.

[9] S. Roselli, F. Hagebring, S. Riazi, M. Fabian, and K. Åkesson,
“On the use of equivalence classes for optimal and sub-optimal
bin covering,” in 2019 IEEE 15th International Conference on
Automation Science and Engineering (CASE). IEEE, 2019, pp.
1004–1009.

[10] L. V. Kantorovich, “Mathematical methods of organizing and plan-
ning production,” Management science, vol. 6, no. 4, pp. 366–422,
1960.

[11] M. Labbé, G. Laporte, and S. Martello, “An exact algorithm for the
dual bin packing problem,” Operations Research Letters, vol. 17,
no. 1, pp. 9–18, 1995.

[12] M. Peeters and Z. Degraeve, “Branch-and-price algorithms for the
dual bin packing and maximum cardinality bin packing problem,”
European journal of operational research, vol. 170, no. 2, pp. 416–
439, 2006.

[13] M. J. Brusco, H. F. Köhn, and D. Steinley, “Exact and approximate
methods for a one-dimensional minimax bin-packing problem,” An-
nals of Operations Research, vol. 206, no. 1, pp. 611–626, Jul 2013.

[14] E. Falkenauer, “A hybrid grouping genetic algorithm for bin pack-
ing,” Journal of heuristics, vol. 2, no. 1, pp. 5–30, 1996.

[15] A. Scholl, R. Klein, and C. Jürgens, “Bison: A fast hybrid procedure
for exactly solving the one-dimensional bin packing problem,” Com-
puters & Operations Research, vol. 24, no. 7, pp. 627–645, 1997.

[16] P. Schwerin and G. Wäscher, “The bin-packing problem: A problem
generator and some numerical experiments with FFD packing and
MTP,” International Transactions in Operational Research, vol. 4,
no. 5-6, pp. 377–389, 1997.

11

TABLE II: Comparison of the optimal solution and solving time (in seconds) with respect to the number of generated packages for an instance of 200 items solved with both
packing and covering method when varying the number of classes (Cl.) by simplifying the original instance. The instance is evaluated for target values of 450 and 525 and
deviation values of 10 (top part of the table) and 90 (bottom part).

Cl. COVERING PACKING

Standard Deviation: 10

450 525 450 525

Packages Optimum Time Packages Optimum Time Packages Optimum Time Packages Optimum Time

45 62999 65 0.47 181800 50 2.10 8964 67 0.08 15969 65 0.26
40 44616 65 0.35 118894 50 1.43 6768 67 0.07 11525 65 0.20
35 26057 65 0.19 72368 50 0.50 4437 67 0.04 7814 65 0.12
30 15931 65 0.10 39935 50 0.28 2486 67 0.03 4955 66 0.03
25 8154 65 0.08 19788 50 0.13 1566 67 0.02 2925 66 0.02
20 3742 65 0.03 8621 50 0.05 807 67 0.00 1540 66 0.01
15 1512 65 0.01 3061 50 0.02 411 67 0.00 681 66 0.00
10 445 64 0.00 715 50 0.00 106 68 0.00 220 66 0.00

Standard Deviation: 90

450 525 450 525

Packages Optimum Time Packages Optimum Time Packages Optimum Time Packages Optimum Time

80 540384 66 9.09 2151942 56 53.90 47068 67 0.52 219327 57 3.77
75 438155 66 6.40 1683682 56 41.53 38926 67 0.37 173769 57 5.44
70 315242 65 3.77 1222000 56 33.51 33502 67 0.25 143324 57 2.24
65 214423 65 1.89 825952 56 15.09 25168 67 0.18 99023 57 6.27
60 181567 65 1.90 647241 56 13.17 18370 67 0.09 67044 57 2.02
55 130228 65 1.26 450641 56 8.11 14857 67 0.08 52659 57 1.19
50 82868 65 0.69 293594 56 2.56 10848 67 0.07 36831 57 0.73
45 67720 65 0.44 216105 56 3.28 7912 67 0.07 25138 57 0.47
40 40267 65 0.23 128418 56 1.95 5988 67 0.04 18789 57 0.16
35 25224 65 0.19 77416 56 0.76 3583 67 0.02 10421 57 0.21
30 14716 65 0.09 42137 56 0.46 2579 67 0.02 7217 57 0.13
25 7903 65 0.05 21239 56 0.26 1491 67 0.02 3650 57 0.03
20 3635 65 0.03 8834 56 0.05 826 67 0.01 1904 58 0.01
15 1437 65 0.01 3149 55 0.02 310 68 0.00 674 58 0.01
10 344 64 0.00 677 54 0.00 112 69 0.00 213 59 0.00

[17] G. Wäscher and T. Gau, “Heuristics for the integer one-dimensional
cutting stock problem: A computational study,” Operations-
Research-Spektrum, vol. 18, no. 3, pp. 131–144, 1996.

[18] J. E. Schoenfield, “Fast, exact solution of open bin packing problems
without linear programming. draft,” US Army Space & Missile
Defence Command, Huntsville, vol. 20, p. 72, 2002.

[19] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual,
version 9, 2020. [Online]. Available: http://www.gurobi.com

[20] M. Delorme, M. Iori, and S. Martello, “BPPLIB: a library for bin
packing and cutting stock problems,” Optimization Letters, vol. 12,
no. 2, pp. 235–250, 2018.

Sabino Roselli was born in Bari, Italy, in 1992.
He received a M.Sc. degree in Industrial Engineer-
ing from Politecnico di Bari, Bari, Italy, in 2017.
Since then, he has been pursuing a Ph.D. degree at
the Electrical Engineering Department, Chalmers.
His filed of research is optimal scheduling of
operations within the industrial context.

Fredrik Hagebrig was born in Borås, Sweden,
in 1985. He received a M.Sc. degree in Systems,
Control and Mechatronics from Chalmers Univer-
sity of Technology, Gothenburg, Sweden, in 2016.
Since then, he has been pursuing a Ph.D. degree at
the Electrical Engineering Department, Chalmers.

Sarmad Riazi received his M.Sc. in Systems,
Control and Mechatronics in 2013 and his Ph.D.
degree in 2020, both from Electrical Engineering
department of Chalmers University of Technol-
ogy, Gothenburg, Sweden. He was a guest lecturer
at University West, Trollhättan, Sweden in 2019.
He is working as a research engineer at AGVE,
Sweden. His research interests include integrated,
combinatorial and nonlinear optimization methods
and their industrial applications, and energy min-
imization of robotic manipulators and AGVs.

Martin Fabian is Professor in Automation and
Head of the Automation Research group at the
Department of Electrical Engineering, Chalmers
University of Technology. His research interests
include formal methods for automation systems in
a broad sense, merging the fields of Control Engi-
neering and Computer Science. He has authored
more than 200 publications, and is co-developer
of the formal methods tool Supremica, which
implements several state-of-the-art algorithms for
supervisory control synthesis.

Knut Åkesson is Professor in the Department
of Electrical Engineering at Chalmers University
of Technology, Gothenburg, Sweden. His main
research is in using rigorous methods for analysis
of cyber-physical systems. Åkesson holds a M.Sc.
in Computer Science and Technology from Lund
Institute of Technology, Sweden, and PhD in
Control Engineering from Chalmers University of
Technology, Gothenburg, Sweden.

http://www.gurobi.com

12

TA
B

L
E

II
I:

Se
t

of
ge

ne
ra

te
d

in
st

an
ce

s
so

lv
ed

us
in

g
th

e
st

an
da

rd
fo

rm
ul

at
io

n
fo

r
bo

th
th

e
pa

ck
in

g
an

d
th

e
co

ve
ri

ng
pr

ob
le

m
.

T
he

si
ze

of
th

e
in

st
an

ce
s

ra
ng

es
fr

om
10

to
70

ite
m

s
an

d
th

e
ta

rg
et

va
lu

e
fr

om
30

0
to

90
0.

T
he

m
ed

ia
n

tim
e

is
re

po
rt

ed
(c

al
cu

la
te

d
ov

er
th

e
so

lv
ed

in
st

an
ce

s)
as

w
el

l
as

th
e

lo
w

er
an

d
up

pe
r

qu
ar

til
e

an
d

th
e

nu
m

be
r

of
in

st
an

ce
s

th
at

tim
ed

ou
t.

T
he

tim
eo

ut
is

se
t

to
12

00
se

co
nd

s.
If

no
in

st
an

ce
fo

r
a

gi
ve

n
ca

te
go

ry
is

so
lv

ed
,

th
e

ce
ll

is
m

ar
ke

d
w

ith
th

e
sy

m
bo

l
’-

’.

C
O

V
E

R
IN

G
ST

A
N

D
A

R
D

30
0

40
0

50
0

60
0

70
0

80
0

90
0

m
ed

.
lo

w
up

p
TO

m
ed

.
lo

w
up

p
TO

m
ed

.
lo

w
up

p
TO

m
ed

.
lo

w
up

p
TO

m
ed

.
lo

w
up

p
TO

m
ed

.
lo

w
up

p
TO

m
ed

.
lo

w
up

p
TO

10
0.

00
0.

00
0.

00
0

0.
00

0.
00

0.
00

0
0.

00
0.

00
0.

00
0

0.
00

0.
00

0.
00

0
0.

00
0.

00
0.

00
0

0.
00

0.
00

0.
00

0
0.

00
0.

00
0.

00
0

20
0.

00
0.

00
0.

02
0

0.
00

0.
00

0.
00

0
0.

00
0.

00
0.

02
0

0.
00

0.
00

0.
00

0
0.

00
0.

00
0.

00
0

0.
00

0.
00

0.
00

0
0.

00
0.

00
0.

00
0

30
0.

01
0.

01
1.

16
4

0.
01

0.
01

0.
01

0
8.

59
0.

09
9.

58
4

0.
01

0.
01

0.
01

0
0.

01
0.

01
0.

01
0

0.
01

0.
01

0.
01

0
0.

01
0.

01
0.

02
0

40
0.

06
0.

02
0.

16
7

0.
01

0.
01

0.
01

0
18

.5
7

13
.9

5
22

.7
4

12
0.

01
0.

01
0.

02
0

0.
01

0.
01

0.
01

0
0.

04
0.

01
0.

08
0

0.
01

0.
01

0.
01

0
50

0.
07

0.
03

0.
15

3
0.

46
0.

35
0.

54
0

35
.5

0
26

.2
2

54
.8

1
11

0.
02

0.
02

0.
02

0
0.

02
0.

01
0.

02
0

0.
42

0.
12

24
.8

9
6

0.
02

0.
01

0.
02

0
60

0.
17

0.
12

0.
27

15
0.

03
0.

03
0.

03
0

90
.2

5
32

.7
5

11
6.

26
13

0.
03

0.
02

0.
03

0
0.

03
0.

03
0.

10
0

-
-

-
25

0.
02

0.
02

0.
03

0
70

0.
17

0.
15

0.
25

6
0.

90
0.

04
2.

74
0

65
.8

3
12

.8
9

23
6.

56
11

0.
04

0.
03

0.
04

0
0.

03
0.

03
0.

07
4

-
-

-
25

0.
03

0.
03

0.
03

0

PA
C

K
IN

G
ST

A
N

D
A

R
D

30
0

40
0

50
0

60
0

70
0

80
0

90
0

m
ed

.
lo

w
up

p
TO

m
ed

.
lo

w
up

p
TO

m
ed

.
lo

w
up

p
TO

m
ed

.
lo

w
up

p
TO

m
ed

.
lo

w
up

p
TO

m
ed

.
lo

w
up

p
TO

m
ed

.
lo

w
up

p
TO

10
0.

00
0.

00
0.

00
0

0.
00

0.
00

0.
00

0
0.

00
0.

00
0.

00
0

0.
00

0.
00

0.
00

0
0.

00
0.

00
0.

00
0

0.
00

0.
00

0.
00

0
0.

00
0.

00
0.

00
0

20
0.

06
0.

01
0.

10
0

0.
05

0.
03

0.
08

0
0.

02
0.

00
0.

03
0

0.
00

0.
00

0.
00

0
0.

00
0.

00
0.

00
0

0.
00

0.
00

0.
00

0
0.

00
0.

00
0.

00
0

30
0.

01
0.

01
0.

23
0

0.
18

0.
12

0.
26

0
0.

08
0.

00
0.

14
0

0.
00

0.
00

0.
01

0
0.

01
0.

01
0.

04
0

0.
00

0.
00

0.
00

0
0.

00
0.

00
0.

02
0

40
3.

85
0.

40
30

.6
8

0
0.

76
0.

49
1.

98
0

1.
13

0.
33

2.
09

0
0.

01
0.

01
0.

06
0

1.
95

0.
12

5.
14

15
0.

01
0.

01
0.

01
0

0.
01

0.
01

0.
01

0
50

18
.3

3
8.

97
82

.0
4

6
6.

76
1.

15
21

.4
6

0
3.

75
1.

00
4.

95
0

0.
02

0.
02

0.
02

4
4.

56
3.

06
9.

69
16

0.
01

0.
01

0.
01

0
0.

01
0.

01
0.

01
0

60
39

.5
8

0.
10

17
0.

01
11

21
.7

7
3.

08
40

.4
2

7
7.

61
5.

44
13

.9
6

0
0.

07
0.

04
0.

22
0

79
.6

1
18

.2
5

12
4.

53
15

0.
01

0.
01

0.
01

0
0.

05
0.

03
0.

16
0

70
1.

02
0.

10
44

.9
2

13
47

3.
65

53
.3

4
56

0.
20

8
19

.9
2

16
.0

6
27

.0
6

0
0.

04
0.

04
0.

04
3

15
3.

92
20

.9
0

34
3.

86
13

0.
02

0.
02

0.
02

0
0.

02
0.

02
0.

03
4

TA
B

L
E

IV
:

Se
t

of
ge

ne
ra

te
d

in
st

an
ce

s
so

lv
ed

us
in

g
th

e
eq

ui
va

le
nc

e
cl

as
se

s
fo

rm
ul

at
io

n
fo

r
bo

th
th

e
pa

ck
in

g
an

d
th

e
co

ve
ri

ng
pr

ob
le

m
.

T
he

si
ze

of
th

e
in

st
an

ce
s

ra
ng

es
fo

rm
60

to
50

0
ite

m
s

an
d

th
e

ta
rg

et
va

lu
e

ra
ng

es
fr

om
30

0
to

90
0.

T
he

m
ed

ia
n

tim
e

is
re

po
rt

ed
as

w
el

l
as

th
e

lo
w

er
an

d
up

pe
r

qu
ar

til
e

an
d

av
er

ag
e

nu
m

be
r

of
pa

ck
ag

es
ge

ne
ra

te
d

(u
p

to
te

ns
of

th
ou

sa
nd

s,
nu

m
be

rs
ar

e
sh

ow
n

in
re

gu
la

r
no

ta
tio

n,
af

te
rw

ar
ds

th
e

sc
ie

nt
ifi

c
no

ta
tio

n
is

em
pl

oy
ed

.T
he

tim
eo

ut
is

se
t

to
12

00
se

co
nd

s.
T

he
sy

m
bo

l
’-

’
m

ea
ns

th
at

on
ly

on
e

in
st

an
ce

fo
r

th
at

cl
as

s
w

as
so

lv
ed

,t
he

re
fo

re
it

w
as

no
t

po
ss

ib
le

to
ca

lc
ul

at
e

th
e

up
pe

r
or

lo
w

er
qu

ar
til

e.

C
O

V
E

R
IN

G
E

Q
U

IV
A

L
E

N
C

E
C

L
A

SS
E

S

30
0

40
0

50
0

60
0

70
0

80
0

90
0

m
ed

.
lo

w
up

p
#

pa
ck

m
ed

.
lo

w
up

p
#

pa
ck

m
ed

.
lo

w
up

p
#

pa
ck

m
ed

.
lo

w
up

p
#

pa
ck

m
ed

.
lo

w
up

p
#

pa
ck

m
ed

.
lo

w
up

p
#

pa
ck

m
ed

.
lo

w
up

p
#

pa
ck

60
0.

01
0.

01
0.

02
17

27
0.

06
0.

05
0.

06
55

34
0.

38
0.

29
0.

44
44

56
6

1.
02

0.
79

1.
38

1
×

1
05

7.
39

3.
91

8.
73

3
×

10
5

39
.3

0
29

.9
6

56
.1

1
1
×
1
0
6

10
6.

04
65

.8
5

14
4.

22
3
×

10
6

70
0.

02
0.

01
0.

02
19

48
0.

06
0.

05
0.

07
63

21
0.

46
0.

37
0.

52
53

64
3

1.
34

0.
97

1.
96

1
×

10
5

8.
51

6.
39

10
.8

5
4
×

1
0
5

53
.7

9
41

.7
9

68
.3

2
2
×
1
0
6

15
8.

50
11

0.
38

21
0.

63
5
×

1
0
6

80
0.

02
0.

02
0.

02
22

10
0.

07
0.

05
0.

07
72

94
0.

57
0.

47
0.

64
65

30
1

1.
94

1.
75

2.
31

2
×

1
05

12
.4

8
7.

52
13

.5
1

5
×

1
0
5

82
.5

3
69

.7
5

98
.7

0
3
×
1
0
6

26
6.

01
22

4.
57

35
9.

33
6
×

1
0
6

10
0

0.
02

0.
02

0.
03

26
55

0.
07

0.
06

0.
07

86
52

0.
80

0.
66

0.
86

82
79

4
3.

03
2.

37
3.

56
2
×

1
05

18
.5

4
14

.4
3

23
.3

5
7
×

10
5

16
0.

79
12

7.
88

17
8.

73
4
×
1
0
6

46
2.

48
37

6.
44

51
7.

59
1
×
10

7

15
0

0.
03

0.
02

0.
03

31
28

0.
09

0.
08

0.
10

10
26

1
0.

97
0.

78
1.

11
1
×

1
05

5.
28

4.
17

5.
55

3
×

10
5

26
.4

8
19

.2
4

33
.5

0
9
×
1
0
5

21
5.

04
12

1.
05

24
8.

88
5
×

1
06

67
9.

03
-

-
2
×
1
0
7

20
0

0.
02

0.
02

0.
03

33
40

0.
10

0.
09

0.
10

10
93

6
0.

99
0.

91
1.

01
1
×

1
05

5.
30

4.
73

5.
77

4
×

1
05

27
.3

9
24

.4
1

29
.0

1
1
×
1
0
6

32
4.

04
-

-
7
×

1
06

11
15

.6
5

-
-

2
×
1
0
7

30
0

0.
01

0.
01

0.
02

34
32

0.
09

0.
08

0.
10

11
33

0
0.

96
0.

93
1.

01
1
×

10
5

6.
04

5.
63

6.
96

4
×

1
0
5

27
.7

1
27

.0
7

29
.1

8
1
×
10

6
30

1.
28

-
-

8
×

10
6

10
84

.2
1

-
-

2
×
10

7

50
0

0.
01

0.
01

0.
01

34
77

0.
06

0.
05

0.
08

11
46

9
0.

80
0.

77
0.

90
1
×

1
0
5

5.
66

5.
15

6.
02

4
×

1
0
5

27
.4

8
25

.9
0

31
.2

0
1
×
1
0
6

35
6.

01
-

-
8
×

1
06

11
09

.4
6

-
-

2
×
1
0
7

PA
C

K
IN

G
E

Q
U

IV
A

L
E

N
C

E
C

L
A

SS
E

S

30
0

40
0

50
0

60
0

70
0

80
0

90
0

m
ed

.
lo

w
up

p
#

pa
ck

m
ed

.
lo

w
up

p
#

pa
ck

m
ed

.
lo

w
up

p
#

pa
ck

m
ed

.
lo

w
up

p
#

pa
ck

m
ed

.
lo

w
up

p
#

pa
ck

m
ed

.
lo

w
up

p
#

pa
ck

m
ed

.
lo

w
up

p
#

pa
ck

60
0.

00
0.

00
0.

00
28

1
0.

00
0.

00
0.

00
52

4
0.

03
0.

02
0.

03
55

55
0.

33
0.

25
0.

38
25

85
3

0.
64

0.
47

0.
81

50
51

8
8.

01
4.

83
15

.8
6

3
×
1
0
5

32
.8

0
17

.1
7

48
.8

4
1
×

1
0
6

70
0.

00
0.

00
0.

00
30

3
0.

00
0.

00
0.

01
56

9
0.

04
0.

03
0.

04
63

27
0.

37
0.

29
0.

45
30

50
5

0.
73

0.
67

0.
86

60
84

9
9.

56
8.

01
10

.3
4

4
×
10

5
43

.8
1

25
.1

9
64

.8
8

1
×

1
0
6

80
0.

00
0.

00
0.

00
32

9
0.

00
0.

00
0.

01
62

5
0.

04
0.

04
0.

04
72

99
0.

48
0.

36
0.

56
36

76
5

0.
96

0.
89

1.
10

74
90

9
13

.3
8

10
.3

2
15

.2
2

5
×
10

5
73

.3
5

45
.2

6
81

.9
5

2
×

1
0
6

10
0

0.
00

0.
00

0.
00

37
0

0.
01

0.
01

0.
01

69
9

0.
05

0.
04

0.
06

86
44

0.
49

0.
38

0.
61

46
85

4
1.

19
1.

10
1.

80
1
×

1
0
5

18
.6

1
15

.1
5

33
.6

1
6
×
1
0
5

10
2.

59
86

.1
9

14
0.

68
3
×

1
0
6

15
0

0.
00

0.
00

0.
00

41
2

0.
01

0.
01

0.
01

78
6

0.
04

0.
04

0.
05

10
23

7
0.

56
0.

49
0.

62
58

95
0

1.
47

0.
96

3.
07

1
×

1
0
5

21
.6

4
15

.0
6

26
.1

6
9
×
1
0
5

14
5.

84
10

6.
05

18
2.

35
3
×

1
0
6

20
0

0.
00

0.
00

0.
00

42
9

0.
01

0.
01

0.
01

82
1

0.
07

0.
06

0.
08

10
90

4
0.

60
0.

53
0.

79
64

41
6

1.
82

1.
56

3.
59

1
×

1
0
5

26
.5

0
-

-
1
×
1
0
6

16
2.

30
-

-
5
×

1
0
6

30
0

0.
00

0.
00

0.
00

43
6

0.
01

0.
01

0.
01

84
1

0.
05

0.
04

0.
05

11
28

6
0.

71
0.

59
0.

81
67

16
3

2.
59

1.
64

3.
16

1
×

1
0
5

30
4.

40
-

-
1
×
1
0
6

16
2.

70
-

-
5
×

1
0
6

50
0

0.
00

0.
00

0.
00

44
0

0.
01

0.
01

0.
01

84
9

0.
09

0.
08

0.
10

11
41

7
0.

73
0.

61
0.

89
68

21
3

2.
81

2.
17

4.
46

2
×

1
0
5

67
3.

20
-

-
1
×
10

6
15

4.
10

-
-

5
×

1
0
6

	Introduction
	Bin Sorting
	The Standard Formulation
	The Subset Formulation
	Equivalence class formulation

	Optimal Solutions
	Bin Packing
	Fit package generation
	Bin Covering
	Skinny package generation

	Sub-Optimal Solutions
	Heuristic for the bin packing problem
	Heuristic for the bin covering problem

	Computational Analysis
	Conclusions
	References
	Biographies
	Sabino Roselli
	Fredrik Hagebrig
	Sarmad Riazi
	Martin Fabian
	Knut Åkesson

